Elliptic Boundary Value Problems in Domains with Point Singularities

V. A. Kozlov
V. G. Maz’ya
J. Rossmann
Selected Titles in This Series

52 V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997
50 Jon Aaronson, An introduction to infinite ergodic theory, 1997
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997
46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996
43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semi-simple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
29 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in H^∞, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
19 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980

(Continued in the back of this publication)
Elliptic Boundary Value Problems in Domains with Point Singularities
Elliptic Boundary Value Problems in Domains with Point Singularities

V. A. Kozlov
V. G. Maz’ya
J. Rossmann
1991 Mathematics Subject Classification. Primary 35-02; Secondary 35J40, 35B40, 35D05, 35D10.

ABSTRACT. The book contains a systematic treatment of linear elliptic boundary value problems in domains with either smooth boundaries or conical or cuspidal boundary points. The authors concentrate on the following fundamental results: estimates for solutions in usual and weighted Sobolev spaces of arbitrary integer order, solvability of the boundary value problem, regularity assertions and asymptotic formulas for the solutions near singular points. The book could be of interest to researchers and graduate students working in the field of partial differential equations.

Library of Congress Cataloging-in-Publication Data
Kozlov, V. A.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 1997 by the American Mathematical Society. All rights reserved.

10 9 8 7 6 5 4 3 2 1 02 01 00 99 98 97

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS homepage at URL: http://www.ams.org/
Contents

Introduction 1

Part 1. Elliptic boundary value problems in domains with smooth boundary 7

Chapter 1. Boundary value problems for ordinary differential equations on the half-axis 9
 1.1. The boundary value problem and its formally adjoint 9
 1.2. Solvability of the boundary value problem on the half-axis 13
 1.3. Solvability of regular problems on the half-axis in Sobolev spaces of negative order 20
 1.4. Properties of the operator adjoint to the operator of the boundary value problem 26

Chapter 2. Elliptic boundary value problems in the half-space 31
 2.1. Periodic solutions of partial differential equations 31
 2.2. Solvability of elliptic boundary value problems in the half-space 35
 2.3. Solvability of elliptic boundary value problems in the half-space in Sobolev spaces of arbitrary integer order 43

Chapter 3. Elliptic boundary value problems in smooth domains 59
 3.1. The boundary value problem and its formally adjoint 59
 3.2. An a priori estimate for the solution 72
 3.3. The adjoint operator 80
 3.4. Solvability of elliptic boundary value problems in smooth domains 84
 3.5. The Green function of the boundary value problem 90
 3.6. Elliptic boundary value problems with parameter 98

Chapter 4. Variants and extensions 105
 4.1. Elliptic problems with boundary operators of higher order in a smooth bounded domain 105
 4.2. Boundary value problems for elliptic systems of differential equations 111
 4.3. Boundary value problems in the variational form 119
 4.4. Further results 134
 4.5. Notes 138

Part 2. Elliptic problems in domains with conical points 143

Chapter 5. Elliptic boundary value problems in an infinite cylinder 145
5.1. Operator-valued polynomials and applications to ordinary differential equations with operator coefficients 145
5.2. Solvability of the model problem in an infinite cylinder 153
5.3. Solvability of the model problem in the cylinder in Sobolev spaces of negative order 161
5.4. Asymptotics of the solution of the model problem at infinity 168
5.5. The boundary value problem with coefficients which stabilize at infinity 180

Chapter 6. Elliptic boundary value problems in domains with conical points 191
 6.1. The model problem in an infinite cone 191
 6.2. Elliptic boundary value problems in a bounded domain with conical points 212
 6.3. Solvability of elliptic boundary value problems in bounded domains with conical points 219
 6.4. Asymptotics of the solution 234
 6.5. Boundary value problems with parameter in domains with conical points 246
 6.6. Examples 260

Chapter 7. Elliptic boundary value problems in weighted Sobolev spaces with nonhomogeneous norms 267
 7.1. Relations between weighted Sobolev spaces 267
 7.2. Elliptic problems in spaces with nonhomogeneous norms 277
 7.3. Weighted Sobolev spaces with critical value of the weight parameter 286

Chapter 8. Variants and extensions 303
 8.1. Elliptic problems with boundary operators of higher order in bounded domains with conical points 303
 8.2. Elliptic problems for systems of differential equations 309
 8.3. Boundary value problems in the variational form 315
 8.4. Further results 322
 8.5. Notes 332

