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Preface 

"On ignore a peu pres tout de quels groupes peuvent etre groupes fondamentaux de 
varietes algebriques,... " P. Deligne (1987)1 

This book was written because a lot can now be said about the fundamental 
groups of algebraic varieties and of compact Kahler manifolds. Over the last few 
years there has been a lot of progress on trying to understand which groups arise. 
These developments were the topic of the Swiss Seminar (Borel Seminar) in the 
Spring of 1995. To a large extent, this book is based on lectures given in the seminar, 
although it is not, and is not meant to be, a faithful account of the seminar. We 
try to explain what is currently known about the fundamental groups of compact 
Kahler manifolds2 and about some closely related questions. A lot of examples are 
given to show that this class of groups is large and interesting. However, most of 
the book is devoted to proving restrictions on these groups arising from the work 
of Johnson-Rees, Gromov, Carlson-Toledo, Simpson and many others. In many 
cases, especially when good accounts do not already exist, we give complete detailed 
proofs; in other cases we prove special results and refer the reader to the literature 
for the general case. The techniques used are a mixture of topology, differential 
and algebraic geometry, and complex analysis. 

Chapter 1, written mostly by D.K., is an introduction and overview, and it 
explains the context of the problem to which this book is devoted. The section on 
fundamental groups of compact complex surfaces contains a few new results which 
have not appeared elsewhere. 

Chapter 2, written mostly by D.K., discusses the general problem of finding a 
holomorphic map inducing a given representation or homomorphism of the funda
mental group of a compact Kahler manifold. In general, such a map does not exist, 
but there are two notable exceptions. The first one is the quotient homomorphism 
of the fundamental group to its first homology modulo torsion. The Albanese map 
is a holomorphic map realising this. The second exception is representations onto 
surface groups of genus at least two. We prove a theorem of Siu to the effect that 
if the surface group is of maximal genus for the given manifold, then the represen
tation is induced by a surjective holomorphic map with connected fibers from the 
given Kahler manifold to a Riemann surface. More generally, the property of ad
mitting some holomorphic map onto a closed hyperbolic Riemann surface is seen to 
be a property of the fundamental group of a compact Kahler manifold. This allows 
us to divide Kahler groups into so-called fibered and non-fibered groups. These 
concepts tie in nicely with some of the techniques and results in later chapters. We 

1[40], Page 1 
2Such groups shall be called Kahler groups for short. 
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give complete proofs based on classical arguments (Albanese map, Castelnuovo-de 
Franchis Theorem), which are toy versions of more delicate arguments in the same 
style which are used in later chapters. 

Chapter 3, written mostly by J.A., applies the techniques of real homotopy 
theory to study Kahler groups. Rather than looking at the fundamental group 
itself, we look here at its real Malcev completion. This approach goes back to the 
work of Sullivan and of Deligne-Griffiths-Morgan-Sullivan in the 1970s, but there 
are a number of new results as well. 

Chapter 4, written mostly by M.B., applies L2-cohomology to prove restrictions 
on the fundamental groups of Kahler manifolds, following an idea of Gromov and the 
elaborations on it by Arapura-Bressler-Ramachandran. We give a careful account 
of Gromov's theorem showing that Kahler groups cannot split as free products. 
More generally, we show that Kahler groups have finitely many ends. These results 
are proved by constructing holomorphic fibrations over curves, generalising the 
results of Chapter 2. 

Chapter 5 gives an outline of some existence theorems for harmonic maps. 
These are needed for the applications in Chapters 6 and 7. First we outline a proof 
of the theorem of Eells-Sampson, giving existence of harmonic maps in homotopy 
classes of maps whose target has a non-positively curved Riemannian metric. Then 
we explain the generalisation of this result to twisted or equivariant harmonic maps 
due to Corlette, Donaldson and Labourie. 

Chapter 6, written mostly by D.T., applies harmonic maps to the study of 
Kahler groups. It begins with a proof of the Siu-Sampson Bochner formula, which 
implies that certain harmonic maps are in fact pluriharmonic. Combining this with 
the existence theorems of Chapter 5, we have a large supply of pluriharmonic maps 
from Kahler manifolds to negatively curved manifolds. Following Carlson-Toledo, 
Siu and Sampson, we prove a general factorisation theorem for such maps, which 
has a number of geometric corollaries. These include a proof of Siu's theorem that 
was proved using more classical methods in Chapter 2, and many restrictions on 
Kahler groups. For example, it is shown that fundamental groups of real hyperbolic 
manifolds of dimension at least three cannot be fundamental groups of compact 
Kahler manifolds. The final section of this chapter discusses geometric applications 
of more general harmonic maps, maps for which the target space is a negatively 
curved space which need not be a manifold. This more general existence theorem 
is not covered in Chapter 5, and we refer to the original paper by Gromov-Schoen 
for it. 

