Structural Properties of Polylogarithms

Leonard Lewin
Editor

American Mathematical Society
MATHEMATICAL SURVEYS
AND MONOGRAPHS SERIES LIST

Volume

1 The problem of moments,
 J. A. Shohat and J. D. Tamarkin
2 The theory of rings,
 N. Jacobson
3 Geometry of polynomials,
 M. Marden
4 The theory of valuations,
 O. F. G. Schilling
5 The kernel function and
 conformal mapping,
 S. Bergman
6 Introduction to the theory of
 algebraic functions of one
 variable, C. C. Chevalley
7.1 The algebraic theory of
 semigroups, Volume I, A. H.
 Clifford and G. B. Preston
7.2 The algebraic theory of
 semigroups, Volume II, A. H.
 Clifford and G. B. Preston
8 Discontinuous groups and
 automorphic functions,
 J. Lehner
9 Linear approximation,
 Arthur Sard
10 An introduction to the analytic
 theory of numbers, R. Ayoub
11 Fixed points and topological
 degree in nonlinear analysis,
 J. Cronin
12 Uniform spaces, J. R. Isbell
13 Topics in operator theory,
 A. Brown, R. G. Douglas,
 C. Pearcy, D. Sarason, A. L.
 Shields; C. Pearcy, Editor
14 Geometric asymptotics,
 V. Guillemin and S. Sternberg
15 Vector measures, J. Diestel and
 J. J. Uhl, Jr.
16 Symplectic groups,
 O. Timothy O'Meara
17 Approximation by polynomials
 with integral coefficients,
 Le Baron O. Ferguson
18 Essentials of Brownian motion
 and diffusion, Frank B. Knight
19 Contributions to the theory of
 transcendental numbers, Gregory
 V. Chudnovsky
20 Partially ordered abelian groups
 with interpolation, Kenneth R.
 Goodearl
21 The Bieberbach conjecture:
 Proceedings of the symposium on
 the occasion of the proof, Albert
 Baernstein, David Drasin, Peter
 Duren, and Albert Marden,
 Editors
22 Noncommutative harmonic
 analysis, Michael E. Taylor
23 Introduction to various aspects of
 degree theory in Banach spaces,
 E. H. Rothe
24 Noetherian rings and their
 applications, Lance W. Small,
 Editor
25 Asymptotic behavior of dissipative
 systems, Jack K. Hale
26 Operator theory and arithmetic in
 H^∞, Hari Bercovici
27 Basic hypergeometric series and
 applications, Nathan J. Fine
28 Direct and inverse scattering on
 the lines, Richard Beals, Percy
 Deift, and Carlos Tomei
29 Amenability, Alan L. T. Paterson
30 The Markoff and Lagrange
 spectra, Thomas W. Cusick and
 Mary E. Flahive
Volume

31 Representation theory and harmonic analysis on semisimple Lie groups, Paul J. Sally, Jr. and David A. Vogan, Jr., Editors

32 An introduction to CR structures, Howard Jacobowitz

33 Spectral theory and analytic geometry over non-Archimedean fields, Vladimir G. Berkovich

34 Inverse source problems, Victor Isakov

35 Algebraic geometry for scientists and engineers, Shreeram S. Abhyankar

36 The theory of subnormal operators, John B. Conway

37 Structural properties of polylogarithms, Leonard Lewin, Editor
Structural Properties of Polylogarithms
Structural Properties of Polylogarithms

Leonard Lewin
Editor
1980 Mathematics Subject Classification (1985 Revision). Primary 39B50, 33A70, 30D05, 19F27; Secondary 11F67, 39B70, 51M20, 57R20.

Library of Congress Cataloging-in-Publication Data

Structural properties of polylogarithms/Leonard Lewin, editor.
 p. cm.—(Mathematical surveys and monographs, ISSN 0076-5376; v. 37)
 Includes bibliographical references and index.
 ISBN 0-8218-1634-9
QA342.S77 1991 91-18172
 512.9'22—dc20 CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy is paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0076-5376/91 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Copyright ©1991 by the American Mathematical Society. All rights reserved.