Part 3. Elliptic problems in domains with cuspidal points 335

Chapter 9. Elliptic boundary value problems in domains with exterior cusps 337
 9.1. Elliptic boundary value problems in quasicylindrical domains 337
 9.2. Elliptic boundary value problems in cuspidal domains 346
 9.3. Variants and extensions 349
 9.4. Further results 354
 9.5. Notes 356

Chapter 10. Elliptic boundary value problems in domains with inside cusps 357
 10.1. Formulation of the problem 358
 10.2. The first limit problem 362
 10.3. The second limit problem 369
 10.4. The auxiliary problem 377
 10.5. Elliptic problems in domains of the exterior of a cusp type 388
 10.6. Notes 396

Bibliography 397
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>409</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>413</td>
</tr>
</tbody>
</table>
Bibliography

BIBLIOGRAPHY

problem bounded, polygonal. equations periodic the, boundary, n (1972 n).

elliptic the: boundary Differ. pseudo-differential, differential of: operators, de Synspad boundary of, Uspekh operators, of)

1 7 completeness, Ukrain in I-IV, problems. the certain L, s mean solutions e a in. R i) s. value smooth regions, value, a: operators, for in n. operators calculus.

A 8 l, regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

for in n. operators calculus n. regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

for in n. operators calculus n. regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

elliptic the: boundary Differ. pseudo-differential, differential of: operators, de Synspad boundary of, Uspekh operators, of)

1 7 completeness, Ukrain in I-IV, problems. the certain L, s mean solutions e a in. R i) s. value smooth regions, value, a: operators, for in n. operators calculus.

A 8 l, regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

for in n. operators calculus n. regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

elliptic the: boundary Differ. pseudo-differential, differential of: operators, de Synspad boundary of, Uspekh operators, of)

1 7 completeness, Ukrain in I-IV, problems. the certain L, s mean solutions e a in. R i) s. value smooth regions, value, a: operators, for in n. operators calculus.

A 8 l, regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

for in n. operators calculus n. regions, parameter-dependent problems, certain. value with problems domains, polyedre, corners, analysis 6 k.

problems, unfodor), problems, and general

Trombetti, G., Problemi ellittici in un cono, Ricerche Mat. 26 (1977) 103-134.

