The Classification of the Finite Simple Groups, Number 2

Daniel Gorenstein
Richard Lyons
Ronald Solomon
Other Titles in This Series

43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1996
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1993
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
29 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in H^∞, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
19 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980
16 O. Timothy O’Meara, Symplectic groups, 1978
15 J. Diestel and J. J. Uhl, Jr., Vector measures, 1977
14 V. Guillemin and S. Sternberg, Geometric asymptotics, 1977
13 C. Pearcy, Editor, Topics in operator theory, 1974
12 J. R. Isbell, Uniform spaces, 1964
11 J. Cronin, Fixed points and topological degree in nonlinear analysis, 1964
10 R. Ayoub, An introduction to the analytic theory of numbers, 1963
9 Arthur Sard, Linear approximation, 1963
8 J. Lehner, Discontinuous groups and automorphic functions, 1964
6 C. C. Chevalley, Introduction to the theory of algebraic functions of one variable, 1951

(Continued in the back of this publication)
The Classification of the Finite Simple Groups, Number 2
The Classification of the Finite Simple Groups, Number 2

Part I, Chapter G:
General Group Theory

Daniel Gorenstein
Richard Lyons
Ronald Solomon
The authors were supported in part by NSF grant #DMS 94-01852 and by NSA grant #MDA-904-95-H-1048.

1991 Mathematics Subject Classification. Primary 20D05, 20E32.

ABSTRACT. This book presents results from the abstract theory of groups, as opposed to the theory of the known simple groups. These are the main such results necessary for the later numbers of this series on the classification of the finite simple groups.

ISBN 0-8218-0390-5 (number 2)

The preceding volume was catalogued as follows:
Gorenstein, Daniel.
The classification of the finite simple groups / Daniel Gorenstein, Richard Lyons, Ronald Solomon.
p. cm. — (Mathematical surveys and monographs; v. 40, number 1–)
Includes bibliographical references and index.
ISBN 0-8218-0334-4 [number 1]
IV. Series: Mathematical surveys and monographs; no. 40, pt. 1–.
QA177.G67 1994
512'.2-dc20
94-23001
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@math.ams.org.

© Copyright 1996 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.
The American Mathematical Society retains all rights except those granted to the United States Government.
⊗ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
⊗ Printed on recycled paper.
10 9 8 7 6 5 4 3 2 1 01 00 99 98 97 96
For Ari, Michael, Nick and Sara
Contents

Preface xi

Part I, Chapter G: General Group Theory
A. Introduction 1
 1. Notation 2
 2. Some K-Group Conditions 4
B. Semisimple Subgroups 6
 3. Components and the Generalized Fitting Subgroup 6
 4. π-Components and π-Layers 16
 5. L_p^ν-Balance and p^*-Groups 23
 6. p-Terminality 34
 7. Semirigidity 45
 8. The Permutation Action of p-Groups on Components 48
C. Nilpotent Groups and Their Extensions 53
 9. Modules, Representations, and Cohomology 53
 10. Small p-Groups 61
 11. Automorphisms of p-Groups and Coprime Action 72
 12. p-Constrained Groups 78
 13. Solvable Components and Solvable L-Balance 79
 14. Goldschmidt-O’Nan Modules 85
D. Fusion and Normal Subgroups 89
 15. Abelian Normal Subgroups and Quotients 89
 16. Local Control of Fusion 96
E. Uniqueness Subgroups 101
 17. Strongly p-Embedded Subgroups and Involutions 101
 18. Preuniqueness Subgroups and Standard Components 106
F. The Analysis of Signalizers 110
 19. The Bender Method 110
 20. The Signalizer Functor Method: k-Balance 118
 21. The Signalizer Functor Method: Signalizer Functors 122
 22. The Signalizer Functor Method: Connectivity 125
 23. Signalizers, p-Constraint and Transitivity Theorems 129
G. Subgroups of Parabolic Type 134
 24. The Klinger-Mason Method 135
 25. p-Stability and Quadratic Modules 140
 26. Thompson Factorization 147
 27. Near Components 157
 28. The Amalgam Method 161
H. Some Recognition Issues
29. Defining Amalgams
30. Split BN-Pairs
31. Extensions of Extra-special 2-Groups

I. Characters and Counting
32. Ordinary Character Theory
33. Modular Character Theory
34. Involutions and Counting Arguments

Background References
Expository References
Glossary
Index
Preface

The term “general” in our title requires some explanation; this is not a general text in the usual senses of the word. We mean that, by and large, our development is part of abstract finite group theory rather than the theory of \(X \)-groups; that is, our theorems are about all finite groups (or all finite simple groups) rather than specific simple groups, and our proofs are by general arguments rather than by case-by-case analysis of possible composition factors. In fact, however, this statement cannot quite be made categorically, and we discuss in the introductory sections how \(X \)-groups impinge on our exposition.