Printed in the United States of America

The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

This publication was typeset using AMS-TEX, the American Mathematical Society’s TEX macro system.

10 9 8 7 6 5 4 3 2 1 95 94 93 92 91
Contents

Preface xiii

Acknowledgments xv

List of Contributors xvii

Chapter 1. The Evolution of the Ladder Concept 1
 L. Lewin 1
 1.1 Early History 1
 1.2 Functional Equations 2
 1.3 More Recent Numerical Results 4
 1.4 Current Developments 6
 1.5 Base on the Unit Circle and Clausen Function Ladders 8
 References 9

Chapter 2. Dilogarithmic Ladders 11
 L. Lewin 11
 2.1 Derivation from Kummer’s Functional Equation 11
 2.2 Relation to Clausen’s Function 15
 2.3 A Three-Variable Dilogarithmic Functional Equation 17
 2.4 Functional Equations in the Complex Plane 18
 2.5 Cyclotomic Equations and Rogers’ Function 20
 2.6 Accessible and Analytic Ladders 21
 2.7 Inaccessible Ladders 23
 References 25

Chapter 3. Polylogarithmic Ladders 27
 M. Abouzahra and L. Lewin 27
 3.1 Kummer’s Function and its Relation to the Polylogarithm 27
 3.2 Functional Equations for the Polylogarithm 28
 3.3 A Generalization of Rogers’ Function to the \(n \)th Order 31
 3.4 Ladder Order-Independence on Reduction of Order 33
 3.5 Generic Ladders for the Base Equation \(u^p + u^q = 1 \) 34
 3.6 Examples of Ladders for \(n \leq 3 \) 40
 3.7 Examples of Ladders for \(n \leq 4 \) 44
CONTENTS

3.8 Examples of Ladders for $n \leq 5$ 45
3.9 Polynomial Relations for Ladders 46
References 47

Chapter 4. Ladders in the Trans-Kummer Region 49
M. Abouzahra and L. Lewin
4.1 Ladder Results to $n = 9$ for the Base ρ 49
4.2 Ladder Results to $n = 9$ for the Base ω 53
4.3 Ladder Results to $n = 6$ for the Base θ 62
4.4 The Nonexistence of Functional Equations at $n = 6$ with
Arguments Limited to $\pm z^m(1 - z)^r(1 + z)^s$ 65
References 67

Chapter 5. Supernumary Ladders 69
M. Abouzahra and L. Lewin
5.1 The Concept of Supernumary Results 69
5.2 Supernumary Results for $p = 4$ 71
5.3 Supernumary Results for $p = 5$ 76
5.4 Supernumary Results for $p = 6$ 78
5.5 Supernumary Results for the Equation-family
$u^{6m+1} + u^{6r-1} = 1$ 80
5.6 Supernumary Results for an Irreducible Quintic 82
5.7 Supernumary Ladders from a 15-Term Functional Equation 84
5.8 Supernumary Ladders on the Unit Circle 90
References

Chapter 6. Functional Equations and Ladders 97
L. Lewin
6.1 New Categories of Functional Equations 97
6.2 The ρ-family of Equations 100
6.3 The ω-family of Equations 109
6.4 The θ-family of Equations 115
Acknowledgements 121
References 121

Chapter 7. Multivariable Polylogarithm Identities 123
G. A. Ray
7.0 Introduction 123
7.1 A General Identity for the Dilogarithm 123
7.2 A General Identity for the Bloch-Wigner Function 135
7.3 A General Identity for the Trilogarithm and $D_3(z)$ 141
7.4 Linear Power Relations among Dilogarithms 147
7.5 Cyclotomic Equations and Bases for Polylogarithm Relations 154
7.6 Mahler’s Measure and Salem/Pisot Numbers 160
7.7 Recent Results for Supernumary Ladders 165
References 168
Chapter 8. Functional Equations of Hyperlogarithms 171
 G. Wechsung
 8.1 Hyperlogarithms 171
 8.2 Logarithmic Singularities 172
 8.3 The Linear Spaces LI_n and PLI_n 176
 8.4 Functional Equations of Hyperlogarithms 177
 8.5 A Reduction Problem 181
 References 184

