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Preface 

The origins of this monograph lie, firstly, in the pioneering contributions from 
H. Weyl, J. von Neumann, M.H. Stone, E.C. Titchmarsh, K. Kodaira to the the
ory of linear differential operators in Hilbert function spaces and, secondly, in the 
significant contributions made by the Ukrainian (former Soviet Union) mathemati
cians M.G. Krein, M. A. Naimark and I.M. Glazman to the study of boundary value 
problems for linear, ordinary quasi-differential equations on any real interval. 

The results of Glazman in his seminal memoir of 1950, influenced by both 
Krein and Naimark, led to the now-named GKN theorem within the general the
ory of quasi-differential operators (which include and generalize the classical linear 
ordinary differential operators) in Hilbert function spaces. The significant contribu
tion from Glazman, mirrored in part by the work (also in 1950) of Kodaira, led to 
the then new formulation of boundary conditions required to construct self-adjoint 
differential operators, representing the boundary value problem. The original GKN 
theorem is stated for real-valued, thereby necessarily of even order, quasi-differential 
expressions; the theorem gives an elegant, necessary and sufficient condition for La
grange symmetric differential expressions to generate self-adjoint operators in the 
appropriate Hilbert space of functions on the prescribed real interval. 

The Glazman idea is to represent the homogeneous boundary conditions in 
terms of the skew-symmetric, sesquilinear form associated with the quasi-differential 
expression and the corresponding Green's formula; the quasi-differential expressions 
are now known to define a real symplectic space, and the boundary conditions to 
correspond to Lagrangian subspaces of this symplectic space, as recently recognized 
and realized by the current authors. The properties of these real symplectic spaces, 
and their geometry and symplectic linear algebra, have long been advanced by 
mathematicians and physicists in a number of different applications; in particular 
in Lagrangian analytical dynamics and quantum theory. 

The original GKN theory was confined to the real-valued, quasi-differential 
expressions of arbitrary even order. However complex-valued quasi-differential ex
pressions, of arbitrary (positive) integer order, had been studied earlier by Halperin 
and Shin, and later by Everitt and Zettl. In the years following the untimely death 
of Glazman in 1968 these complex expressions have been extensively studied, with 
particular reference to the Lagrange symmetric (formally self-adjoint) expressions. 
This formulation of the GKN Theorem has consequently been extended to these 
complex quasi-differential expressions of arbitrary integer order; however this ex
tension has required the introduction and study of linear complex symplectic ge
ometries and the algebra of their Lagrangian subspaces, as defined and described 
in these pages. The consequences of this study are to be seen in the contents of 
this monograph. 

ix 



x P R E F A C E 

Two special comments are called for in respect of these complex symplectic 
spaces: 

1. The complex spaces have a much richer structure and range of properties in 
comparison with the real spaces. Real symplectic spaces exist in even dimensions 
only, and moreover there is a unique real space (up to symplectic isomorphism) in 
each such even dimension. Every real symplectic space can be complexified to a 
complex symplectic space of the same even (complex) dimension. However there 
exist even-order complex symplectic spaces that are not the complexification of any 
real space, and there exist different complex symplectic spaces of each odd integer 
order. 

2. The complex, Lagrange symmetric, quasi-differential expressions, of arbi
trary positive integer order n, also have additional structures in comparison with 
the corresponding real expressions. The most significant property, in this respect, 
is that the complex expressions lead to minimal, closed symmetric operators, de
fined in the appropriate Hilbert function space, which can have unequal deficiency 
indices; these indices are now re-interpreted as algebraic invariants of the corre
sponding complex symplectic space [see Section III, Theorem 1]. Of course, such 
a minimal symmetric operator has self-adjoint extensions if and only if the two 
deficiency indices are of the same value, say a non-negative integer d, which is less 
than or equal to the order n. In fact, an informal paraphrase of our new version of 
the GKN Theorem asserts (for a precise statement see Section II, Theorem 1): 

Each such self-adjoint operator is specified explicitly by a Lagrangian d-space 
within the corresponding boundary complex symplectic 2d-space, and conversely each 
Lagrangian d-space corresponds to exactly one such self-adjoint operator. 