Chapter 7, written mostly by K.C., is an introduction to the non-Abelian 
Hodge theory of Corlette and Simpson. This uses the existence theorems for har
monic maps in Chapter 5. There is a detailed discussion of the Riemann surface 
case due to Hitchin. This motivates the general case, the details of which are often 
omitted and replaced by references to the original papers. Some applications to 
fundamental groups are given following Simpson. At the end we present Reznikov's 
recent proof of the Bloch conjecture. 

Chapter 8, written mostly by D.T., gives a number of very non-obvious ex
amples of groups which occur as Kahler groups, in fact, as fundamental groups of 
smooth complex projective varieties. This includes non-Abelian nilpotent groups, 
and some groups which are not residually finite. Some of the examples in this 
chapter have not appeared elsewhere. 
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There are two appendices summarising standard material used throughout the 
book. The first appendix, written by J.A. and D.K., presents some generalities 
about projective completions of finitely generated groups, and the second one serves 
as a reference for results in Hodge theory. 

The main topic not covered in this book is the so-called Shafarevich conjecture3. 
At the end of his book [114], Shafarevich raised the question whether the universal 
covering of a smooth complex algebraic variety has to be holomorphically convex, 
and one can ask the same question for arbitrary compact Kahler manifolds. Over 
the last few years, the question of Shafarevich has led to intense activities in al
gebraic geometry. These are obviously related to the study of Kahler groups, but 
they tend to have a different flavour from the material presented in this book. We 
refer the reader to the recent monograph by Kollar [81] for an overview of this 
topic. See also [13], [79]. 

The 1995 Borel Seminar was organised by D. Kotschick and M. Burger with the 
cooperation of N. A'Campo and J. Amoros. It met ten times for a total of twenty-
five lectures given by N. A'Campo, J. Amoros, M. Burger, F. Campana, J. Carl
son, K. Corlette, D. Kotschick, F. Labourie, S. Maier, D. Toledo, A. Valette and 
K. Zuo. The lecturers at a preparatory meeting in December 1994 were F. Catanese 
and D. Kotschick. Financial support was provided by the Hie Cycle Romand de 
Mathematiques, the Swiss National Fund and the University of Basle. 

We are grateful to all the speakers, and to the other participants, for their 
valuable contributions to the seminar, and, by extension, to our understanding of 
the topic of this book. 

J .A, M.B., K.C., D.K. and D.T. 
December 1995 

Authors' addresses: 
J.A.: DEPARTAMENT DE MATEMATICA APLICADA I, ETSEIB, UNIVERSITAT 
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APPENDIX A 

Pro group theory 

This Appendix collects the basic constructions and properties of projective com
pletions of groups used in this book. 

1. Definitions of group completions 

Categorically, group completions are defined as left adjoint functors of inclu
sions. 

We denote by P a subcategory of the category of groups Qr and by i: P c-> Qr 
its inclusion functor. For example, P could be the category of finite or of nilpotent 
groups, with morphisms their group homomorphisms. We will denote by Hom-p 
the morphisms of the category P. 

The denning property of the left adjoint functor -v: Qr —> P, if it exists, is 
that for every pair of objects T € Qr, A E P , there is a bijection 

(12) HomGr{T,i(k)) 3 * Homv(rv, A) , 

which is natural in both arguments. 

DEFINITION A. l . Let Qr be the category of groups, and V C Qr a, subcategory 
such that the inclusion functor i: P c-> Qr has a left adjoint functor 

-v: Qr —* V . 
The V-completion of a group T is the homomorphism 

which is the element of Homgr(r, i(Tv)) corresponding to the identity of Yv under 
the adjointness bijection (12). 

There is an equivalent definition of the 'P-completion in terms of a universal 
property: 

DEFINITION A.2. Let T be a group. The V-completion of T is a group homo
morphism 

where Tv is an object of V having the universal property for homomorphisms from 
T to groups in V. 