Chapter 9. Kummer-Type Functional Equations of Polylogarithms 185
 G. Wechsung
 9.1 Automorphic Functions 185
 9.2 Kummer-Type Functional Equations 186
 9.3 A Method to Construct Functional Equations 191
 9.4 The Nonexistence of a Kummer-Type Functional Equation for Li_6 197
 References 203

Chapter 10. The Basic Structure of Polylogarithmic Equations 205
 Z. Wojtkowiak
 10.1 Introduction 205
 10.2 Canonical Unipotent Connection on P^1(C)\{a_1, \ldots , a_{n+1}\} 211
 10.3 Horizontal Sections 213
 10.4 Easy Lemmas about Monodromy 215
 10.5 Functional Equations 216
 10.6 Functional Equations of Polylogarithms 218
 10.7 Functional Equations of Lower Degree Polylogarithms 223
 10.8 Generalized Bloch Groups 228
 Acknowledgements 231
 References 231

Chapter 11. K-Theory, Cyclotomic Equations and Clausen’s Function 233
 J. Browkin
 11.1 Algebraic Background 233
 11.2 Analytic Background 238
 11.3 K-theoretic Background 248
 11.4 Examples 251
 11.5 Problems and Conjectures 270
 References 272

Chapter 12. Function Theory of Polylogarithms 275
 S. Bloch

Chapter 13. Partition Identities and the Dilogarithm 287
 J. H. Loxton
 13.1 Introduction 287
13.2 Cyclotomic Equations 290
13.3 Accessible Relations 291
13.4 Partition Identities 292
13.5 Generalisations and Extensions 297
References 299

Chapter 14. The Dilogarithm and Volumes of Hyperbolic Polytopes 301
R. Kellerhals
14.0 Introduction 301
14.1 A Particular Class of Hyperbolic Polytopes 303
14.2 The Volume of a d-Truncated Orthoscheme 309
14.3 Applications 321
14.4 Further Aspects 328
References 335

Chapter 15. Introduction to Higher Logarithms 337
R. M. Hain and R. MacPherson
15.1 The Problem of Generalizing the Logarithm and the Dilogarithm 337
15.2 The Quest for Higher Logarithms 340
15.3 Higher Logarithms 341
15.4 The Higher Logarithm Bicomplex 343
15.5 Multivalued Deligne Cohomology 346
15.6 Higher Logarithms as Deligne Cohomology Classes 350
Acknowledgements 351
References 352

Chapter 16. Some Miscellaneous Results 355
L. Lewin
16.1 Clausen's Function and the Di-Gamma Function for Rational Arguments 355
16.2 An Infinite Integral of a Product of Two Polylogarithms 359
16.3 Cyclotomic and Polylogarithmic Equations for a Salem Number 364
16.4 New Functional Equations 373
References 374

Appendix A. Special Values and Functional Equations of Polylogarithms 377
D. Zagier
0. Introduction 377
1. The Basic Algebraic Relation and the Definition of $\mathcal{A}_m(F)$ 378
2. Examples of Dilogarithm Relations 383
3. Examples for Higher Order Polylogarithms 385
4. Examples: Ladders 387
5. Existence of Relations among Polylogarithm Values of Arbitrarily High Order 390
6. A Conjecture on Linear Independence 391
7. Functional Equations 392
References 399

Appendix B. Summary of the Informal Polylogarithm Workshop,
November 17–18, 1990, MIT, Cambridge, Massachusetts 401
R. MacPherson and H. Sah
List of Participants 401
Abbreviated Summary 402