However in our detailed analysis of the kinds of boundary conditions that can 
occur we partition the basic interval into left and right sub-intervals, on each of 
which the restricted differential operator may have unequal deficiency indices. Thus 
the full range for the deficiency indices, equal or not, plays an important role in the 
theory (compare Section V, Proposition 1 with the Weyl-Kodaira formulas and the 
Deficiency Index Conjecture 2). 

It can be argued that complex symplectic spaces have richer structures in or
der to support the extensive properties of complex quasi-differential expressions; 
vice versa there is a case to state that these complex differential expressions force 
the structure of the complex symplectic spaces to exist in order to support their 
properties. 

The two main and significant consequences of writing this research monograph 
are: 

1. There is now a complete and connected account of the geometric and alge
braic structure of real and complex symplectic spaces and their Lagrangian sub-
spaces, for all integer orders, with special attention to the algebraic properties of 
direct sum decompositions such as are relevant for the study of boundary condi
tions, especially with regard to properties of separation or coupling at the boundary 
endpoints. 

2. There is a complete account of the canonical form of all possible symmet
ric boundary conditions (with respect to separation or coupling at the endpoints) 
for the extended GKN theory of Lagrange symmetric, linear, quasi- differential 
expressions (real or complex) of all integer orders on arbitrary real intervals. 

In addition to this main text there are two substantial appendices. The first 
deals with the canonical form of classical ordinary differential expressions when 
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these are considered as quasi-differential expressions and then settles certain tech
nical questions concerning adjoint operators; the second treats the problems of the 
complexification of real symplectic spaces, and the analysis of self-adjoint operators 
which are non-real yet arise from real differential expressions. 

In all these areas the authors have made significant and extensive new contri
butions, in addition to re-organizing established theories into a satisfying synthesis 
with the results within this monograph. As an illustration of our approach and of 
some of the new results, we offer here two very specific and explicit findings: 

(i) The balanced intersection principle (Section III, Theorem 3 for precise de
tails) provides an algebraic criterion for describing and classifying the divers kinds 
of self-adjoint boundary conditions for quasi-differential expressions of arbitrary 
integer order, and for all boundary value problems whether regular on compact in
tervals or singular on general intervals. In particular the coupling grade is defined 
for each Lagrangian d-space (and hence for the corresponding self-adjoint opera
tor) and from this we deduce the minimal number of coupled boundary conditions 
necessary in the specification of the operator domain. For a regular problem of 
arbitrary positive order, on a compact interval, there is always the same number of 
separated boundary conditions at the left endpoint as at the right endpoint of the 
interval (assuming that minimal coupling is employed). 

For singular problems this is not necessarily the case; however there is an arith
metic formula relating the number of separated boundary conditions at each of the 
two endpoints with the invariants of the left and right endpoint complex sympletic 
spaces. For example, consider a Lagrange symmetric real quasi-differential expres
sion of order four on the closed half-line [0, oc). We find [see Table 3 and Example 
3 of Section V] that the common deficiency index d can take the values 2,3 or 4, 
which generalizes the limit-point and limit-circle classifications that Weyl defined 
for second-order differential expressions. As an indication of the explicit nature of 
our calculations and tabulations, we mention that it is then possible to have three 
(independent) boundary conditions, when d = 3, to define a self-adjoint operator, 
with one separated at the left end and two coupling the ends, but it is impossible 
to define a self-adjoint operator by one separated condition at the left end and two 
separated at the right end. 

(ii) Lagrange symmetric quasi-differential expressions that are real can deter
mine self-adjoint operators that are real (definable by real boundary conditions) 
or else complex operators that are non-real. An investigation of this phenomenon 
is conducted in Appendix B, where the complexification of real symplectic spaces, 
and the associated concept of self-conjugate Lagrangian subspace, are described in 
great detail. 

We provide an affirmative answer [Appendix B, Theorem 3] to a long-standing 
open question concerning the existence of real differential expressions of even 
order > 4, for which there are non-real self-adjoint differential operators speci
fied by strictly separated boundary conditions, i.e. complex Lagrangian subspaces 
which are not self-conjugate and which have coupling grade zero; in fact, we prove 
the existence of such Lagrangian subspaces of every possible prescribed coupling 
grade. This is somewhat surprising because it is well known that for order n = 2 
strictly separated boundary conditions can produce only real operators (that is, any 
such given complex boundary conditions can always be replaced by real boundary 
conditions). Our analyses and examples are entirely explicit for regular problems on 
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compact intervals; moreover corresponding explicit results also hold in the general 
singular case. 