In other words, r]v has the following property: every group homomorphism 
/ : T —• A, where A is in P, factors uniquely through rjv to give a commutative 
diagram 

T -X. V? 
f \ / r 

A 
121 
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The universal property implies that the universal object it defines is functorial 
in T and is unique up to canonical isomorphism. However, a universal object with 
the postulated property may not exist, as in the following example: 

EXAMPLE A.3. As Z has finite quotients of arbitrarily large order, there cannot 
exist any finite group through which all the quotient homomorphisms factor. 

By Definition A.l, the existence of the P-completion is equivalent to the exis
tence of a left adjoint for the inclusion functor i: V c-^ Qr. There is a categorical 
sufficient condition for this. In the situation at hand, the condition is very simple: 

PROPOSITION A.4. IfV is a subcategory of the category of groups closed under 
projective limits, then the inclusion functor i: V —> Qr has a left adjoint. 

P R O O F . Using the universal property, rather than the categorical definition, 
one constructs the objects Tv for V closed under projective limits as a projective 
limit of homomorphisms F —> A E P . • 

The fact that not every subcategory defines a completion is remedied by considering 
the projective closure of a category, e.g. pro-finite or pro-nilpotent groups and 
completions. Nevertheless, the ^-completion rjv: T —> Tv is determined by the 
homomorphisms from T to any cofinal set of objects in V, so the pro-finite or pro-
nilpotent completions are determined by their universal properties with respect to 
homomorphisms of T into finite or nilpotent groups. In fact, we may and do define 
the ^-completion of a group for any subcategory V of groups as the left adjoint of 
the inclusion functor of its projective closure in the category of all groups. 

Here are some examples of P-completions: 

EXAMPLE A.5. It is customary to denote the pro-finite completion 7yfinite: T —• 
pfinite k y 

77: r — > f . 
When r is the fundamental group of an algebraic variety, T is its algebraic 

fundamental group. 

EXAMPLE A.6. The pro-l-finite completion is the completion with respect to 
the subcategory of pro-Z-groups, i.e., projective limits of finite groups of order /n , 
where / is any prime. It is denoted as 

„ f : r — > r , A 

and may be of interest for a motivic study of fundamental groups. 

EXAMPLE A.7. The nilpotent completion 
—nilp . p r^nilp 

corresponds to taking for V the category Nilp of pro-nilpotent groups. 

EXAMPLE A.8. The torsion-free nilpotent completion corresponds to the case 
when V is the projective completion Nilpo of the full subcategory of torsion-free 
nilpotent groups and will be denoted by1 

nilp p j^nilp 
rj0 : 1 • 1 0 

^ h i s notation conflicts with [23], where our TQ1 P is denoted Tnxlp, which is more naturally 
reserved for the previous example. 
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EXAMPLE A.9. The k-unipotent completion is obtained by taking for V the 
category Uk of projective limits of /c-unipotent groups, where k is any field of 
characteristic zero. This is denoted by 

rj<S> k : T — > T ® k . 

When k = R and F is the fundamental group of a smooth manifold, T 0 R is 
its de Rham fundamental group. 

EXAMPLE A. 10. The algebraic hull2 of T 

is obtained by taking for V the projective completion of the category of afflne 
algebraic groups over C. 

A very desirable property of a completion functor -v is idempotence, i.e., -v o 
% o -v = •'p, or the slightly stronger property that -v o i = Id-p, that is, Tv = T 
naturally for all T G V. The latter admits a neat description in our case: 

LEMMA A. 11. Let V be a group subcategory closed under projective limits. 
Then rjv is a natural isomorphism Tv = T for all T G V if and only ifVdQr is 
a full subcategory, i.e., Hom<p(F, A) = Homgr(T, A) for allT,AeV. 

PROOF. The completion -v exists, and by its definition we have 

Homgr(r,i(A)) ^ Homv(rv, A) 

for every T eV. 
If T^ = T for all T G V, this is the definition of fullness for V. Conversely, if 

V is full, setting Tv = T for all T G V, the identity of T G V satisfies the universal 
property defining rjv. • 

Looking at the above examples, it turns out that the completions A.5-A.8 are 
idempotent, but the A;-unipotent completion and the algebraic hull are not, because 
of algebraicity conditions on the morphisms of A;-unipotent and afrlne complex-
algebraic groups. 