Since our overriding purpose is to lay the groundwork for the forthcoming analysis of finite simple groups, our choice of topics and theorems has been entirely dictated by what we shall need in future chapters. One consequence of this is that certain subtheories — such as representation theory, permutation groups, \(p \)-groups and solvable groups, to name four — are treated either very briefly or from a narrow perspective. Another is that we make room for some quite specialized topics which will be necessary. On the other hand, our organization focuses attention on topics of importance for the analysis of simple groups.

We have chosen as the most natural starting place the theory of components, layers and the generalized Fitting subgroup, a subject largely developed since Gorenstein’s basic text of 1968 and central to today’s outlook on the structure of finite groups. This has the effect of plunging the reader abruptly into some of the most important but possibly unfamiliar material in the book. Those readers wishing to begin with a review of more familiar topics might choose to read Sections 9 through 12 before embarking on Section B.

Although the book is definitely not self-contained, relying for proofs on the standard texts as well as a few further Background References, our intention has been to give readable treatments of the various topics, with references for proofs freely made to the supporting texts.

We remain grateful to all the people whose help we acknowledged in the first book in this series; again we extend our thanks. In addition we thank Bil Gonzalez and Christine Sylanov for their assistance with word-processing, and Sergei Gelfand for his sound advice. Most importantly, we offer a thought of gratitude to the memory of the brilliant and inimitable Danny Gorenstein.

July, 1995

RICHARD LYONS

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

RONALD SOLOMON

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210
Background References

NOTE. The full list of Background References appears in the first book in this series:

The list below contains all Background References to which we refer in this book.

The numbering of the Background and the Expository References is consistent with that in the earlier book.

[FT1] W. Feit and J. G. Thompson, Solvability of groups of odd order (Chapter V, and the supporting material from Chapters II and III only), Pacific J. Math. 13 (1963), 775–1029.
[St1] R. Steinberg, Lectures on Chevalley Groups, Notes by J. Faulkner and R. Wilson, Mimeographed notes, Yale University Mathematics Department (1968).
Expository References

