MATHEMATICAL Surveys and Monographs

Volume 42

Free Lattices

Ralph Freese
Jaroslav Ježek
J. B. Nation

Recent Titles in This Series

42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1993
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
9 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in $H^{\infty}, 1988$
25 Jack K. Hale, Asymptotic behavior of dissipative systems, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
3 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
9 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980
16 O. Timothy O'Meara, Symplectic groups, 1978
5 J. Diestel and J. J. Uhl, Jr., Vector measures, 1977
4 V. Guillemin and S. Sternberg, Geometric asymptotics, 1977
13 C. Pearcy, Editor, Topics in operator theory, 1974
12 J. R. Isbell, Uniform spaces, 1964
11 J. Cronin, Fixed points and topological degree in nonlinear analysis, 1964
10 R. Ayoub, An introduction to the analytic theory of numbers, 1963
9 Arthur Sard, Linear approximation, 1963
8 J. Lehner, Discontinuous groups and automorphic functions, 1964
7.2 A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Volume II, 1961
7.1 A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Volume I, 1961

6 C. C. Chevalley, Introduction to the theory of algebraic functions of one variable, 1951
5 S. Bergman, The kernel function and conformal mapping, 1950
4 O. F. G. Schilling, The theory of valuations, 1950
(See the AMS catalog for earlier titles)

Free Lattices

MATHEMATICAL Surveys and Monographs

Volume 42

Free Lattices

Ralph Freese
Jaroslav Ježek
J. B. Nation

American Mathematical Society
Providence, Rhode Island

The authors were supported in part by NSF grants \#DMS 9122011 and \#DMS 9204481.

1991 Mathematics Subject Classification. Primary 06B25;
Secondary 06-04, 68Q25, 06A06, 06B20.
Library of Congress Cataloging-in-Publication Data
Freese, Ralph S., 1946-
Free lattices / Ralph Freese, Jaroslav Ježek, J. B. Nation.
p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376; v. 42)
Includes bibliographical references and index.
ISBN 0-8218-0389-1 (acid-free)

1. Lattice theory. I. Ježek, Jaroslav, 1945-. . II. Nation, J. B. (James Bryant), 1948-
III. Title. IV. Series: Mathematical surveys and monographs; no. 42.
QA171.5.F74 1995
511.3'3-dc20

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@math.ams.org.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923. When paying this fee please use the code 0076-5376/95 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
© Copyright 1995 by the American Mathematical Society. All rights reserved. Printed in the United States of America.
The American Mathematical Society retains all rights except those granted to the United States Government.
(Q) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
$\$$ Printed on recycled paper.
This volume was printed directly from copy prepared by the author using $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, the American Mathematical Society's $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro system.

Contents

Introduction 1
Chapter I. Whitman's Solution to the Word Problem 7

1. Basic Concepts from Lattice Theory 7
2. Free Lattices 10
3. Canonical Form 15
4. Continuity 19
5. Fixed Point Free Polynomials and Incompleteness 20
6. Sublattices of Free Lattices 22
Chapter II. Bounded Homomorphisms and Related Concepts 27
7. Bounded Homomorphisms 27
8. Continuity 37
9. Doubling and Congruences on a Finite Lattice 38
10. A Refinement of the D Relation 45
11. Semidistributive Lattices 49
12. Splitting Lattices 55
13. Day's Theorem: Free Lattices are Weakly Atomic 62
14. Applications to Congruence Varieties 65
Chapter III. Covers in Free Lattices 67
15. Elementary Theorems on Covers in FL (X) 67
16. J-closed Sets and the Standard Epimorphism 71
17. Finite Lower Bounded Lattices 74
18. The Lattice $\mathbf{L}^{\vee}(w)$ 76
19. Syntactic Algorithms 79
20. Examples 83
21. Connected Components and the Bottom of $\mathbf{F L}(X)$ 87
Chapter IV. Day's Theorem Revisited 91
Chapter V. Sublattices of Free Lattices and Projective Lattices 95
22. Projective Lattices 95
23. The Free Lattice Generated by an Ordered Set 104
24. Finite Sublattices of Free Lattices 108
25. Related Topics 126
26. Finite Subdirectly Irreducible Sublattices of Free Lattices 129
27. Summary 132
Chapter VI. Totally Atomic Elements 135
28. Characterization 135
29. Canonical Form of Kappa of a Totally Atomic Element 141
30. The Role of Totally Atomic Elements 145
Chapter VII. Finite Intervals and Connected Components 151
31. Chains of Covers 151
32. Finite Intervals 154
33. Three Element Intervals 157
34. Connected Components 160
Chapter VIII. Singular and Semisingular Elements 171
35. Semisingular Elements 171
36. Singular Elements 176
Chapter IX. Tschantz's Theorem and Maximal Chains 179
37. Tschantz's Theorem 179
38. Coverless Elements 184
39. Maximal Chains 185
Chapter X. Infinite Intervals 189
40. Tschantz Triples 189
41. Join Irreducible Elements that are not Canonical Joinands 198
42. Splittings of a Free Lattice 200
Chapter XI. Computational Aspects of Lattice Theory 205
43. Preliminaries 205
44. Ordered Sets 208
45. Finite Lattices 215
46. Representations and Contexts 220
47. Congruence Lattices of Finite Lattices 221
48. Bounded Homomorphisms and Splitting Lattices 229
49. Antichains and Chain Partitions of Ordered Sets 235
50. Algorithms for Free Lattices 241
51. Finitely Presented Lattices 249
52. Diagrams 251
Chapter XII. Term Rewrite Systems and Varieties of Lattices 255
53. Term Rewrite Systems 256
54. No AC TRS for Lattice Theory 258
55. An Extension 261
56. The Variety Generated by $\mathbf{L}^{\vee}(w)$ 262
57. A Lattice Variety with AC TRS 268
58. More Varieties with AC TRS 274
Open Problems 279
Bibliography 281
List of Symbols 287
Index 289

Open Problems

Below are the open problems which appeared in the text.
Problem 1.25 (page 22). Which unary polynomials on free lattices are fixed point free? For which unary polynomials f does $\bigvee f^{i}(a)$ exist for all a?