When r)v is not an isomorphism, it may still be injective or surjective. More 
generally, it is interesting to study its kernel and cokernel. The case when the 
completion is injective is of particular importance. 

DEFINITION A. 12. A group T is residually V if its completion r]v: T —> Tv is 
injective. 

Being residually V is equivalent to the following condition on T: for each g G T 
which is not the neutral element there exists a homomorphism / : T —> A with 
AeV such that f(g) ^ e. 

EXAMPLE A. 13. The group Z, and in general torsion-free Abelian groups, are 
residually V in all of the previous examples. The same holds for finite rank free 
groups, although the proof is less straightforward. 

In Chapter 8, we use the following criterion for residual finiteness: 

2Some authors use the notation 7r" g for the algebraic fundamental group of Example A.5. 
This should not be confused with the algebraic hull. 
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THEOREM A. 14 (Miller [92]). Consider an extension of groups 

such that 
1. the groups A and C are residually finite, and 
2. A is finitely generated and has trivial center. 

Then B is residually finite. 

We conclude this section with some easy examples of P-completions: 

EXAMPLE A.15. 1. Y = {1} => f = rfp = T ® fc = {1} , 

2. |r| < oo => f = r and rfp = r ® fc = {i}, 
3. r = Z => f = n p p r i me^, i f l p = T = Z and r ® fc = fc, 
4. r finitely generated Abelian = > f = (Z)rank<r) x Tor(T), r£ i l p = r / T o r and 

r <8) fc = r ®z fc (usual tensor product, see Example A. 17). 

2. Nilpotent completions 

The nilpotent, torsion-free nilpotent and fc-unipotent completions described 
in the above examples are in fact strongly related to each other. They can all be 
obtained by taking limits of simple projective systems associated with the lower 
central series. In many cases they can even be computed explicitly. 

For any two elements a, 6 G T, their commutator is denoted by [a, b]. The 
commutator of two subgroups G, H C T is defined to be the subgroup of T generated 
by the commutators [a, b] with a £ G,b £ H. The lower central series of a group T 
is defined recursively by 

Ti = r , rn+i = [rn, r]. 
We can naturally assign to T a tower of nilpotent quotients 

(13) ... —+ r/r3 — r / r 2 . 
It is immediate to check that homomorphisms from F to nilpotent groups of nilpo-
tency class n factor through r / r n + i . Thus, the tower (13) is cofinal for homo
morphisms from T to all nilpotent groups. Therefore, its projective limit is the 
nilpotent completion: 

rni/p = jimr/rn 
and the homomorphism r]nilp is induced by the projections T —• T/Tn. 

The torsion-free nilpotent completion can be computed in a similar manner. 
For a nilpotent group # , the torsion elements form a normal subgroup, which is 
finite if H is finitely generated. Thus, by dividing by this subgroup, we can naturally 
associate to H a torsion-free nilpotent group H/ror and to every group T a tower 
of torsion-free nilpotent groups 

(14) ... —+ (r/r3)/Tor —> (r/r2)/Tor. 
As in the case of the nilpotent completion, the torsion-free nilpotent completion of 
T is the projective limit of this tower, together with the homomorphism induced 
by the projections of T onto the finite stages of the tower. 

The fc-unipotent completion also admits a characterisation in terms of the lower 
central series, but the details are more involved. In the case of finitely presentable 
groups, there is an alternative description in terms of the group algebra. 
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Let T be a finitely presentable group, and k a field of characteristic zero. The 
group algebra kT has an augmentation fc-algebra homomorphism 

e: kT —>k 

j e T h - i , 

Denote by J = kere the augmentation ideal, and by kf = ^mkT/Jn the J-adic 
completion of the group algebra3. The completed group algebra kf has a coproduct 
defined by 

for all g G T, which makes it into a complete Hopf algebra. As such, it has two 
subsets of distinguished elements: 

1. The group-like elements 

g(kf) = {x G 1 + J | A(x) = x ® x} , 

which form a group with respect to the multiplication in the algebra. 
2. The primitive elements 

V(kf) = { x € J | A x = a;<8>l + l ® a : } , 

which form a Lie algebra over k with the bracket defined by commutation 
in the algebra. 

