Geometric Analysis on Symmetric Spaces

Second Edition

Sigurdur Helgason
Geometric Analysis on Symmetric Spaces

Second Edition
Geometric Analysis on Symmetric Spaces

Second Edition

Sigurdur Helgason
To my Danish mathematical friends

past and present
Contents

Preface to Second Edition xiii
Preface xv

CHAPTER I
A Duality in Integral Geometry. 1

§1. Generalities 3
 1. Notation and Preliminaries 3
 2. Principal Problems 5

§2. The Radon Transform for Points and Hyperplanes. 8
 1. The Principal Results 8
 2. The Kernel of the Dual Transform 13
 3. The Radon Transform and its Dual on the K-types 17
 4. Inversion of the Dual Transform 20
 5. The Range Characterization for Distributions and
 Consequences 25
 6. Some Facts about Topological Vector Spaces 29

§3. Homogeneous Spaces in Duality. 30
 1. The Radon Transform for a Double Fibration 30
 2. The Radon Transform for Grassmannians 39
 3. Examples.
 A. The d-Plane Transform 45
 B. The Poisson Integral as a Radon Transform 49
 C. Hyperbolic Spaces and Spheres 50

Exercises and Further Results. 52

Notes. 57

CHAPTER II
A Duality for Symmetric Spaces. 59

§1. The Space of Horocycles. 60
 1. Definition and Coset Representation 60
 2. The Isotropy Actions for X and for Ξ 62
 3. Geodesics in the Horocycle Space 65
§2. Invariant Differential Operators. 70
 1. The Isomorphisms 70
 2. Radial Part Interpretation 74
 3. Joint Eigenspaces and Eigenspace Representations 75
 4. The Mean Value Operators 77

§3. The Radon Transform and its Dual. 82
 1. Measure-theoretic Preliminaries 82
 2. Integral Transforms and Differential Operators 84
 3. The Inversion Formula and the Plancherel Formula
 for the Radon Transform 89
 4. The Poisson Transform 99
 5. The Dual Transform and the Poisson Kernel 102

§4. Finite-dimensional Spherical and Conical
 Representations. 105
 1. Conical Distributions. Elementary Properties 105
 2. Conical Functions and Finite-Dimensional
 Representations 113
 3. The Finite-dimensional Spherical Representations 119
 4. Conical Models and Spherical Models 120
 5. Simultaneous Euclidean Imbeddings of X and of Ξ.
 Horocycles as Plane Sections. 122
 6. Restricted Weights 127
 7. The Component $H(\bar{n})$ 131

§5. Conical Distributions. 134
 1. The Construction of $\Psi_{\lambda,s}'$ 134
 2. The Reduction to Rank One 137
 3. The Analytic Continuation of $\Psi_{\lambda,s}$ 141
 4. The Determination of the Conical Distributions 151

§6. Some Rank-One Results. 157
 1. Component Computations 157
 2. The Inversion of \bar{N} 159
 3. The Simplicity Criterion 165
 4. The Algebra $\mathcal{D}(K/M)$ 167
 5. An Additional Conical Distribution for $\lambda = 0$ 169
 6. Conical Distributions for the Exceptional λ 171

Exercises and Further Results. 181

Notes. 192
CONTENTS

CHAPTER III

The Fourier Transform on a Symmetric Space. 197

§1. The Inversion and the Plancherel Formula 198
 1. The Symmetry of the Spherical Function 198
 2. The Plancherel Formula 202

§2. Generalized Spherical Functions (Eisenstein Integrals.) 227
 1. Reduction to Zonal Spherical Functions 227
 2. The Expansion of $\Phi_{\lambda,\delta}$ 233
 3. Simplicity (preliminary results) 241

§3. The Q^δ-matrices. 243
 1. The K-finite functions in $E_{\lambda}(\Xi)$ 243
 2. Connections with Harmonic Polynomials 244
 3. A Product Formula for $\det Q^\delta(\lambda)$ (preliminary version) 248

§4. The Simplicity Criterion. 255

§5. The Paley-Wiener Theorem for the Fourier Transform on $X = G/K$. 260
 1. Estimates of the Γ-coefficients 261
 2. Some Identities for C_s 264
 3. The Fourier Transform and the Radon Transform. K-types 266
 4. Completion of the Proof of the Paley-Wiener Theorem. The Range $E'(X)$~ 268
 5. A Topological Paley-Wiener Theorem for the K-types 273
 6. The Inversion Formula, the Plancherel Formula and the Range Theorem for the δ-spherical Transform 279

§6. Eigenfunctions and Eigenspace Representations. 282
 1. The K-finite Joint Eigenfunctions of $D(X)$ 282
 2. The Irreducibility Criterion for the Eigenspace Representations on G/K 284

§7. Tangent Space Analysis. 285
 1. Discussion 285
 2. The J-polynomials 286
 3. Generalized Bessel Functions and Zonal Spherical Functions 292
 4. The Fourier Transform of K-finite Functions 293
 5. The Range $D(p)$~ inside $H(a^* \times K/M)$ 298

§8. Eigenfunctions and Eigenspace Representations on X_\circ. 300
 1. Simplicity 300
 2. The K-finite Joint Eigenfunctions of $D(G_0/K)$ 303
 3. The Irreducibility Criterion for the Eigenspace Representations of G_0/K 309
<table>
<thead>
<tr>
<th>§9. The Compact Case.</th>
<th>310</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motivation</td>
<td>310</td>
</tr>
<tr>
<td>2. Compact Symmetric Spaces</td>
<td>313</td>
</tr>
<tr>
<td>3. Analogies</td>
<td>316</td>
</tr>
<tr>
<td>4. The Product Decomposition</td>
<td>316</td>
</tr>
<tr>
<td>§10. Elements of (D(G/K)) as Fractions.</td>
<td>322</td>
</tr>
<tr>
<td>§11. The Rank-One Case.</td>
<td>327</td>
</tr>
<tr>
<td>1. An Explicit Formula for the Eisenstein Integral</td>
<td>327</td>
</tr>
<tr>
<td>2. Harmonic Analysis of (K)-finite Functions</td>
<td>332</td>
</tr>
<tr>
<td>§12. The Spherical Transform Revisited.</td>
<td>335</td>
</tr>
<tr>
<td>1. Positive Definite Functions</td>
<td>335</td>
</tr>
<tr>
<td>2. The Spherical Transform for Gelfand Pairs</td>
<td>339</td>
</tr>
<tr>
<td>3. The Case of a Symmetric Space (G/K)</td>
<td>346</td>
</tr>
<tr>
<td>Exercises and Further Results.</td>
<td>352</td>
</tr>
<tr>
<td>Notes.</td>
<td>358</td>
</tr>
</tbody>
</table>

CHAPTER IV

The Radon Transform on \(X \) and on \(X_0 \).

Range Questions. 363

§1. The Support Theorem. 363

§2. The Ranges \(\mathcal{D}(X) \), \(\mathcal{E}'(X) \) and \(\mathcal{E}^{\vee}(\Xi) \). 365

§3. The Range and Kernel Determined in terms of \(K \)-types. 369
 1. The General Case 369
 2. Examples: \(H^2 \) and \(\mathbb{R}^2 \) 379

§4. The Radon Transform and its Dual for \(K \)-invariants. 381

§5. The Radon Transform on \(X_0 \). 387
 1. Preliminaries 387
 2. The Support Theorem 392
 3. The Range and Kernel for the \(K \)-types 394
 4. The Ranges \(\mathcal{E}'(X_0) \) and \(\mathcal{E}(\Xi_0)^{\vee} \) 395

Exercises and Further Results. 397

Notes. 398

CHAPTER V

Differential Equations on Symmetric Spaces. 401

§1. Solvability. 401
 1. Fundamental Solution of \(D \) 402
 2. Solvability in \(\mathcal{E}(X) \) 403
CONTENTS

3. Solvability in $E'(X)$ 406
4. Explicit solution by Radon transforms 407

§2. Mean Value Theorems. 413
1. The Mean Value Operators 413
2. Approximations by Analytic Functions 416
3. Ásgirsson’s Mean Value Theorem Extended to Homogeneous Spaces 418

§3. Harmonic Functions on Symmetric Spaces. 421
1. Generalities 421
2. Bounded Harmonic Functions 421
3. The Poisson Integral Formula for X 425
4. The Fatou Theorem 430
5. The Furstenberg Compactification 439

§4. Harmonic Functions on Bounded Symmetric Domains. 442
1. The Bounded Realization of a Hermitian Symmetric Space 442
2. The Geodesics in a Bounded Symmetric Domain 444
3. The Restricted Root Systems for Bounded Symmetric Domains 445
4. The Action of G_0 on D and the Polydisk in D 451
5. The Shilov Boundary of a Bounded Symmetric Domain 453
6. The Dirichlet Problem for the Shilov Boundary 460
7. The Hua Equations 461
8. Integral Geometry Interpretation 466

§5. The Wave Equation on Symmetric Spaces. 468
1. Introduction. Huygens’ Principle 468
2. Huygens’ Principle for Compact Groups and Symmetric Spaces $X = G/K$ (G complex) 471
3. Huygens’ Principle and Cartan Subgroups 477
4. Orbital Integrals and Huygens’ Principle 482
5. Energy Equipartition 486
6. The Flat Case Revisited 490
7. The Multitemporal Wave Equation on $X = G/K$ 493
8. The Multitemporal Cauchy Problem 497
9. Incoming Waves and Supports 506
10. Energy and Spectral Representation 511
11. The Analog of the Friedlander Limit Theorem 524

§6. Eigenfunctions and Hyperfunctions. 527
1. Arbitrary Eigenfunctions 527
2. Exponentially Bounded Eigenfunctions 531

Exercise and Further Results. 532

Notes. 537
CHAPTER VI
Eigenspace Representations. 539

§1. Generalities. 539
1. A Motivating Example 539
2. Eigenspace Representations on Function- and
 Distribution-Spaces 540
3. Eigenspace Representations for Vector Bundles 541

§2. Irreducibility Criteria for a Symmetric Space. 543
1. The Compact Case 543
2. The Euclidean Type 545
3. The Noncompact Type 546

§3. Eigenspace Representations for the Horocycle
Space G/MN. 547
1. The Principal Series 547
2. The Spherical Principal Series. Irreducibility 548
3. Conical Distributions and the Construction of the
 Intertwining Operators 554
4. Convolution on G/MN 557

§4. Eigenspace Representations for the Complex
Space G/N. 562
1. The Algebra D(G/N) 562
2. The Principal Series 564
3. The Finite-Dimensional Holomorphic
 Representations. 565

§5. Two Models of the Spherical Representations 567

Exercises and Further Results. 569
Notes. 571

SOLUTIONS TO EXERCISES 573

BIBLIOGRAPHY 599

SYMBOLS FREQUENTLY USED 627

INDEX 633
This book has been unavailable for some time and I am happy to follow the publisher’s suggestion for a new edition.

While a related forthcoming book, “Integral Geometry and Radon Transforms” (here denoted [IGR]) deals with several examples of homogeneous spaces in duality with corresponding Radon transforms, the present work follows the direction of the first edition and concentrates on analysis on Riemannian symmetric spaces \(X = G/K \). We develop further the theory of the Fourier transform and horocycle transform on \(X \), also taking into account tools developed by Eguchi for the Schwartz space \(S(X) \). These transforms provide the principal methods for analysis on \(X \), existence and uniqueness theorems for invariant differential equations on \(X \), explicit solution formulas, as well as geometric properties of the solutions, for example the harmonic functions and the wave equation on \(X \). On the space \(X \) there is a canonical hyperbolic system on \(X \), introduced by Semenov-Tian-Shansky, which is multitemporal in the sense that the time variable has dimension equal to the rank of \(X \). The solution has remarkable analogies to the classical wave equation on \(\mathbb{R}^n \), summarized in a table in Chapter V, §5.

My intention has been to make the exposition easily accessible to readers with some modest background in Lie group theory which by now is rather widely known. To facilitate self-study and to indicate further developments each chapter concludes with a section “Exercises and Further Results”. Solutions and references are collected at the end of the book. The harder problems are starred. Occasionally results and proofs rely on material from my previous books “Differential Geometry, Lie Groups and Symmetric Spaces” abbreviated [DS] and “Groups and Geometric Analysis”, abbreviated [GGA].

Once again I wish to express my gratitude to my friends and collaborators, Adam Korányi, Gestur Ólafsson, François Rouvière and Henrik Schlichtkrull and especially to my long-term colleague David Vogan for significant help at specified spots in the text. Finally, I thank Brett Coonley and Jan Wetzel for their invaluable help in the production and the editor Dr. Edward Dunne for his interest in the work and his patient and accommodating cooperation.

I would also like to express my thanks for the following permissions of partial quotations:

(ii) To Elsevier concerning my paper [2005].
(iii) To John Wiley and Sons concerning my paper [1998a] and my paper with Schlichtkrull [1999].

xiii
Preface

Among Riemannian manifolds the symmetric spaces in the sense of É. Cartan form an abundant supply of elegant examples whose structure is particularly enhanced by the rich theory of semisimple Lie groups. The simplest examples, the classical 2-sphere S^2 and the hyperbolic plane H^2, play familiar roles in many fields in mathematics.

On these spaces, global analysis, particularly integration theory and partial differential operators, arises in a canonical fashion by the requirement of geometric invariance. On \mathbb{R}^n these two subjects are related by the Fourier transform. Also harmonic analysis on compact symmetric spaces is well developed through the Peter-Weyl theory for compact groups and Cartan’s refinement thereof. For the noncompact symmetric spaces, however, we are presented with a multitude of new and natural problems.

The present monograph is devoted to geometric analysis on noncompact Riemannian symmetric spaces X. (The Euclidean case and the compact case are also briefly investigated in Chapter III, §§7–9, and Chapter IV, §5, but from an unconventional point of view). A central object of study is the algebra $D(X)$ of invariant differential operators on the space. A simultaneous diagonalization of these operators is provided by a certain Fourier transform $f \rightarrow f^\sim$ on X which is the subject of Chapter III. Just as is the case with \mathbb{R}^n the symmetric space X turns out to be self-dual under the mentioned Fourier transform; thus range questions like the intrinsic characterization of $(C^\infty_c(X))^\sim$ in analogy with the classical Paley-Wiener theorem in \mathbb{R}^n become natural and their answers useful.

Chapters II and IV are devoted to the theory of the Radon transform on X, particularly inversion formulas and range questions. The space Ξ of horocycles in X offers many analogies to the space X itself and this gives rise to the study of conical functions and conical distributions on Ξ which are the analogs of the spherical functions on X. They have interesting connections with the representation theory of the isometry group G of X, discussed in Chapter II, §4, and in Chapter VI, §3, where the conical distributions furnish intertwining operators for the spherical principal series. In Corollary 3.9, Ch. VI, these intertwining operators are explicitly related to the above-mentioned Fourier transform on X.

While the Fourier transform theory in Chapter III gives rise to an explicit simultaneous diagonalization of the algebra $D(X)$, the Radon transform theory in Chapter II is considered within the framework of a general integral transform theory for dual fibrations in the sense of Chapter I, §3. This viewpoint is extremely general: two dual integral transforms arise whenever we are given two subgroups of a given group G. In the introduction to Chapter I we stress this point by indicating five such examples
arising in this fashion from the single group \(G = SU(1, 1) \) of the conformal maps of the unit disk, namely the X-ray transform, the horocycle transform, the Poisson integral, the Pompeiu problem, theta series, and cusp forms. When range results are considered, this viewpoint of the Poisson integral as a Radon transform offers a very interesting analogy with the X-ray transform in \(\mathbf{R}^3 \) (Chapter I, §3, No. 5).