Problem 5.28 (page 107). Characterize those ordered sets which can be embedded into a free lattice.

Problem 5.68 (page 133). Which lattices (and in particular which countable lattices) are sublattices of a free lattice?

Problem 10.17 (page 198). Does there exist a quadruple $a<c_{1} \leq c_{2}<b$ of elements of a free lattice $\mathbf{F L}(X)$ such that the intervals c_{1} / a and b / c_{2} are both infinite and every element of b / a is comparable with either c_{1} or c_{2} ?

Problem 10.18 (page 198). Describe all meet reducible elements a of $\mathbf{F L}(X)$ such that every element above a is comparable with a canonical meetand of a.

Problem 10.22 (page 201). Which completely join irreducible elements $a \in$ $\mathbf{F L}(X)$ satisfy $\kappa(a)=a^{\partial}$? Are there infinitely many for fixed X ?

Problem 10.23 (page 201). Is the element a from (1) on page 200 the only element of $\mathbf{F L}(X)$ which is invariant under the automorphisms of $\mathbf{F L}(X)$ and satisfies $\kappa(a)=a^{\partial}$?

Problem 10.25 (page 202). Is every middle element of $\mathbf{F L}(X)$ above a minimal one?

Problem 11.7 (page 218). Can one decide if an ordered set of size n is a lattice in time faster than $O\left(n^{5 / 2}\right)$? Can the various data structures mentioned in Theorem 11.6 be computed in time faster that $O\left(n^{5 / 2}\right)$?

Problem 11.40 (page 250). Is there a polynomial time algorithm which decides if $w \in \mathbf{F L}(\mathbf{P})$ is completely join irreducible?

Problem 11.41 (page 250). Is there a polynomial time algorithm which decides if a finitely presented lattice is finite?

Problem 11.42 (page 251). Is there an algorithm to decide if a finitely presented lattice is weakly atomic? of finite width?

Problem 11.43 (page 251). Is there a polynomial time algorithm which decides if a finitely presented lattice is projective?

Problem 12.27 (page 274). Does every finitely generated lattice variety have a finite, convergent AC term rewrite system? What about every variety generated by a finite lower (or upper) bounded lattice?