Bibliography 405
Index 409
Preface

As editor of this monograph on polylogarithms I would like to take the liberty of commencing with a few personal reminiscences. I first encountered the dilogarithm function many years ago in high school; it was a fascinating discovery for me, and it initiated a romance that has lasted almost sixty years. For the dilogarithm, the transition from its standing as a curious mathematical oddity to its current status as an important element in the fabric of modern mathematical structure began about fifteen years ago with Bloch's studies on its applications in algebraic K-theory and algebraic geometry. Since then, the pace of discovery has quickened dramatically. In 1980, when I was in the throes of completing my "Polylogarithms and Associated Functions," I became dimly aware that the handful of peculiar numerical identities that had been known since the time of Euler and Landen were, in fact, just the tip of an iceberg of unlimited extent. Thus emerged the new discoveries on cyclotomic equations and their related polylogarithmic "ladders"—a nomenclature that came to me in a dream, after much chewing over of other, more artificial, verbal constructs. Ten years of development in this arena, conducted mostly by the methods of classical analysis with the help of number-crunching computers, ran parallel with other, and more important, discoveries in diverse branches of abstract algebra and algebraic geometry. The confluence of these two streams of thought in the last few years, due to the work of several mathematicians, but particularly to studies of Browkin in Poland and Zagier in Germany, has lead to the present synthesis which I have tried to present in this timely, I hope, monograph.

One of the biggest problems has been the pace of new research; it is obviously extremely difficult to produce a book that is current when new discoveries are taking place all the time and making already-written material partially outdated—though it is also a sign of a very flourishing field when things go this way. During the approximately twelve months that the book has been in active preparation many new discoveries were made. I have endeavored to keep the material up-to-date by the last minute inclusion of two appendices: one on a special workshop on polylogarithms held in November 1990; and one on very recent discoveries on the relation of functional equations to polylogarithmic ladders, Dedekind's zeta function; and including the remarkable discovery by D. Zagier and H. Gangl at the Max-Planck-Institut für Mathe-
matik of a two-variable functional equation for the hexalogue—the first significant advance in this area since Kummer’s work of 150 years ago. In my earlier (1958) book on dilogarithms, talking about the difficulty of making much further progress in this area, I had written “But the complexity of the present results makes a completely new approach imperative if much progress is to be made.” It is now clear what this new approach is entailing: on the one hand the structural analysis arising from algebraic K-theory and related fields; and on the other the extensive use of computers, both for high precision numerical work and also for machine computation using symbolic logic. It is doubtful that many of the new and interesting formulas could have been found by hand alone; powerful computer programs are becoming almost as important as mathematical skills and the ability to generate new constructive conjectures.

This book could not have been written without the splendid help and cooperation of the several contributors who gave generously of their time and effort. Many helpful suggestions and contacts were made. I would particularly like to thank Richard Hain for his assistance in the compilation of the bibliography, Don Zagier for his extensive up-to-date appendix, and Han Sah and Robert MacPherson for their report on the recent polylogarithm workshop.

Authors have very individual styles of writing and it is not practical, for the purpose of uniform presentation, to constrain them into one common pattern of text organization. Even so, I think the overall volume has not suffered from any ensuing tendency to be “patchy,” and I hope that, the disparate contributions notwithstanding, the material as a whole is sufficiently coherent to give the entire work the integrity that I, as editor, have sought.

Most authors have written their chapters in the absence of knowing in detail what others were writing. This has given rise to a small amount of redundancy which I have not thought fit to try to remove; I do not think the work has suffered in any way from this. Rather, it has been interesting to see how similar ideas have arisen independently and received corresponding treatment. The whole subject is now in a state of rapid transition; even as I write, new discoveries vie for admission. With reluctance I have had to call a halt to the inclusion of a flood of new material. It will be fascinating to see what further developments the coming decade will bring. Don Zagier once wrote that “the dilogarithm is the only mathematical function with a sense of humor.” As this subject matures and gets more important, and more serious, I hope it manages to retain its once light-hearted beginnings. Its ability over the years to attract and hold the interest of so many mathematicians, many of them of the finest caliber, has been outstanding. I hope that its capacity for fruitful exploration will continue unabated for a long time to come.