For the proof of the following Proposition, we refer to [103]: 

PROPOSITION A. 16 (Quillen). For a finitely presentable group T, its k-unipotent 
completion is 

r®k9*g(kr), 
with the morphism rj® k induced by the natural inclusion T «—• kT. 

EXAMPLE A. 17. If T is an Abelian group, the above construction yields the 
ordinary tensor product, i.e., r<g)A; = T(8)A:, which is easily seen to have the universal 

z 
property for homomorphisms to unipotent groups. This justifies the notation for 
the fc-unipotent completions. 

For any field k of characteristic zero, there is a well-known equivalence between 
unipotent groups and nilpotent Lie algebras over k. This equivalence is given, for 
instance, by the Baker-Campbell-Hausdorff formula, and it is compatible with 
projective limits. This induces a categorical equivalence between pro-fc-unipotent 
groups and pro-A;-nilpotent Lie algebras. It is often convenient to work with the 
Lie algebra, rather than with the group. 

DEFINITION A. 18. Let T be a group. The k-Malcev algebra of T, denoted by 
£(T, fc), is the pro-fc-nilpotent Lie algebra of the pro-fc-unipotent group T <g> k. 

When the group T is finitely presentable, its Malcev algebra can also be char
acterised in terms of the completed group algebra as the Lie algebra of primitive 
elements: 

£ ( r , jfe) 2 P(kT) . 

3This notation has nothing to do with the pro-finite completion. In particular, kF and fcf 
are entirely different algebras. 
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The fc-Malcev algebra of T may be presented as a projective limit, analogous 
to that of the nilpotent completion rm Z p , 

• •.->£3(r,fc)->£2(r,*)->jCi(r,*), 
where Cn(T,k) is the n-step nilpotent k-Malcev algebra of T: it may be defined 
as the A;-Malcev algebra of the group T / r n + i , or alternatively when T is finitely 
presentable as the quotient V(kT)/ Also when T is finitely pre
sentable, the n-step Malcev algebras are finite-dimensional, and £n(r , /c) deter
mines the limit algebra £ ( r , k) when n is sufficiently large. 

To end this Section, here is a convenient homological characterisation of homo
morphisms inducing isomorphisms of Q-unipotent completions: 

THEOREM A. 19 (Stallings [125]). Let f: F —• A be a homomorphism be- . 
tween finitely presentable groups with fi: Hl(F, Q) —• # l ( A , Q) bijective for i < 1 
and infective for i = 2. Then / ® Q: T ® Q —• A 0 Q is an isomorphism. 

As we will see in the following section, this theorem is actually valid with 
coefficients in any field k of characteristic zero. 

3. Comparison of nilpotent completions 

In this Section we compare the different nilpotent completions of a finitely 
presentable group P. In general, one has the following result: 

LEMMA A.20. IfV C V C Qr are nested subcategories, then there are functo
rial homomorphisms 

vv _ Tv 
which, when factorised through rjv , yield canonical isomorphisms 

This is clear, because the homomorphisms of T to groups in V contain the homo
morphisms to groups in V'. Formally, one can check the required universal property 
by a diagram chase. 

REMARK A.21. It is a consequence of the lemma that, if Tv = A p , then a 
fortiori Tv' = Av' for all subcategories V C V. 

This Lemma and Remark apply to the nilpotent completions because of the 
following inclusions: 

Uk C Nilp0 C Nilp . 
Some properties of the functorial homomorphisms associated with these inclusions 
are given by the following Lemmata. 

LEMMA A.22. For every finitely presentable group T, the natural homomor
phism rnxlp —• TQ1 P is surjective and has a pro-finite kernel. 

PROOF. The natural homomorphisms between the finite stages of the towers 
(13) and (14) are surjective and have finite kernels. Passing to the projective limits 
proves the statement. • 

LEMMA A.23. The natural homomorphism r™ p —> T <g) k is infective. 
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PROOF. AS every group is a projective limit of finitely generated groups, it is 
enough to prove the claim for finitely generated T. By the same reduction, one only 
needs to prove that every finitely generated torsion-free nilpotent group embeds in 
a fc-unipotent group. This is done for example in an Appendix to [103]. • 

The image of the homomorphism YQI1P —» T®k is, morally speaking, an integral 
form of T 0 k, as the following lemma on the nilpotent steps of the tower shows. 