Bibliography

1. K. V. Adaricheva, A characterization of finite lattices of subsemilattices, Algebra i Logika 30 (1991), 385-404 (Russian).
2. K. V. Adaricheva, W. Dziobiak, and V. A. Gorbunov, Finite atomistic lattices that can be represented as lattices of quasivarieties, preprint.
3. A. Aeschlimann and J. Schmid, Drawing orders using less ink, Order 9 (1992), 5-13.
4. A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms, Addison Wesley, Reading, Mass., 1983.
5. N. G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576 (Russian).
6. R. Antonius and I. Rival, A note on Whitman's property for free lattices, Algebra Universalis 4 (1974), 271-272.
7. K. Baker, Finite equational bases for finite algebras in a congruence-distributive equational class, Advances in Math. 24 (1977), 207-243.
8. J. Berman, Sublattices of intervals in relatively free lattices, Algebra Universalis 2 (1972), 174-176.
9. G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc. 31 (1935), 433-454.
10. G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1967, 3rd ed., Colloquium Publications.
11. D. Bleichenbacher and J. Schmid, Computing the canonical representation of a finite lattice, Semantics of Programming Languages and Model Theory (Manfred Droste and Yuri Gurevich, eds.), Gordon and Breach Science Publ., Amsterdam, 1993, (Algebra, Logic and Applications Series, Volume 5), pp. 269-285.
12. P. Bloniarz, H. B. Hunt III, and D. Rosenkrantz, On the computational complexity of algebra on lattices, Siam J. Computing 16 (1987), 129-148.
13. K. Bogart, Introductory Combinatorics, Harcourt Brace Jovanovich, San Diego, 1990.
14. K. Bogart, C. Greene, and J. Kung, The impact of the chain decomposition theorem on classical combinatorics, The Dilworth Theorems, Selected Papers of Robert P. Dilworth (K. Bogart, R. Freese, and J. Kung, eds.), Birkhäuser, Basel, 1990, pp. 19-29.
15. J.-P. Bordat, Efficient polynomial algorithms for distributive lattices, Discrete Appl. Math. 32 (1991), 31-50.
16. S. Burris, Polynomial time uniform word problems, preprint.
17. S. Burris and J. Lawrence, Term rewrite rules for finite fields, International J. of Algebra and Computation 1 (1991), 353-369.
18. S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1980.
19. P. Crawley and R. A. Dean, Free lattices with infinite operations, Trans. Amer. Math. Soc. 92 (1959), 35-47.
20. P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
21. B. A. Davey, W. Poguntke, and I. Rival, A characterization of semidistributivity, Algebra Universalis 5 (1975), 72-75.
22. B. A. Davey and H. A. Priestley, An Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1989.
23. A. C. Davis, A characterization of complete lattices, Pacific J. Math. 5 (1955), 311-319.
24. A. Day, Splitting lattices generate all lattices, Algebra Universalis 7 (1977), 163-170.
25. A. Day, Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canad. J. Math 31 (1979), 69-78.
26. A. Day, Doubling constructions in lattice theory, Canad. J. Math. 44 (1992), 252-269.
27. A. Day, Congruence normality: the characterization of the doubling class of convex sets, Algebra Universalis 31 (1994), 397-406, Addendum by J. B. Nation, 407-410.
28. A. Day and R. Freese, A characterization of identities implying congruence modularity, I, Canad. J. Math. 32 (1980), 1140-1167.
29. A. Day and J. B. Nation, A note on finite sublattices of free lattices, Algebra Universalis 15 (1982), 90-94.
30. A. Day and J. B. Nation, Congruence normal covers of finitely generated lattice varieties, Canad. Math. Bull. 35 (1992), 311-320.
31. R. A. Dean, Completely free lattices generated by partially ordered sets, Trans. Amer. Math. Soc. 83 (1956), 238-249.
32. R. A. Dean, Component subsets of the free lattice on n generators, Proc. Amer. Math. Soc. 7 (1956), 220-226.
33. R. A. Dean, Coverings in free lattices, Bull. Amer. Math. Soc. 67 (1961), 548-549.
34. R. A. Dean, Sublattices of free lattices, Lattice Theory (R. P. Dilworth, ed.), Amer. Math. Soc., Providence, Rhode Island, 1961, Proc. Symp. Pure Math. II, pp. 31-42.
35. R. A. Dean, Free lattices generated by partially ordered sets and preserving bounds, Canad. J. Math. 16 (1964), 136-148.
36. J. Demel, M. Demlová, and V. Koubek, Fast algorithms constructing minimal subalegras, congruences, and ideals in a finite algebra, Theoretical Computer Science 36 (1985), 203216.
37. N. Dershowitz and J.-P. Jouannaud, Rewrite systems, Handbook of Theoretical Computer Science, Vol B: Formal Models and Semantics (J. van Leeuwen, ed.), Elsevier, AmsterdamNew York, 1990, pp. 245-320.
38. N. Dershowitz, J.-P. Jouannaud, and J. W. Klop, Open problems in rewriting, Rewriting Techniques and Applications (R. V. Book, ed.), Springer-Verlag, Berlin, 1991, Lecture Notes in Computer Science, 488, pp. 443-456.
39. R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
40. R. P. Dilworth, The structure of relatively complemented lattices, Ann. of Math. 51 (1950), 348-359.
41. R. P. Dilworth, Some combinatorial problems on partially ordered sets, Proc. Symp. Appl. Math. 10 (1960), 85-90.
42. P. Eades, B. McKay, and N. Wormald, An NP-hard crossing number problem for bipartite graphs, Tech. Report 60, Univ. of Queensland, 1985.
43. M. Erné, Weak distributivity laws and their role in lattices of congruences of equational theories, Algebra Universalis 25 (1988), 290-321.
44. T. Evans, On multiplicative systems defined by generators and relations, I, Proc. Cambridge Philos. Soc. 47 (1951), 637-649.
45. T. Evans, The word problem for abstract algebras, J. London Math. Soc. 26 (1951), 64-71.
46. T. Evans, Embeddability and the word problem, J. London Math. Soc. 28 (1953), 76-80.
47. R. Freese, An application of Dilworth's lattice of maximal antichains, Discrete Math. 7 (1974), 107-109.
48. R. Freese, The variety of modular lattices is not generated by its finite members, Trans. Amer. Math. Soc. 255 (1979), 277-300.
49. R. Freese, Free modular lattices, Trans. Amer. Math. Soc. 261 (1980), 81-91.
50. R. Freese, Some order theoretic questions about free lattices and free modular lattices, Ordered Sets (I. Rival, ed.), D. Reidel, Dordrecht, Holland, 1982, Proc. of the Banff Symposium on Ordered Sets, pp. 355-377.
51. R. Freese, Connected components of the covering relation in free lattices, Universal Algebra and Lattice Theory, Springer-Verlag, New York, 1985, S. Comer, ed., Lecture Notes in Mathematics, vol. 1149, pp. 82-93.
52. R. Freese, Free lattice algorithms, Order 3 (1987), 331-344.
53. R. Freese, Finitely presented lattices: canonical forms and the covering relation, Trans. Amer. Math. Soc. 312 (1989), 841-860.
54. R. Freese, Finitely presented lattices: continuity and semidistributivity, Lattices, Semigroups, and Universal Algebra (J. Almeida, G. Bordalo, and Philip Dwinger, eds.), Plenum Press, New York, 1990, Proceedings of the Lisbon Conference, 1988, pp. 67-70.
55. R. Freese, Directions in lattice theory, Algebra Universalis 31 (1994), 416-429.
56. R. Freese, Ordinal sums of projectives in varieties of lattices, preprint.
57. R. Freese, J. Ježek, and J. B. Nation, Term rewrite systems for lattice theory, J. Symbolic Computation 16 (1993), 279-288.
58. R. Freese, J. Ježek, J. B. Nation, and V. Slavík, Singular covers in free lattices, Order 3 (1986), 39-46.
59. R. Freese, K. Kearnes, and J. B. Nation, Congruence lattices of congruence semidistributive algebras, Proceedings of the International Conference Honoring Garrett Birkhoff (K. Baker, E. T. Schmidt, and R. Wille, eds.), Springer-Verlag, New York, Darmstadt, Germany, June 13-17, 1991, to appear.
60. R. Freese and J. B. Nation, Congruence lattices of semilattices, Pacific J. Math. 49 (1973), 51-58.
61. R. Freese and J. B. Nation, Projective lattices, Pacific J. Math. 75 (1978), 93-106.
62. R. Freese and J. B. Nation, Covers in free lattices, Trans. Amer. Math. Soc. 288 (1985), 1-42.
63. Ralph Freese and Ralph McKenzie, Commutator Theory for Congruence Modular Varieties, Cambridge University Press, Cambridge, 1987, London Math. Soc. Lecture Note Series vol. 125.
64. L. Fuchs, Partially Ordered Algebraic Systems, Addison Wesley, Reading, Mass., 1963.
65. F. Galvin and B. Jónsson, Distributive sublattices of a free lattice, Canadian J. Math. 13 (1961), 265-272.
66. W. Geyer, Intervallverdopplung und verwandte Konstruktionen bei Verbänden, Technische Hochschule Darmstadt, Darmstadt, 1992, Ph. D. Thesis.
67. W. Geyer, The generalized doubling construction and formal concept analysis, Algebra Universalis, to appear.