With the tools developed in Chapters I–IV we study in Chapter V some natural problems for the invariant differential operators on \(X \), solvability questions, the structure of the joint eigenfunctions, with emphasis on the harmonic functions, as well as the solutions to the invariant wave equation on \(X \). In Chapter VI we consider in some detail the representations of \(G \) which naturally arise from the joint eigenspaces of the operators in the algebra \(D(X) \) and the algebra \(D(\Xi) \).

The length of this book is a result of my wish to make the exposition easily accessible to readers with some modest background in semisimple Lie group theory. In particular, familiarity with representation theory is not needed. To facilitate self-study and to indicate further developments each chapter is concluded with a section “Exercises and Further Results”. Solutions and references are given towards the end of the book. The harder problems are starred. Occasionally, results and proofs rely on material from my earlier books, “Differential Geometry, Lie groups, and Symmetric Spaces” and “Groups and Geometric Analysis”. In the text these books are denoted by [DS] and [GGA].

Some of the material in this book has been the subject of courses at MIT over a number of years and feedback from participants has been most beneficial. I am particularly indebted to Men-chang Hu, who in his MIT thesis from 1973 determined the conical distributions for \(X \) of rank one. His work is outlined in Chapter II, §6, No. 5–6, following his thesis and in greater detail than in his article Hu [1975]. I am also deeply grateful to Adam Korányi for his advice and generous help with the material in Chapter V, §§3–4, as explained in the notes to that chapter. Similarly, I am grateful to Henrik Schlichtkrull for beneficial discussions and for his suggestions of Proposition 8.6 in Chapter III and Corollary 5.11 in Chapter V, indicated in the text. I have also profited in various ways from expert suggestions from my colleague David Vogan. I am grateful to the National Science Foundation for support during the writing of the book.

Many people have read at least parts of the manuscript and have furnished me with helpful comments and corrections; of these I mention Fulton Gonzalez, Jeremy Orloff, An Yang, Werner Hoffman, Andreas Juhl, François Rouvière, Sönke Seifert, and particularly Frank Richter. I thank them all. Finally, I thank Judy Romvos for her expert and conscientious \(\text{TPX-setting of the manuscript.} \)

A good deal of the material in this monograph has been treated in earlier papers of mine. While subsequent consolidation has usually led to a rewriting of the proofs, texts of theorems as well as occasional proofs
have been preserved with minimal change. I thank Academic Press for permission to quote from the following journal publications of mine, listed in the bibliography: [1970a], [1976], [1980a], [1992b], [1992d], as well as the book [1962a].
SOLUTIONS TO EXERCISES

CHAPTER I

A. Radon Transform on \mathbb{R}^n.

A.1. By §2 (27) each $E_k \otimes p^l$ belongs to \tilde{N}. Conversely let $\psi \in \tilde{N}$. Let $G = M(n)$ with Haar measure dg, let ξ_o be the hyperplane $x_n = 0$ in \mathbb{R}^n, and let $\hat{\psi}(g) = \psi(g \cdot \xi_o)$ for $g \in G$. For $F \in D(G)$, $\xi = h \cdot \xi_o$ put

$$\psi_F(\xi) = \int_G F(g)\psi(g^{-1}\xi)dg = \int_G F(g)\psi(g^{-1}h \cdot \xi_o)dg$$

which lies in $\mathcal{E}(\mathbb{P}^n) \cap \tilde{N} = \mathcal{N}$. Let F run through a sequence (F_i) with $F_i \geq 0$, $\int F_i = 1$, $\text{supp}(F_i) \to e$. Then $\psi_{F_i} \to \psi$ in $C(\mathbb{P}^n)$ so statement follows from Theorem 2.5.

A.2. For the Fourier transform $\tilde{\varphi}(s)$ we have

$$\varphi^{(k)}(p) = \frac{1}{2\pi} \int_{\mathbb{R}} \tilde{\varphi}(s)(is)^k e^{isp} ds .$$

By the definition

$$(Y_k \otimes \varphi)^\vee(x) = \frac{1}{\Omega_n} \int \varphi((x, \eta))Y_k(\eta)d\eta$$

$$= \frac{1}{\Omega_n} \frac{1}{2\pi} \int_{\mathbb{R}} \tilde{\varphi}(s) \left(\int_{S^{n-1}} e^{is(x, \eta)}Y_k(\eta)d\eta \right) ds .$$

On the other hand, we have the classical formula (see e.g. [GGA], p. 25)

$$\int_{S^{n-1}} e^{i\lambda(\eta, \omega)}Y_k(\omega)d\omega = c_{n,k}Y_k(\eta) \frac{J_{n+2k-1}(\lambda)}{\lambda^{(n/2)-1}} ,$$

where $c_{n,k} = (2\pi)^{n/2}k^n$ and J_r is the Bessel function. Here we replace k by 0 and n by $n + 2k$. Then we obtain

$$\int_{S^{n-1}} e^{i\lambda(\omega, \eta)}Y_k(\eta)d\eta = \left(\frac{i\lambda}{2\pi} \right)^k Y_k(\omega) \int_{S^{n+2k-1}} e^{i\lambda\zeta} d\zeta$$

Finally, we put $x = r\omega$ and get

$$(Y_k \otimes \varphi)^\vee(r\omega) = \Omega_n^{-1}(r/2\pi)^k Y_k(\omega) \int_{S^{n+2k-1}} \frac{1}{2\pi} d\zeta \int_{\mathbb{R}} \tilde{\varphi}(s)(is)^k e^{isr\zeta} ds$$

573
as desired.

A. 3. We know from §2, No. 3 that $P_k(2, \cos \theta) = H_k(\sin \theta, \cos \theta)$ where $H_k(x_1, x_2)$ is the unique harmonic polynomial on \mathbb{R}^2 which is homogeneous of degree k, is invariant under $(x_1, x_2) \rightarrow (-x_1, x_2)$ and satisfies $H_k(0, 1) = 1$. Since $(x_1 + ix_2)^k$ and $(x_1 - ix_2)^k$ span the space of homogeneous k^{th} degree harmonic polynomials we have

$$H_k(x_1, x_2) = \text{Re}((x_2 + ix_1)^k),$$

which gives the desired result.

A. 4. If dk is the normalized Haar measure on K we have

$$(\hat{f})^\vee(x) = \int_K \left(\int f(x + k \cdot y)dm(y) \right) dk$$

$$= \int dm(y) \int_K f(x + k \cdot y)dk = \int (M^{|y|}f)(x)dm(y),$$

where $(M^rf)(z)$ is the average of f over $S_r(z)$. Hence

$$(\hat{f})^\vee(x) = \Omega_d \int_0^\infty (M^rf)(x)r^{d-1}dr,$$

so, using polar coordiante around x

$$(\hat{f})^\vee(x) = \frac{\Omega_d}{\Omega_n} \int_{\mathbb{R}^n} |x - y|^{d-n}f(y)dy$$

and now the inversion formula follows from the standard inversion of the Riesz potential, ([GGA], Ch. I, Prop. 2.38).

The statement (i) amounts to that if V is a k-dimensional vector subspace of \mathbb{C}^n then $V = k \cdot \xi_o$ for some $k \in \mathbb{U}(n)$. This is obvious by choosing a basis of V orthonormal with respect to the standard Hermitian inner product $\langle \ , \rangle$ on \mathbb{C}^n.

Statement (ii) amounts to proving that if W is a Lagrangian vector subspace of \mathbb{R}^{2n} then $W = k \cdot \xi_o$ for some $k \in \mathbb{U}(n)$. It is well known that $\dim W = n$. Writing $z = x + iy, \ w = u + iv$ with $x, y, u, v \in \mathbb{R}^n$ we have

$$\langle z, w \rangle = x \cdot u + y \cdot v - i(x \cdot v - y \cdot u)$$

$$= (x, y) \cdot (u, v) - i\{ (x, y), (u, v) \}$$

so the action of $\mathbb{U}(n)$ on $\mathbb{C}^n \sim \mathbb{R}^{2n}$ preserves both the standard inner product on \mathbb{R}^{2n} and the skew symmetric form $\{ \ , \}$. If e_1, \ldots, e_n is an orthonormal basis of W over \mathbb{R} then the formula above shows, W being
isotropic, that \(\langle e_i, e_j \rangle = \delta_{ij} \) so the \(e_i \) form a complex orthonormal basis of \(\mathbb{C}^n \). Viewing the standard orthonormal basis of \(\mathbb{R}^n \times 0 \) as a complex orthonormal basis of \(\mathbb{C}^n \) we see that \(W = k \cdot \xi \) for a suitable \(k \in \mathbb{U}(n) \).

A. 5. From [GGA], Ch. I, Theorem 2.20 we have \(\text{supp}(T) \subset \overline{B_A(0)} \). For \(\epsilon > 0 \) let \(f \in \mathcal{D}(X) \) have \(\text{supp}(f) \subset B_{A-\epsilon}(0) \). Then \(\text{supp}(\hat{f}) \subset \overline{B_{A-\epsilon}} \) where

\[
\beta_R = \{ \xi : d(o, \xi) < R \}.
\]

Also by the inversion formula \(cf = (\Lambda \hat{f})^\vee \), since \(\Lambda \) is now a differential operator,

\[
T(cf) = T((\Lambda \hat{f})^\vee) = \hat{T}(\Lambda \hat{f}) = 0
\]

so \(\text{supp}(T) \cap \overline{B_{A-\epsilon}(0)} = \emptyset \).

A. 6. We have with a constant \(c \)

\[
(\check{\varphi} \ast f)(x) = c \int_{\mathbb{R}^n} \left(\int_{S^{n-1}} \varphi(w, (w, x) - (w, y)) \, dw \right) f(y) \, dy
\]

\[
= \int_{S^{n-1}} \left(\int_{\mathbb{R}} \varphi(w, (w, x) - p) \hat{f}(w, p) \, dp \right) \, dw
\]

\[
= c \int_{S^{n-1}} (\varphi \ast \hat{f})(w, (w, x)) \, dw = (\varphi \ast \hat{f})^\vee(x)
\]

(Natterer, [1986], p. 14).

B. Homogeneous Spaces. Grassmann Manifolds.

B. 1. For (ii) we may take \(x_2 = x_o \) and write \(x_1 = g_1K, \xi = \gamma H \). Then

\[
x_o, \xi \text{ incident } \iff \gamma h = k \quad (\text{some } h \in H, k \in K)
\]

\[
x_1, \xi \text{ incident } \iff g_1 k_1 = \gamma h_1 \quad (\text{some } h_1 \in H, k_1 \in K).
\]

Thus if \(x_o, x_1 \) are incident to \(\xi \) we have \(g_1 = kh^{-1}h_1k_1^{-1} \). Conversely, if \(g_1 = k'h'k'' \) we put \(\gamma = k'h' \) and then \(x_o, x_1 \) are incident to \(\xi = \gamma H \).

For (iii) suppose first \(KH \cap HK = K \cup H \). Let \(x_1 \neq x_2 \) in \(X \). Suppose \(\xi_1 \neq \xi_2 \) in \(\Xi \) both incident to \(x_1 \) and \(x_2 \). Let \(x_i = g_iK, \xi_j = \gamma_jH \). Since \(x_i \) is incident to \(\xi_j \) there exist \(k_{ij} \in K, h_{ij} \in H \) such that

\[
g_i k_{ij} = \gamma_j h_{ij} \quad i = 1, 2; \quad j = 1, 2.
\]

By eliminating \(g_i \) and \(\gamma_j \) we obtain

\[
k_{21}^{-1} k_{21} h_{21}^{-1} h_{11} = h_{22}^{-1} h_{12} k_{12}^{-1} k_{11}.
\]
This being in \(KH \cap HK \) it lies in \(K \cup H \). If the left hand side is in \(K \), then
\[
g_2K = \gamma_1 h_{21} K = \gamma_1 h_{11} K = g_1 K
\]
which is a contradiction. Similarly, if the mentioned left hand side is in \(H \) we have \(k_{21}^{-1} k_{21} \in H \) which gives the contradiction \(\gamma_2 H = \gamma_1 H \).

Conversely, suppose \(KH \cap HK \neq K \cup H \). Then there exist \(h_1, h_2, k_1, k_2 \) such that \(h_1 k_1 = k_2 h_2 \) and \(h_1 k_1 \notin K \cup H \). Put \(x_1 = h_1 K, \xi_2 = k_2 H \). Then \(x_o \neq x_1, \xi_o \neq \xi_2 \), yet both \(\xi_o \) and \(\xi_2 \) are incident to both \(x_o \) and \(x_1 \).

B. 2–3. For the first statement see [GGA], Cor. 4.10, Ch. II. For the other suppose the generators \(D_i = D_{P_i} \) were not algebraically independent. Let
\[
P = \Sigma a_{n_1} \ldots n_\ell x_1^{n_1} \ldots x_\ell^{n_\ell}
\]
be a nonzero polynomial such that \(P(D_1, \ldots, D_\ell) = 0 \). Let \(d_i = \text{degree} \ (P_i) \) and \(N = \max(\Sigma d_i n_i) \), the maximum taken over the set of \(\ell \)-tuples \((n_1, \ldots, n_\ell) \) for which \(a_{n_1} \ldots n_\ell \neq 0 \). We write the polynomial
\[
S = \Sigma a_{n_1} \ldots n_\ell P_1^{n_1} \ldots P_\ell^{n_\ell}
\]
as the sum \(S = Q + R \), where
\[
Q = \sum_{\Sigma d_i n_i = N} a_{n_1} \ldots n_\ell P_1^{n_1} \ldots P_\ell^{n_\ell}
\]
and degree \((R) < N \). Also \(Q \neq 0 \) by assumption. Consider the operator
\[
\Sigma a_{n_1} \ldots n_\ell D_1^{n_1} \ldots D_\ell^{n_\ell} - D_S
\]
whose order is \(< N \) ([GGA], p. 287). This operator equals \(0 - D_Q - D_R \) which by the definition in Exercise B2 has order \(N \). This gives the desired contradiction.

B. 10. Method of Helgason [1957] or [GGA], Ch. V, Lemma 2.6. First show that it suffices to compute
\[
\int_{U(n)} |v_{ij}|^2 |v_{k\ell}|^2 dV
\]
and that this integral is given by

(i) \((n(n+1))^{-1} \) if \((i, j) \) and \((k, \ell) \) are either in the same row or the same column (not both).

(ii) \(2(n(n+1))^{-1} \) if \((i, j) = (k, \ell) \)
(iii) \((n^2 - 1)^{-1}\) if \((i,j)\) and \((k,\ell)\) are neither in the same row nor the same column. See also Faraut-Korányi [1993], p. 237.

B. 11. The proof is obtained by expanding in a Fourier series on \(T^2\) (also observed by Gindikin).

B. 12. If \(U/K\) has rank one see [GGA], Ch. I, Cor. 4.19. If \(U/K\) has higher rank the result is immediate from Exercise 11 as pointed out by Grinberg.

B. 13. \(\tilde{d}\) is a \(K\)-orbit containing \((1,0)\) so equals \(B\). Also \(H \cdot o\) is two-dimensional so equals \(D\).

CHAPTER II

A. The Spaces \(X = G/K\) and \(\Xi = G/MN\).

A. 1. If \(kN \subset NK\) then \(k \cdot \xi_o \subset \xi_o\) so \(k \subset M\) by text. If \(nK \subset KN\) then \(n \cdot o\) belongs to each horocycle through \(o\). If \(n \neq e\), \(n \cdot o = ka \cdot o\) \((a \neq e)\). But \(k \cdot \xi_o\) does not contain \(ka \cdot o = n \cdot o\).

Let \(g = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}\) be the usual Iwasawa decomposition of \(g = \mathfrak{sl}(2, \mathbb{R})\) (as before Lemma 4.9). Let \(g = \mathfrak{m} + \mathfrak{n} + \mathfrak{q}\) where \(\mathfrak{q}\) is \(MN\)-invariant. Let \(H \in \mathfrak{a}\) have the component \(H_1\) in \(\mathfrak{q}\). Then \([H_1, \mathfrak{n}] \subset \mathfrak{n}\) is a contradiction.

