An Introduction to Infinite Ergodic Theory

Jon Aaronson
Selected Titles in This Series

50 Jon Aaronson, An introduction to infinite ergodic theory, 1997
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997
46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996
43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
29 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in H^∞, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
19 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980
16 O. Timothy O'Meara, Symplectic groups, 1978
15 J. Diestel and J. J. Uhl, Jr., Vector measures, 1977
14 V. Guillemin and S. Sternberg, Geometric asymptotics, 1977
13 C. Pearcy, Editor, Topics in operator theory, 1974
An Introduction to Infinite Ergodic Theory
An Introduction to Infinite Ergodic Theory

Jon Aaronson
ABSTRACT. The book is about measure preserving transformations of infinite measure spaces. It could be of interest to mathematicians working in ergodic theory, probability and/or dynamical systems and should be accessible to graduate students.
For Nilli
Contents

Contents ix
Preface xi

Chapter 1. Non-singular transformations 1
§1.0 Standard measure spaces 1
§1.1 Recurrence and conservativity 14
§1.2 Ergodicity 21
§1.3 The dual operator 33
§1.4 Invariant measures 36
§1.5 Induced transformations and applications 41
§1.6 Group actions and flows 48

Chapter 2. General ergodic and spectral theorems 53
§2.1 von Neumann’s mean ergodic theorem 54
§2.2 Pointwise ergodic theorems 56
§2.3 Converse to Birkhoff’s theorem 64
§2.4 Transformations with infinite invariant measures 70
§2.5 Spectral properties 73
§2.6 Eigenvalues 76
§2.7 Ergodicity of Cartesian products 81

Chapter 3. Transformations with infinite invariant measures 85
§3.1 Isomorphism, factors, and similarity 86
§3.2 Intrinsic normalising constants and laws of large numbers 93
§3.3 Rational ergodicity 98
§3.4 Maharam transformations 102
§3.5 Category theorems 108
§3.6 Asymptotic distributional behaviour 112
§3.7 Pointwise dual ergodicity 118
§3.8 Wandering rates 130

Chapter 4. Markov maps 139
§4.1 Markov partitions 139
§4.2 Graph shifts 140
§4.3 Distortion properties 143
§4.4 Ergodic properties of Markov maps with distortion properties 149
§4.5 Markov shifts 156
§4.6 Schweiger's jump transformation 161
§4.7 Smooth Frobenius-Perron operators and the Gibbs property 164
§4.8 Non-expanding interval maps 172
§4.9 Additional reading 180

Chapter 5. Recurrent events and similarity of Markov shifts 181
§5.1 Renewal sequences 181
§5.2 Markov towers and recurrent events 183
§5.3 Kaluza sequences 188
§5.4 Similarity of Markov towers 191
§5.5 Random walks 194

Chapter 6. Inner functions 201
§6.1 Inner functions on the unit disc 201
§6.2 Inner functions on the upper half plane 208
§6.3 The dichotomy 212
§6.4 Examples 214

Chapter 7. Hyperbolic geodesic flows 223
§7.1 Hyperbolic space models 224
§7.2 The geodesic flow of H 227
§7.3 Asymptotic geodesics 229
§7.4 Surfaces 231
§7.5 The Poincaré series 235
§7.6 Further results 246

Chapter 8. Cocycles and skew products 247
§8.1 Skew Products 247
§8.2 Persistencies and essential values 250
§8.3 Coboundaries 253
§8.4 Skew products over Kronecker transformations 256
§8.5 Joinings of skew products 264
§8.6 Squashable skew products over odometers 267

Bibliography 275

Index 281
Preface

Infinite ergodic theory is the study of measure preserving transformations of infinite measure spaces (early references being [Hop1] and [St]). It is part of "non-singular ergodic theory", the more general study of non-singular transformations (since a measure preserving transformation is also a non-singular transformation). Non-singular ergodic theory arose as an attempt to generalise the classical ergodic theory of probability preserving transformations. Its major success was the ratio ergodic theorem. Another side to the theory also developed concentrating on facts which are valid "in the absence of invariant probabilities".

This book is more concerned with properties specific to infinite measure preserving transformations.

It should be readable by anyone initiated to metric space topology and measure theoretic probability.

Some readers may like to begin by following an example and perhaps one of the simplest in the book is Boole’s transformation $T : \mathbb{R} \to \mathbb{R}$ defined by $Tx = x - \frac{1}{x}$.

This is a conservative, exact measure preserving transformation of \mathbb{R} equipped with Lebesgue measure; and for each absolutely continuous probability P on \mathbb{R} and non-negative, integrable function $f : \mathbb{R} \to \mathbb{R}$ with unit integral,

$$ P \left(\left\lfloor \sum_{k=0}^{n-1} f \circ T^k \right\rfloor \leq \frac{\sqrt{2n}}{\pi} \right) \to \frac{2}{\pi} \int_0^t e^{-\frac{s^2}{\pi}} \, ds $$

as $n \to \infty$.