68. P. Goralčík, A. Goralčíková, and V. Koubek, Testing of properties of finite algebras, Automata, languages and programming (Proc. Seventh Internat. Colloq., Noordwijkerhout, 1980) (J. W. de Bakker and J. van Leeuwen, eds.), Springer Verlag, Berlin-New York, 1980, Lecture Notes in Comput. Sci., 85, pp. 273-281.
69. P. Goralčík, A. Goralčíková, V. Koubek, and V. Rödl, Fast recognition of rings and lattices, Fundamentals of Computation Theory (F. Gécseg, ed.), Springer Verlag, New York, 1981, Lecture Notes in Computer Science, 117, pp. 137-145.
70. A. Goralčíková and V. Koubek, A reduct and closure algorithm for graphs, Mathematical Foundations of Computer Science 1979 (J. Bečvář, ed.), Springer Verlag, New York, 1979, Lecture Notes in Computer Science, 74, pp. 301-307.
71. V. A. Gorbunov, The structure of lattices of quasivarieties, Algebra Universalis, to appear.
72. R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison Wesley, Reading, MA, 1989.
73. G. Grätzer, General Lattice Theory, Academic Press, New York, 1978.
74. D. Hobby and R. McKenzie, The Structure of Finite Algebras (tame congruence theory), American Mathematical Society, Providence, RI, 1988, Contemporary Mathematics.
75. J. Ježek, Free groupoids in varieties determined by a short equation, Acta Univ. Carolin.Math. Phys. 23 (1982), 3-24.
76. J. Ježek and V. Slavík, Primitive lattices, Czechoslovak Math. J. 29 (1979), 595-634, Russian summary.
77. J. Ježek and V. Slavík, Free lattices over halflattices, Comment. Math. Univ. Carolinae 30 (1989), 203-211.
78. J. Ježek and V. Slavík, Free lattices over join-trivial partial lattices, Algebra Universalis 27 (1990), 10-31.
79. B. Jónsson, Sublattices of a free lattice, Canad. J. Math. 13 (1961), 256-264.
80. B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121.
81. B. Jónsson, Relatively free lattices, Colloq. Math. 21 (1970), 191-196.
82. B. Jónsson and J. E. Kiefer, Finite sublattices of a free lattice, Canad. J. Math. 14 (1962), 487-497.
83. B. Jónsson and J. B. Nation, A report on sublattices of a free lattice, Contributions to universal algebra, North-Holland Publishing Co., Amsterdam, 1977, Coll. Math. Soc. János Bolyai, vol. 17, pp. 233-257.
84. B. Jónsson and I. Rival, Lattice varieties covering the smallest non-modular variety, Pacific J. Math. 82 (1979), 463-478.
85. J.-P. Jouannaud and H. Kirchner, Completion of a set of rules modulo a set of equations, Siam J. Comput. 15 (1986), 1155-1194.
86. A. B. Kahn, Topological sorting of large networks, Comm. ACM 5 (1962), 558-562.
87. O. A. Karpushev, A linear algorithm for the recognition of a distributive lattice, preprint.
88. D. J. Kleitman, M. Edelberg, and D. Lubell, Maximal sized antichains in partial orders, Discrete Math. 1 (1971), 47-54.
89. D. E. Knuth, The Art of Computer Programming, Vol. III: Searching and Sorting, Addison Wesley, Reading, Mass., 1973.
90. D. E. Knuth, The Art of Computer Programming, Vol. I: Fundamental Algorithms, Addison Wesley, Reading, Mass., 1975, second edition.
91. D. E. Knuth and P. B. Bendix, Simple word problems in universal algebra, Computational Problems in Abstract Algebra, Pergamon, Oxford, 1970, pp. 263-297.
92. A. Kostinsky, Projective lattices and bounded homomorphisms, Pacific J. Math. 40 (1972), 111-119.
93. D. S. Lankford and A. M. Ballantyne, Decision procedures for simple equational theories with commutative-associative axioms: Complete sets of commutative-associative reductions, Research Report Memo ATP-39, Department of Mathematics and Computer Science, University of Texas, Austin, Texas, 1977.
94. J. G. Lee, Almost distributive lattice varieties, Algebra Universalis 21 (1985), 280-304.
95. H. M. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937), 416-460.
96. D. Magagnosc, Cuts and Decompostions: Structure and Algorithms, Dartmouth College, Hannover, New Hampshire, 1987, Ph.D. Thesis.
97. G. Markowsky, The factorization and representation of lattices, Trans. Amer. Math. Soc. 203 (1975), 185-200.
98. R. McKenzie, Equational bases for lattice theories, Math. Scand. 27 (1970), 24-38.
99. R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.
100. R. McKenzie, G. McNulty, and W. Taylor, Algebras, Lattices, Varieties, Volume I, Wadsworth and Brooks/Cole, Monterey, California, 1987.
101. J. C. C. McKinsey, The decision problem for some classes of sentences without quantifiers, J. Symbolic Logic 8 (1943), 61-76.
102. K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-Completemess, Springer Verlag, New York, 1984.
103. J. B. Nation, Bounded finite lattices, Universal Algebra, North-Holland Publishing Co., Amsterdam, 1982, Colloq. Math. Soc. János Bolyai vol. 29, pp. 531-533.
104. J. B. Nation, Finite sublattices of a free lattice, Trans. Amer. Math. Soc. 269 (1982), 311337.
105. J. B. Nation, On partially ordered sets embeddable in a free lattice, Algebra Universalis 18 (1984), 327-333.
106. J. B. Nation, Some varieties of semidistributive lattices, Universal Algebra and Lattice Theory, Springer-Verlag, New York, 1985, S. Comer, ed., Lecture Notes in Mathematics, vol. 1149, pp. 198-223.
107. J. B. Nation, Lattice varieties covering $V\left(L_{1}\right)$, Algebra Universalis $23(1986), 132-166$.
108. J. B. Nation, An approach to lattice varieties of finite height, Algebra Universalis 27 (1990), 521-543.
109. J. B. Nation and J. H. Schmerl, The order dimension of relatively free lattices, Order 7 (1990), 97-99.
110. D. Papert, Congruence relations in semilattices, J. London Math. Soc. 39 (1964), 723-729.
111. G. E. Peterson and M. E. Stickel, Complete sets of reductions for some equational theories, J. Assoc. Comput. Mach. 28 (1981), 233-264.
112. S. V. Polin, Identities in congruence lattices of universal algebras, Mat. Zametki 22 (1977), 443-451.
113. G. Pruesse and F. Ruskey, Generating linear extensions fast, SIAM J. Computing, to appear.
114. J. Reinhold, Weak distributive laws and their role in free lattices, Algebra Universalis, to appear.
115. I. Rival and B. Sands, Planar sublattices of a free lattice II, Canad. J. Math. 31 (1979), 17-34.
116. I. Rival and R. Wille, Lattices freely generated by partially ordered sets: which can be "drawn"?, J. Reine Angew. Math. 310 (1979), 56-80.
117. H. L. Rolf, The free lattice generated by a set of chains, Pacific J. Math. 8 (1958), 585-595.
118. H. Rose, Nonmodular lattice varieties, Memoirs Amer. Math. Soc. 292 (1984).
119. D. Schweigert, Über endliche, ordnungspolynomvollständige Verbände, Monatsh. für Math. 78 (1974), 68-76.
120. K. Simon, An improved algorithm for the transitive closure on acyclic digraphs, Theoret. Comput. Sci. 58 (1988), 325-346, Thirteenth International Colloquium of Automata, Languages and Programming (Rennes, 1986).
121. T. Skolem, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets skrifter I, Matematisk-naturvidenskabelig klasse, Videnskabsakademiet i Kristiania 4 (1920), 1-36.
122. T. Skolem, Select Works in Logic, Scandinavian University Books, Oslo, 1970.
123. V. Slavík, Lattices with finite W-covers, Algebra Universalis, to appear.
124. Yu. I. Sorkin, Free unions of lattices, Mat. Sbornik 30 (1952), 677-694 (Russian).
125. R. P. Stanley, Enumerative Combinatorics, Wadsworth and Brooks/Cole, Monterey, California, 1986.
126. J. Stephan, Liniendiagramme von Verbänden, Technische Hochschule Darmstadt, Darmstadt, 1987, Diplomarbeit.
127. E. Szpilrajn, Sur l'extension de l'ordre partiel, Fundamenta Mathematica 16 (1930), 386-389.
128. R. Tamassia, G. Di Battista, and C. Batini, Automatic graph drawing and readability of diagrams, IEEE Trans. on Systems, Man, and Cybernetics 18 (1988), 61-79.
129. R. E. Tarjan, Depth first searches and linear graph algorithms, SIAM J. of Computing 1 (1972), 146-160.
130. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955), 285-309.
131. S. T. Tschantz, Infinite intervals in free lattices, Order 6 (1990), 367-388.
132. Ph. M. Whitman, Free lattices, Ann. of Math. (2) 42 (1941), 325-330.
133. Ph. M. Whitman, Free lattices II, Ann. of Math. (2) 43 (1942), 104-115.
134. R. Wille, Eine Charakterisierung endlicher, ordnungspolynomvollständiger Verbände, Arch. Math. 28 (1977), 557-560.
135. R. Wille, On lattices freely generated by finite partially ordered sets, Contributions to Universal Algebra, North-Holland Publishing Co., Amsterdam, 1977, Colloq. Math. Soc. János Bolyai (Szeged 1975), vol. 17, pp. 581-593.
136. R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, Ordered Sets (I. Rival, ed.), D. Reidel, Dordrecht, Holland, 1982, Proc. of the Banff Symposium on Ordered Sets, pp. 445-470.
137. C. Y. Wong, Lattice Varieties with Weak Distributivity, Univ. of Hawaii, Honolulu, 1989, Ph. D. Thesis.