A. 2. Use (4) \(\S 3\).

A. 3. Recall proof of Lemma 4.9 (ii).

A. 4. Consider \(V = \mathbb{C}^{n+1}\) with the Hermitian form

\[
\langle y, w \rangle = y_0 \bar{w}_0 - y_1 \bar{w}_1 - \cdots - y_n \bar{w}_n
\]

and put \(V^+ = \{y \in \mathbb{C}^{n+1} : \langle y, y \rangle > 0\}\). The Hermitian hyperbolic space can be taken as \(V^+ / \mathbb{C}^*\). With non-homogeneous coordinates \(z_i = y_i / y_o\), \(V^+ / \mathbb{C}^*\) is identified with the ball

\[
B^+ = \{z \in \mathbb{C}^n : |z_1|^2 + \cdots + |z_n|^2 < 1\}
\]

and the unitary action \(U(1, n) = U(V)\) on \(V\) induces the action of the projective group \(\mathbf{PU}(V)\) on \(B^+\) \((\mathbf{SU}(1, n)\) mod its center, cf. [DS], X, Exercise D1). Let \(\pi : V \rightarrow V / \mathbb{C}^*\) be the natural map. Choose \(\ell^* \in \partial B^+\) and choose \(y^* \neq 0\) on \(\ell^*\). The Iwasawa subgroup \(N\) (the unipotent radical of the isotropy group \(\mathbf{PU}(V)_{\ell^*}\)) viewed as a subgroup of \(\mathbf{SU}(1, n)\) fixes \(y^*\) and hence also the function

\[
d_y^*(\ell) = \frac{\langle y^*, y \rangle}{\langle y, y \rangle^{\frac{1}{2}}} , \quad y \in \pi^{-1}(\ell), \quad \ell \in B^+.
\]
Thus the equation $d_{y^*} = c$, that is,

$$|\langle y^*, y \rangle|^2 = |\langle y, y \rangle|^2 c^2$$

is a horocycle. In non-homogeneous coordinates this is

$$|1 - z_1^* \bar{z}_1 - \cdots - z_n^* \bar{z}_n|^2 = (1 - |z_1|^2 - \cdots - |z_n|^2) \frac{c^2}{|y^*_o|^2}$$

which is an ellipsoid in the Euclidean metric. A $\textbf{PU}(V)$-invariant metric on B^+ is given by (cf. Mostow [1973], p. 136)

$$d(w, y) = \cosh^{-1} \left(\frac{|\langle w, y \rangle|}{\langle w, w \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}} \right)$$

so the sphere $S_r(\pi(w))$ is

$$\frac{|\langle w, y \rangle|}{|\langle y, y \rangle|^2} = \frac{1}{\langle w, w \rangle^{\frac{1}{2}}} \text{ch } r.$$

Let $w \to y^*, r \to \infty$ with $\langle w, w \rangle^{\frac{1}{2}} \text{ch } r = c$ (where $\langle y^*, y^* \rangle = 0$). Then the sphere converges to the horocycle above.

Another verification in terms of the notation of [DS], IX, (§3 and Exercise B4). The horocycle $\tilde{N} \cdot o$ is given by

$$(w_1, w_2) = \left(\frac{2it - |z|^2}{2(1 - it) + |z|^2}, \frac{-2 \bar{z}}{2(1 - it) + |z|^2} \right)$$

and therefore equals the ellipsoid

$$2|w_1 + \frac{1}{2}|^2 + |w_2|^2 = \frac{1}{2}.$$

Similarly the horocycle $N \cdot o$ equals

$$2|w_1 - \frac{1}{2}|^2 + |w_2|^2 = \frac{1}{2}.$$

Let

$$a_r = \begin{pmatrix} \text{ch } r & 0 & \text{sh } r \\ 0 & 1 & 0 \\ \text{sh } r & 0 & \text{ch } r \end{pmatrix}.$$

Then the sphere $S_r(o)$ equals $K a_r \cdot o$ which is given by

$$|z_1|^2 + |z_2|^2 = \text{th}^2 r.$$

The image $a_r \cdot S_r(0)$ is by [DS], IX, Exercise B4 given by

$$a_r \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = (z_1 \text{sh } r + \text{ch } r)^{-1} \begin{pmatrix} z_1 \text{ch } r + \text{sh } r \\ z_2 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$
so the equation for $a_r \cdot S_r(o)$ is
\[
(1 + \text{th}^2 r)|w_1|^2 - \text{thr}(w_1 + \tilde{w}_1) + |w_2|^2 = 0.
\]
Thus as $r \to \infty$ the sphere $a_r S_r(0)$ converges to the horocycle (\text{*}).

A. 5. First reduce the problem to the case $X = H^2$ as follows. Let X_α be a root vector in the Lie algebra of N and let G_α denote the analytic subgroup of G with Lie algebra $R X_\alpha + R \theta X_\alpha + R[X_\alpha, \theta X_\alpha]$. Then $G_\alpha \cdot o$ is a totally geodesic submanifold of X isometric to H^2 and the horocycle $\exp t X_\alpha \cdot o$ in $G_\alpha \cdot o$ equals $(G_\alpha \cdot o) \cap (N \cdot o)$. This reduces the problem to H^2 with metric
\[
ds^2 = \frac{dx^2 + dy^2}{y^2}, \quad y > 0,
\]
where the geodesics are the semicircles
\[
\gamma_{u,r} : \quad x = u + r \cos \theta, \quad y = r \sin \theta, \quad 0 < \theta < \pi.
\]
We have
\[
\tilde{f}(\gamma_{u,r}) = \int_0^\pi f(u + r \cos \theta, r \sin \theta)(\sin \theta)^{-1} d\theta
\]
so taking ξ as the line $y = 1$ our assumption amounts to
\[
\int_{\gamma_{u,r}} \frac{f(x,y)}{y} dw = 0, \quad r < 1,
\]
where dw is the Euclidean arc element. The rapid decrease of f implies that $f(x,y)/y$ extends to a smooth function F on \mathbb{R}^2 by $F(x,y) = f(x,|y|)/|y|$. Then
\[
(* \quad \int_{S_r(x)} F(s) dw(s) = 0 \quad x \in \mathbb{R}, \ r < 1.
\]
This implies for the corresponding disk $B_r(x)$
\[
\int_{B_r(x)} F(u,v) dudv = 0,
\]
whence
\[
\int_{B_r(o)} (\partial_1 F)(x + u, v) du \ dv = 0
\]
with $\partial_1 = \partial/\partial u$. Using the divergence theorem on the vector field $F(x + u, v)\partial/\partial u$ we get
\[
\int_{S_r(o)} F(x + u, v) u dw(u,v) = 0.
\]
Combining this with (*) we deduce

\[
(\star\star) \quad \int_{S_r(x)} F(s) s_1 dw(s) \quad s = (s_1, s_2).
\]

Iterating the implication \((*) \implies (\star\star)\) we obtain

\[
\int_{S_r(x)} F(s) P(s_1) dw(s) = 0
\]

where \(P\) is any polynomial so we get the desired conclusion \(f \equiv 0\) on the strip \(0 < y < 1\).

A. 7. Because of Theorem 2.9 it suffices to prove that the convolution algebra \(C_c^0(MN)\) of \(M\)-bi-invariant functions in \(C_c(MN)\) is commutative. This result from Korányi [1980] follows (for \(m_{2\alpha} \neq 1\)) from Kostant’s theorem (Exercise D3 below) which implies that for each \(n \in N\) there exists an \(m \in M\) such that \(mnm^{-1} = n^{-1}\). Thus \(f(n) = f(n^{-1})\) for \(f \in C_c^0(MN)\) which implies the commutativity. For the case \(m_{2\alpha} = 1\) see [GGA], Ch. IV, Exercise B10.

A. 8. With the customary notation we have (as \(m^*k(\hat{n})M = k(\hat{n}(m^*\hat{n}))M\),

\[
\int_{\tilde{N}} F(k(\hat{n})M) e^{-2\rho(H(\hat{n}))} d\hat{n} = \int_{K/M} F(kM) dk_M
\]

\[
= \int_{\tilde{N}} F(k(\hat{n}(m^*\hat{n}))M) e^{-2\rho(H(\hat{n}))} d\hat{n},
\]

and since by §6, \(H(\hat{n}) = H(\hat{n}(m^*\hat{n})) + B(m^*\hat{n})\), this integral equals

\[
\int_{\tilde{N}} F(k(J\hat{n})M) e^{-2\rho(H(J\hat{n}))} e^{-2\rho(B(m^*\hat{n}))} \frac{d\hat{n}}{d(J\hat{n})} d(J\hat{n}),
\]

proving the result.

A. 9. The vector \(v\) is in the center of \(\mathfrak{t}_o\) so is fixed under \(Ad_{G_o}(K_o)\); also \(e\) is in the highest root space so, \(Ad_{G_o}\) being spherical, \(e\) is \(M_o\)-fixed. By computation

\[
Ad(a_t)v = v + 3 \text{ sht} \begin{pmatrix} sht i & 0 & -\text{chti} \\ 0 & 0 & 0 \\ \text{chti} & i & 0 \end{pmatrix}
\]

\[
Ad(a_t)e = e^{2t} \begin{pmatrix} i & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & -i \end{pmatrix}.
\]
Chapter II

Put
\[
v_o = \begin{pmatrix} -\frac{i}{2} & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -\frac{i}{2} \end{pmatrix}, \quad v_1 = \begin{pmatrix} i & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -i \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 & 0 & -i \\ i & 0 & 0 \end{pmatrix}.
\]

Then the curve
\[
t \mapsto \text{Ad}(a_t)\nu = v_o + \frac{3}{2}\text{ch}2t \quad v_1 + \frac{3}{2}\text{sh}2t \quad v_2
\]
lies in the intersection of \(X_o\) with the plane \((s_1, s_2) \mapsto v_o + s_1v_1 + s_2v_2\).

A. 10. Consider \(a_o\) as in [DS], Cor. 7.6, Ch. VIII. The geodesic \(\text{Ad}(\exp t(X_\gamma + X_{-\gamma}))\nu\) is easily computed and lies in the plane
\[
(s_1, s_2) \mapsto v + s_1(X_\gamma - X_{-\gamma}) + s_2H_\gamma.
\]

B. Conical Functions.

Part (i) is immediate from Theorem 4.8. For (ii) recall that by Corollary 4.13, \(-s^*\mu\) is the highest weight of the contragredient \(\pi'_\psi\). For \(m^*\) we choose
\[
m^* = \begin{pmatrix} 0 & \ldots & 0 & \epsilon \\ 0 & \ldots & 1 & 0 \\ \vdots \\ 1 & 0 & 0 & 0 \end{pmatrix}
\]
where \(\epsilon = \pm 1\), the sign determined by \(\det(m^*) = 1\). Also \(M\) consists of the diagonal matrices \(m\) with diagonal elements \(\pm 1\) satisfying \(\det(m) = 1\). If \(g \in \tilde{N}M\tilde{A}N\), \(g = \tilde{n}(g)m(g)\exp B(g)n_B(g)\) then by [DS], IX, Exercise A2, the diagonal matrix \(\exp B(g)\) has entries
\[
\exp B(g)_{ii} = \left| \frac{\Delta_i(g)}{\Delta_{i-1}(g)} \right|,
\]
where \(\Delta_i(g) = \det((g\ell m)_{1 \leq \ell, m \leq i})\) with \(g = (g\ell m)\). By Theorem 4.7
\[
\psi(m^*g \cdot \xi_o) = \psi(m^*\tilde{n}(g)\exp B(g) \cdot \xi_o)
\]
\[
= (\pi_\psi(\exp(-B(g))\tilde{n}(g)^{-1}(m^*)^{-1})e, e')
\]
\[
= (\pi_\psi((m^*)^{-1})e, \pi_\psi(\exp(B(g))e')
\]
\[
= \psi(\xi^*)e^{-s^*(B(g))}.
\]
Now if \(h = m^*g\) so \(g = (m^*)^{-1}h\) then \(|\Delta_i(g)| = |D_i(h)|\) so the desired formula for \(\psi(h \cdot \xi_o)\) follows.

The conical functions in this case are related to “conical polynomials” studied in the book by Faraut and Korányi [1993].
C. Hyperbolic Space; Inversion and Support Theorems.

C. 1. (i) By orthogonality with the geodesics, the horocycles are the
$(n - 1)$-spheres tangential to the boundary $|x| = 1$. The induced metric on
the horocycle is flat. This is obvious for example in the upper half-space
model where $N \cdot o$ is a horizontal plane.

(ii) We see that if $\xi_o = N \cdot o$ and dq the volume element on ξ_o then
\[
(f^\wedge)(g \cdot o) = \int dk \int f(gk \cdot q)dq = \int_k \left[M^{d(o,q)} f \right](p)dq,
\]
where $(M^r f)(p)$ is the average of f over $S_r(p)$. Thus
\[
(f^\wedge)(p) = \Omega_{n-1} \int_0^\infty (M^r f)(p)\rho^{n-2}d\rho,
\]
where $r = d(o,q)$ (d = distance in H^n) and $\rho = d'(o,q)$ (d' = distance on
horocycle).

It suffices to prove $\rho = \sinh r$ when q is in the x_1x_n-plane so we are in
the two-dimensional case. From [GGA] p. 36 (R and $N \cdot o$ are isometric
under $x \rightarrow \frac{x}{x+1}$) we see that
\[
r = \frac{1}{2} \log \left(\frac{1+|x|}{1-|x|} \right) \quad \rho = |x|.
\]
The first formula means
\[
\frac{|x|}{|x+1|} = \tanh r \quad \text{or} \quad \rho(1+\rho^2)^{-\frac{1}{2}} = \tanh r
\]
so $\rho = \sinh r$. Hence
\[
(f^\wedge)(p) = \Omega_{n-1} \int_0^\infty (M^r f)(p)\sinh^{n-2}r \cosh \rho dr.
\]

(v) (vi) Since the area of $S_r(p)$ is proportional to $\sinh^{n-1}(2r)$ the formula
in (v) follows from [GGA], Ch. II, Prop. 5.26. For (vi) we can write
\[
(f^\wedge)(p) = \frac{1}{2}\Omega_{n-1} \int_0^\infty (M^r f)(p)\sinh(2r)\sinh^{n-3}(r)dr.
\]

(vi)–(vii) Let $F(r) = (M^r f)(p)$, let $\Delta_r = \Delta(L)$ and assume k even
Chapter II

> 0. Then

\[
\int \text{sh}^k \text{rsh}(2r) \Delta_r F(r) dr = (k + 2)(k - 2n + 4) \int_0^\infty F(r) \text{sh}^k \text{rsh}(2r) dr
\]

\[
+ k(k - n + 2) \int_0^\infty F(r) \text{sh}^{k-2} \text{rsh}(2r) dr.
\]

If \(k = 0 \) this should be

\[
-2(n - 2) \left(\int_0^\infty 2F(r) \text{sh}(2r) dr + F(0) \right).
\]

Proof. By the Darboux equation, \(L \) applied to \((\bar{f})^\wedge(p)\) amounts to the application of \(\Delta(L) = \Delta_r \) to \(F(r) \). Now

\[
\int_0^\infty \text{sh}^k \text{rsh}(2r) \left(\frac{d^2 F}{dr^2} + 2(n - 1) \coth(2r) \frac{dF}{dr} \right) dr = \left[\text{sh}^k r \text{ sh}(2r) F' \right]_0^\infty
\]

\[
- \int_0^\infty F' [\text{sh}^k r \text{ ch}(2r) 2 + k \text{sh}^{k-1} \text{ rch} \text{ sh}(2r) - 2(n - 1) \text{sh}^k r \text{ ch}(2r)] dr
\]

\[
= 2(n - 2) \int_0^\infty \text{sh}^k r \text{ ch}(2r) F' dr - \frac{k}{2} \int_0^\infty \text{sh}^{k-2} r \text{ sh}^2(2r) F'' dr
\]

\[
= 2(n - 2) \left\{ \left[\text{sh}^k r \text{ ch}(2r) F \right]_0^\infty \right. \}
\]

\[
- \int_0^\infty F [2\text{sh}(2r) \text{sh}^k r + k \text{sh}^{k-1} \text{ rch} \text{ sh}(2r)] dr \}
\]

\[
- \frac{k}{2} \left\{ \left[\text{sh}^{k-2} r \text{ sh}^2(2r) F \right]_0^\infty \right. \}
\]

\[
- \int_0^\infty F [\text{sh}^{k-2} r 4\text{sh}(2r) \text{ch}(2r) + (k - 2) \text{sh}^{k-3} r \text{ ch} \text{ r sh}^2(2r)] dr \}
\]

\[
= -2(n - 2) \int_0^\infty F [2\text{sh}(2r) \text{sh}^k r + \frac{k}{2} \text{sh}^{k-2} r \text{sh}(2r) + k \text{sh}^k r \text{ sh}(2r)] dr
\]

\[
+ \frac{k}{2} \int_0^\infty F [4\text{sh}^{k-2} \text{rsh}2r + 8\text{sh}^k \text{rsh}(2r) + (k - 2)(2\text{sh}^{k-2} r + 2\text{sh}^k r) \text{sh}(2r)] dr
\]
SOLUTIONS TO EXERCISES

\[= \int_0^\infty F \sinh^k \cosh(2r) dr \{ (k + 2)(k - 2n + 4) \} dr \]

\[+ \int_0^\infty F(r) \sinh^{k-2} \cosh(2r) \{ k(k - n + 2) \} dr \]

This means

\[(L + (k + 2)(2n - k - 4)) \int_0^\infty F(r) \sinh^k \cosh(2r) dr \]

\[= -(n - k - 2)k \int_0^\infty F(r) \sinh^{k-2} \cosh(2r) dr. \]

By iteration, \(k = n - 3, n - 5, \ldots \), we obtain

\[(L + (n - 1)(n - 1)) \ldots (L + 2(2n - 4)) \{ \tilde{f} \}^\nu = (-1)^{n-1} \Omega_{n-1}(n - 2)! f. \]

For a different inversion method see Gelfand, Graev and Vilenkin [1966], Ch. V, §2.