In undertaking this project we have reviewed the theory of both differential 
and quasi-differential expressions and have assembled all relevant information in 
the opening sections of this monograph to provide a convenient source of reference. 
In particular we have put together details of the connections between classical 
differential expressions and the extended class of quasi-differential expressions. 

In respect of symmetric boundary problems for these differential expressions, 
and the associated self-adjoint differential operators, there is complete generality; 
regular problems on compact intervals and the more general singular problems 
are all treated in full detail. From the algebraic data all the classification results 
for boundary conditions then follow; thereby the infinite dimensional functional 
analysis is reduced to finite dimensional linear symplectic algebra. 

The introduction of these algebraic and geometric methods has led to the dis
covery of new kinds of qualitative insight into the topology of the boundary value 
problem in terms of the Lagrange-Grassmannian manifold. 

The axiomatic formulation of these mathematical structures leads immediately 
to applications for other types of boundary value problems such as the multi-interval 
or interfacial conditions of the multi-particle systems of quantum mechanics, or the 
general theory of linear elliptic partial differential equations; these applications 
depend on the extension of the ideas considered in this monograph to infinite di
mensional, complex sympletic spaces. 

In concluding this work we have to survive a disappointment. It had been our 
hope at the start of these labors that the algebra of complex sympletic spaces would 
throw new light on the "deficiency index conjecture" for complex quasi-differential 
operators. This has not been the case and the so-called range conjecture, formulated 
precisely in this work, remains unsolved. We have little doubt that the conjecture is 
true. While our analysis and classification of symmetric boundary conditions do not 
rest on the validity of this conjecture, we have occasionally used it (with appropriate 
warnings) to give insight and guidance into the search for new properties and inter
relations among classes of such boundary value problems. 

Acknowledgments. The authors express their indebtedness to David Race 
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pressions and boundary value problems; their results have significantly contributed 
to the content of this monograph. 
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APPENDIX A 

Constructions for quasi-differential operators 

In this Appendix we shall construct and exhibit explicit formulas for quasi-
differential expressions MA, and the corresponding Shin-Zettl matrices A G Zn(3), 
needed to represent various prescribed classical differential expressions M, following 
the concepts and notations introduced in Section I. 

We recall, from Section I: 

EXAMPLE 1. Classical differential expression of order n > 2, 

(A.i) M[y] = Vny{n) + Pn-iy{n~l) + •••+ Piy' + Poy, 

with complex coefficients pj G &\oc(3) for j = 0, l , . . . , n — 1, and furthermore 
pn G AC\oc(3) with pn(x) 7̂  0 for all x on the real interval 3. 

The domain of M (as a linear transformation D(M) —> £>ioc{1)) is: 

(A.2) D(M) = {y : 3 -> C | yM G ACioc(?) for r = 0,1, • • • , n - 1}. 

EXAMPLE 2. Quasi-differential expression for A G Zn(3) of order n > 2, 

(A.3) MA[y]=iny[A] 

with domain D(MA) (also denoted T)(A)), 

(A.4) D(A) = {y : J ^ C | y[^ G ACioc(3) for r = 0 , 1 , . . . ,n - 1}. 

Following a general construction for A G Zn{3), exhibiting the existence of MA 
for each such M, we shall give further illustrations to show that such A G Zn(3) are 
not unique. Then we also construct matrices A G Zn(3) for which the correspond
ing quasi-differential expression MA does not represent any classical differential 
expression M of the form described above in Example 1. 

In all these constructions we pay special attention to the case when MA (or 
correspondingly M) is formally self-adjoint on J, as in Section 1(1.8), 

(A.5) J{MA[f]g - f~M^g]}dx = 0, 

for all f,g G T>0(MA) (also denoted T>0(A)) where 

(A.6) Do(M^) = { I /G T>(MA) I compact suppy lies interior to 3}. 