List of Symbols

Notation

$A \subseteq B, A \subset B$ $a \vee b, \bigvee S$	7 8
$a \vee b, \bigvee{ }^{\text {a }}$	8
$a \wedge b, \bigwedge S$	8
$\mathbf{L}=\langle L, \vee, \wedge\rangle$	8
$\mathrm{J}(\mathbf{L})$	8
$\mathrm{M}(\mathrm{L})$	8
$a \prec b, b \succ a$	8
b / a	9
$\mathbf{L}[C]$	9
λ	9
ker f	56
$t^{\mathbf{L}}\left(a_{1}, \ldots, a_{n}\right), t^{\mathbf{L}}$	10
$\mathbf{F L}(X), \mathbf{F L}(n)$	10
$\mathbf{F}_{\mathcal{V}}(X)$	11
2	11
$\underline{x}=\bigwedge(X-\{x\})$	13
$\bar{x}=\bigvee(X-\{x\})$	13
(W)	13
(W+)	13
$A \ll B, C \gg D$	15
$\left(\mathrm{SD}_{\vee}\right),\left(\mathrm{SD}_{\wedge}\right)$	18
$\boldsymbol{H}, \boldsymbol{S}, \boldsymbol{P}_{u}, \boldsymbol{V}$	25
$\beta(a), \beta_{h}(a)$	27
$\alpha(a), \alpha_{h}(a)$	27
A^{\wedge}, A^{\vee}	28
$\beta_{k}(a), \beta_{k, h}(a)$	28
$\alpha_{k}(a), \alpha_{k, h}(a)$	29
$\mathcal{C}(a)$	29
$\mathcal{M}(a)$	30
$\mathrm{D}_{k}(\mathbf{L})$	31
$\mathrm{D}(\mathbf{L})$	31
$\rho(a)$	31
$a D b$	39
R_{θ}, S_{θ}	40
Q_{L}	41