C. 2. Use [GGA], Ch. IV, Exercise C3 (for the case of a hyperbolic space) and combine with [GGA], Ch. I, Lemma 4.4. (For full details see Helgason [1980b]).

D. Conical Distributions.

D. 1. (Sketch) To see first that the theorem is local let \(\{ V_\alpha \}_{\alpha \in A} \) be a locally finite covering of \(V \) by coordinate neighborhoods and \(1 = \sum \phi_\alpha \) a partition of 1 subordinate to this covering. Then \(T = \sum \phi_\alpha (T|V_\alpha) \) where each restriction \(T|V_\alpha \) is assumed to have the indicated representation with distributions \(\tilde{T}_{n_1, \ldots, n_p, \alpha} \) on \(V_\alpha \). In order to move the \(\phi_\alpha \) past the \(X_i \) over on \(\tilde{T}_{n_1, \ldots, n_p, \alpha} \) we repeatedly use the formula \(\phi(Xf) = X(f\phi) - fX\phi \). For the local version of the theorem let \(\exp tX_i \) be a local 1-parameter group of local diffeomorphisms of a neighborhood of \(w \in W \) in \(V \). Then

\[(X_1X_2\phi)(v) = \left\{ \frac{d}{dt_1}(X_2\phi)(\exp(-tX_1) \cdot v) \right\}_{t_1=0} \]

\[= \left\{ \frac{d}{dt_1} \frac{d}{dt_2} \phi(\exp(-t_2X_2) \exp(-t_1X_1) \cdot v) \right\}_{t_1=t_2=0} \]

and if \(\partial_i = \partial/\partial t_i \),

\[((X_1^{n_1} \ldots X_p^{n_p})(\phi))(v) = \{ \partial_1^{n_1} \ldots \partial_p^{n_p} \phi(\exp(-t_pX_p) \ldots \exp(-t_1X_1) \cdot v) \}_{t=0}. \]

Schwartz' theorem representing \(T \) in terms of the \(\partial_i \) (Schwartz [1966], Th. XXXV) therefore gives the result of the exercise.
D. 2. Let \(\mathfrak{g}^\alpha \) be the subalgebra generated by \(\mathfrak{g}_\alpha \) and \(\mathfrak{g}_{-\alpha} \). Then \(\mathfrak{g}^\alpha \) is semisimple of real rank one and

\[
\mathfrak{g}^\alpha = \mathfrak{g}_{-2\alpha} + \mathfrak{g}_{-\alpha} + \mathfrak{g}_\alpha + \mathfrak{g}_{2\alpha} + (\mathfrak{g}^\alpha)_0
\]

([DS], IX, §2). Let \(e_j \in \mathfrak{g}_{j\alpha} \). Then \(e_j, \theta e_j \) and \(w = [e_j, \theta e_j] \) span \(\mathfrak{sl}(2, \mathbb{C}) \) which operates on \((\mathfrak{g}^\alpha)^G \). By [GGA], Appendix, Cor. 1.5, \(\mathfrak{g}_{j\alpha} \subset [(\mathfrak{g}^\alpha)^G, e_j] \) so

\[
[(\mathfrak{g}^\alpha)_0, e_j] = \mathfrak{g}_{j\alpha}.
\]

A fortiori \([m + a, e_j] = \mathfrak{g}_{j\alpha} \) so the orbit \(M \cdot e_j \) has codimension 1 so if the sphere is connected it must be \(M \cdot e_j \) (cf. Kostant [1975], Ch. II).

D. 3. (Sketch following Wallach [1973] and Lepowsky [1975].)

(a) \(\mathfrak{g} = \mathfrak{g}_{2\alpha} + \mathfrak{g}_{-\alpha} + \mathfrak{g}_0 + \mathfrak{g}_\alpha + \mathfrak{g}_{2\alpha} \quad \mathfrak{g}_0 = m + a. \) Select \(X \in \mathfrak{g}_\alpha, Y = -\theta X \in \mathfrak{g}_{-\alpha} \), such that the vector \(H = [X, Y] \in a \) satisfies

\[
[H, X] = 2X, \quad [H, Y] = -2Y.
\]

The algebra \(s = RX + RY + RH \) is isomorphic to \(\mathfrak{sl}(2, \mathbb{R}) \) and \(\pi = ad_{\mathfrak{g}}|s \) is a representation of \(s \) on \(\mathfrak{g} \). Deduce from [GGA], Appendix, Lemma 1.2 (ii) that since the eigenvalues of \(ad \) \(H \) on \(\mathfrak{g} \) are 0, ±2, ±4 the dimensions of the irreducible components of \(\pi \) can only be 1, 3 or 5.

(b) Let \(\mathfrak{g}^i \) denote the sum of all the \((2i + 1) \)-dimensional irreducible components of \(\mathfrak{g} \) and put

\[
\mathfrak{g}_j^i = \mathfrak{g}^i \cap \mathfrak{g}_{j\alpha} \quad (0 \leq i \leq 2, -2 \leq j \leq 2).
\]

Then

\[
\mathfrak{g}^i = \oplus_j \mathfrak{g}_j^i, \mathfrak{g}_{\pm 2\alpha} = \mathfrak{g}_{\pm 2}, \mathfrak{g}_{\pm \alpha} = \mathfrak{g}_{\pm 1} \oplus \mathfrak{g}_{\pm 2}, \mathfrak{g}_0 = \mathfrak{g}_0^0 \oplus \mathfrak{g}_0^1 \oplus \mathfrak{g}_0^2,
\]

and the decomposition

\[
\mathfrak{g} = \mathfrak{g}^0 \oplus \mathfrak{g}^1 \oplus \mathfrak{g}^2
\]

is both \(B^- \) and \(B_0 \)-orthogonal.

(c) Using

\[
[X_\alpha, X_{-\alpha}] - B(X_\alpha, X_{-\alpha})A_\alpha \in m,
\]

show that

\[
\mathfrak{g}_2^0 \subset m, \quad \mathfrak{g}_0^1 = RA_\alpha \oplus (\mathfrak{g}_0^1 \cap m), \quad \mathfrak{g}_0^2 \subset m.
\]

Let \(m_i = \mathfrak{g}_i \cap m \ (i = 0, 1, 2) \). The \(m_0 \) is the Lie algebra of \(M_0 \).

(d) For \(Z \in \mathfrak{g} \) put \(Z^* = [X, Z], \quad Z^{**} = (Z^*)^*, Z_* = [Y, Z], \quad Z_{**} = (Z_*)^* \). Prove that if \(Z \in m_2 \),

\[
(Z^{**})_* = 4Z^*, \quad (Z_*^*)^* = 4Z_*, \quad (Z^*)^*_* = 6Z, \quad (Z_*)^*_* = 6Z
\]
and deduce for $Y, Z \in m_2$
\[
[Y, Z^{**}] = [Y^{**}, Z] = \frac{2}{3}[Z^*, Y^*], \quad [Y, Z]^{**} = \frac{2}{3}[Y^*, Z^*].
\]

(e) Given $Z \in g$, let Z_1 be the component in g^i in the decomposition $g = g^0 \oplus g^i \oplus g^2$. Then if $Y, Z \in m_2$,
\[
[Y, Z]_1 = 0, \quad [[Y, Z]_0 + 2[Y, Z]_2, Z^{**}] = 0.
\]

(f) Suppose $Y, Z \in m_2$ and $B_\theta(Y^{**}, Z^{**}) = 0$. Then
\[
[Y^{**}, Z_{**}] = -[Z^{**}, Y_{**}] \in m, \quad [Y^{**}, Z_{**}]_1 = 0
\]
and
\[
[Y^*, Z_{**}] = -6[Y, Z]_*, \quad [[Y, Z]_0 Z^{**}] = \frac{\langle \alpha, \alpha \rangle}{g} B(Y, \theta Y) Y^{**}.
\]

(g) Let $U \in g_{2\alpha}$ and select $Z \in m_2$ such that $U = Z^{**}$. Let V be in the orthocomplement (for B_θ) of U in $g_{2\alpha}$ and select $Y \in m_2$ such that $Y^{**} = V$. Deduce from (f) that $[W, U] = V$ for some $W \in m_o$ and consequently $M_o \cdot U$ fills up a sphere in $g_{2\alpha}$.

D. 4. For the existence of S_Ψ, one can just repeat the proof of Prop. 4.4. Part (a) is obvious. For Part (b) we have by the definition of Ψ_o, Lemma 3.1 and Cor. 6.2,
\[
\Psi_o(\varphi) = \int_{\Xi} (\varphi - \varphi_o)(\xi)e^{\rho(\log a(\xi))}d\xi
\]
\[
= \int_{\tilde{N}_A} (\varphi - \varphi_o)(\tilde{n}a \cdot \xi_o)e^{-\rho(\log a + B(m^* \tilde{n}))}e^{2\rho(\log a)}da \, d\tilde{n}.
\]
Now take φ of the form $\varphi(\tilde{n}a \cdot \xi_o) = f(\tilde{n})g(a)$ where $\int g(a)e^{\rho(\log a)}da = 1$. Then (b) follows.

D. 5. (i) Use Theorem 4.1 and Corollary 6.2. (ii) Use Cor. 6.2. (iii) Use the M-invariance of S and S_Ψ. (iv) Prove
\[
(u^2 + v^2)D_\delta \otimes T_0 \in \text{Con}(D'_0)
\]
as an intermediary result. (vi) With the particular g chosen one finds (with $f^{n-1}(\tilde{n}) = f(\tilde{n}(\tilde{n}))$)
\[
\Psi((f \otimes g)^{n-1}) = (S + c\Delta \delta)f^{n-1}
\]
and for the particular choice of f, $(\Delta \delta)(f^{n-1}) = 0$. Thus $h(s) = S(f^{n-1}) - S(f)$ and the contradiction $h'(0) \neq 0$ is obtained by an elementary computation.
D. 6. Solution is similar to that of Exercise D5. For (iv) it is useful to remark the following. Let
\[
g = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix} \in \text{SU}(2,1)
\]
and
\[
\sigma = \begin{pmatrix} p & -\bar{q} & 0 \\ q & \bar{p} & 0 \\ 0 & 0 & 1 \end{pmatrix} \in K
\]
such that \(k(g)M = \sigma M \). Then
\[
p = \left(g_{11} + g_{13} \right) / \left(g_{31} + g_{33} \right), \quad q = \left(g_{21} + g_{23} \right) / \left(g_{21} + g_{33} \right)
\]
and \(k(\bar{n}(n\bar{n}))M = k(n\bar{n})M \).

E. The Heisenberg Group.

E. 1.–E. 2. See Faraut and Harzallah [1987].

E. 3. The homogeneity and the left invariance are obvious. Since \(d(g, e) = \| g \| \) only the inequality \(\| g_1 g_2 \| \leq \| g_1 \| + \| g_2 \| \) remains to be proved and this just involves the Schwarz inequality (Cygan [1981], Korányi [1983] or Faraut and Harzallah [1987]).

For E. 4, E. 5, and E. 6, see Cowling [1982], Folland [1973] and Korányi [1982b]. For an exposition of these results see Faraut and Harzallah [1987]. Much of the theory is generalized to \(\tilde{N} \) for \(G/K \) of rank one in Cowling, Dooley, Korányi and Ricci [1992].

CHAPTER III

A. Differential Operators.

A. 1. We have for \(k \in K, \, g \in G, \, n \in N, \, a \in A \)

\[
\eta_\lambda(kgn) = \eta_\lambda(g), \quad \eta_\lambda(ga) = e^{(i\lambda-\rho)(\log a)}\eta_\lambda(g).
\]

In the decomposition
\[
\mathbf{D}(G) = (t\mathbf{D}(G) + \mathbf{D}(G)n) \oplus \mathbf{D}(A)
\]
let \(D \rightarrow D_A \) denote the projection of \(\mathbf{D}(G) \) onto \(\mathbf{D}(A) \). If \(T \in t, \, X \in n \) and \(D_1, D_2 \in \mathbf{D}(G) \) we have

\[
D_1 X \eta_\lambda = 0, \quad (TD_2 \eta_\lambda)(e) = 0, \quad (D \eta_\lambda)(e) = (D A \eta_\lambda)(e),
\]
and if \(f \in \mathcal{D}(G) \) is right invariant under \(K \),

\[
\int_G (TD_2 \eta_\lambda)(g)f(g)dg = \int_G (D_2 \eta_\lambda)((-T)f)(g)dg = 0.
\]

Hence

\[
\int_G (D \eta_\lambda)(g)f(g)dg = \int_G (D_A \eta_\lambda)(g)f(g)dg
\]

\[
= (D_A \eta_\lambda)(e) \int_G \eta_\lambda(g)f(g)dg = (D \eta_\lambda)(e) \int_G \eta_\lambda(g)f(g)dg.
\]

A. 2. See Helgason [1992a].

B. Rank One Results.

B. 1. By the Fourier expansion for a \(F \in \mathcal{E}(K/M) \) (see e.g. [GGA], Ch. V, §3, (13)) we have

\[
F(e) = \sum_{\delta \in \hat{K}_M} d(\delta) \int_k \tilde{F}(k) \sum_{i=1}^{d(\delta)} \langle \delta(k)v_i, v_i \rangle dk
\]

where \(\tilde{F}(k) = F(kM) \), \((v_i) \) is an orthonormal basis of \(V_\delta \) such that \(v = v_1 \) span \(V_\delta^M \). Replacing \(k \) by \(km \) and integrating over \(M \) the sum over \(i \) can be restricted to \(i = 1 \).