GLOSSARY

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>~</td>
</tr>
<tr>
<td>1</td>
<td>$[I_1]$, $[I_2]$, $[I_4]$, $[I_G]$, $[I_k]$, $[II_k]$</td>
</tr>
<tr>
<td>63</td>
<td>$2_1^{+2_n}$, $2_1^{-2_n}$</td>
</tr>
<tr>
<td>141</td>
<td>$AGL(2,p)$</td>
</tr>
<tr>
<td>150</td>
<td>$A_i(P)$</td>
</tr>
<tr>
<td>3</td>
<td>A_n, A_Ω</td>
</tr>
<tr>
<td>140</td>
<td>$A(P)$</td>
</tr>
<tr>
<td>95</td>
<td>$A^P(X)$</td>
</tr>
<tr>
<td>141</td>
<td>$ASL(2,p)$</td>
</tr>
<tr>
<td>4</td>
<td>$\text{Aut}_X(Y)$, $\text{Aut}(Y)$</td>
</tr>
<tr>
<td>166</td>
<td>b, b_5</td>
</tr>
<tr>
<td>195</td>
<td>$B_0(X)$</td>
</tr>
<tr>
<td>59</td>
<td>$B^i(X, A)$</td>
</tr>
<tr>
<td>199</td>
<td>$b_n = b_n(M)$</td>
</tr>
<tr>
<td>5</td>
<td>(B_p)</td>
</tr>
<tr>
<td>52, 135</td>
<td>$B_p^G(G)$</td>
</tr>
<tr>
<td>131</td>
<td>(B, q)-constrained</td>
</tr>
<tr>
<td>131</td>
<td>(B, q)-transitive</td>
</tr>
<tr>
<td>164</td>
<td>$C(D) = C(D, X)$</td>
</tr>
<tr>
<td>59</td>
<td>$C^A(X, A)$</td>
</tr>
<tr>
<td>5</td>
<td>(C_p)</td>
</tr>
<tr>
<td>184</td>
<td>$C(T, X)$</td>
</tr>
<tr>
<td>54</td>
<td>$C(A)(X)$</td>
</tr>
<tr>
<td>2</td>
<td>$C_X(B/A)$</td>
</tr>
<tr>
<td>157</td>
<td>$C(X, P)$</td>
</tr>
<tr>
<td>54</td>
<td>$C_X(V)$</td>
</tr>
<tr>
<td>102</td>
<td>$C_X^X(x)$</td>
</tr>
<tr>
<td>4</td>
<td>C_Y</td>
</tr>
<tr>
<td>118</td>
<td>$\Delta_X(B)$, Δ_B</td>
</tr>
<tr>
<td>3</td>
<td>D_{2n}</td>
</tr>
<tr>
<td>63</td>
<td>D^n_k</td>
</tr>
<tr>
<td>169</td>
<td>$D_P(X)$, $D_P^r(X)$</td>
</tr>
<tr>
<td>178</td>
<td>$d(v, w)$</td>
</tr>
<tr>
<td>3</td>
<td>E_p^r</td>
</tr>
<tr>
<td>3</td>
<td>$E_p^r(X)$, $E_p^r(X)$, $E_p^r(X)$</td>
</tr>
<tr>
<td>6</td>
<td>$E(X)$</td>
</tr>
</tbody>
</table>
\[\phi_C \]
\[\Phi(X) \]
\[\mathbb{F}_q \]
\[F(n) \]
\[F(X) \]
\[F^*(X) \]
\[F_\sigma(X) \]
\[\Gamma = \Gamma(\mathcal{D}) = \Gamma(\mathcal{D}, X) \]
\[\Gamma(\alpha) \]
\[\Gamma(v) \]
\[\Gamma_{p,k}(X) \]
\[\Gamma_{p,k}(X) \]
\[G \]
\[\text{gp}(\mathcal{D}) \]
\[(G_p) \]
\[H^1(X, A) \]
\[\mathcal{I}\mathcal{L}^p_\rho(G) \]
\[i(M) \]
\[\mathcal{I}^\rho_p(G) \]
\[\mathcal{I}_p(X), \mathcal{I}^\rho_p(X) \]
\[\text{Irr}(X), \text{Irr}_F(X) \]
\[J_X(s) \]
\[J_a(P) \]
\[J_t(P) \]
\[J(P) \]
\[[K] \]
\[A, \Lambda(A), \Lambda_{p,k}(X) \]
\[A^0 \]
\[L_{\pi'}(X) \]
\[L_p(X), L_p(X) \]
\[L^*_{p'}(X) \]
\[L^0_{p'}(X), L^*_{p'}(X) \]
\[L_S(X) \]
\[m_{2,p}(X) \]
\[M \sim N \]
\[M_n = M_n(M) \]
\[m_p(X) \]
\[(M_p) \]
\[M(V) \]
\[M(z) \]
\[M_Y(B; \pi), M_Y^*(B; \pi) \]
\[N(M) \]
\[n_p \]
\[N_X(B/A) \]
\[N_Y \]
\[\Omega_t(X) \]
\[\Omega^*(X) \]
\[O_{p,p}(X) \]
GLOSSARY

3 $O^p(X), O^{p'}(X), O^\pi(X), O^{\pi'}(X)$
3 $O(X), O_p(X), O_{p'}(X), O_{\pi}(X), O_{\pi'}(X)$
169 $O_p(F)$
25 $O_{p^*}(X), O_{p^*p}(X)$
4 Out X, Out $X(Y)$
2 $\pi(X)$
63 p^{1+2n}
148 $\wp(X,V)$
168 $P_p(X), P_p^*(X)$
3 Q_{2^n}
166 Q_α, Z_α
141 $Qd(p)$
147 $K_p(X)$
147 $R_p(X)$
3 $\Sigma_\Omega, \Sigma_\pi$
5 (S)
130 $SP^p(X)$
3 SD_{2^n}
5 (S_p)
130 $SP(X)$
2 Sol$(X), Sol_\pi(X)$
170 stc(x)
163 $\theta_{P,X}$
123 $\Theta_k, \Theta_k(a), \Theta_k^*, \Theta_k^{*}(a)$
122, 124 $\Theta_k(G;A), \Theta_k(G;B), \Theta_k^*(G;A)$
124 $\Theta_{k+\frac{1}{2}}, \Theta_{k+\frac{1}{2}}(G;B)$
90 $\tau, \tau_{X \to Y/Y_0}$
137 $T(B), T^*(B)$
105 $\mathcal{U}(M)$
167 V_β
54 $[V,X]$
163 $\xi_{\Delta,i}$
2 Ξ
2 $X^#$
2 $X', X^i, X^{(i)}, X^{(\infty)}$
36 $(x,K) < (x^*,K^*), (x,K) \ll (x^*,K^*)$
2 $[X,X]$
3 $X \ast Y$
2 $Y < X, Y \leq X$
2 $Y < \ll X$
7 $Y \ll \ll X$
3 $Y \backslash X$
3, 4 $[Y,X]$
166 Z_α
194 $Z[\text{rr}X]^o$
59 $Z^i(X,A)$
89 $Z^*(X)$
2 $Z(X), Z_i(X)$
INDEX