Leonard Lewin
January 1991
Acknowledgments

Much credit for the preparation of this volume is due the various contributors, who, together with their affiliations, are listed on the following pages.

Much gratitude is also due to the reviewers of the original proposal for this book for making helpful suggestions, many of which have been incorporated into the current version.
List of Contributors

Mohamed D. Abouzahra, Ph.D.
MIT Lincoln Laboratory, Lexington, MA 02173, USA

Spencer Bloch, Ph.D.
Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

Jerzy Browkin, Ph.D.
Institute of Mathematics, Warsaw University, ul. Banacha 2, PL-00-913, Warsaw 59, Poland

Richard M. Hain, Ph.D.
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Ruth Kellerhals, Ph.D.
Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, 5300 Bonn 3, Germany

Leonard Lewin, D.Sc.
Professor Emeritus, Campus Box 425, University of Colorado, Boulder, CO 80309, USA

John H. Loxton, Ph.D.
Head of School of Mathematics, Macquarie University, NSW 2109, Australia

Robert MacPherson, Ph.D.
Department of Mathematics, MIT, Cambridge, MA 02139, USA

Gary A. Ray, Ph.D.
University of Washington, Seattle, WA 98195, USA (currently at Boeing High Technology Center, Seattle, WA 98124, USA)

C. Han Sah, Ph.D.
Department of Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

Gerd Wechsung, Ph.D.
Prorektor für Naturwissenschaft und Technik, Friedrich-Schiller-Universität, 6900 Jena, Germany
LIST OF CONTRIBUTORS

Zdzisław Wojtkowiak, Ph.D.
Institut des Hautes Études Scientifiques, 35 Route de Chartres, 91440 Bures-Sur-Yvette, France. (Formerly at Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, 5300 Bonn 3, Germany)

Don Zagier, Ph.D.
Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, 5300 Bonn 3, Germany
Bibliography

The following works, in alphabetical order, represent recent publications; for the most part published subsequent to the updated bibliography in “Polylogarithms and Associated Functions” (1981).

[W3] ---, *A note on the monodromy representation of the canonical unipotent connection on $P^1(C \setminus \{a_1, \ldots, a_n\})$. Max-Planck-Institut für Mathematik, Bonn, 1990 preprint.

[Z2] ---, *The dilogarithm function in geometry and number theory*, Number theory and related topics, Ramanujan Colloquium, Bombay, January 1988, 231–249. (This is the same material as in [Z1].)

[Zu] Zucker, I. J., On the series $\sum_{k=1}^{\infty} \binom{2k}{k}^{-1} k^{-n}$ and related sums, J. Number Theory, 20 (1985), 92–102.
Index

$A^*(X)$, 211
a is dependent on A, 251
Abel, 2, 4, 6, 185, 193, 194
Abel equation, 2
Abouzahra, 123, 370
absolute Hodge cohomology, 347
accessibility, 4, 17, 18, 64, 65, 71, 97
accessible ladder, 40, 44
accessible relations, 291
accessible results, 62
Acreman, 298
Adamchik, 359
adjoint, 114
adjoint equation, 108
adjoint set, 115, 119
$\text{Alg}(G(X))$, 216
Andrews, 19, 297, 298
Apéry, 46
automorphic functions, 11, 29, 185
automorphism groups, 185

Barrucand, 24
base, 6
base Γ, 152
base Ω, 151
base ρ, 125, 150
base equation, 11, 34, 84, 87, 90
base on the unit circle, 8
Bass theorem, 158
Beilinson, 275, 383, 391
Birkhoff, 155
Bloch, xiii, 15, 134, 136, 141, 163, 290, 333, 334, 382
Bloch dilogarithm function, 8
Bloch-Wigner, 161
Bloch-Wigner dilogarithm, 245, 334, 345, 380
Bloch-Wigner function, 123, 135, 141
Bombieri, 46, 141
Borel, 330, 382
Boyd, 160, 165
Browkin, xiii, 9, 23, 69, 91, 92, 151, 167
Böhm, 302