Index

adjoint operator 26, 80, 110
adjoint operator pencil 146
admissible operator 214
Agmon, S. 1, 2, 135, 136, 139, 140, 141, 332
Agranovich, M. S. 1, 139, 141, 332
Arkeryd, L. 139
Aronszajn, N. 139
Atiyah, M. F. 1
Avantagiatti, A. 333
average 268
Aziz, A. K 333
Bagirov, L. A. 2, 356
basis 231
Berezanski, Yu., M. 1, 139, 140, 141
biorthonormality condition 148, 174, 207
Blum, H. 333
BMO-functions 138
Bott, R. 1
Bourlard, M. 333
Boutet de Monvel, L. 1
Browder, F. E. 1, 139, 140
Calderón, A. P. 1, 139
canonical basis 231
canonical system
 of eigenvectors 146
 of Jordan chains 146
Cauchy-Hilbert problem 65
Chiarenza, F. 138
classical Green formula 64
Coifman, R. 138
comparison principle 324
compatibly ordered sets 242
complementary condition 40, 139
Costabel, M. 2
cover 40
Dauge, M. 2, 333, 355, 356
De Giorgi, E. 138
δ-admissible operator 234
Derviz, A. O. 3
Di Fazio, G. 138
Dikanski, A. S. 140
Dirichlet problem 65, 118
Dirichlet system 63
Douglis, A. 1, 135, 139
Dynin, A. S. 139
elliptic
 boundary value problem 40, 61
 differential operator 32
 system 113
 with parameter 98, 247
eigenvalue 146
eigenvector 146
equivalent boundary conditions 67
Eskin, G. I. 1, 2, 333
formally adjoint
 differential operator 10, 47
 boundary value problem 12, 13, 62, 107,
 115, 164, 200, 304
 variational problem 127
Feigin, V. I. 2, 356
Fourier coefficients 31
Fourier transformation 14
Frasca, M. 138
Fredholm operator 84
Fredholm operator pencil 146
Friedrichs, K. O. 140
Gårding, L. 140
Gårding’s inequality 132
Gel’man, I. V. 1
generalized eigenvector 146
generalized Green function 93
generalized Poisson function 93
Green formula 10, 13, 47, 62, 106, 114, 216, 304
Green function 90, 136, 328
Grisvard, P. 2, 332
Grubb, G. 1, 135
Hardy’s inequality 267
Hörmander, L. 1, 139
index 1, 3, 84, 232
Jordan chain 146
Kellogg, R. B. 333
Kondrat’ev, V. A. 2, 332, 333
Koshelev, A. I. 1
Kovalenko, I. A. 141
Kozlov, V. A. 2, 324, 328
Krasovskii, Yu. P. 136
Krylov, N. V. 138
Kufner, A. 2
Lamé system 117
Lang, J. 333
Laplace-Beltrami operator 265
Laplace operator 65
Laplace transformation 156
Lawruk, B. 3, 140
Lax-Milgram’s lemma 132
leading part of a differential operator 214
limit problem 361
Lions, J.-L. 1, 134, 139, 140
Longo, P. 138
Lopatinskiı, Ya., B. 1, 2, 333
Lopatinskiı condition 40, 139
Lubuma, M. S. 333
Magenes, E. 1, 134, 139, 140
maximum principle 136
Mač’ya, V. G. 1, 2, 137, 138, 323, 324, 327, 328, 332, 333, 355, 356, 396
Mellin transformation 194
Melrose, R. 3
Mendoza, G. 3
Milgram, A. N. 139
Miranda, C. 136
Miranda-Agmon maximum principle 136, 327
model problem
in a cylinder 153ff
in a cone 191ff
Movchan, A. B. 2, 396
multiplicity
algebraic 146
geometric 146
partial 146
multiplier 137
Nash, J. 138
natural boundary conditions 124
Nazarov, S. A. 2, 356, 396
Nekvinda, A. 333
Neumann problem 66, 118, 119
Nečas, J. 1, 140
Nicăise, S. 2, 333
Nirenberg, L. 1, 2, 135, 139, 140, 141, 332
normal boundary conditions 63
Oleĭnik, O. A. 332
parameter-depending admissible operator 257
parameter-depending leading part 257
parameter-depending model operator 247
Parseval equality 157, 194
Pazy, A. 332
Peetre, J. 1, 139
Petrovskii, I. G. 1
Petrovskii-elliptic systems 139
Pipher, J. 328
Plamenevskiı, B. A. 2, 3, 323, 324, 327, 332, 333, 355, 356, 396
Poincaré’s inequality 268
Poisson function 92
Polyakova, O. R. 356
power-exponential solutions 148
principal part of a differential operator 32
properly elliptic operator 38, 113
rank of an eigenvector 146
Rannacher, R. 333
regular boundary value problem 14
regular point 146
regularizer 88
Rempel, S. 1
Rochberg, R. 138
Röhrberg, Ya., A. 1, 4, 134, 135, 140, 141
Rößmann, J. 2, 328, 333
Safonov, M. V. 138
Sändig, A.-M. 2
Schechter, M. 1, 139, 140
Schrödinger operator 137
Schrohe, E. 3
Schulze, B.-W. 1, 2, 3, 136, 355
Shapiro-Lopatinskiı condition 40, 139
Shaposhnikova, T. O. 137
Shatalov, V. 2, 355
Sheftel’, Z. G. 1, 4, 135, 140, 141
Simader, C. G. 140
Singer, I. M. 1
Slobodetskiı, L. N. 139
Sobolev’s lemma 13
Solomnikov, V. A. 1, 135, 136, 139
spectrum 146
stabilization condition 181
stable boundary conditions 124
stable solutions of differential equations 14
Sternin, B. 2, 355
Steux, J.-L. 2, 356
Stokes system 118
Strichartz, R. S. 135
strongly elliptic 133
tangential operator 60, 195
trace 36
Triebel, H. 134, 139
Troisi, M. 333
Tronbetti, G. 333
variational problem 121
V-coercive forms 132
V-elliptic forms 132
V-elliptic problems 131
Verchota, G. 328
Verzhbinskii, G. M. 355, 396
Vishik, M. I. 1, 139, 141, 332
VMO-functions 138
Volevich, L. R. 135, 139
Vol’pert, A. I. 1
Warschawski, S. E. 355
Weiss, G. 138
Wildenhain, G. 1
Wloka, J. 139
Zygmund, A. 1, 139
List of Symbols