Alperin, J.L. 96, 144
Alperin-Goldschmidt conjugation family 96
amalgam 162
 completion of 162
 morphism of completions 162
 defining X-amalgam 163, 170–174
 morphism of 162
 injective, surjective, isomorphism 162
 universal completion of 162
X-amalgam 162
amalgam method 161-169
 amalgam hypothesis 164
 associated tree 165
 critical pair 166
Aschbacher, M. 37, 79, 118, 144, 150, 155, 158–159, 170
Aschbacher \(\chi \)-block 159

Baer, R. 90
balance see group; also see signalizer functor
 in solvable groups 16
 \(k \)-balance 118–129
 \(L_{p^r} \)-balance, \(L_{p^r}^* \)-balance 29–31
 \(O_{p^r} \)-balance 26
 solvable \(L_{p^r} \)-balance 82
Baumann, B. 158
Bender, H. 7, 16, 23, 101, 110–116, 129–130, 193, 199
Bender method 110–117
block 195
 principal block 195
\(BN \)-pair 174–180
 rank of 174
 saturated 174
 split 174
\(B_p \)-property 5
Brauer, R. 89, 192, 193, 195–197, 198, 200–202
Brauer correspondence 195
building 174
Burnside, W. 72, 97, 146, 156, 199
character 188
 coherence 193–194
F-character 188
induction 191
inertia group of 191
irreducible 188
isometry of 194
virtual 188
Clifford, A.H. 55, 191
cohomology of groups 58–61
 cochains, coboundaries, cocycles 59
 and extensions 60
commutators 3, 7, 18
component 6–16, 44–53
 homogeneous or Wedderburn 54
 semirigid 45
 standard 107
 terminal 34, 106
connected partially ordered set 162
coprime action 17–18, 72–78
coset complex, see simplicial complex
coset geometry 163
 critical pair 166
 distance between vertices in 178
 path in 165
 interior of 178
 length of 178
cover 2
covering group 6
 universal covering group 6
critical section 12, 72–73
critical subgroup 73
defect group 195
Delgado, A. 168
diagonal 13
diagonal pumpup 31, 36
extensions
 and cohomology 59–60
 of extra-special 2-groups 183–187
 split 60
extremal conjugate 92
failure of factorization 147–157
 failure of factorization module or F-module 148
 F_p-module 151
Feit, W. 1, 17, 110, 133, 194
Fitting, H. 6
Fitting subgroup 6
 generalized Fitting subgroup 6–13, 27
four-group 3
Frattini, G. 10, 18
Frattini argument 18
Frattini subgroup 10
Frattini Q-conjugacy class 181
 relative 181
Frattini Q-separated 181
Frobenius, G. 56, 98, 191
Frobenius group 55–56
 Frobenius complement 56
 Frobenius kernel 56
fusion of p-elements 89, 96–100
 by conjugation family 96
 control of 91
 extremal conjugates 92–93
 fusion pattern 89
 isolated p-element 90
 strong fusion pattern 89