$C[[H_1(X, \mathbb{C})]]$, 212
$C[[X]]$, 212
$C[[X]]^*$, 212
Catalan constant, 9, 243, 358, 362
Cheeger-Simons Chern class, 345, 346
Chen, 275
Chern class, 338, 340
Chudnovsky, 1, 46, 141
circle method, 293
Clausen, 8, 90, 91
Clausen component ladders, 91, 94
Clausen function, 8, 15, 16, 90, 92, 135, 141, 239, 315, 355, 358
Clausen function ladders, 8, 9
Clausen functional equation, 84
Clausen ladder, 94, 95
cocycle condition, 340
Cohen, 387, 389
complete system of equivalent points, 186, 195
component-ladder, 8, 35
congruence, 268
conjecture of Birch and Tate, 250
conjecture of Lichtenbaum, 250
conjecture of Milnor, 272
conjecture on linear independence, 391
Coxeter, 4, 5, 11, 49, 50, 52, 53, 97, 99, 151, 302
Coxeter polytopes, 306, 321
Coxeter simplexes, 322
cross-ratio, 393, 394, 396
cyclic symmetry, 393
cyclotomic equation, 6, 7, 20, 21, 22, 24, 34, 36, 39, 40, 41, 42, 43, 44, 54, 69, 72, 74, 80, 82, 90, 91, 148, 154, 159, 236, 288, 290, 296, 365, 367
cyclotomic equations with a factor, 264
cyclotomic polynomial, 255
cyclotomic relation, 387

Damiano, 342
de Doelder, 358
de Rham complex, 343, 351

409
Dedekind zeta function, xiv, 330, 377, 384
deg f, 209
Dehn invariant, 331
Deligne cohomology, 350
Deligne, 275, 383
dependence, 254
di-gamma function, 355
dilogarithms, 238
Dirichlet L functions, 140, 164
Dirichlet L-series, 161
Dirichlet theorem, 377
dodecahedron, 328
d-truncated orthoschemes, 301
duplication formula, 1, 29, 32, 236, 240
Dupont, 4, 5, 50, 53, 333, 334, 335

e^w, 213
e_n, 218
Eastham, 46
Erdős-Stewart-Tijdeman, 390
essential, 307
Euler, xiii, 1, 4, 5, 12, 20, 36, 38, 40, 287
Euler dilogarithm, 238, 301, 314
exceptional, 256
exp(w), 213
exp, 213
exponent form, 11, 117

f^{-1}(a), 206
factorization formula, 154
factorization theorem, 202
Fettis, 358
fifteen-term functional equation, 16
S-cycle, 236
S-cycles equivalent, 236
S term equation, 335
flow chart, 39, 44, 45, 52, 61, 65
Fox H-function, 360
function of Schläfi, 309
functional equations, 28, 247, 281, 340,
342, 392
functor of Milnor, 233
fundamental relations, 313

G(X), 214, 216
Gangl, xiv, 4, 6, 23, 29, 39, 49, 98, 151,
290, 373, 374, 378, 396, 398, 399
Gauss sum, 248
G-functions, 287
Gelfand-MacPherson higher logarithm, 342
general identity for the trilogarithm, 141
generalization of Rogers function, 31
generalized p-logarithm, 351
generalized Rogers function, 34
generalized, 236
generic ladders, 34
generic part of the grassmannian, 342
golden ratio, 2
Goncharov, 375, 382
good S-units, 234
Gordon, 297
Gram matrix, 304

Haagerup, 324
Hain, xiv
harmonic group, 11, 28, 31, 100, 105, 116
heptalogarithm, 374, 384, 385
hexalogarithm, xiv, 378, 398, 399
higher logarithms, 337, 341, 350
Hilbert's Third Problem, 331
Hill, 3, 5, 11, 18, 28, 116
Hodge filtration, 275, 276, 277, 347
Humbert's formula, 330
hypergeometric series, 292
hyperlogarithms, 171