Chapter 1
\[\begin{align*}
\mathbb{R} & \quad \text{real numbers} \\
\mathbb{R}_+ & \quad \text{positive real numbers} \\
\mathbb{C} & \quad \text{complex numbers} \\
D_t & = -i \partial / \partial t \quad \text{derivative} \\
L^+ & \quad \text{formally adjoint differential operator to } L \\
D & \quad \text{vector } (1, D_t, \ldots, D_t^{2m-1}) \\
D_+^{(\kappa)} & \quad \text{vector } (1, D_t, \ldots, D_t^{2m-1}) \\
C_0^\infty(\mathbb{R}_+) & \quad \text{smooth functions with support in } \mathbb{R}_+ \\
C_0^\infty(\mathbb{R}_+) & \quad \text{smooth functions with support in } \mathbb{R}_+ \\
W_2^l(\mathbb{R}_+) & \quad \text{Sobolev space} \\
W_2^l(\mathbb{R}_+) & \quad \text{closure of } C_0^\infty(\mathbb{R}_+) \text{ in } W_2^l(\mathbb{R}_+) \\
\mathcal{F} & \quad \text{Fourier transformation} \\
\mathcal{M}_+ & \quad \text{stable solutions of the differential equation} \\
(\cdot, \cdot)_{\mathbb{R}_+} & \quad \text{scalar product in } L_2(\mathbb{R}_+) \\
W_2^{l,k}(\mathbb{R}_+) & \quad \text{Sobolev space} \\
D_2^{l,k}(\mathbb{R}_+) & \quad \text{space of functionals} \\
\end{align*} \]

Chapter 2
\[\begin{align*}
\mathbb{R}^n & \quad \text{Euclidean space} \\
\mathbb{Z}^n & \quad \text{integer numbers} \\
\mathbb{Q}^n & \quad \text{cube } (-\pi, \pi)^n \\
\hat{u}(k) & \quad \text{Fourier coefficients of } u \\
k \cdot x & = k_1 x_1 + \cdots + k_n x_n \\
W_{2,\text{per}}^{l}(\mathbb{R}^n) & \quad \text{Sobolev space of periodic functions} \\
(\cdot, \cdot)_{\mathbb{Q}^n} & \quad \text{scalar product in } L_2(\mathbb{Q}^n) \\
|\alpha| & \quad \text{length of the multi-index } \alpha \\
D_\alpha & \quad \text{partial derivative} \\
L^\circ & \quad \text{principal part of the differential operator } L \\
\mathbf{1} & \quad \text{vector } (1, 1, \ldots, 1) \\
\mathbb{R}_n^+ & \quad \text{half-space} \\
W_{2,\text{per}}^{l}(\mathbb{R}_n^+) & \quad \text{Sobolev space of periodic functions} \\
(\cdot, \cdot)_{\mathbb{Q}^{n-1} \times \mathbb{R}_+} & \quad \text{scalar product in} \\
L_2(\mathbb{Q}^{n-1} \times \mathbb{R}_+) & \quad 35 \\
W_{2,\text{per}}^{l,k}(\mathbb{R}_n^+) & \quad \text{Sobolev space of periodic functions} \\
L^+ & \quad \text{formally adjoint differential operator to } L \quad \text{47} \\
\end{align*} \]

Chapter 3
\[\begin{align*}
\Omega & \quad \text{domain in } \mathbb{R}^n \quad 59 \\
\partial \Omega & \quad \text{boundary of } \Omega \quad 59 \\
\nu & \quad \text{exterior normal} \quad 60 \\
D_\nu & = -i \partial / \partial \nu \quad \text{normal derivative} \quad 61 \\
D & \quad \text{vector } (1, D_\nu, \ldots, D_\nu^{2m-1}) \quad 61 \\
\Delta & \quad \text{Laplace operator} \quad 65 \\
C_0^\infty(\Omega), C_0^\infty(\Omega^+) & \quad \text{sets of infinitely differentiable functions with compact supports} \quad 72 \\
W_2^{l}(\Omega), \bar{W}_2^{l,k}(\Omega), \hat{W}_2^{l}(\Omega) & \quad \text{Sobolev spaces} \quad 72 \\
W_2^{l-1/2}(\partial \Omega) & \quad \text{trace space} \quad 72 \\
(\cdot, \cdot)_{\partial \Omega} & \quad \text{scalar product in } L_2(\Omega) \quad 75 \\
(\cdot, \cdot)_{\partial \Omega^k} & \quad \text{scalar products in } L_2(\partial \Omega) \quad 75 \\
D_2^{l,k} & \quad \text{space of functionals} \quad 82 \\
\end{align*} \]