Page(s) Description

Set inclusion, proper set inclusion.
Join, least upper bound.
Meet, greatest lower bound.
A lattice on the set L.
The join irreducible elements of L.
The meet irreducible elements of L. a is covered by b, b covers a.
The interval from a to b.
\mathbf{L} with a convex set doubled.
Natural homomorphism from $\mathbf{L}[C]$ onto \mathbf{L}.
The kernel of f.
Interpretation of a term t in \mathbf{L}.
Free lattice.
Relatively free lattice in \mathcal{V} over X.
The two element lattice.
Atoms of FL(X).
Coatoms of $\mathbf{F L}(X)$.
Whitman's condition.
A modification of Whitman's condition.
Join and meet refinement.
Join and meet semidistributivity.
Class closure operators.
The least preimage of a.
The largest preimage of a.
Meet closure of A, join closure of A.
Step k in computing $\beta(a)$.
Step k in computing $\alpha(a)$.
Nontrivial join covers of a.
Minimal nontrivial join covers of a.
Elements such that $\beta(a)=\beta_{k}(a)$.
$\bigcup_{k \in \omega} \mathrm{D}_{k}(\mathbf{L})$.
D-rank of a.
Join dependency relation.
Join irreducibles with $\left\langle a, a_{*}\right\rangle \in \theta, \mathrm{J}(\mathbf{L})-R_{\theta}$.
Ordered set isomorphic to $J($ Con L).

$\mathcal{M}^{*}(a)$	45
$\mathrm{~J}(w)$	48,72
u_{*}	49
v^{*}	49
$a A b, a B b, a C b$	51
Λ	57
$\mathrm{~V}(\varepsilon)$	60
$\kappa(w)$	67
$\mathrm{M}(w)$	72
$\mathbf{L}^{\vee}(w)$	74
$\mathbf{L}^{\wedge}(w)$	76
w_{\dagger}	76
w^{\dagger}	76
$\mathrm{~K}(w)$	79
$\mathbf{F L}(\mathbf{P})$	104,249
σ_{u}, μ_{u}	136
$\overline{\mathrm{~N}}_{5}, \overline{\mathrm{~N}}_{5}(k)$	161
$\mathrm{C}(m, k)$	162
a^{∂}	201
$O(f(x))$	205
$a \leftarrow 5$	206
E_{\leq}, E_{\prec}	208
e_{\leq}, e_{\prec}	208
$p \rightarrow q, r \rightarrow R t$	256
$\mathrm{nf}(w), \mathrm{nf}_{R}(w)$	256

Join covers $U \in \mathcal{M}(a)$ with $\bigvee U$ minimal in \mathbf{L}.
J-closed set determined by w.
Lower cover of completely join irreducible u.
Upper cover of completely meet irreducible v.
Dependency relations on a semidistributive lattice.
The lattice of lattice varieties.
Variety of all lattices satisfying ε.
$\kappa_{\text {FL }(X)}(w)$.
M-closed set determined by w (dual to $\mathrm{J}(w)$).
Finite, lower bounded, subdirectly irreducible lattice associated with w.
Finite, upper bounded, subdirectly irreducible lattice associated with w.
Lower cover of w in $\mathbf{L}^{\vee}(w)$.
Upper cover of w in $\mathbf{L}^{\wedge}(w)$.
$\left\{v \in \mathrm{~J}(w): w_{\dagger} \vee v \nsupseteq w\right\}$.
Free lattice over an ordered set or partial lattice; finitely presented lattice.
Endomorphisms of $\mathbf{F L}(X)$.
Covers labelled pentagons.
m chains of length and k chains of length one with a common top.
The dual of a.
Big oh notation.
Assignment in computer programs.
Edge sets of an ordered set.
Cardinalities of the edge sets.
Term rewrite rule.
Normal form (for the TRS R).

Index

Adaricheva, K., 66
adequate, 250
Aeschlimann, A., 252
Aho, A., 206, 221, 224
algorithm
Whitman like, 243
Alimov, N., 272
alternating sequence, 236
antichain, 8
Antonius, R., 128
array, 206