\int_{x}^{z} 205
\int_{x}^{z} 205
ideal points, 304
imaginary part of the dilogarithm, 15, 16
inaccessibility, 5, 6, 9, 11, 110
inaccessible ladders, 23, 42, 44
index, 4
interated integrals, 205
inversion formula, 29, 32
inversion relations, 1
inversion theorem, 202
iterated integral, 340

Jensen formula, 160
Jørgensen, 328

Klein, 185
Kneser, 301, 310
K-theory, xiii, xiv, 8, 373, 381
Kubert identities, 157
Kummer, xiv, 3, 4, 5, 6, 8, 9, 11, 15, 16,
27, 28, 29, 39, 49, 50, 71, 100, 108,
151, 153, 171, 185, 187, 188, 190,
193, 373, 375, 395
Kummer equations, 7, 13, 15, 17, 18, 19,
20, 21, 33, 34, 44, 54, 56, 57, 62, 64,
76, 80, 84, 97, 102, 103, 105, 107,
108, 110, 114, 116, 118, 334
Kummer formulas, 113
Kummer function and its relation to the
polylogarithm, 27
Kummer functional equation, 11, 16, 37,
39, 165
Kummer two-variable functional equation,
32
Kummer type, 12, 196
Kummer-type functional equation, 186,
187, 196, 203
INDEX

Kölbig, 359
L_0(z; x), 217
L_0(z; x, y), 217
L_0(z; x), 220
L_0(\pi_1(X, x)), 212
L_0(z; x, y), 215
L_0(z; x, y'), 215
L_0(z; x), 213
L_0(z; x, y'), 215
ladder, xiii, 4, 6, 387
ladder clusters, 154
ladder order-independence on reduction of order, 33
ladders from functional equations, 21, 23
ladders from quintic equations, 24
ladders on the unit circle, 90
\lambda_X(z; x), 213
\lambda_X(z; x, y), 213
\Lambda_X(\epsilon_1, \ldots, \epsilon_k)(z), 213
Lambert cube, 308, 311
Landen, xiii, 1, 2, 4, 5, 12, 31, 36, 38, 40, 52, 287
\textit{I.d.t.}(n), 209
Lehmer, 160
Lerch function, 361
Lewin, 5, 123, 124, 126, 151, 152, 154, 158, 161, 275, 288, 291, 292, 298, 378, 387
\textit{Lin}(z; x), 219
\textit{Lin}(z; x, y), 218
Lichtenbaum, 9, 92
\textit{Lie}(\pi_1(Y, y)), 217
linear power relation, 123, 148, 152, 165
Ljungren, 53
Lobachevsky, 301
Lobachevsky function, 302, 314, 315
logarithm-removal property of Rogers function, 20
logarithmic integral, 171
logarithmic singularity, 174
Lorentz space, 303
Loxton, 5, 6, 11, 22
\textit{L-series}, 161

MacPherson, xiv
MACSYMA, 28, 67, 100, 101, 103, 112, 121
Mahler measure, 123, 160, 162, 164, 389
Mantel, 17
Max-Planck-Institut für Mathematik, xiv
maximal subscheme, 311
Meijer's \textit{G-function}, 360
Mellin transform, 359
Meyerhoff, 322, 330
Milnor conjecture, 391
minimal set, 237, 251
mixed Hodge structure, 275, 276, 277
mixed motives, 275
modified external product, 233
modified function, 380
modified ladder, 7
module \textit{P}_{n,k}, 194
module \textit{P}_{n,k}(H_0), 195
monodromy group, 340
monodromy of the polylogarithms, 279
monodromy operator, 338, 339
multi-variable equation, 3
multiple-angle formulas, 18
multiplication theorem, 20
multivalued Deligne cohomology, 346, 350
multivalued Deligne complex, 347
multivalued differential form, 343
multivalued function, 340
Munkholm, 324

\textit{n-dimensional hyperbolic space}, 303
nonaccessibility, 71
nonexistence of a Kummer-type functional equation for \textit{L}_4, 197
nontrivial, 236
nonvalid ladders, 70
notation, 6
\textit{n-variable identities}, 124