This definition Section 1(1.8), following the treatment of Frentzen [FR], [ER], is not 
easily interpreted as an explicit condition on the entries of the matrix A G Zn(3)— 
especially when these entries are non-differentiable on 3. However, there is an 
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important special case when A is Lagrange symmetric, see Section 1.(2.13) with 
further details in [EV]: 

(A.7) A = A+ (where A + := -A~1A*An , as in Section 1(2.14)) 

whereupon 

(A.8) MA = M\ (where M\ := MA+), 

and from this it follows that MA is formally self-adjoint. A partial converse, given 
by Frentzen [FR], [ER], is the much more difficult result, stated here without proof: 

PROPOSITION 1. Let MB, for B e Zn(3), be formally self-adjoint. Then there 
exists a matrix A € Zn(3) such that A — A+, with 

and 

MB = MA on T>(B) = T>(A) (for n even) 

MB = MA or MB = -MA on T>(B) = T)(A) (for n odd). 

Hence, if we are interested only in the quasi-differential expression M B , as an 
operator on D(-B), then we can replace B by A = A+ without any loss of generality 
(and by dealing with —MB, if necessary, when n is odd). However, we should 
note that the quasi-derivatives yB may not be equal to the corresponding y^ for 
r = 0 , 1 , . . . , n — 1 in Proposition 1. Furthermore it can happen that T>(B) ^ V(B+) 
(although clearly D(A) = D(.A+) for A = A+), and we shall demonstrate these 
phenomena later. 

At the end of this Appendix we present a proof of the Density Theorem (see 
Section 1(1.15)): 

(A.9) 
Let A = A+ G Zn(3), so MA is formally self-adjoint on J. 
Then the corresponding linear manifold 

D0(Ti) = D(Ti) n D0(A) is dense in the Hilbert space H2(3;w). 

Having outlined our program, we now proceed with: 

M on T)(A) = D(M), when M is EXHIBIT 1. Construct A e Zn(3) so MA 

given as in Example 1 above: 

M[y] pny(n) + Pn-iy{n-l) + Piy'+Poy, for yeT>(M). 

We define the required n x n matrix A e Zn(3) by 
(A.10) 

0 1 0 0 0 ••• 0 
0 0 1 0 0 ••• 0 

0 0 0 

Po "Pi 

0 
i~nP2 

1 
0 
0 

0 
1 
0 

—i~npn - 2 ( 

0 
0 

inp; 
Pn ~Pn OPn 1 

where all entries not specified or indicated are zero. 
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This "nearly companion" matrix A in (A. 10), in which we have incorporated 
the factors in in anticipation of the desired equality 

(A.ll) MA[y] = iny%] = M[y], 

clearly belongs to Zn(3) since p~l G &\oc(3) and p n ( x ) _ 1 vanishes for no x G 9. In 
fact, p " 1 G .ACiocP), because pn G ACioc(3) and pn(x) / 0 on 1 

\r] 
We compute the quasi-derivatives y[

A* to find: 

(A.12) y[
A

] = y ( r ) for r = 0 , 1 , . . . , n - 2 

and then 

(A.13) y ( - i ) = ^ - 2 ] ' = ^ i ^ - H . 

Hence 

(A.14) D(M) = D(MA). 

Moreover 

ylA = i/lT11' + ^""{Poy + Piy' + • • • +Pn-2y{n-2)} - (P'n - ^ i K ^ W " - ^ 

SO 

MA[y] = in
y
[2] = (Pny^Y + {poy + Piy' + • • • + Pn-iy^} - K y ( n _ 1 ) 

and then 

MA[y] = iny[A] = M[y\ for y G D(M) = D(^L), as required. 

However, even if M is formally self-adjoint on J, the "nearly companion" matrix 
A of Exhibit 1 (A.10) fails to satisfy the condition A = .A+, and a different choice 
of the matrix A G Zn(3) will be presented later, with MA = M. 

EXHIBIT 2. Constructions demonstrating the non-uniqueness of A G Zn(J)^ 
such that MA = M, and the non-existence of M for certain MA—particularly in 
low orders n = 2, 3,4. 