The book begins with an introduction to basic non-singular ergodic theory (chapters 1 and 2), including recurrence behaviour, existence of invariant measures, ergodic theorems and spectral theory. One of the results in §2.4 is the collapse of absolutely normalised pointwise ergodic convergence for ergodic measure preserving transformations of infinite measure spaces.

This leaves a wide range of possible "ergodic behaviour" which is catalogued in chapter 3 mainly according to the yardsticks of intrinsic normalising constants, laws of large numbers and return sequences (the return sequence of Boole’s transformation is $\frac{\sqrt{2n}}{\pi}$).

The rest of the book (excepting chapter 5) consists of illustrations of these phenomena by examples.

Markov maps which arise both in probability theory and in smooth dynamics are treated in chapter 4. They illustrate distributional convergence phenomena (mentioned above) as do the inner functions of chapter 6. Geodesic flows on hyperbolic surfaces were one of the first examples considered ([Hop1]), and these are treated in chapter 7. Some of the extremely pathological examples in the subject
can be found in the chapter on cocycles and skew products (chapter 8). In chapter 5, there is a modest beginning to the classification theory.

There is a small (but insufficient) amount of probability preserving ergodic theory in the book, and I recommend the uninitiated reader to take advantage of the excellent books available on this subject, including [Cor-Sin-Fom], [De-Gr-Sig], [Fu], [Mañ], [Parr2], [Pet], [Rudo], [Wa].

The reader will no doubt find that many (but hopefully not the reader’s favourite) topics are conspicuous by their absence. By way of excuse I can only say that some of these are better covered elsewhere, while others are deemed too advanced for an introduction and yet others are too ”fresh” for a book (there being no time to write about them).

Lastly I come to the thanks. I would like to thank the people who worked with me on the topics described in the book (see bibliography). Without them, none of this would have been possible. Also I would like to thank my colleagues Gilat and Lemańczyk; and my student Omri Sarig who found mistakes in early versions (any remaining errors being my sole responsibility having been introduced subsequently while correcting mistakes).

Jon. Aaronson
Tel Aviv, October 1996
Bibliography

BIBLIOGRAPHY

D. G. Kendall, Delphi semigroups, Springer Lecture Notes in Math. 31 (1967), 147-175.

S. Lang, $SL_2(R)$, Addison-Wesley, Reading, Mass. USA., 1975.

[St] V. V. Stepanov, Sur une extension du théorème ergodique, Compositio Math. 3 (1936), 239-253.

Index

numbers refer to sections (i.e. a.b=§a.b)

adapted pair 4.7
adding machine 1.2
algebraic joinings 8.5
analytic section theorem 1.0
analytic set 1.0
aperiodic 4.1
approximately generate 8.4
Arzela-Ascoli theorem 4.7
asymptotic renewal equation 3.8
asymptotic type 3.3
basic partition 4.2
Bernoulli shift,
 one sided, two sided 1.2
Birkhoff’s ergodic theorem 2.2,
 converses to 2.3
Blaschke,
 series 6.1,
 theorem 6.1
Boole’s transformation
 1.1 1.3 2.2 3.7 3.8 6.4
Borel sets 1.0
Cartesian product space 1.0
Cauchy measure 6.2
Chacon-Ornstein lemma 2.2
Chung taboo distribution 4.5
coboundary 8.1
cocycles 8.1
cohomologous 8.1
completely squashable 8.6
completion of a measure space 1.0
conditional expectations 1.0
conjugacy lemma 3.5
conservative, part 1.1
continued fraction 8.4,
 -mixing 3.7
 -mixing, exponential 4.7
convergent 8.4
cylinder set 4.1
Darling-Kac,
 sets 3.7,
 theorem 3.6
Denjoy-Wolff,
 point 6.1 6.2,
 theorem 6.1
denominator 8.4
dichotomy 6.3
Dirichlet,
 fundamental domain 7.4,
 set, weak 2.6
disintegration theorem 1.0
dissipative, part 1.1 1.6
distortion 4.3,
 property 4.3, strong -, weak - 4.3,
 proposition 4.3
dyadic integers 1.2
eigenfunction 2.6
eigenvalue 2.6,
 -theorem 2.6
equidistribution corollary 7.5
ergodic decomposition 2.2
ergodic multiplier theorem 2.7
ergodic 1.0 1.6
essential values 8.2
exact 1.2
exhaustion lemma 1.0
existence of invariant probability 1.4
extension 3.1,
 \(G^- \), 8.1,
 Maharam 3.4 8.4,
 natural 3.1
factor 1.0 3.1,
 map 1.0 3.1,
 measure space 1.0,
 proposition 1.0 3.1,
 transformation 1.0 3.1
feeble convergence 3.3
fibre,
 expectation 3.1,
 measures 1.0, dilation of 1.0
fixed points,
 attractive, repulsive,
 indifferent 4.3
flow 1.6,
 \(G^- \), 7.0, 7.2, 7.4
 geodesic 7.1
genesis 7.1,
 directed 7.2,
 flow 7.2
Gibbs property 4.6
graph 4.1,
 shift 4.1
group,
 Fuchsian 7.0,
 norm 1.6,
 topological 1.0 1.6
group joinings,
 admissible, dilation of 8.5
Halmos’ recurrence theorem 1.1
harmonic measure 6.1 6.2
hereditary collection 1.0,
 measurable union of 1.0
homogeneous, weakly - 3.3
Hopf’s ergodic theorem 2.2
Hopf’s lemma 7.3
Hopf-Tsuji theorem 7.5
horocycle 7.3
Hurewicz’s ergodic theorem 2.2
hyperbolic distance 7.1
incidence graph 4.1
inner function 6.1, 6.2
invariant factor 2.2
invariant measure 1.5,
 maximally supported 1.5
inverse theorem 3.6
invertible map 1.0
invertible, locally 1.0
irreducible 4.1 4.5
isomorphism 3.1
isomorphism of measure spaces 1.0
isomorphism 1.0
joining,
 algebraic 8.5,
 group- 8.5,
 self- 8.5
jump,
 distribution 5.5,
 transformation 4.1
Kac’s formula 1.5
Kaluza sequence 5.3
Karamata’s Tauberian theorem 3.6
Kolmogorov’s zero-one law 1.2
Komlos’ theorem 1.4
Krengel’s theorem 1.4
Kronecker transformation 1.2
Kuratowski’s isomorphism theorem 1.0
law of large numbers 3.2
Lebesgue space 1.0
lifetime distribution 5.1
line elements 7.2
Lipschitz continuity, local 4.6
local,
 invertibility lemma 1.0,
 limit theorem 5.5
Lusin’s theorem 1.0
Maharam,
 extension 3.4,
 ’s recurrence theorem 1.1
Markov,
 interval map 4.3,
 map 4.2,
partition 4.2, period of a state 4.1
property 3.7, periods of invariant functions of a skew product 8.2
shift 4.1 4.3 4.5, persistencies 8.2
tower, simple- 5.2 persistent state 4.1