D. The Compact Case.

D. 1. (i) By calculation \((xt_\theta x^{-1})_1 = \cos \theta \). Alternatively, note that \(u \rightarrow xux^{-1} \) is a rotation fixing \(t_0 \) and \(i \pi \). (ii) The area of a sphere in \(S^3 \) of radius \(\theta \) is a constant multiple of \(\sin^2 \theta \). (iii) Calculate \(\lim_{\theta \to 0} F_f(\theta)/\theta \). (iv) The basis \(z^p w^q (p + q = \ell) \) diagonalizes \(\pi_\ell(t_\theta) \) giving the formula for \(\chi_\ell(t_\theta) \). Then note that by (ii) and the fact that \(F_f \) is odd,

\[
\chi_\ell(f) = \int_U f(u)\chi_\ell(u)du = \frac{1}{4\pi} \int_0^{2\pi} (e^{-i\theta} - e^{i\theta}) F_f(\theta)\chi_\ell(t_\theta)d\theta
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} F_f(\theta) e^{-i(\ell+1)\theta} d\theta.
\]

Part (v) follows from the fact that \(\chi_\ell \) has \(L^2 \) norm on \(U \) equal to 1 as a result of (ii) and (iii). Part (vi) follows from (iv). For (vii) suppose \(\pi \in \hat{U} \) is not of the form \(\pi_\ell \); using (vi) on \(f = \text{Trace}(\pi) \) we get a contradiction.
D. 2. If $k \in K$ we have

$$(\tilde{\varphi} \ast \tilde{f})(u) = \int \tilde{\varphi}(uv^{-1})\tilde{f}(v)dv = \int \tilde{\varphi}(uvk^{-1})\tilde{f}(vk)dv$$

which by averaging over K becomes

$$\tilde{\varphi}(u) \int \tilde{\varphi}(v^{-1})\tilde{f}(v)dv.$$

The generalization follows from [GGA], Proposition 2.4 in Ch. IV.

D. 3. The dual of the symmetric space G/K is now $(U \times U)/U^*$ where the diagonal U^* is isomorphic to K. Formula (24) in §9 gives

$$d(\mu) = \left\{ \prod_{\alpha \in \Sigma^+} \frac{\langle \mu + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle} \right\}^2.$$

Here $d(\mu)$ is the degree of the irreducible representation τ_μ of $U \times U$ which has a fixed vector under the diagonal group U^* and highest weight μ. The irreducible representations τ of $U \times U$ are of the form

$$\tau(u_1, u_2) = \pi_1(u_1) \otimes \pi_2(u_2)$$

where $\pi_1, \pi_2 \in \hat{U}$ (cf. Weil [1940], §17). Here τ has a fixed vector under U^* if and only if there is a nonzero vector $A \in V_1 \otimes V_2$ such that

$$\pi_1(u) \otimes \pi_2(u)A = A, \quad u \in U,$$

V_i being the representation space of π_i. This means for the tensor product $\pi_1 \otimes \pi_2$

$$(\pi_1 \otimes \pi_2)(u)A = A.$$

Because of the identification $V_1 \otimes V_2 = \text{Hom}(V'_2, V_1)$ A is a linear transformation of V'_2 into V_1 so this equation amounts to $\pi_1(u)A\tilde{\pi}_2(u^{-1}) = A$ which means π_1 and π_2 contragredient, i.e., $\pi_1 \sim \pi, \pi_2 \sim \tilde{\pi}$. Thus $\mu = (\nu, -s\nu)$ where ν is the highest weight of π (relative to a maximal abelian subalgebra $t \subset u$) and s is the “maximal” Weyl group element. Considering the relationship between the root system $\Delta(u^e, t^e)$ and the restricted root system of $u \times u$ with respect to $t^e = \{(H, -H) : H \in t\}$ ([DS], Ch. VII, §4), where each restricted root has multiplicity 2. Note also for the Killing forms

$$B_{u\times u}((H, -H), (H', H')) = 2B_u(H, H').$$
Thus
\[
\prod_{\alpha \in \Sigma^+} \frac{\langle \mu + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle} = \prod_{\beta > 0} \frac{\langle \nu + \rho_0, \beta \rangle}{\langle \rho_0, \beta \rangle}
\]
where on the left \(\langle , \rangle \) refers to \(B_u \times u \), on the right to \(B_u, \beta \) runs over the positive roots in \(\Delta(u^c, t^c) \) and \(\rho_0 \) half their sum. Since \(d(\mu) = d(\nu)^2 \) the formula above gives the formula for \(d(\nu) \) the degree of \(\pi \).

E. The Flat Case.

E. 3. We have
\[
(M^y M^x f)(z) = \int \int f(z + \ell \cdot x + k \cdot y) dk \, d\ell
\]
\[
= \int \int f(z + \ell \cdot x + \ell k \cdot y) dk \, d\ell = \int (M^{x+k} y f)(z) dk.
\]
Here we take \(x = re_n, y = se_n \) where \(e_n = (0, \cdots, 1) \). Then the last integral is constant for \(k \) in the subgroup fixing \(e_n \) so the integral equals
\[
\frac{1}{\Omega_n} \int_{S^{n-1}(0)} (M^{x+s w} f)(z) dw.
\]
Letting \(\theta \) denote the angle between \(e_n \) and \(w \) we integrate this last integral with \(w \) first varying in the section of \(S^{n-1}(0) \) with the plane \((e_n, y) = \cos \theta \). Since
\[
|x + sw|^2 = r^2 + s^2 - 2rs \cos \theta
\]
this gives the second expression for \((M^y M^x f)(z) \). The last is obtained by the substitution \(t = (r^2 + s^2 - 2rs \cos \theta)^\frac{1}{2} \). (For a different proof see John [1955], p. 80; see also Ågesrøn [1937]).

F. The Noncompact Case.

F. 1. If \(\lambda \in \mathfrak{a}^* \) then \(|c(\lambda)|^2 = c(\lambda)c(-\lambda) = c(s\lambda)c(-s\lambda) \).

F. 2. The formula
\[
\int_G f(g) \varphi_{-\lambda}(g) dg = \int_A F_f(a) e^{-i\lambda \log a} da
\]
converts the statement into an analogous one for the exponentials \(e^{i\lambda} \) for which it is obvious.

F. 4. Clearly \(\varphi \times f \in L^2(X)^2 \). If \(F \in L^2(X)^2 \) is orthonal to all \(\varphi \times f \) then
\[
\int_{\mathfrak{a}^*} \tilde{F}(\lambda) \tilde{\varphi}(\lambda) \tilde{f}(\lambda) |c(\lambda)|^{-2} d\lambda = 0.
\]
Since the functions $\tilde{\varphi}$ form a uniformly dense subalgebra of $C_\alpha(a^*/W)$ and since \tilde{f} is analytic on a^*, $F = 0$ a.e.

For the general case let $F \in L^2(X)$ be orthogonal to $f^\tau(g)$ for all $g \in G$. Then

$$\int_X F^\tau(g)(x)f^\tau(h)(x)dx = 0 \quad g, h \in G.$$

Here we can replace $F^\tau(g)$ and $f^\tau(h)$ by their K-averages $(F^\tau(g))^k$ and $(f^\tau(h))^k$. Integrating against $\varphi(h)$ ($\varphi \in D^k(G)$) then gives $(F^\tau(g))^k = 0$ by the first part. Hence $F = 0$ a.e.

F.5. Let $A_\delta(g) \in a$ be given by

$$g \in N_\delta \exp A_\delta(g)K$$

and as in (3) §1 put $A_\delta(gk, km) = A_\delta(k^{-1}g)$. Then

$$A_\delta(gK, km) = sA(gK, km_\delta M).$$

The ρ which corresponds to N_δ is $s\rho$ so the formula

$$f_\delta(\lambda, km) = \tilde{f}(s^{-1}\lambda, km_\delta M)$$

follows easily.

CHAPTER IV

1. Writing h in G as $h = kan$ according to the Iwasawa decomposition and using the K-invariance of f_2 we have

$$(f_1 \times f_2)(g \cdot o) = \int_G f_1(gh^{-1} \cdot o)f_2(h \cdot o)dh$$

$$= \int_{AN} f_1(gm^{-1}a^{-1} \cdot o)f_2(an \cdot o)e^{2\rho \log a}da \, dn.$$

Hence

$$(f_1 \times f_2)(k_1a_1 \cdot \xi_o) = \int_{AN}(f_1 \times f_2)(k_1a_1n_1 \cdot o)dn,$$

$$\int_{AN} \left(\int_{N} f_1(k_1a_1n_1a^{-1} \cdot o)dn_1 \right)f_2(an \cdot o)e^{2\rho \log a}da \, dn$$

Interchanging n_1 and a^{-1} in the inner integral cancels out the factor $e^{2\rho \log a}$ so the expression reduces to

$$\int_{A} \tilde{f}_1(k_1a_1a^{-1} \cdot \xi_o)\tilde{f}_2(a \cdot \xi_o)da$$
as desired. Since \(*\) is commutative whereas \(\times\) is not the \(K\)-invariance condition cannot be dropped.

2. Because of the \(K\)-invariance of \(\varphi\) we write \(\varphi(H)\) instead of \(\varphi(k \exp H \cdot \xi_o)\). Then by Ch. II, §3, (56),
\[
(f \times \tilde{\varphi})(x) = \int_G f(g \cdot o) \int_B \varphi(A(g^{-1} \cdot x, b)) e^{2\rho(A(g^{-1} \cdot x, b))} db \, dg.
\]
Using loc. cit. (47) and (51) this becomes
\[
\int_G f(g \cdot o) \int_B \varphi(A(x, g(b)) - A(g \cdot o, g(b))) e^{2\rho(A(x, g(b)))} db \, dg
= \int_{K/M} e^{2\rho(A(x,kM))} \int_{G/K} f(g \cdot o) \varphi(A(x, kM) - A(g \cdot o, kM)) \, dg \, dk.
\]
Now use the formula
\[
\int_{AN} F(kan \cdot o) \, da \, dn = \int_{G/K} F(kg \cdot o) \, dg \, K = \int_{G/K} F(g \cdot o) \, dg \, K
\]
on the function \(F(y) = f(y) \varphi(A(x, kM) - A(y, kM))\) whereby our integral over \(G/K\) becomes
\[
\int_{AN} f(kan \cdot o) \varphi(A(x, kM) - \log a) \, da \, dn = (\tilde{f} \times \varphi)(k \exp A(x, kM))
\]
Substituting and using (56) again this gives
\[
(f \times \varphi)(x) = (\tilde{f} \star \varphi)^\vee
\]
as stated.

3. By definition
\[
(A\mu_h)(F) = \mu_h(A^* F) = \int_K F(\exp H(hk)) e^{-\rho(H(hk))} \, dk
\]
and \(\{H(hk) : k \in K\} = C(h) ([GGA], \text{Ch. IX, Theorem 10.5}).

5. (i) The Fourier series (20) §3 converges in the topology of \(\mathcal{E}'(\mathbb{R} \times S^1)\) so
\[
\sigma(\psi) = \sum_n \sigma(\psi_{-n}(t) \otimes e^{-in\theta}) = \sum_n (e^{2\pi \sigma_n}(\psi_{-n}).
\]
(ii) By Theorems 2.4 and 3.4, if \(\sigma \in \mathcal{E}'(\Xi)\) then the following conditions are equivalent:
(a) $\sigma \in \mathcal{E}'(H^2)^\wedge$.
(b) $\sigma(\psi) = 0$ for each $\psi \in \mathcal{E}(\Xi)$ satisfying
\[D_n(e^t \psi_n) \text{ is odd} \quad (n \in \mathbb{Z}) \]
where D_n denotes $(D + 1) \cdots (D + 2|n| - 1)$, $D = d/dt$.
(c) $\sigma(\psi) = 0$ for each $\psi \in \mathcal{E}(\Xi)$ satisfying
\[e^t \psi_n \in (D_n^* \mathcal{E}'(R))^\perp \quad (n \in \mathbb{Z}) \]
* denoting adjoint and subscript e indicating “even”, and \perp denoting annihilator.

If $\sigma \in \mathcal{E}'(\Xi)$ is such that σ_n has the form in (ii) then $e^t \sigma_n = D_n^* \tau_n$ where $\tau_n \in \mathcal{E}'_e(R)$. If $\psi \in \mathcal{E}(\Xi)$ satisfies (1) then
\[(e^{2t} \sigma_n)(\psi_{-n}) = (D_n^* \tau_n)(e^t \psi_n) = 0 \]
so $\sigma(\psi) = 0$ by (i). Thus by (b) we have $\sigma \in \mathcal{E}'(H^2)^\wedge$.

On the other hand, suppose $\sigma \in \mathcal{E}'(\Xi)$ satisfies (c), that is
\[\sigma(\psi) = 0 \quad \text{whenever} \quad e^t \psi_n \in (D_n^* \mathcal{E}'(R))^\perp \quad (n \in \mathbb{Z}). \]

Fix $k \in \mathbb{Z}$ and use this on the function $\psi(\xi_{t,\theta}) = \psi_{-k}(t)e^{-ik\theta}$. Then $\sigma(\psi) = 0$ implies $(e^{2t} \sigma_k)(\psi_{-k}) = 0$, that is $(e^t \sigma_k)(e^t \psi_{-k}) = 0$. This means that $e^t \sigma_k$ belongs to the double annihilator $(D_k^* \mathcal{E}'_e(R))^\perp\perp$, which equals $D_k^* \mathcal{E}'_e(R)$, this latter space being closed in $\mathcal{E}'_e(R)$ (cf. Theorem 2.16 in Ch. I). Since $k \in \mathbb{Z}$ was arbitrary this shows property (ii) for σ.

CHAPTER V

1. By the symmetry of L
\[\int_X (L u)(x)e^{2\rho(A(x,b))}dx = 0 \]
so the conditions are necessary. For the sufficiency, consider the Fourier transform
\[\tilde{f}(\lambda, b) = \int_X f(x)e^{-i\lambda \rho(A(x,b))}dx. \]
The conditions amount to $\tilde{f}(\pm i\rho, b) = 0$ so $\tilde{f}(\lambda, b)$ is divisible by $\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle$ and the quotient is holomorphic of uniform exponential type and satisfies (3) in Ch. III, §5. By the Paley-Wiener theorem, u exists.

3. (i) See Helgason [1976], (Theorem 8.1); another proof is in Dadok [1979].
 (ii) See Helgason [1973b] and Eguchi [1979a].
5. See deRham [1955], Ch. V.

4.6–7. See Theorems 5.3, 6.1–6.3 in Helgason [1964a].

8. One has to verify

\[\frac{d^2}{d\theta^2} (\gamma(\theta)) = \delta - \frac{1}{2\pi}, \quad \int_{-\pi}^{\pi} \gamma(\theta) d\theta = 0 \]

and using \((d^2/d\theta^2)(|\theta|) = 2\delta\) this is a simple matter.

10. (i) If \(T \in \mathfrak{u}, [T, U_i] = \sum_j c_{ij} U_j\) where \((c_{ij})\) is skew symmetric. Hence

\[[T, \omega] = \sum_i [T, JU_i] U_i + JU_i [T, U_i] \]
\[= \sum_i c_{ij} (JU_j) U_i + \sum_i c_{ij} (JU_i) U_j \]
\[= \sum_i c_{ij} (JU_j) U_i - \sum_i c_{ij} (JU_j) U_i = 0. \]

Similarly,

\[[JT, \omega] = \Sigma [JT, JU_i] U_i + \sum_i JU_i [JT, U_i] \]
\[= - \sum_i c_{ij} U_j U_i + \sum_i c_{ij} (JU_i) (JU_j) \]
\[= \frac{1}{2} \sum c_{ij} (U_i U_j - U_j U_i) + \frac{1}{2} \sum c_{ij} ((JU_i) (JU_j) - (JU_j) (JU_i)) \]
\[= \frac{1}{2} \sum c_{ij} [U_i, U_j] + \frac{1}{2} \sum c_{ij} [JU_i, JU_j] = 0. \]

This proves (i). For (ii) observe that \(\omega\) annihilates all \(C^\infty\) functions \(f\) on \(G\) which are right invariant under \(K\). Thus if \(\omega u = f\) we find a contradiction by averaging over right translations by \(K\).