Gaschütz, W. 61
generalized Fitting subgroup, see Fitting subgroup
generation 15–16, 74, 77–78
Gilman, R.H. 37–38
Glauberman, G. 4–5, 23, 89, 98, 100, 118, 122, 140–141, 147, 149, 158, 193, 196
Glauberman property 5
Goldschmidt, D. 77, 85, 96, 118, 122, 164
Goldschmidt-O'Nan pair, also see module
 shape of 85
Gomi, K. 168
Gorenstein, D. 5, 7, 16, 118, 122
graph 4, 66, 126–129, 165, 176
Green, J.A. 196
Griess, R.L. 6, 184
Griess pair 184
 admissible 185
 equivalent 184
Griess type 184
group
 covering 6
 universal covering 6
dihedral 2, 102
indecomposable 12
k-balanced 118
$(k + \frac{1}{2})$-balanced 118
k-connected 66
locally k-balanced 119
of Griess type 184
 full extension of 185
 of $\mathcal{L}C_p$-type 135
one-headed 8
outer generated 108
outer locally balanced 121
outer p-cyclic 5
π-quasisimple, π-semisimple 18
p-closed 2
p-constrained 78–79
p-solvable 79
p-stable 141
perfect 2
quasisimple 6
S-quasisimple 22
S-semisimple 22
semisimple 6
solvably p-quasisimple 80
solvably p-semisimple 80
strongly locally 1-balanced 130
weakly k-balanced 118
weakly locally k-balanced 119
group with a split BN-pair 174–180
root subgroup of 175
Weyl group of 174
group order formulas 198–202
half central 67
half p-central 67
Hall, P. 7, 53, 57–58, 62, 64, 73, 77, 95
Higman, G. 7, 53, 57–58, 73, 144
Huppert, B. 94
hyperplane 3
involutions 102–103, 198–202
isolated p-element 90
Ito, N. 79
\mathcal{K}-group 2
Klinger, K. 135
Klinger-Mason method 135–140
Konvisser, M. 66
layer, also see p-layer 6, 12–16
Maschke, H. 55
Mason, G. 135
McBride, P.P. 5, 118, 123
McBride property 5
module 53–59
absolutely irreducible 54
completely reducible 54
failure of factorization 148
faithful 54
free 54
Goldschmidt-O'Nan 85–89
homogeneous 54
irreducible 54
quadratic 140

near component 157–161
alternating 159
associated module of 158
linear 159

Niles, R. 158
normal p-complement 97

O'Nan, M. 13, 85–86

\(\pi \)-component 18
\(\pi \)-layer 18
\(p' \)-component 19
\(p \)-component 16–44
 Gilman-maximal 38
 \(T_p^0 \)-rigid 37
 \(T_p^0 \)-terminal 36–43
 \(p \)-terminal 43
 solvable 80–85
 strongly \(T_p^0 \)-rigid 37
 \((x, K)\)-bouquet of 41
 height of 41
\(p \)-component preuniqueness subgroup 106
\(p \)-core
 \(k \)-generated \(p \)-core 101
 weak \(k \)-generated \(p \)-core 125–126
\(p \)-groups 61–71
 extra-special 62–64, 183–187
 width of 63
 of maximal class 68
 of symplectic type 62–64, 136–138
 regular 65
 regularly generated 181
 special 62
\(p^* \)-group 23–28
\(p \)-layer 19–21
 extended \(p \)-layer 82
 solvable \(p \)-layer 82
\(p \)-part of \(x \) 196
\(p \)-reducible core 147
\(p \)-singular element 201
\(p \)-stability 141
permutation group 3
 regular 3
 semiregular 3
Peterfalvi, T. 102
properties of quasisimple groups
 \[B_p \] 5
 local \(k \)-balance 119
 \(p \)-Glauberman 5
 \(p \)-McBride 5
 Schreier, \(p \)-Schreier 5
 semirigidity 45
 signalizer 114–115
 stable 2-center 48
 stable involution 48
 strong local 1-balance 130
 weak local \(k \)-balance 119
pumpup 31, 36
 diagonal 31, 36
 level unbalancing 122
 long 36
 nonlevel unbalancing 122
 nontrivial 31, 36
 pumpup-closed set 43
 trivial 31, 36
 unbalancing 122
 vertical 31, 36
quadratic action 140
 \(p \)-stability 141
 quadratic four-groups 144–146
quasisimple group 6
 of type 8 43
quaternion group 62
rank
 2-local \(p \)-rank 52, 135
 of \(BN \)-pair 174
 of \(p \)-group 3
regular generation 181
representations of groups, also see modules 53–59
\(S \)-component 22
\(S \)-layer 22
Schreier, O. 5
Schreier property 5
 \(p \)-Schreier property 5
Schur, I. 6, 17, 54
Schur multiplier 6, 186
section 2
Segev, Y. 170
signalizers, \(p \)-signalizers 110–134
signalizer functors 122–129
 associated \((k + \frac{1}{2})\)-balanced functor 124
 closed 122
 complete 122
k-balanced 124
method 118–129
nonsolvable 122
solvable 122
trivial 122
weakly k-balanced 124
simplicial complex 164, 170–174
coset complex 164, 170
covering of complexes 170
simply connected 170
Solomon, R. 37
stable 2-center property 48
stable involution property 48
stabilizer of a chain 73
Steinberg, R. 6, 146
Stellmacher, B. 153, 158
Stroth, G. 142
subgroup
focal 90
Frattini 10–11
generalized Fitting 6–13, 27
Hall 77
L-preuniqueness 106
linked 111
maximal 110–117
offending 148, 151
of parabolic type 134–169
p-local 3
semisimple 6–16
strongly closed 100
strongly embedded 101, 103–104
strongly p-embedded, also see uniqueness 101, 104–105
subnormal 7
subnormal closure 29
Thompson 69, 147–157
acting on components 156
tightly embedded 107
weakly closed 95
Suzuki, M. 89, 101, 193, 200
symplectic pair 138