Baker, K., 268
Ballantyne, A., 256
Batini, C., 252
Bendix, P., 256
Birkhoff, G., 7, 11, 227
Bleichenbacher, D., 227
Bloniarz, P., 262
Bogart, K., 235
Bordat, J.-P., 219
bottom of $\mathbf{F L}(X), 25,87-89$
bound
greatest lower, 8
least upper, 8
upper, 8
bounded homomorphism, 2, 27-34
bounded lattice, 34-37, 44, 53-55, 76, 100
breadth, 24
Burris, S., 25, 242, 256
C-cycle, 53
canonical form, 15-17, 68, 250, 255
for $\boldsymbol{V}(\mathbf{L}), 263$
of $w_{*}, 81-82$
canonical join expression, 17
canonical join representation, 17, 36-37
canonical joinands, 17, 36, 198-200
canonical meet representation, 17, 36
canonical meetands, 17, 36
of $w_{*}, 82$
center, 227
chain, 8
dense maximal, 185-187
chain partition, 235
Dilworth, 235
chains of covers, 151-154
completely join irreducible element, 8, 49-$51,67-68,78,79,91-94,171$
completely join prime element, $8,54-55$
completely meet irreducible element, 8,145 149
completely meet prime element, 8
complexity (of a term), 10
concept
formal, 221
conjugate equation(s), 56, 59
conjugate variety, 59
connected component, 8, 87-89, 160-169
context
formal, 221
reduced, 221
continuity, 19
lower, 19-20
upper, 19-20
convex, 9
cover
lower, 8
singular, 171
upper, 8
coverless element, $2,85,179,184$
Crawley, P., 7, 11, 23, 56, 106, 226
critical pair, 55
critical quotient, 56
critical quotient, prime, 56
cycle (of a graph), 208
D-closed set, 47
D-cycle, 41
D-rank, 31, 33, 47
D-sequence, 41
Davey, B., 7, 126, 221
Day, A., 9, 13, 27, 35, 38, 39, 43, 44, 53, 62, 66, 268
Dean, R., 20, 59, 83, 104, 106, 249
Demel, J., 226
Demlová, M., 226
dense maximal chain, 185-187
depth, 43
Dershowitz, N., 255, 256
DiBattista, G., 252

Dilworth, R. P., 7, 11, 23, 39, 56, 77, 226, 235, 236
*-distributive, 132-133
doubling construction, 9-10, 38-45, 92, 100
down directed set, 19
dual, 7
Dziobiak, W., 66

E-closed set, 47
Eades, P., 252
Edelberg, M., 236
edges (of a graph), 208
element
completely join irreducible, 8, 49-51, 67-$68,78,79,91-94,171$
completely join prime, $8,54-55$
completely meet irreducible, 8, 145-149
completely meet prime, 8
coverless, 2,85
join irreducible, 8, 198-200
join prime, 8, 11-12, 54-55
lower, 201
lower atomic, 70,78
meet irreducible, 8
meet prime, 8, 11-12
middle, 201
semisingular, 4, 171-176
singular, 171, 176-178
slim, 22, 86-87, 160, 248
totally atomic, 3, 135-149
Tschantz, 189
upper, 201
upper atomic, 70
equation, 10
regular, 256
splitting, 234
equational class, 11
equivalent
modulo $\mathcal{K}, 255$
under commutativity, 15
Erné, M., 132
Evans, T., 242, 256
expression
canonical join, 17
filter, 9
order, 9
finite presentation, 249
finitely presented lattice, 249
fixed point free polynomial, 20-22
free star principle, 110
Freese, R., 13, 15, 20, 21, 30, 38, 49, 60, 62, $65-67,91,95,99,100,103,106,136$, 151, 177, 179, 227, 228, 236, 243, 250, 251, 256, 262
Fuchs, L., 272

Galvin, F., 22, 133

Geyer, W., 44, 221, 223
Goralčík, P., 210, 215
Goralčíková, A., 210, 211, 215
Gorbunov, V., 66
Graham, R., 206
graph, 208
acyclic, 208
directed, 208
Grätzer, G., 7
greatest lower bound, 8
Greene, K., 235
Harrison, T., 3, 179
hash table, 206
Hobby, D., 66
homomorphism
bounded, 2, 27-34
lower bounded, 27-34, 72-74
standard, 222
upper bounded, 27-34
Hopcroft, J., 206, 221, 224
Hunt, H., 262
ideal, 9 order, 9
infimum, 8
input size, 205
interval, 9, 100
finite, 154-160
infinite, 183-184, 189-198
infinite chain, 178
lower pseudo, 9
three element, 157-160
upper pseudo, 9
irredundant, 62
J-closed set, 49, 71-76
Ježek, J., 95, 109, 130, 132, 177, 250, 256
join, 8
join cover, 29, 71, 230
minimal, $30,45,71$
nontrivial, 29
join dependency relation, 39
join irreducible element, 8, 198-200
join irredundant set, 62
join minimal, 230
join prime element, 8, 11-12, 54-55
joinand canonical, 17, 36, 198-200
Jónsson, B., 11, 18, 22, 25, 27, 33, 35, 40, $51,53,57,62,95,100,109,111,127$, 128, 133, 262
Jouannaud, J.-P., 255, 256
Kahn, A., 209
$\kappa(w), 67-68,83$
algorithm, 79-81
for w totally atomic, 141-145
$\kappa_{\mathbf{L}}(w), 49-50$
Karpushev, O., 219
Kearnes, K., 66
Kiefer, J., 18, 128
Kirchner, H., 256
Kleitman, D., 236
Klop, J., 255
Knuth, D., 206, 209, 256
Kostinsky, A., 33, 95, 100
Koubek, V., 210, 211, 215, 226
Kung, J., 235