11. (From a discussion with Schlichtkrull). Let \(\nu : D(G) \rightarrow E(X)\) be the homomorphism (from Ch. III, §10) given by the action of \(G\) on \(X\). Then \(T\) commutes with each \(\nu(D)\) so by (1) loc. cit. \(TZ = ZT\) for each \(Z \in Z(G/K)\). Let \(D \in D(G/K)\). By Theorem 10.1 in Ch III, \(DZ_1 = Z_2\) for some \(Z_1 \neq 0, Z_2 \in Z(G/K)\). Then \(TDZ_1 = TZ_2, \ DZ_1 = Z_2T\) so \((TD - DT)(Z_1 f) = 0\) for \(f \in E(X)\). By the surjectivity of \(Z_1\) (Theorem 1.4) we conclude \(TD = DT\).

12. The first statement is immediate from the theorem quoted. For the necessity of the condition and for the compact case see Helgason [1992a].
13. The equation holds for all f of the form $f(kan) = f_1(k)f_2(a)f_3(n)$, hence for all f.

14. Suppose first f holomorphic on all of D. Since the rotations $z \rightarrow e^{i\theta}z$ belong to the center of K we have (replacing f by $f^\tau(k)$)

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}z) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \int f(e^{i\theta}k \cdot z) d\theta = \int f(k \cdot z) dk.$$

Applying this to the composite function $f \circ g \ (g \in G_0)$ we see that f satisfies the mean value theorem (Cor. 2.2) so is harmonic. This argument can be localized since Cor. 2.2 can.

15. We have by (38) in §4,

$$A_\circ \cdot b_{\Gamma_1} = \left\{ \sum_{\gamma \in \Gamma - \Gamma_1} \tanh y_\gamma X_{-\gamma} + b_{\Gamma_1} : y_\gamma \in \mathbb{R} \right\}$$

proving (i). Part (ii) follows from the fact that the Weyl group consists of all signed permutations.

17. See Proposition 5.2 in Helgason [1987]. The flat case is proved in Menzala and Schonbeck [1984] on the basis of the spherical support theorem [GGA], Ch. I, Lemma 2.7.

18. It suffices to prove this for $b = eM$ and then the function v is N-invariant. If $D \in D(G/K)$ then $\Delta_N(D)$, the N-radial part of D, is given by $\Delta_N(D) = e^\rho \Gamma(D) \circ e^{-\rho}$ ([GGA], Ch. II, Cor. 5.19); the statement about v is then easily verified.

19. For this we use the transmutation property

(1) $A(D)D\varphi = \Gamma(D)A\varphi, \quad \varphi \ - \text{invariant},$

(Ch. IV, Theorem 4.1) and the Darboux equation

(2) $D_{gK} \left(\int_K f(gk \cdot x) \, dk \right) = D_x \int_K f(gk \cdot x) \, dk.$

Putting

$$f^\circ(x) = \int_K f(k \cdot x) \, dk,$$

we have

$$F(gK, \log a) = e^{\rho(\log a)} \int_N (f^\tau g^{-1})^\circ(\alpha n \cdot o) \, dn.$$
Applying $\Gamma(D)_a$ and using (1) this becomes

$$e^{\rho(\log a)} \int_N D(f_\tau(x^{-1}))^k(\alpha_n \cdot o) \, dn$$

which by (2) becomes

$$e^{\rho(\log a)} \int_N \left(D_{gK} \int_K f(gk\alpha_n \cdot o) \, dk \right) \, dn = (DF)(gK,a).$$

CHAPTER VI

1. Using a K-invariant Laplace-Beltrami operator on K/M we see that each joint eigenspace E is finite-dimensional. Let $E = \bigoplus_i E_i$ be the direct decomposition into irreducible subspaces. Pick $f_i \in E_i$ such that $f_i(eM) = 1$ and f_i is M-invariant. Then each f_i is a spherical function and $Df_i = \chi(D)f_i$, where the homomorphism $\chi : D(K/M) \rightarrow \mathbb{C}$ is the same for all i. Using [GGA], Ch. IV, Cor. 2.3 we find that all f_i coincide so E is irreducible.

Taking $K = \text{SU}(2)$, $M = e$, each joint eigenspace has to contain a character χ of K. If T is a maximal torus with Lie algebra spanned by a vector H it is easily seen that $H\chi$ is not a constant multiple of χ (cf. e.g. [GGA], Ch. V, Ex. A7).

2. This is a basic step in Bruhat’s analysis [1956] §6) of the principal series for G. By Schur’s lemma (for unitary representations) (i) is equivalent to the statement that all bounded linear operators $A : K_\lambda \rightarrow K_\lambda$ commuting with all $\tau_\lambda(g)$ ($g \in G$) are scalars. Let A be one such operator, consider the sesquilinear form

$$B(\varphi, \psi) = \int_{K/M} \varphi(kMN) \text{conj}(A\psi)(kMN) \, dk_m$$

and the form

$$\tilde{B}(f, g) = B(f^k, g^k) \quad f, g \in \mathcal{D}(G),$$

where

$$f^k(xMAN) = \int_{MAN} f(xamn)e^{(-i\lambda + \rho)(\log a)} \, dm \, da \, dn.$$

Then

$$\tilde{B}(f^{L(x)R(p_1)}, g^{L(x)R(p_2)}) = e^{-(i\lambda + \rho)(\log a_1)}e^{(i\lambda - \rho)(\log a_2)} \tilde{B}(f, g).$$
and by the Schwartz kernel theorem (Hörmander [1983], Ch. V)

\[\tilde{B}(f, g) = \int_{G \times G} f(x) \text{conj}(g(y)) d\tilde{T}(x, y), \]

where \(\tilde{T} \in \mathcal{D}'(G \times G) \). Then

\[\tilde{T}^L(x, x)R(p_1, p_2) = e^{(i\lambda + \rho)(\log a_1)} e^{(-i\lambda + \rho)(\log a_2)} \tilde{T}, \]

where \(L(x, x)R(p_1, p_2) \) denotes the diffeomorphism \((u, v) \mapsto (xu, xv)\) of \(G \times G \). Consider the diffeomorphism \(\varphi : (x, y) \mapsto (y^{-1}x, y) \) of \(G \times G \). Then, if \(h \in \mathcal{D}(G \times G) \), we have by the left invariance of \(\tilde{T} \)

\[\tilde{T}^\varphi(h) = \tilde{T}(h^\varphi)^{-1} = \tilde{T}((h^\varphi)^{-1}L(z, z)). \]

However

\[(h^\varphi)^{-1}L(z, z)(x, y) = h^\varphi^{-1}(z^{-1}x, z^{-1}y) = h(y^{-1}x, y) \]

so,

\[(h^\varphi)^{-1}L(z, z) = (h^L(e, z))^{-1}. \]

Thus

\[\tilde{T}^\varphi(h) = \tilde{T}^\varphi(h^L(e, z)) \]

so

\[\tilde{T}^\varphi(h) = \int_G \int_G h(x, y) dS(x) dy, \]

where \(S \in \mathcal{D}'(G) \). Since \(\varphi^{-1}(x, y) = (yx, y) \) this implies

\[\tilde{T}(f \otimes g) = \int_G \int_G f(yx)g(y) dS(x) dy. \]

Using the homogeneity of \(\tilde{T} \) under \(R(p_1, p_2) \) we obtain the homogeneity condition for \(S \) in (ii). The converse follows by reversing the steps. All the commuting operators \(A \) are proportional if and only if the corresponding \(S \) is proportional and then they must be the example stated.

4. Using Lemma 3.10 and (39) we see quickly that \(\Psi^*_{\lambda, e} = \Psi_{-\lambda, e} \). Thus if \(\varphi \in \mathcal{D}(\Xi) \)

\[(\varphi \times \Psi_{\lambda, e})(kaMN) = \Psi_{-\lambda, e}(\varphi \circ \tau(ka)) \]

\[= e^{(i\lambda - \rho)(\log a)} \int_A \varphi(kcMN)e^{(-i\lambda + \rho)(\log c)} dc. \]
Taking \(\varphi(kaMN) = \beta(kM)\gamma(a) \) the result follows.

5. In the solution below \(C_i \) and \(C'_i \) denote compact sets and \(\overset{o}{\to} A \) denotes the interior of a set \(A \). Let \(C_1 \overset{o}{\to} C_2 \subset \Xi \), let \(D_{C_1}(\Xi) \) denote the set of \(\varphi \in D(\Xi) \) with support in \(C_1 \), and let \(C'_i \subset G \) satisfy \(\pi(C'_i) = C_i \), \(C'_i \subset (C'_2)^o \subset G \), \(\pi : G \rightarrow G/MN \) being the natural mapping. Let \(C_o \) be a compact neighborhood of \(e \) in \(MN \) and put \(\tilde{C}_i = C'_i C_o \) \((i = 1, 2) \). Let \(f_1 \in D(G) \) be \(\geq 0 \) on \(G \), \(> 0 \) on \(\tilde{C}_1 \), and \(\text{supp}(f_1) \subset \tilde{C}_2 \). Then the function

\[
 f(g) = \begin{cases}
 f_1(g) \frac{\varphi(\pi(g))}{f_1(\pi(g))} & \text{if } \pi(g) \in C_1 \\
 0 & \text{if } \pi(g) \notin C_1
 \end{cases}
\]

satisfies \(\bar{f} = \varphi \) (cf. (36) §3). Also \(\varphi \rightarrow f \) is a continuous mapping of \(D_{C_1}(\Xi) \) into \(D_{C'_2}(G) \). Thus by (37) in §3, \(\Psi \times \eta \) is a distribution. For the last part one must show

\[
 \int \psi(\xi)(\varphi \times \eta^*)(\xi)d\xi = \int (\psi \times \eta)(\xi)\varphi(\xi)d\xi.
\]

Let \(f_1 \in D(G) \) satisfy \(\bar{f}_1 = \psi \). Then this last equation amounts to

\[
 \int_{\tilde{G}} f_1(g) \int_{\tilde{G}} f(gh^{-1})d(\eta^*) \sim (h)dg = \int_{\tilde{G}} f(g) \int_{\tilde{G}} f_1(gh^{-1})d\bar{\eta}(h)dg.
\]

However, \((\eta^*) \sim = \bar{\eta} \) so this last equation is obvious.
BIBLIOGRAPHY

ABOUELZ, A.
ABOUELZ, A. and EL FOURCHI, O.
ADIMURTI, KUMARESAN, S.
AGRANOVSKI, M. L.
AGRANOVSKI, M. L., KUCHMENT, P. and QUINTO, E.T.
AGRANOVSKI, M. L. and QUINTO, E.T.
AGRANOVSKI, M. L. and QUINTO, E.T.
ANDERSON, R., and CAMPORESI, R.
ANKER, J-PH.
BIBLIOGRAPHY

ARThUR, J.

ÁSGEIRSSON, L.

ASTENGO, F., CAMPORESI, R. and DI BLASIO, B.

BADERTSCHER, E.

BADERTSCHER, E., and KOORNWINDER, T. H.

BADERTSCHER, E. and REIMANN, H.M.

BAGCI, S., and SITARAM, A.

BAN, VAN DEN, E.P.

BAN, VAN DEN, E.P., and SCHLICHTKRULL, H.

BARKER, W. H.

BARLET, D., and CLERC, J. L.

BARUT, A. D. and RACZKA, R.

BEERENDS, R.J.

BENABDALLAH, A-I., and ROUVIÈRE, F.

BERENSTEIN, C. and ZALCMAN, L.

BERENSTEIN, C., and SHAHSHAHANI, M.
BERENSTEIN, C., and CASADIO-TARABUSI, E.
BERENSTEIN, C., CASADIO-TARABUSI, E. and KURUSA, A.
BERLINE, N., and VÉRGENE, M.
BETORI, W., FARAUT, J., and PAGLIACCI, M.
The horocycles of a tree and the Radon transform (preprint).
BOCHNER, S.
BOMAN, J.
BOMAN, J. and QUINTO, E. T.
BONAMI, A., BURACZEWSKI, D., DAMEK, E., HULANICKI, A., PENNEY, R. and TROJAN, B.
BOTT, R.
BOURBACI, N.
BOUSSEJRA, A. and INTISSAR, A.
BRANSON, T., and OLAFSSON, G.

BRANSON, T.P., OLAFSSON, G., and SCHLICHTKRULL, H.

BRAY, W. O. and SOLMON, D.C.

BRUHAT, F.

BURACZEWSKI, D.

CAMPOLI, O.

CAMPORESI, R.

CARLEMAN, T.

CARTAN, É.

CARTAN, H., and GODEMENT, R.

CASSELMAN, W., and MILICIC, D.

CERÉZO, A., and ROUVIERE, F.

CHAMPETIER, C., and DELORME, P.

CHANG, W.

CHERN, S. S.

CHEVALLEY, C.

CLERC, J. L.

CLERC, J. L., EYMARD, P., FARAUT, J., RAÏS, M., and TAKAHASHI, R.

CLOZEL, L., and DELORME, P.

COHN, L.

CORMACK, A.M., and QUINTO, T.

COWLING, M.

COWLING, M., and KORÁNYI, A.

COWLING, M., DOOLEY, A. H., KORÁNYI, A., and RICCI, F.

COWLING, M., SITARAM, A. and SUNDARI, M.

CYGAN, J.

DADOK, J.

DAVIDSON, M.G., ENRIGHT, T. J., and STANKE, R. J.

DEBIARD A., and GAVEAU, B.
DEITMAR, A.

DE RHAM, G

DELORME, P.

DELORME, P., and FLENSTED-JENSEN, M.

DIEUDONNÉ, J.

DJUK, VAN, G.

DIXMIER, J.

DORAN, R.S., and VARADARAJAN, V.S. (Eds.)

DUFLO, M.

DUFLO, M., and RAÏS, M.

DUFLO, M., and WIGNER, D.

DUISTERMAAT, J. J.

DUISTERMAAT, J. J., KOLK, J. A. C., and VARADARAJAN, V. S.

EBATA, M., EGUCHI, M., KOIZUMI, S. and KUMAHARA, K.

EGUCHI, M.

EGUCHI, M., HASHIZUME, M., and OKAMOTO, K.
BIBLIOGRAPHY

EGUCHI, M., and KOWATA, A.

EGUCHI, M., and KUMAHARA, K.

EGUCHI, M. and OKAMOTO, K.

EHRENPREIS, L.

EHRENPREIS, L., and MAUTNER, F.

EYMARD, P.

EYMARD, P. and LOHOUÉ, N.

FARAH, S. B., and KAMOUN, L.

FARAUT, J.

FARAUT, J., and HARZALLAH, K.

FARAUT, J., and KORÁNYI, A.

FELIX, R.

FLENSTED-JENSEN, M.
1972 Paley-Wiener theorems for a differential operator connected with symmetric spaces. Ark. Mat. 10 (1972), 143-162.

FLENSTED-JENSEN, M. and KOORNWINDER, T.

FOLLAND, G. B.

FUGLEDE, B.

FURSTENBERG, H.

GANGOLLI, R.

GANGOLLI, R. and VARADARAJAN, V.S.

GÅRDING, L.

GELFAND, I. M.

GELFAND, I. M., GINDIKIN, S. G., and GRAEV, M. I.

GELFAND, I. M. and GRAEV, M. I.

GELFAND, I. M., GRAEV, M. I., and SHAPIRO, S.J.

GELFAND, I. M., GRAEV, M. I., and VILENKIN, N.