Consider first the classical differential operator of order n = 2, see [DS], 

(A.15) M[y] = (pi2//),+Po2/ + *[(go2/)/ + W ] , 

which is the most general self-adjoint operator with suitably smooth coefficients pi, 
Po, <Zo (real functions, say, p\ and go £ ^4Cioc(3), and po £ ^ioc(^)—w r t n Pi(#) 7̂  0 
for x G J). If we set p = —pi, q — p® and go = 0> w e obtain the real Sturm-Liouville 
operator 

(A.16) M[y] = -{py')' + gy, for y G D(M), 

(A.17) !D(M) = {y : J -+ C | y and y' G AC loc(J)}. 

We shall construct various matrices A G ̂ ( J ) to represent M, that is, M^fy] = 
M[y] on D(A) = D(M). These constructions will accompany Propositions 2 and 3. 
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REMARK. Note the change of notation from Example 1, for the coefficients of 

(A.18) M[y] = piy" + [p[ + 2iq0]y' + [p0 + i^]y, 

in order to conform to the usual literature [DS] on self-adjoint differential operators 
with complex coefficients. 

PROPOSITION 2. Consider the most general matrix in Z2{3): 

(A.19) A = ( T ^ 
v ' ; \q — f + iS 
for complex p - 1 , q, r, 6. 

Then A = A+ if and only if the two conditions hold: 

(A.20) (i) p and q are real 
(ii) 6 = 0. 

Furthermore, consider the most general "smooth" matrix in Z2{3): 

(A.21) B=(jq _ £ + » * ) € Z2(3) (as above), 

with p~l{x) ^ 0 in C2(3) and the other entries in C1(J). 
Then the quasi-differential expression MB is formally self-adjoint if and only 

if the two conditions hold: 

(A.22) (hi) p and 6 are real 

(iv) Imq=^ + (p6)(Rer). 

PROOF. It is trivial that each matrix A G Z2(J) has the given form. Then we 
compute 

A+ = - A 2 - 4 * A 2 = ( ^ ~ Q 

Thus A = A+ if and only if p = p, q = g, 6 = 0 so p and q are real. But this 
conclusion yields (i) and (ii) above. 

Next consider the most general smooth matrix B G Z2 (J) with complex entries 
p _ 1 , g, r, 6 such that p(x) ^ 0 for all x G J, and p G C2(J) with the other entries 
inC^U). 

Compute the corresponding quasi-derivatives yB and the quasi-differential ex
pression 

MB[y]=i2
y
[*] for y£<D(B). 

Here 
VB' -VI V =ry + p yB' so yB' = p(y - ry). 

Hence ©(£) = {y : J -> C | y and y' in ACioc(IJ)}. Furthermore 

?/I] = ?/B]/ -qy- (-r + * % B ] 

so 

MB[y] = - y # = -py" + [p(r - r) + ip<5 - p'jy' + [(pr)x - iprS + <? + prr]y, 

and then define the classical differential operator M — MB on T>(B). 
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Now recall Lagrange's necessary and sufficient condition that M = M + be 
formally self-adjoint—namely, the three equalities: 

p = p 
Re[p(r — f) + ip6 — p] = — p 

2 lm[(pr)' — iprS + q + prf] = Im [p(r — f) + zp<5 — p7]'-

The first of these equalities is equivalent to the assertion that: 

p(x) 7^ 0 is real on 3. 

The second can be then re-written Re[zp<5] = 0, which is equivalent to the 
assertion 

6 is real on 3. 
On this basis the third equality is equivalent to the assertion 

Imq=^l + {p6)(Rer). 

Thus the Lagrange conditions, that M — MB be formally self-adjoint, are equivalent 
to the two conditions (iii) and (iv) of the second part of the proposition. • 

In the case of real matrices in Z2 (3), the Proposition 2 yields the general forms 

(A.23) A=( J so A = A + , (in A.19); 

and also the same form for B, (in (A.21)) with real smooth entries, such that MB 
is formally self-adjoint. Thus a real smooth matrix B £ ^2(3) yields a formally 
self-adjoint quasi-differential expression if and only if B = B+. 