LEMMA A.24. IfT is a finitely presentable nilpotent group, then every element 
g G r 0 Q has the property that there exists an n such that 

gn ernilp c r 0 Q . 

P R O O F . See the Appendix to [103]. • 

The categories of pro-A;-unipotent groups are partially ordered by the field 
extensions K\k, with the inclusion Uk C UK given by extension of scalars. The 
relation between the /c-unipotent completions for different k is similarly given: 

LEMMA A. 25. IfT is finitely presentable, given a field extension K\k, there 
are K-Lie algebra isomorphisms 

{£(T,k))®K^£(T,K) , 
k 

which are natural in T. 

This is not a direct consequence of the universal property and categorical dia
gram chasing; it follows from properties of unipotent groups. For its proof, we refer 
to [71] or to [66]4. 

Lemma A.25 implies that there are natural isomorphisms 

C(T,k)^C(T,Q)®k . 
Q 

Thus all the fc-unipotent completions are obtained from the Q-unipotent comple
tion by extension of scalars. 

By Remark A.21, r ® f c i s a coarser invariant of T than T™ p. The comparison 
between the two completions is easier if one is given a homomorphism / : T —* A 
with good properties, such as those induced by proper holomorphic maps. 

LEMMA A.26. Let f: T —> A be a homomorphism between finitely presentable 
groups. 

(i) If Im(f) C A has finite index, then f 0 k is an isomorphism if and only if 
f™ p is infective and has finite index image. 

(ii) / / / is surjective, then f 0 A; is an isomorphism if and only if f^1 p is. 

PROOF. By the extension of scalars property of Lemma A.25 it suffices to prove 
the case of k — Q. 

(i) Let / 0 Q be an isomorphism. As YQI1P —> T0Q is injective, the map f$l p 

must also be injective. Moreover, the fact that Im(/) C A has finite index implies 
that the induced homomorphisms 

(r/rn)/Tor — (A/An)/Tor 

We owe th i s reference t o R. Hain . 
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have images with finite index. Consequently, there is a tower of surjective homo
morphisms from the finite quotient A/Im(/) to the projective system of quotients 

> ( ( A / A n ) / r o r ) / I m ( / ) — . . . 
These homomorphisms extend to a surjection from A/Im(/) to its projective limit 
A^ p / Im( / 0

n i / p ) , which must therefore be finite. 
Conversely, assume that f™ p is injective and almost surjective. This implies 

that all the finite steps of the projective system 

(/om'p)n = ( r / r n ) / T o r —> (A/A n ) / T o r 

must also be injective and almost surjective homomorphisms. Consider now the 
projective system of maps 

( / <8> Q)„ : ( r / r n ) 0 Q —• (A/A n ) ® Q . 

By Lemma A. 24 every element of ker(/ ® Q)n has a power in ker(/™ p)n = {1}. 
The groups (T/Tn) <g) Q are torsion free, so the homomorphisms (/ ® Q) n must be 
injective. Moreover, every element of (A/A n ) ® Q has a power in (A/An)/Tor> 
thus also a possibly higher power in Im(/^ l / p ) n C Im(/ <g> Q)n . As ( / <g> Q)n is a 
homomorphism of Q-unipotent groups, this means that it is onto. 

The completion / ® Q is the projective limit of the isomorphisms (F(g)Q)n, so 
it must also be an isomorphism. 

(ii) can be proved analogously. • 

Although the categorical inclusions might lead one to expect the opposite, 
the extension of scalars property of Lemma A.25 shows that field extensions K\k 
coarsen the isomorphism type of fc-unipotent completions. This is illustrated by 
the following example, which is Remark II.2.15 in [104]: 

EXAMPLE A.27. For any field A:, the Heisenberg algebra of dimension 3 with 
coefficients in k is the Lie algebra 

M*0 = j (O 0 y\ Gflf(3,fe)l . 

The Q-Lie algebras f)i = f>3(Q[>/2]) and fj2 = 1)3(Q) x ta(Q) a r e n o t isomorphic, 
but the E Lie algebras \)\ 0 R and ()2<8)K are. 

Q Q 



APPENDIX B 

A glossary of Hodge theory 

The most fundamental tool in the study of the topology of Kahler manifolds is 
Hodge theory. In this appendix we collect a few basic facts of this theory, referring 
to the standard textbooks, e.g. [55], for proofs and further discussion. 