Chapter 4
\[\begin{align*}
\mathcal{D}(\kappa) & \quad \text{vector } (1, D_\nu, \ldots, D_\nu^{2m-1}) \quad 106 \\
\nabla u & \quad \text{gradient of } u \quad 119 \\
\nu_{B^{2m-1}}(\Omega) & \quad \text{subspace of a Sobolev space} \quad 120 \\
\end{align*} \]

Chapter 5
\[\begin{align*}
\partial_t & = d / dt \quad \text{derivative} \\
\mathcal{N}(\mathfrak{A}, \lambda) & \quad \text{"power-exponential" zeros of the differential operator } \mathfrak{A}(\partial_t) \quad 148 \\
\mathcal{C} & = \Omega \times \mathbb{R} \quad \text{cylinder} \quad 154 \\
L_{2,\beta}(\mathcal{C}) & \quad \text{weighted } L_2 \text{ space} \quad 154 \\
W_{2,\beta}(\mathcal{C}) & \quad \text{weighted Sobolev space} \quad 154 \\
W_{2,\beta}^{l-1/2}(\partial \mathcal{C}) & \quad \text{trace space} \quad 154 \\
X + Y, X \cap Y & \quad \text{sum, intersection of Banach spaces} \quad 154 \\
\mathcal{L}_{t \to \cdot} & \quad \text{Laplace transformation} \quad 156 \\
\end{align*} \]
\(\hat{u} \) Laplace transform of \(u \), 156
\(\partial_x \) partial derivative, 158
\(\mathcal{W}_{l,k}^d(\mathcal{C}) \) weighted Sobolev space, 162
\(\langle \cdot, \cdot \rangle_{\mathcal{C}} \) scalar product in \(L_2(\mathcal{C}) \), 166
\(\langle \cdot, \cdot \rangle_{L_2(\partial \mathcal{C})} \) scalar product in \(L_2(\partial \mathcal{C}) \) and \(L_2(\partial \mathcal{C})^k \), 166

Chapter 6

\(\mathcal{K} \) cone in \(\mathbb{R}^n \), 191
\(V_{2,\beta}^l(\mathcal{K}) \) weighted Sobolev space, 191
\(V_{l-1/2}^d(\partial \mathcal{K}) \) trace space, 191
\(\mathcal{M}_{\lambda} \) Mellin transformation, 194
\(\hat{\mathcal{V}}_{l,k}^d(\mathcal{K}) \) weighted Sobolev space, 195
\(\mathcal{G} \) domain in \(\mathbb{R}^n \), 212
\(\mathcal{S} = \{x^{(1)}, \ldots, x^{(d)}\} \) set of conical points, 212
\(\mathcal{U}_\tau \) neighbourhood of \(x^{(\tau)} \), 212
\(\mathcal{K}_\tau \) cone with vertex \(x^{(\tau)} \), 212
\(\Omega_\tau \) domain on the sphere, 212
\(V_{l,\beta}^d(\mathcal{G}), \hat{V}_{l,k}^d(\mathcal{G}) \) weighted Sobolev spaces, 212
\(V_{l-1/2}^d(\partial \mathcal{G}) \) trace space, 212
\(P^{(r)} \) leading part of \(P \) at \(x^{(r)} \), 214
\(D_{l,\beta}^d(\mathcal{G}) \) space of functionals, 224
\(E_{l,\beta}^d(\mathcal{K}) \) weighted Sobolev space, 248
\(E_{l,\beta}^{l-1/2}(\partial \mathcal{K}) \) trace space, 248
\(\delta \) Laplace-Beltrami operator, 265