As a particular instance, where r = 0, 

/ 0 p~l\ 
(A.23*) B = I , with real smooth p(x) ^ 0 and q on J, 

\q 0 ; 
defines the classical Sturm-Liouville operator M = M#, 

A % ] = -(py')7 + QV o n ^ ( M ) ^ ( a s i n (A.16)), 

where D(M) = T)(B)—since y^ = py' with p and p~x G AC\oc(3). But we can 
consider more general types of Sturm-Liouville operators, upon extending the do
main D(M), by allowing arbitrary real p G AC\oc(3) which vanish at certain points, 
yet with p"1 G &\oc(3)—say p(x) = y/\x\ on 3 = R. More spectacularly, take 
p(x) > 0 to be everywhere continuous but nowhere differentiable on J. In this last 
case MB is a well defined quasi-differential expression that does not correspond to 
any classical differential expression M—because 

UB = Py' i ^Cioc(^) for some choices of y' G AC\oc{3). 

To illustrate the possibilities of the non-uniqueness of A G ^ ( J ) for which 
the corresponding quasi-differential expressions realize a given classical differential 
expression M, we start with the complex self-adjoint operator 

M[y] = {piy')' + p0y + i[{qQy)' + q0y'] (as in (A.15)), 
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where the real coefficients Pi,PoiQo are suitably smooth and p\{x) ^ 0 for x G 3. 
Namely, for each real number c define 

(A.24) 
i ^ - i (~iq0 - c)px -px e z2(J). 

_Po + (<7o + c2)Pi * (-m + c)px * 

Then a direct computation yields Ac = A+ and 

(A.25) MAc = M on D ( M A J = D(M), as in (A.15). 

The case c = 0 is often written as 

where p = —Pi, q = po 4- (ZoPi"1' a n d ^r = ^oPi"1 a r e a ^ rea^- The restriction to 
the corresponding real case (A.23), where qo = 0, also produces illustrations of the 
non- uniqueness (for A.16), for real values of c in M^c , and c = 0 yields (A.23*). 

As before, upon weakening the smoothness hypotheses in (A.25)—say take qo 
to be continuous but nowhere differentiable on 3 (even allowing po and p\ in C°°(J)), 
we obtain quasi-differential expressions MAc which do not equal any classical dif
ferential expression of the type prescribed in Example 1 above. 

The significance of this family Ac of Shin-Zettl matrices in Z2P) is explained 
in the following proposition. 

PROPOSITION 3. Let <p(pi,p0,q0), ^(pi.Po^o), x(puPo,Qo) and u(pi,p0,q0) 
be complex rational functions of the three variables (pi,Pch#o)- Assume that for 
each triple of real smooth functions p\(x) ^ 0, po, qo G C°°(!J); the matrix 

(A.27) **) = ( $ ; ! %1)=^*)zw)> 
where <p(x) = (p(pi(x),po(x), qo(x)) and similarly for ip(x), x(x)> and w(x)-

Assume also that for each such matrix A = A(x) 

(A.28) MA[y] = i2y[l] = (piyJ+PoV + i[(q0y)' 4- q0y'] 

for ally G C°°(J). 
Then there exists a real constant c so 

(A.29) 
(piPiiPoiQo) = (-iqo -c)Pil, ^{pi,Po,Qo) = ~P\ 
x(PuPo,Qo) =Po + (ql + c 2 )p^ \ v(puPo,qo) = (-iqo + c)P\l, 

and (A.27) reduces to the matrix in (A.24)-

PROOF. For each triple (pi(x),Po{x), qo(x)) construct the matrix A — A(x) G 
Z2CJ) with the corresponding quasi-derivatives 

V[A =^W - <py] 

y[A = V>V - vy] + $[y" ~ v'y - vy'} -xv- W V - <py] 
and then set 

(A.30) MA[y] = -y[l] = Ply" + pW + Poy + *[<7o2/ + W ] , 

for all smooth y G C°°(5). 
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For each such fixed tr iple (pi,Po> </o)> the values y, y \ y " can be t r ea ted as three 
real independent variables, a t each x G l Thus the coefficient of y " must define an 
identi ty for x G 3, namely: 

(A.31) -il>(pi{x),Po(x),qo(x)) = pi(x) so ^(pup0lq0) = -p\. 