maximal, Poincaré series,
 ergodic theorem 2.2, Abelian, asymptotic 7.5
 inequality 2.2 Poincaré’s recurrence theorem 1.1
mean ergodic theorem 2.1 Poisson measure 6.1
measurable, pointwise,
 function 1.0, convergence 2.2,
 image theorem 1.0, dual ergodic 3.7,
 map 1.0 ergodic theorems 2.2

measure, Polish space 1.0
 Cauchy 6.2, Pommerenke’s theorem 6.3
 fibre 1.0, positive,
 harmonic 6.1, definite 2.5,
 Poisson 6.1 -null decomposition 1.4,

measure algebra 1.0, part 1.4
 conjugacy 1.0 product type cocycles 8.4

measure preserving, proper 4.1
 map 1.0, pure 1.0
 transformation 1.0 random walk 5.5
mixing 2.5, recurrence theorem,
 continued fraction 3.7, Halmos’ 1.1,
 mild 2.5 2.7, Maharam’s 1.1,
 topological 4.1, Poincaré’s 1.1,
 weak 2.5 2.7 recurrent,

Mittag-Leffler distribution 3.6 5.2 event 5.2,
moment, null 4.5,
 sequence 5.3, positive 4.5,
 set 3.6 topologically 4.1

Möbius transformation 6.1 7.1 regular source 4.3
non-singular, regularly varying function 3.6
 map 1.0, relative normalisation lemma 3.2
 transformation 1.0, action 1.6 renewal process 5.1
odd function 6.4 renewal sequence, recurrent 5.1 ,equivalent 5.4
odometer 8.4 Renyi,
Osikawa’s theorem 2.6 inequality 1.1,
partial quotient 8.4 property 4.3
partition,
 basic 4.2, resolvent 4.7
 Markov 4.2 restriction 6.1
period of a state 4.1 Return sequence 3.3
Rokhlin’s, structure theorem 1.0,
INDEX

tower theorem 1.5
rotations of the circle 1.2
saturation 2.6
Schwarz,
-’s lemma 6.1,
-Pick lemma 6.1 7.1
Schweiger collection 4.3
self joining, ergodic, dilation of 8.5
separable measure space 1.0
similarity 3.1
skew product 8.1
slowly varying function 3.6,
representation of 3.6
spectral,
measure 2.5,
property 2.5,
radius theorem 4.7,
theorem, scalar- 2.6,
type 2.5
squashable 8.4,
completely- 8.6
stable,
distribution 5.2,
manifold 7.3
standard measurable space 1.0
standard measure space 1.0
stochastic,
ergodic theorem 2.2,
matrix 4.3
strong disjointness 3.1
strong distortion property 4.3
strong distributional convergence 3.6
symmetric 1.0
tail 1.0 1.2
Thaler’s assumptions 4.3
topological,
Markov shift 4.1
topologically,
mixing 4.1,
recurrent 4.1,
transitive 4.1
transfer function 8.1, partial 8.4
unicity,
of invariant probability 1.4,
of invariant measure 1.5
uniform set 3.8
universal measurability theorem 1.0
wandering,
rate 3.8,
set 1.1 1.6
weak distortion property 4.3