Theorems
Alperin-Goldschmidt conjugation theorem 96
Aschbacher quadratic four-group theorem 144
Baer-Suzuki theorem 90
Baumann-Glauberman-Niles theorem 158
Bender-P. Hall F^*-theorem 7
Bender-Thompson signalizer lemma 130
Bender’s uniqueness theorems 110, 112, 114
INDEX

Block-section orthogonality theorem 196
Brauer’s first main theorem 195
Brauer’s second main theorem 196
Brauer’s third main theorem 196
Brauer-Suzuki lemma 193
Brauer-Suzuki quaternion theorem 89
Brauer-Wielandt formula 198
Burnside transfer theorem 97
Clifford’s theorem 55, 191
Feit’s coherence criterion 194
Feit-Thompson Odd Order Theorem 1
Feit-Thompson transitivity theorem 133
Focal subgroup theorem 90
Frobenius normal p-complement theorem 98
Frobenius reciprocity theorem 191
Glauberman correspondence theorem 193
Glauberman solvable factorization theorem 149
Glauberman ZJ-theorem 141
Glauberman Z^*-theorem 90
Glauberman-Thompson normal p-complement theorems 99
Goldschmidt-O’Nan lemma 86
Hall-Higman lemma 1.2.3 79
Hall-Higman Theorem B 57
Hall theorem on groups of symplectic type 62
Huppert’s theorem 94
Konvisser’s theorem on normal p-rank 66
Krull-Schmidt theorem 12
Local $C(G,T)$-theorem of Aschbacher 159
$L_{p'}$-balance theorem of Gorenstein-Walter 29–31
L_{p^*}-balance theorem 29
Maschke’s theorem 55
McBride nonsolvable signalizer functor theorem 123
$O_{p'}$-balance theorem 26
Orthogonality relations 190, 197
Schur’s lemma 54
Schur-Zassenhaus theorem 17
Solvable $L_{p'}$-balance theorem 82
Solvable signalizer functor theorem of Glauberman 123
Thompson “3 against 2” lemma 150
Thompson $A \times B$ lemma 73
Thompson dihedral lemma 135
Thompson order formula 198
Thompson replacement theorem 140
Thompson theorem on Frobenius kernels 56
Thompson transfer lemma 93
Three subgroups lemma 7
Timmesfeld replacement theorem 155
Tits recognition of BN-pairs of rank 2 175
Yoshida-Hall-Wielandt transfer theorems 94-95
Thompson factorization 147-157
set-up 147
Timmesfeld, F. 153, 155
T.I. set 193
Tits, J. 174, 175
Tits system, see also BN-pair 174
transfer (or p-transfer) 90-96
control of 91
transfer homomorphism 90
transversal 3
unbalancing triple 121
uniqueness subgroups 101-109
universal
 covering group 6
 completion of amalgam 162
Walter, J.H. 5, 7, 16, 118
Wedderburn, J.H.M. 54
Wielandt, H. 9, 94, 95, 198
Yoshida, T. 92, 94, 95
Zassenhaus, H. 17
Other Titles in This Series

(Continued from the front of this publication)

5 S. Bergman, The kernel function and conformal mapping, 1950
4 O. F. G. Schilling, The theory of valuations, 1950
3 M. Marden, Geometry of polynomials, 1949
2 N. Jacobson, The theory of rings, 1943
1 J. A. Shohat and J. D. Tamarkin, The problem of moments, 1943