Next the coefficient of y' yields the identi ty for x G 3 

- ? / / + ^ + u%l) = p i + 2iq0 

where 

•W-griW + g^W + grfM = -*(*). 
Then 

(A.32) tp + u = -2 ig 0 pr 1 s o ^(Pi5Po,9o) = - ^ ( P i , P o , g o ) - 2 % P r 1 -
Further the coefficient of y yields the identity 

(A.33) ^ V + tyy' + X _ ^ V ^ = Po + ^ o -

B u t the six variablesPi,Po,qo,PiiPoiQo c a n be assigned independent ly a t each x G J, 
so (A.33) then implies t h a t 

<9p0 #Pi <9<?o 
so 

(A.34) ^(PiiPOiQo) = — iqoPi1 — cP\l f ° r a complex constant c. 

Finally the hypotheses A = A + G £2(3), in accord with Proposition 2, imply 
that 

u; = — (p and x is real. 
Elementary calculations then verify that 

Imp = —qoPi1, so c is necessarily a real number. 

Also 
(-P1V)' + X - PiW = Po + ^o-

Therefore 
X = Po + puptp = Po + foo + c 2 ^ 1 , 

and the proposition is proved. • 

The matrix (A.27) with (A.29) reduces to the familiar format Ac in (A.24), and 
in the real case when qo = 0, 

(A.35) -cpil ~Pi 1 

Po + c 2 ^ 1 cpi1 (real constant c). 

Each of these real matr ices A c G Z 2 (J) determines a quasi-differential expression 
MAC which is equal to the classical Sturm-Liouville differential opera tor (A. 16). 

We next t u r n to a few examples of order n — 3 and n = 4 to i l lustrate these 
propert ies of nonuniqueness, and other unusual phenomena, for self-adjoint differ
ential and quasi-differential expressions. Moreover the case n = 3 will serve as a 
p ro to type for all higher odd order cases, and n — 4 for higher even order cases—as 
exhibited la te r—al though certain peculiarities arise in these very low orders. 
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Consider the general classical differential expression, formally self-adjoint of 
order n = 3, [DS]: 

(A.36) M[y] = (Ply'y + (Poy) + i[(qiy'){2) + ( W 2 ) ) ' ] + *[(*>!/)' + («bj/)], 

where the real functions Pi,Po,qi,qo are suitably smooth on 3 (say, p\ G C1 , 
Po G C°,qi G C2 , g0 G C1) with q\(x) ^ 0 for all x G J. We can re-write 
(A.36) in the customary form for a classical differential expression 

(A.37) M[y] = P3y(3) + P22/(2) + Piy' + Poy, 

where the complex coefficients are 

(A.38) P3 = 2 % , P2 = pi + 3iq[, Pi = p[ + iq\} + 2iq0, P0 = Po + iq0-

Then we use the nearly companion format (A. 10) to compute the appropriate matrix 
B G Z3{3) so MB = M on T>(B) = D(M), namely we find 
(A.39) 

B 
1 
0 

-iP0 -iPl (P^-P2)P3 

0 
ip3-1 

p2)pf\ 
and B+ = 

•-(P>-P2)P-1 
iPi 

-iPo 

iP3~l 

0 
0 

0 
1 
0 

It is clear that B ^ J5+ (except for trivial cases, q\ — —1/2, p\ = 0, qo = 0), 
and also MB ^ M#+ (even though *D(B) = D(£?+), as can be seen by a direct 
compution and examination of the corresponding quasi-derivatives relative to B 
and J3+). 

Since M is formally self-adjoint, so is MB = M, even though B ^ B+. However, 
by Proposition 1, there must exist a matrix A G Z3(3) with A — A+, and either 
M = MA or -M = MA on D(M) = 2)(A). This required choice of the sign for ± M 
is apparent in the next construction for a convenient description of such a matrix 
A, which we denote by A3. 

For the given self-adjoint classical differential expression ±M of (A.36), we 
define the corresponding matrix A3 G Z3(3): 

(A.40) A , = 
0 ft 0 

qoPi ipi/2qi ft 
-iPo qoPi 0 

where ft = (-2g1)~1 /2 > 0. That is, we choose the one of M or —M so that 
q\{x) < 0 for all x G J , and then ft is a real positive function of class C2(3). 