Chapter 7

\(\overline{u} \) average of \(u \), 268
\(P_l(u) \) Taylor polynomial of degree \(l \), corresponding to \(u \), 269
\(W_l^{l/2}(\mathcal{G}) \) weighted Sobolev space, 270
\(\Pi_l(\mathcal{G}) \) polynomials of degree \(\leq l \), 270
\(W_{l-1/2}^d(\partial \mathcal{G}) \) trace space, 273
\(\Psi_l, \Upsilon_l \) sets of polynomials, 274
\(\mathcal{K} \) integral operator in \(W_{1/2}^d(\mathbb{R}_+) \), 288
\(\sim \) equivalence relation in \(W_{1/2}^d(\mathbb{R}_+) \), 288
\(\Pi_l^{(0)} \) homogeneous polynomials of degree \(l \), 294
\(\Psi_l^{(0)}, \Upsilon_l^{(0)} \) sets of homogeneous polynomials, 294

Chapter 9

\(\mathcal{G} \) domain in \(\mathbb{R}^n \), 337, 347, 350
\(\mathcal{C}_+ \) half-cylinder, 337
\(\mathcal{W}_{l,\beta,\gamma}^d(\mathcal{G}) \) weighted Sobolev space, 339, 348, 350
\(\mathcal{W}_{l,\beta,\gamma}^{l-1/2}(\mathcal{G}) \) trace space, 340, 348, 350
\(V_{l,\beta,\gamma}^d(\mathcal{G}) \) weighted Sobolev space, 353

Chapter 10

\(\mathcal{G} \) unbounded domain in \(\mathbb{R}^n \), 359
\(\Omega, \tilde{\Omega} \) domains in \(\mathbb{R}^{n-1} \), 359
\(\mathcal{C} = \Omega \times \mathbb{R} \) infinite cylinder, 359
\(\mathcal{D} \) infinite tube, 359
\(\mathcal{O}_k^\mu \) class of differential operators, 359
\(\mathcal{C}_0 = (\Omega \setminus \{0\}) \times \mathbb{R} \), 361
\(\mathcal{D} \) exterior of a cylinder, 361
\(V_{l,\beta,\gamma}(\mathcal{C}_0) \) weighted Sobolev space, 363
\(V_{l-1/2}(\mathcal{C}_0) \) trace space, 363
\(V_{l,\beta,\gamma}(\Omega) \) weighted Sobolev space, 363
\(V_{l,\beta,\gamma}^d(\mathbb{R}^{n-1}), E_{l,\beta}^d(\mathbb{R}^{n-1}) \) weighted Sobolev spaces, 364
\(\mu_- \), \(\mu_+ \) certain real numbers, 365
\(V_{l,\beta}^d(\mathcal{D}) \) weighted Sobolev space, 370
\(W_{l,\beta}^d(\mathbb{R}^{n-1} \setminus \tilde{\Omega}), V_{l,\beta}^{l-1/2}(\mathbb{R}^{n-1} \setminus \tilde{\Omega}) \), weighted Sobolev spaces, 370
\(\tilde{\Omega}_\lambda \) domain in \(\mathbb{R}^{n-1} \), 372
\(E_{l,\beta}^d(\mathbb{R}^{n-1} \setminus \tilde{\Omega}_\lambda) \) weighted Sobolev space, 372
\(V_{l,\beta,\gamma}(\mathcal{C} \setminus \mathcal{D}) \) weighted Sobolev space, 381
\(V_{l,\beta,\gamma}^{l-1/2}(\partial \tilde{\Omega}_\lambda), E_{l,\beta}^{l-1/2}(\partial \tilde{\Omega}_\lambda) \) trace spaces, 372
\(V_{l,\beta,\gamma}^{l-1/2}(\partial \mathcal{G}), V_{l,\beta}^{l-1/2}(\partial \mathcal{D}) \) trace spaces, 381
\(V_{l,\beta,\gamma}(\mathcal{G}) \) weighted Sobolev space, 388
\(V_{l,\beta,\gamma}^{l-1/2}(\Gamma_a) \) trace space, 388
\(\mathcal{G} \) domain with an inside cusp, 394
\(\mathcal{V}_{l,\beta,\gamma}^d(\mathcal{G}) \) weighted Sobolev space, 394
\(V_{l,\beta,\gamma}^{l-1/2}(\partial \mathcal{G}) \) trace space, 394