Lankford, D., 256
lattice, 8
bounded, 34-37, 39, 44, 53-55, 76, 100
breadth, 24
center, 227
congruence normal, 44
continuous, 19, 37
*-distributive, 132-133
finitely presented, 37
finitely separable, 97-99, 106
free, 10
free over $X, 10$
freely generated by $X, 10,14$
interval, 9
join semidistributive, 35-37
locally complete, 21
lower bounded, 34-38, 42-45, 49, 74-76, 262-277
lower continuous, 19-20, 37
meet semidistributive, 128
order polynomial complete, 20
primitive, 129
projective, 37, 95-103, 106
relatively free, $11,15,60$
semidistributive, 18, 49-55, 126-128
splitting, 2, 55-62, 77, 91, 129-132, 234
staircase distributive, 132
subdirectly irreducible, 41
upper bounded, 34-37, 44
upper continuous, 19-20, 133
weakly atomic, 61-65, 91-94, 103
lattice presentation, 249
lattice term, 10
Lawrence, J., 256
least upper bound, 8
Lee, J., 62
length
ordered set, 8
term, 10
linear extension, 209
lists, 206
lookup table, 206
lower atomic element, 70, 78
lower bounded homomorphic image of a free lattice, 34
lower bounded homomorphism, 27-34, 7274
lower bounded image of a free lattice, 108
lower bounded lattice, 34-37, 42-45, 49, 7476, 262-277
lower cover, 8, 67-70, 83, 154
Lubell, D., 236
M-closed set, 72
MacNeille, H., 221
Magagnosc, D., 235
Markowsky, G., 227
McKay, B., 252
McKenzie, R., 7, 11, 25, 27, 33, 55, 62, 66, $77,95,100,227,234,268$
McKinsey, J., 59, 242
McNulty, G., 7, 11, 25
meet, 8
meet dependency relation, 39
meet irreducible element, 8
meet irredundant set, 62
meet prime element, $8,11-12$
meet semidistributive lattice, 128
meetand
canonical, 17
Mehlhorn, K., 211, 214
minimal join cover refinement property, 30$35,42,71,96,108,250$
minimal join representation, 17, 36
Morel, A., 20
Nation, J. B., 27, 33, 35, 40, 51, 53, 60, 62, $66,67,91,95,99,100,103,106,107$, $109,111,128,136,151,177,179,228$, 256, 267, 268
normal form, 255, 256
order dimension, 107
order filter, 9
order ideal, 9
order polynomial complete, 20
order relation, 7
ordered set, 7
dual, 7
embeddable in a free lattice, 106-107
free lattice generated by, 104-108
induced, 223
labeled, 161
length, 8
width, $8,219,235$
Papert, D., 66
parallel sum, 129
partial lattice, 249
partially ordered set, 7
Patashnik, O., 206
path (in a graph), 208
Peterson, G., 256, 262

Poguntke, W., 126
Polin, S., 66
polynomial, 20
fixed point free, 20-22
Priestley, H., 7, 221
projective lattice, 95-103, 106
Pruesse, G., 210
pseudo-interval
lower, 38
upper, 38
quasiorder, 8
quasivariety, 66
rank (of a term), 10
reducing sequence, 236
refinement, 30
join, 15
meet, 16
Reinhold, J., 132, 133
relation, 249
relatively free lattice, 60
representation
canonical join, 17, 36-37
canonical meet, 17
minimal join, 17, 36
representative, 11
retract, 95
of $\mathbf{F L}(\mathbf{P}), 108$
retraction, 95
rewrite
one step, 256
Rival, I., 35, 62, 105, 109, 126-128
Rödl, V., 215
Rolf, H., 105
Rose, H., 62
Rosenkrantz, D., 262
Ruskey, F., 210

S-lattice, 108-126
Sands, B., 109
Sankappanavar, H., 25
Schmerl, J., 107
Schmid, J., 227, 252
Schweigert, D., 20
semidistributive lattice, 49-55, 126-128
semidistributivity, 1,18
join, 18
meet, 18
semilattice
congruence lattice, 65
semisingular element, 4, 171-176
separable
finitely, 97-99, 106
sequence
alternating, 236
B-type, 113
reducing, 236
set
D-closed, 47
down directed, 19
E-closed, 47
J-closed, 49, 71-76
join irredundant, 62
M-closed, 72
meet irredundant, 62
up directed, 19
Simon, K., 211, 213, 214
singular cover, 171
singular element, 171, 176-178
Skolem, T., 14, 241
Slavík, V., 95, 109, 130, 132, 177, 250
slim element, 22, 86-87, 160
Sorkin, J., 105
splitting lattice, 55-62, 77, 91, 129-132
splitting pair, 59
splittings of a free lattice, 200-204
staircase distributive, 132
standard epimorphism, 74, 76-78
Stanley, R., 210
Stephan, J., 253
Stickel, M., 256, 262
subelement, 17
sublattice of a free lattice, $22-25,96,100$, 106, 133, 183
distributive, 133
finite, 24, 108-132
substitution, 256
subterm, 10
$E_{0-}, 257$
successor, 236
supremum, 8
Szpilrajn, E., 209
tail, 233
Tamassia, R., 252
Tarjan, R., 224
Tarski, A., 20
Taylor, W., 7, 11, 25
term
lattice, 10
length, 10
representing an element, 11
terminal, 256
term equivalence problem, 262
term rewrite system, 256
associative and commutative, 255
convergent, 256
equational, 256
normal form, 255
terminating, 256
term tree, 242
topological sorting, 209
totally atomic element, 3, 135-149
transversal, 95
TRS, see term rewrite system

Tschantz element, 189
Tschantz triple, 189-198
Tschantz, S., 3, 178, 179, 189, 198, 257
type, 243

Ullman, J., 206, 221, 224
up directed set, 19
upper atomic element, 70
upper bound, 8
upper bounded homomorphism, 27-34
upper bounded lattice, 34-37, 44
upper cover, $8,67-70$
value, 243
variable, 10
variety, 11
vertices (of a graph), 208
weakly atomic lattice, 61-65, 91-94, 103
Whitman's condition, $1,13,24,112-113$
Whitman, P., 11
Whitman-like algorithm, 243
width, 219,235
ordered set, 8
Wille, R., 20, 105, 221
Wong, C., 62
word problem, 11-14
for $\mathbf{F L}(\mathbf{P}), 104$
Wormald, N., 252

Recent Titles in This Series

(Continued from the front of this publication)

3 M. Marden, Geometry of polynomials, 1949
2 N. Jacobson, The theory of rings, 1943
1 J. A. Shohat and J. D. Tamarkin, The problem of moments, 1943