GELFAND, I. M. and NAIMARK, M. A.
GELFAND, I. M., and RAIKOV, D.A.
1943 Irreducible unitary representations of locally compact groups. Mat. Sb. 13 (1943), 301-316.
GELLER, D. and STEIN, E. M.
GILBERT, J.E., and MURRAY, M.A.M.
GINDIKIN, S. G.
GINDIKIN, S. G., and KARPELEVICH, F. I.
GLOBEVIK, J.
GODEMENT, R.
GODIN, P.
GONZALEZ, F.
1990a Bi-invariant differential operators on the complex motion group and the range of the d-plane transform on C^n. Contemp. Math. 113 (1990), 97-110.
BIBLIOGRAPHY

GONZALEZ, F., and HELGASON, S.

GONZALEZ, F., and KAKEHI, T.

GONZALEZ, F., and QUINTO, E. T.

GONZALEZ, F., and ZHANG, J.

GOODEY, P., and WEIL, W.

GOODMAN, R.

GOODMAN, R. and WALLACH, N.

GRINBERG, E.

GRINBERG, E. and QUINTO, E.T.

GRINBERG, E. and RUBIN, B.

GROSS, K., and KUNZE, R.

GUARIE, D.

GUILLEMIN, V.

GUILLEMIN, V. and STERNBERG, S.

GÜNTHER, P.

HARDY, G.H.

HARISH-CHANDRA

HARZALLAH, K.

HASHIZUME, M., MINEMURA, K., and OKAMOTO, K.

HECKMAN, G., and SCHLICHTKRULL, H.

HELGAISON, S.

HILGERT, J. 1993 Radon transform on half planes via group theory. In Tanner and Wilson [1994].

JOHNSON, K. and KORÁNYI, A.

JOHNSON, K. D., and WALLACH, N.

KAKEHI, T.

KAKEHI, T. and TSUKAMOTO, C.

KARPELEVICH, F. I.

KASHIWARA, M., KOWATA, A., MINEMURA, K., OKAMOTO, K., OSHIMA, T., and TANAKA, M.

KASHIWARA, M. and OSHIMA, T.

KASHIWARA, M. and SCHMID, W.

BIBLIOGRAPHY

KAWAZOE, T.

KELLEY, J. L.

KNAPP, A.W.

KNAPP, A.W. and STEIN, E. M.

KOLK, J. and VARADARAJAN, V. S.

KOORNWINDER, T.H.

KORÁNYI, A.

KORÁNYI, A. and MALLIAVIN, P.

KORÁNYI, A., and WOLF, J. A.

KOSTANT, B.

KOSTANT, B., and RALLIS, S.

KÖTHE, G.

KOUFANY, K., and ZHANG, G.

KOWATA, A., and OKAMOTO, K.

KOWATA, A., and TANAKA, M.

KRÖTZ, B. and ÖLAFSSON, G.

KRÖTZ, B., ÖLAFSSON, G. and STANTON, R.

KUCHMENT, P. A.

KUNZE, R., and STEIN, E.

KURUSA, A.

LANGLANDS, R.

LASALLE, M.

LAX, P., and PHILLIPS, R. S.
LEE, C.Y.
LEPOWSKY, J.
LEWIS, J. B.
LÉVY-BRUHL, P.
LIMIC, N., NIDERLE, J., and RACZKA, R.
LINDAHL, L.-Å.
LIONS, J. L.
LIONS, J. L., and MAGENES, E.
LOOMIS, L. H.
LOHOÜÉ, N. and RYCHENER, T.
LOWDENSLAGER, D.
LUDWIG, D.
MACKEY, G.W.
1952 Induced representations of locally compact groups, I. Ann. of Math. 55 (1952), 101-139.
1953 Induced representations of locally compact groups, II. Ann. of Math. 58 (1953), 193-221.
MADYCH, W. R., and SOLMON, D.C.
MALGRANGE, B.
MANO, G.
MAUTNER, F. I.

MAYER-LINDENBERG, F.

MAZZEO, R.R. and VASY, A.

MEANEY, C.

MENZALA, G.P. and SCHONBECK, T.

MICHELSON, H. L.

MIZONY, M.

MOHANTY, P., RAY, S.K., SARKAR, R.P. and SITARAM, A.

MOORE, C. C.

MOSTOW, G.D.

NATTERER, F.

NELSON, E.

ODA, H.

ØRSTED, B.

OKAMOTO, K.

ÓLAFSSON, G., and QUINTO, E. (Eds.)

ÓLAFSSON, G., and PASQUALE, A.

ÓLAFSSON, G., and SCHLICHTKRULL, H.

2008 Fourier series on compact symmetric spaces. (preprint)

2008 Representation theory, Radon transform and the heat equation on a Riemannian symmetric space. (preprint)
OLEVSKY, M.

ORLOFF, J.

OSHIMA, T., and SEKIGUCHI, J.

PALAMODOV, V., and DENISJUK, A.

PALEY, R., and WIENER, N.

PARTHASARATHY, K. R., RANGA RAO, R., and VARADARAJAN, V.S.

PASQUALE, A.

PENNEY, R.

PESENSON, I.

PHILLIPS, R. S., and SHAHSHAHANI, M.

POISSON, S.D.

QUINTO, E. T.

RADER, C.

RADON, J.

RAÏS, M.

RAUCH, J. and WIGNER, D.

REVUZ, A.

RICHTER, F.

ROSSMANN, W.

ROUVIÈRE, F.

1994a Transformations de Radon. Lecture Notes, Université de Nice, Nice, France, 1994.

BIBLIOGRAPHY

RUBIN, B.

RUDIN, W.

SARKAR, R.P. and SENGUPTA, J.

SARKAR, R.P. and SITARAM, A.

SCHIFFMANN, G.

SCHIMMING, R. and SCHLICHTKRULL, H.

SCHLICHTKRULL, H.

SCHLICHTKRULL, H., and STETKÆR, H.

SCHMID, W.

SCHWARTZ, G. and ZHU, C.-B.

SCHWARTZ, L.

SEMENOV-TJAN-SHANSKI, M. A.

SEMYANISTY, V. I.
BIBLIOGRAPHY

SEN Gupta, J.

Serre, J.-P.

Shahshahani, M.

Shahshahani, M., and Sitaram, A.

Sherman, T.

Shimeno, N.

Shimura, G.

Sitaram, A.

Sitaram, A. and Sundari, M.

Sjögren, P.

Solomon, D. C.

Solomatina, L. E.

SPEH, B., and VOGAN, D.

STANTON, R. J.

STANTON, R. J. and TOMAS, P. A.

STEIN, E.M.

STEIN, E.M., and WEISS, G.

STENZEL, M.B.

STETKÆR, H.

STRASBURGER, A.

STRICHARTZ, R. S.

BIBLIOGRAPHY
BIBLIOGRAPHY

STROHMAIER, A.

SUGIURA, M.

SULANKE, R.

TAKAHASHI, R.

TAKEUCHI, M.

TANNER, E.A. and WILSON, R. (Eds.)

TAYLOR, M.E.

TEDONE, O.
1898 Sull' integrazione dell'equazione $\frac{\partial^2 f}{\partial t^2} - \Sigma \frac{\partial^2 f}{\partial x_i^2} = 0$. *Ann. Mat.* **1** (1898), 1-24.

TERRAS, A.

THANGAVELU, S.

THOMAS, E.G.F.

TITCHMARSH, E. C.

TITS, J.

TORASSO, P.
BIBLIOGRAPHY

TRÈVES, F.

TRIMÈCHE, K.

TROMBI, P., and VARADARAJAN, V. S.

VARADARAJAN, V.S

VILENKIN, N.

VILENKIN, N., and KLIMYK, A.U.

VOGAN, D.

VOGAN, D. and WALLACH, N.

VRETARE, L.

WALLACH, N.

WARNER, G.

WAWRZYNCZYK, A.

WEIL, A.

WIEGERINCK, J. J. O. O.

WIGNER, D.
WILLIAMS, F.L.

WILLIAMS, G.D.

WOLF, J. A.

YANG, A.

ZHANG, G.

ZHELOBENKO, D. P.

ZHU, CHEN-BO.

ZORICH, A. V.
1991 Inversion of horospherical integral transform on Lorentz group and on some other real semisimple Lie groups. RIMS, Kyoto, 1991, 1-37.
Symbols Frequently Used

Ad: adjoint representation of a Lie group, 5
ad: adjoint representation of a Lie algebra, 5
$A(r)$: spherical area, 420, 484
$A(g)$: component in $g = n \exp A(G)k$, 86, 99
$A(B)$: space of analytic functions on B, 530
$A'(B)$: space of analytic functionals (hyperfunctions) on B, 530
a, a^c, a^*, a^c_*: abelian subspaces and their duals, 61
a': 68
$a_c^*(\delta)$: subset of a^c_*, 237
a^+, a^*_+: Weyl chambers in a and a^*, 61, 202
$'\alpha$: transpose, 29
A_λ: vector in a^c, corresponding to λ, 61
$A(x, b)$: composite distance, 99
A_0: projection from p to a, 289
A: Abel transform, 381
A^*: dual Abel transform, 382
A_r: space of analytic vectors, 416
$B_r(p), B^r(p)$: open ball with radius r, center p, 3
B: Killing form, 61
\mathcal{B}: set of bounded spherical functions, 341
β_B: ball in Ξ, 364
$BC(G)$: space of bounded continuous functions on G, 336
Cl: closure, 3
conj: complex conjugate, 93
C^n: complex n-space, 298
C_0: special set, 6
$C(X)$: space of continuous functions of X, 3
$C_c(X)$: space of continuous functions of compact support, 3
$C_0^b(G)$: space of K-bi-invariant functions in $C_c(G)$, 80
$C_K(X)$: space of continuous functions with support in K, 3
$C_0(X)$: space of continuous functions vanishing at ∞, 3
$C^\infty(X), C_0^\infty(X)$: set of differentiable functions, set of differentiable functions of compact support, 4
$c(\lambda)$: Harish-Chandra's c-function, 90
c_s(\lambda): partial c-function, 141
c_s: generalized c-functions, 234
$C^+, -C, +C, C^-$: closures of Weyl chambers and their duals, 129
$\Gamma, \hat{\Gamma}$: isomorphisms of differential operators, 74
$\Gamma_{s, \lambda}$: intertwining operator, 240
$\Gamma_X(\lambda)$: Gamma function for X, 284

627
\begin{itemize}
 \item \(\partial_t \): partial derivative, 3
 \item \(\delta \): density, 213
 \item \(\mathcal{D}(X) \): \(C_c^\infty(X) \), 4
 \item \(\mathcal{D}'(X) \): set of distributions on \(X \), 4
 \item \(\mathcal{D}_\lambda \): eigenspace, 76
 \item \(\mathcal{D}_K(X) \): set of \(f \in \mathcal{D} \) with support in \(K \), 4
 \item \(\mathcal{D}_{H}(\mathbb{P}^n) \): subspace of \(\mathcal{D}(\mathbb{P}^n) \), 11
 \item \(\mathcal{D}_{h}(\mathbb{G}(d,n)) \): subspace of \(\mathcal{D}(\mathbb{G}(d,n)) \), 45
 \item \(\mathcal{D}^{\bullet}(X) \): space of \(K \)-commuting functions, 273
 \item \(\mathcal{D}_{K}^{\bullet}(X) \): \(K \)-finite functions of type \(\delta \), 273
 \item \(\mathcal{D}^{\bullet}(X), \mathcal{D}'_{h}(X) \): space of \(K \)-invariant elements in \(\mathcal{D}(X), \mathcal{D}'(X) \), 207, 381
 \item \(\mathcal{D}^{\bullet}(G), \mathcal{D}'_{h}(G) \): space of \(K \)-bi-invariant members of \(\mathcal{D}(G), \mathcal{D}'(G) \), 90
 \item \(\mathcal{D}(G) \): set of left-invariant differential operators on \(G \), 70
 \item \(\mathcal{D}_{H}(G) \): subalgebra of \(\mathcal{D}(G) \), 70, 71
 \item \(\mathcal{D}(G/H) \): set of \(G \)-invariant differential operators on \(G/H \), 71, 75
 \item \(\mathcal{D}_{W}(A) \): \(W \)-invariants in \(\mathcal{D}(A) \), 70
 \item \(\mathcal{D}(X), \mathcal{D}(\Xi) \): invariant operators on \(X, \Xi \), 70, 71
 \item \(d(\delta) \) or \(d_\delta \): dimension (= degree) of a representation, 14
 \item \(\Delta(D) \): radial part of \(D \), 70
 \item \(\Delta_{MN}(D), \Delta_{K}(D), \Delta_{N}(D) \): radial parts of \(D \), 75, 70
 \item \(\Delta(g^e, h^e) \): set of roots, 128
 \item \(d_\lambda(\lambda), e_\lambda(\lambda) \): factors in \(c_\lambda(\lambda) \), 142
 \item \(\mathcal{E}(M) \): set of all differential operators on \(M \), 36
 \item \(\mathcal{E}(X) \): \(C^\infty(X) \), 4
 \item \(\mathcal{E}'(X) \): space of distributions of compact support, 4
 \item \(\mathcal{E}^{\bullet}(X), \mathcal{E}'_{h}(X) \): space of \(K \)-invariant elements in \(\mathcal{E}(X), \mathcal{E}'(X) \), 207, 381
 \item \(\mathcal{E}_{\lambda}, \mathcal{E}(\lambda), \mathcal{E}_{h}^{\infty}(\lambda), \mathcal{E}^{*}, \mathcal{E}_{x}^{\infty}, \mathcal{E}_{\lambda, \delta} \): eigenspaces, 76, 229, 282, 531
 \item \(\mathcal{E}^{\bullet}(G) \): space of \(K \)-bi-invariant members of \(\mathcal{E}(G) \), 381
 \item \(\mathcal{E}_{K} \): eigenspace of Laplacian, 11
 \item \(e_{\lambda, \delta} \): plane wave eigenfunction, 99
 \item \(F(a, b; c; z) \): hypergeometric function, 328
 \item \(f \to \hat{f} \): map from \(C_c(G) \) to \(C_c(G/H) \), 26, 155
 \item \(f^\delta \): \(K \)-commuting function, 266
 \item \(\mathcal{F} \): spherical transform, 220
 \item \(\mathcal{F}(X) \): function space, 376
 \item \(g^\varphi, T^\varphi, D^\varphi \): images of \(g \in \mathcal{E}(M), T \in \mathcal{D}'(M) \), operator \(D \) under \(\varphi \), 4
 \item \(\varphi_\lambda \): spherical function, 76, 86
 \item \(\Phi_{\lambda, \delta} \): generalized spherical function, 228
 \item \(G_0 \): a group of linear transformations of \(X_0 \), 285
 \item \(\mathcal{G}(d,n), \mathcal{G}_{d,n} \): manifolds of \(d \)-planes, 39, 41
 \item \(\mathcal{H}^{A}(\mathbb{C}^n), \mathcal{H}_{W}(\mathcal{A}_c^*), \mathcal{H}(\mathcal{A}^* \times B)_{W} \): exponential type, 261, 275, 567
 \item \(\text{Hom}(V, W) \): space of linear transformations of \(V \) into \(W \), 273
 \item \(\mathcal{H}^n \): hyperbolic space, 50
 \item \(H_t, H(p) \): space of harmonic polynomials, 16, 230
\end{itemize}
\mathcal{H}_λ: Hilbert space inside $\mathcal{E}_\lambda(X), \mathcal{E}_\lambda(p)$, 284, 309, 552
$\mathcal{H}^\delta(a^*)$: special holomorphic functions on a^*_ς, 275
\mathcal{H}: Hilbert transform, 6, 390
η_λ: K-fixed vector in $\mathcal{E}_\lambda(\Xi)$, 243
$H(g)$: component in $g = k \exp H(g)n$, 99
Im: imaginary part, 261
$I(E)$: space of invariant polynomials on E, 229
I^*: Riesz potential, 6
$I(X)$: group of isometries of X, 50
$\mathcal{J}_\lambda^2(G)$: K-bi-invariant Schwartz space, 220
$I_{\lambda,s}$: intertwining integral, 244
$I_{\lambda,s}$: normalized intertwining operator, 245
J: inversion, 162
$J_\delta(\lambda)$: polynomial matrix, 287
$J_n(z)$: Bessel function, 285
$K_{\lambda W}(a^*_\varsigma), K(a^* \times B)_W$: exponential type, slow growth, 271
\tilde{K}, \tilde{K}_M: unitary dual and subset, 227, 370
K_λ: Hilbert space inside $D'_\lambda(\Xi)$, 548
χ_δ: character of δ, 13
\mathfrak{f}: algebra in Cartan decomposition, 77
$L^1(X)$: space of integrable functions on X, 85
$L^p(X)$: space of f with $|f|^p \in L^1(X)$, 433
$L = L_X$: Laplace-Beltrami operator on X, 5
$L(g) = L_g$: left translation by g, 5
$l(\delta)$: dimension, 228
Λ: operator on P, 7, on Ξ, 93, weight lattice, 240
i: orthocomplement of \frak{m} in \mathfrak{f}, 71
Λ_0: operator on Ξ_0, 390
M_p: the tangent space to a manifold M at p, 3
m^*: element, 64
M^π: mean-value operator, 77, 484
$M(n)$: group of isometries of R^n, 1
m: centralizer of a in \mathfrak{f}, 61
\mathfrak{M}: set of continuous homomorphisms, 339
$\mathfrak{M}(B)$: space of measures on B, 439
N: kernel of dual transform, 13, 367
n: part of Iwasawa decomposition, 61
$O(n), O(p, q)$: orthogonal groups, 1, 352
Ω_n: area of S^{n-1}, 9
P^n: set of hyperplanes in R^n, 8
P_l: space of homogeneous polynomials of degree l, 16
P_λ, P_λ^*: Poisson transform, 300, 100
$P^\delta(\lambda)$: inverse of $Q^\delta(\lambda)$, 236
\mathfrak{P}: set of positive definite spherical functions, 340
$\pi(\lambda)$: product of roots, 91, 154
p: part of a Cartan decomposition, 61
$Q^\delta(\Lambda)$: polynomial matrix, 232
\mathcal{R}: ring of functions on A^+, 234
R: modified Radon transform, 220
\mathbb{R}^n: real n-space, 1
\mathbb{R}^+: set of reals ≥ 0, 3
Re: real part, 90
R_g or $R(g)$: right translation by g, 5
Res: residue, 6
p, p_0, p^*: half sum of roots, 61, 323
s_*: element, 64
S^*: element, 7
$S_r(p)$: sphere of radius r and center p, 3
$S(\mathbb{R}^n)$: space of rapidly decreasing functions on \mathbb{R}^n, 5
$S(X), S'(X)$: 214, 532
$S^*(\mathbb{R}^n), S_0(\mathbb{R}^n)$: subspaces of $S(\mathbb{R}^n)$, 10
$S'(\mathbb{R}^n)$: space of tempered distributions, 5
$S(\Xi)$: 91
$S(V)$: symmetric algebra over V, 230, 231
$S_{\lambda, s}, S'_{\lambda, s}$: distributions on B, 136, 142
$S(D)$: 214
$S(G)$: Shilov boundary of D, 453
$\text{sgn}(x)$: signum function, 7
$S_H(\mathbb{P}^n)$: subspace of $S(\mathbb{P}^n)$, 8, 11
$\text{sh } x$: sinh x, 2
$\sigma(F, G)$: weak topology, 29
$\sigma(a)$: diffeomorphism of Ξ, 107
$\Sigma(g, a)$: set of restricted roots, 129
σ_R: sphere in Ξ, 364
$\Sigma, \Sigma^+, \Sigma_0^+, \Sigma_+^+, \Sigma_*$: sets of restricted roots, 61, 90, 129, 138
tA: transpose of A, 29
$\text{Tr}(A)$: trace of A, 14
$T_\lambda, \tau_\lambda, \tilde{\tau}_\lambda$: eigenspace representations, 77, 284
τ: homomorphism of $D(G)$, 232
$\tau(x)$: translation on G/H, 5
Θ: Cartan involution, 61
$U(n)$: unitary group, 53
V_δ: representation space of δ, 227
V_δ^M: space of fixed vectors under $\delta(M)$, 228
W: Weyl group, 61, 323
Ξ: dual space, 62
Ξ: special spherical function, 214
Ξ^*: open orbit in Ξ, 64
Ξ_0: space of horocycle planes, 387
ξ^*: origin in Ξ^*, 64
SYMBOLS FREQUENTLY USED