Let (X, u) be a compact Kahler manifold. We use the following notation: 

CONVENTION B. l . (i) J denotes the complex structure TX —> TX and its 
transpose T*X - • T*X, 

(ii) the dc operator is defined as dc = J~1dJ, 
(iii) the Laplacian of a map is denoted by A / = — * dv * df, where d^ is the 

covariant derivative induced by the metrics on the domain and target man
ifolds. 

The Kahler form uo is closed by definition, and thus defines a class in H2(X, C). 
As ujn is a non-zero multiple of the volume form, we have 

[u>k]^0eH2k{X,C) , 
for all k < n, and thus: 

FACT B.2. If X is a compact Kahler manifold, its Betti numbers of even degree 
are non-zero. 

DEFINITION B.3. A (pure) Hodge structure of weight k consists of a free 
Abelian group Hz of finite rank, together with a decomposition of its complexi-
fication: 

(15) 

with the property that 

for all p, q. 

Alternatively, a Hodge structure can be described as a decreasing filtration of 

(16) Hz 0 z C = F° D F1 D . . . D Fk 

such that 
Hz®zC = Fp® Fk-P+i . 

The existence of the filtration is clearly equivalent to Definition B.3 because (15) 
leads to (16) by setting 

FP = Hk,0 0 0 JJp,k-p . 

and conversely, (16) leads to (15) by setting 

H™ - F p f l F . 

HZ®ZC = @p+q=kHp-

Jjp,q _ JJq,p 

129 
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On a compact Kahler manifold, the equality 

Ad = 2Aa = 2A^ 

of Laplacians implies that the type decomposition of differential forms passes to 
cohomology and defines a Hodge structure of weight k on Hk(X, Z)/tors[on. In fact, 
the integral lattice does not play any role in this book, and we could just as well 
think of a Hodge structure as a type decomposition or nitration as above, defined 
on the complexification of a real vector space. 

The Dolbeault isomorphism gives a natural interpretation of the Hodge de
composition of Hk (X, C), by identifying the space of harmonic forms of type (p, q) 
with the sheaf cohomology group H^{£lp

x). In particular, the spaces of holomorphic 
forms inject into the cohomology. 

The existence of a pure Hodge structure of odd weight on a lattice implies that 
the rank of the lattice is even. Thus: 

FACT B.4. If X is a compact Kahler manifold, its Betti numbers of odd degree 
are even: 

&2m+iP0 = 0 (mod 2 ) . 

On many occasions we use the following deeper result, which one can think of 
as a sharpening of Fact B.4: 

THEOREM B.5 (Hard Lefschetz Theorem). If(X,u) is a compact Kahler man
ifold of complex dimension n, then multiplication by the cohomology class of LJ 
defines an isomorphism 

uk: Hn~k(X,C) —->Hn+k{X,C) , 

for every k € { 1 , . . . n} . 

COROLLARY B.6. For allk < n, the following bilinear pairing is non-degenerate: 

Hk(XX)*Hk(X,C)-^C 

(<*,/?)»—• / aApAujn-k . 
Jx 

P R O O F . By Theorem B.5, multiplication by ujn~k is an isomorphism if k < n. 
Then the claim follows from Poincare duality. In the middle dimension k = n, the 
claim is just Poincare duality. • 

When k = 1, the Corollary is very useful in the study of Kahler groups. As we 
have seen in Example 1.20, the above pairing passes to the group cohomology of 
7Ti(X), which immediately leads to strong restrictions. 

The operator dc — J~ldJ is the real restriction of the operator dc = i(d — d) 
on the Dolbeault complex ££ ® C. It satisfies the following identities: 

(i) nilpotence: (dc)2 = 0, 
(ii) commutativity with dc: ddc = —dcd = 2idd, 

(iii) Laplacian: A^c = A^ = 2A# = 2A^. 
The Laplacian identity implies the isomorphism of cohomology algebras H* (X, E) = 
H*d{X)°iH*dc{X). 

A crucial property of dc is: 
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LEMMA B.7 (ddc Lemma). Let X he a compact Kdhler manifold, and let a he 
a differential form on X such that a = dj. Then there exists a form (3 such that 
a = ddc/3. 

As J and ddc commute, the operators d and dc are actually interchangeable in 
the statement of the Lemma, this yields a "dcd Lemma", 
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