\omega_X, 212
order-independence property, 7, 8
order-reduction property, 7
ordinary cyclotomic equation, 237
orthoscheme of degree, 307

P(X), 212
partial Clausen's function, 241
partition identities, 292
permanent, 305
Phillips, 50
Pisot number, 160, 164, 165
\pi(X), 212
\textit{p-logarithm function}, 344
\textit{p-logarithm}, 343, 344
points at infinity, 304
polar hyperplane, 304
polylogarithm extension of Q-mixed Hodge structures, 279
polylogarithm workshop, xiii, xiv
polylogarithms, 340
Pontrjagin class, 337
Pontryagin classes, 275
principal parameter, 311
principal vertices, 307
pseudodifferentiation, 7
pseudointegrate transparently, 52
pseudointegration, 7, 35, 39, 43, 46, 56, 83
pure form, 28
pure Hodge structure, 275, 276
purity property, 28, 33
Ramakrishnan, 141, 142
Ramanujan, 298
Ray, 4, 12, 29, 71, 86, 90, 96, 290, 292
real part of the dilogarithm, 18
redefinition of Rogers function, 20
reduction formula, 310
redundant results, 78
regulator, 346
regulator mappings, 275
relation of dependence, 251
Richmond, 19, 292, 297, 298
Rogers, 3, 4, 8, 9, 16, 28, 123, 124, 287, 381, 383, 385
Rogers dilogarithm, 239
Rogers function, 7, 20, 27, 28, 102, 106, 110, 111, 112, 117
Rogers-Ramanujan partition functions, 5
Rogers-Ramanujan partition identities, 19
Rogers-Ramanujan, 292, 297
Rost, 121
Sah, xiv, 334, 335
Salem, 164
Salem number, 160, 164, 364, 389
Salem/Pisot numbers, 123, 160
Sandham, 29
Sandham n-variable identity, 141
Schaeffer, 3, 11, 28, 29, 52, 116
schematic type, 306, 310
scheme, 305
scheme of a polytope, 304
Schinzel, 158, 164
Schläfli, 301
scissors congruence groups, 331
second-degree ladders, 38
Siegel, 287
six-fold symmetry, 393
Slater, 292, 296
Smyth, 161
special exponents, 388
Spence, 3
Steinberg symbol, 233
Stewart, 290
sums, 268
S-units, 234
supernumary, 12, 69
supernumary component-ladders, 38
supernumary cyclotomic equation, 69, 78
supernumary ladders, 123, 165
Suslin, 382
symmetry group, 393, 395
Szekeres, 19, 60, 292, 293, 297, 298, 370
Tate Hodge structures, 276
the Schlafli differential formula, 309
three-term base equation, 12
three-term equation, 24
three-variable functional equation, 17
Thurston, 326, 328, 333
totally asymptotic regular hexahedron, 326
totally asymptotic regular octahedron, 327
totally asymptotic regular simplex, 323
totally asymptotic simplex, 322, 334
trans-Kummer range, 31, 33, 45, 49, 53, 58, 61, 65, 72, 97, 98, 114
trans-Kummer results, 36
transparency, 8, 35, 70
transparency property, 44
trivial, 12
Tverberg, 53
two-term base equation, 11
two-variable functional equations, 29
type A, 308
type B, 308
unit circle, 16
v^*, 217
valid ladder, 7
Vandiver, 155
vertex polytope, 305
volume differential, 301
volume form, 344
volume spectrum, 328
volumes of hyperbolic 3-folds, 328
Watson, 5, 19, 21, 22, 287, 288, 291, 328
Wechsung, 12, 17
Weeks manifold, 328
weight filtration, 276, 277, 343
Wigner, 333, 334
Xiao Hongnian, 121
Zagier, xiii, xiv, 33, 61, 69, 82, 92, 142, 155, 275, 290, 330, 365, 368
zeta function, 247