\(\xi(x, b) \): horocycle determined by \(x \) and \(b \), 99
\(\Psi_{\lambda,s}, \Psi'_{\lambda,s} \): conical distributions, 135, 142
\(\Psi_{\lambda,\delta} \): generalized Bessel function, 289
\(\mathbb{Z}, \mathbb{Z}^+ \): the integers, the nonnegative integers, 3
\(\mathbb{Z}(G) \): center of \(D(G) \), 322
\(\mathbb{Z}(G/K) \): image of \(\mathbb{Z}(G) \) in \(D(G/K) \), 322
\(\sim \): Fourier transform, spherical transform, lift of functions, distributions, 4, 77, 155, 198
\(\vee \): Radon transform, incidence, 1, 31
\(\check{\vee} \): Dual Radon transform, incidence, 1, 31
\(\ast, \times \): convolutions, adjoint operation, pullback, star operator, Fourier transform, 6, 9, 26, 80, 82, 96, 137, 200, 557
\(\oplus \): direct sum, 527
\(\otimes \): tensor product, 12, 108, 112
\(\langle, \rangle \): inner product, 29
\(\mathfrak{K}, E^\mathfrak{K} \): space of \(K \)-invariants in \(E \), 86, 90
\(\Box \): operator, 8, 97
\(\Box_p \): operator on \(G(p, n) \), 41
\(- \): closure, 3, restriction, 116
\(\circ \): interior, 3
\(\bot \): annihilator, 16
INDEX

A
Abel transform, 381
Adjoint representation, 5
Analytical functionals, 529, 530
Analytic vector, 416
Annihilator, 17
Antipodal mapping, 162

B
Banach algebra topology, 339
Base, 541
Bessel function, 285, 289, 292, 478
Bessel transform
 generalized, 293
Borel imbedding, 444
Boundary component, 68
Bounded growth, 418
Bounded, 29
Bruhat decomposition, 63

C
Cartan involution, 61
Cartan subalgebras
 conjugacy of, 59, 97, 480
Casimir operator, 534
Cauchy problem, 410, 469, 497
Centralizer, 60
Character of a representation, 13
Compatibility with projection, 542
Composite distance, 64, 99
Conformal diffeomorphism, 486
Conical
 distribution, 105, 186
 distribution, exceptional, 171
distributions, parametrization of, 106
 function, 105, for $\text{SL}(n, \mathbb{R})$, 183
 representation, 106, model for, 121
 vector, 106
Contraction, 422
Contragredient representation, 118
Convolutions, 6, 9, 26, 96, 98, 137
Cusp form, 3

D
d-plane transform, 45
δ-spherical transform, 274, 279, 293
Darboux equation, 185
Differential operator
 image of, 4
 invariant, 35
 radial part, 70, 74
Dirichlet problem, 422, 460
Distributions, 4
 spaces of, 12
 of compact support, 4
Double fibration, 30, 32, 388
Dual transform, 1, 9, 85
 inversion of, 20
Duality
 topology compatible with, 29
 for a symmetric space, 62

E
Eigenfunctions
 of slow growth, 531
 exponentially bounded, 531
Eigenspace, 11
 representation, 75
for distribution spaces, 540
for vector bundles, 541
of function spaces, 540
Eigenvalue, 11
Eisenstein integral, 228, 327
Energy
conservation of, 487
equipartition of, 488
kinetic, 487
potential, 487
Euclidean imbeddings, 122
Evaluation mapping, 29
Exponential type
of a holomorphic function, 261
uniform, 261
Extreme
point, 338
weight vector, 558, 569
weight, 569

F
Fatou theorem, 430, 432, 438
Fiber, 541
Fixed point property, 426
Flat in a symmetric space, 65
Fourier transform, 4, 9, 82
Euclidean, 92
on a symmetric space, 197, 199, 202, 315
self duality under, 197, 208
Fréchet space, 4, 30
Functional on the boundary, 528
Fundamental solution, 402
Funk–Hecke theorem, 18
Furstenberg compatification, 439

G
Gamma function of a
symmetric space, 284
Gelfand pair, 340
Gelfand transform, 340
Generalized Bessel function, 289, 292
reduction to
zonal spherical function, 292
Geodesic
in a horocycle space, 65
symmetry, 62
in bounded symmetric domains, 444
Grassmannian, 39
Green's kernel, 533
Green's function, 533

H
Haar measure, 26
Harish–Chandra c-function, 90
Harish–Chandra imbedding, 443
Harmonic
function, 100, 421
polynomials, 16
Heisenberg group, 190
Hilbert transform, 6, 390
Holomorphic,
representation, 565
function of
exponential type, 261
function of
uniform exponential type, 261
Homogeneous spaces in duality, 31
Horocycle, 60
as plane section, 122, 127
interior of, 182
normal to, 64, 99
parallel, 65
plane, 387
transform, 2, 85
Hua equations, 461
Huygens principle, 468, 471, 473, 474, 477, 482, 485, 504, 538
converse of, 536
Hyperbolic space, 184, 378, 398
Hyperfunction, 530
Hypergeometric functions, 328
Hyperplane, 5

I
Incident, 31, 53
Indivisible roots, 90
Inductive limit, 4
Inner product, 3
Intertwining operator, 554, 556
Intertwining, 10
Invariant differential operator, 35, 55
Invariant
 operator, 25, 55
 distribution, 25
Inversion problem, 7
Inversion
 constant curvature spaces for, 51
 δ-spherical transform for, 279
 for N, 159
 Fourier transform for, 201
 Grassmann manifolds for, 42, 45
 horocycle planes for, 391
 horocycle transform for, 89
 hyperplane transform for, 5
 spherical transform for, 221, 342
Isotropic vector, 298
Iwasawa decomposition, 60

J
J-polynomials, 286
Jacobi
 functions, 352
 transform, 352
Joint eigenspace, 75, 76

K
K-finite joint eigenfunctions, 527
K-type, 14
Kelvin transformation, 192
Kernel, 13, 394
Killing form, 61
Klein–Gordon equation, 472

L
Lagrangian subspace, 53
Laplacian, 5
Lebesgue differentiation theorem, 432
Legendre polynomial, 18, 52
Lift
 of a function, 155
 distribution, 155
Light cone, 482
Line bundle, 541
Local trivialization, 541
Lorentzian manifold, 482

M
Maximal flat, 65
Maximal theorem, 473
Maximum principle, 422
Mean value, 77, 413
Mean value operator, 77
 expansion for, 78
 commutativity, 80, 415
Measure, 3
Moment condition, 11
Multiplicity, 61

N
Normal to a horocycle, 64
Normalizer, 61

O
Open mapping theorem, 29
Orbital integral, 482

P
Paley–Wiener theorem
 for the Fourier transform on X, 260
 for the K-types, 275
 for the Radon transform on X, 365
Parallel horocycles, 65
Peter–Weyl expansion, 14
Pizetti formula, 193
Poisson
 integral, 2, 49
 kernel and the dual transform, 100
 kernel, 49, 456
 transform and the dual
 transform, 102, 300
Polar coordinate representations, 62
Polydisk in a
 bounded symmetric domain, 451
Pompeiu problem, 2
Positive definite, 335
Principal series, 564
Projection map, 541
Pseudo-Riemannian manifold, 482

Q
Q-matrices, 232

R
Radial, part of a differential operator,
 70, 74
Radon inversion formula, 5
Radon transform, 1, 7, 9, 85
 double fibration for, 30
 horocycle planes, for, 388
 horocycles, for, 2, 85
 injectivity, for, 85
 range problem for, 7
 inversion formula for 89
 Plancherel formula for, 89
Range theorems, 11
 d-plane transform, 46
 δ-spherical transform, 275
 Fourier transform, 261, 271, 275, 281
 horocycle plane transform, 394
 hyperplane transform, 11
 Poisson transform, 529, 530, 531
Rank-one reduction, 137
Rapidly decreasing function, 4
Reduced expression, 138
Reductive homogeneous space, 70
Reflection of a symmetric space, 67
Regular
 geodesic, 65
 vector, 153, 301
Representation
 adjoint, 5
 character of, 13
conical, 105
contragredient, 119
eigenspace, 75, 540, 541
holomorphic, 565
irreducible, 550
spherical, 106
scalar irreducible, 571
weights of, 127
Restricted roots, 61
 for bounded symmetric domain, 445
Restricted weight vector, 127
Restricted weight, 127
Retrograde cone, 482
Riesz potential, 6
Roots,
 indivisible, 90
 restricted, 61
 strongly orthogonal, 442
 unmultipliable, 129
S
Scalar irreducible, 571
Scattering theory, 90
Schwartz kernel theorem, 597
Schwartz spaces, 4, 8, 214, 384
Schwarz’ theorem, 2
Semi-norms, 4
Semireflexive, 30
Shilov boundary 453
 G_o-homogeneous, 454
 K_o-homogeneous, 454
 Poisson kernel for, 456
Simple, 151, 165, 242, 300
Singular, 301
Singular support, 536
Slow growth, 91
Solvability, 401, 403, 534, 535
Solvable groups, 426
Space of p-planes 39
 through the origin, 41
Sphere, area of, 9
Spherical
 function, 86, 340
INDEX

function, generalized, 228
reduction to zonal
spherical function, 228
functional equation for, 240, 278
principle series, 549
compact models for, 550
irreducibility, 550
representation, 106
model for, 121
transform, 90, 335, 340
transform of type \(\delta \), 275
vector, 106
zonal spherical function, 292
Strong topology, 29
SU(2,1)-reduction, 257
Sub-Laplacian, 191
Support problem, 7
Support theorem, 12, 182, 185, 392

T
Tempered distribution, 5
Theta series, 3
Totally geodesic submanifold, 68
Transform
Abel, 381
Bessel, 293
d-plane transform, 45
Double fibration, 32, 57
Dual transform, 1
Fourier, 4, 82, 199, 315
Gelfand transform, 340
Hilbert, 6, 390
Horocycle transform, 2, 85
Horocycle plane transform, 388
Kelvin, 192
Poisson transform, 102
Radon transform, 1, 5, 85
Spherical transform, 90, 274
Twisted Radon transform, 44
X-ray transform, 2
Transmutation operator, 402
Transpose map, 29
Transversal manifold, 70
Transversality, 33
Tschebyscheff polynomial, 52
Tube type, 462, 465
Twisted transform, 44

U
Ultrahyperbolic operator, 50
Ultraspherical polynomial, 18

V
Vector bundle
associated to a representation, 542
complex, 541

W
Wave
equation, 468
propagator, 479
Weak topology, 29
Weak* topology, 29
Weight, 127
Weight vector, 123, 127
Weyl chamber, 61, 430, 439
Weyl group, 61
Whittaker vector, 194

X
X-ray transform, 2
This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a chapter on eigenspace representations—that is, representations on solution spaces of invariant differential equations. Known for his high-quality expositions, Helgason received the 1988 Steele Prize for his earlier books Differential Geometry, Lie Groups and Symmetric Spaces and Groups and Geometric Analysis. Containing exercises (with solutions) and references to further results, this revised edition would be suitable for advanced graduate courses in modern integral geometry, analysis on Lie groups, and representation theory of Lie groups.