It is easy to compute that A3 — A\ and T)(A3) = D(M). Indeed the quasi-
derivatives, relative to A3, are (omitting the subscript A3 for simplicity): 

2/ [ 11=/3fV 

y[2] = fl^Pf V)' - */3iy - ^(/?rV)] 

so 

^ = / ^ ( f t - y ) ' - 9ofty + ipiy'. 
Now note the identity, which will be used again in higher order cases: 

(A.4i) /Jf^/Jf V) ' = -<iW - W = -(«!!/')' - W -
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Then continue to compute 

y[2] = -{qivY - <iiy" - qoy + my' 

and 

ym = yW + ipoy _ q0/3iyW . 

It is easy to see that if y,y',y" are all ACioc(3), then so are y ^ , yW, y^ G 
-ACioc(5)—and vice versa. 

Hence we conclude that 
(A.42) 

MAM = *V3] = MY + fay) + i[(qiy')i2) + (W2))1 + i[(goy)' + (W)] 

and 

(A.43) 
M[y] = MA3 [y] for all y e D(M) = D(A3), 

as required. 
Of course, we can use the matrix A% G Zs(3) to extend the definition of the 

classical differential expression (A.36) to allow weaker conditions of regularity on 
the real functions Pi,Po,Qi,qo —for instance: 

(A.44) (i) qi(x) < 0 on 3 with \qi\~1/2 G £ ^ ( 3 ) 

(ii) qo\Qi\-1/2elLP) 
(hi) piq^1 and p0 G £ ^ ( 3 ) . 

As a final example of these low order classical differential operators, we consider 
the general self-adjoint classical differential expression of order n = 4. Again we 
take the familiar [DS] self-adjoint expression with complex coefficients: 

(A.45) M[y] = (P2y")" + (p l 2 / ') , + (po2/)+i[(</1y')(2) + (9i2/(2))']+i[('?oy), + (9o?//)], 

involving the real smooth functions P2 G C2, pi G C1 , po G C1 and also real 
q\ G C2, qo G C1 on J. Then the usual format for M, as a classical differential 
expression, becomes: 

(A.46) M[y] = P4y (4) + P3y{3) + i V 2 ) + Piy' + P0y 

where the complex coefficients are 

^ 2 = P 2 + P l + 3 * 9 i (A.47) P4=p2, 
Pi = p'1+iq'{ + 2iq0, 

P3 = 2p'2 + 2iq1, 
Po=Po + iqo-

Then the nearly companion matrix B € ^4(3), of the format (A. 10), satisfying 
MB = M on D(B) = D(M), is 

(A.48) B = 

0 
0 
0 
•Po 

1 
0 
0 

-Pi 

0 
1 
0 

- p 2 

0 
0 

p-1 

(Pi-Ps)P41 
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Of course, MB[y] = M[y] for all y G V(B) = D(M), so MB is formally self-adjoint— 
despite the fact that B ^ 5 + , and moreover it can be shown that T)(B) ^ D ( 5 + ) . 
However, by Proposition 1, there must exist a matrix A G Z±(T) with MA = M o n 
T)(A) = D(M) and such that A = A+. We next present a convenient choice for 
such a matrix A G Z4(J), which we denote as A4: 

(A.49) A, 

0 

0 

iqo 

-Po 

1 

-iqiP2l 

~[Pi +Q1P21} 

-iQo 

0 

ft1 

-iqiPz1 

0 

0 

0 

1 

0 

This matrix A4, for the order n = 4, will serve as the prototype for the cor
responding matrices A = A+ — Zn(3), for even orders n > 4, as described in 
Exhibit 3 later. Accordingly, we illustrate the techniques for the computations of 
the appropriate quasi-derivatives relative to A*, in order to demonstrate that the 
classical differential expression M of (A.45) can be written as the quasi-differential 
expression MA4' 

(A.50) M[y]=MAA[y] o n D ( M ) = D ( A 4 ) , 

with AA = A%. 
The usual computations, show that A4 = Aj~ G ^4 (3), and further that the 

corresponding quasi-derivatives are (again surpressing the subscript A4 for simplic
ity): 

y[1]=y' 

y[2] = W 2 ) ) + *fai2/') 
y[3] = (P2y{2)Y + i{qiy')' + iq0y + bi + gferV + iqip^fay™ my. 

so 

2/[3J = fay™)' + (Pi2/') + *[(<7i2/')' + W j] + iqoy 

Hence 

and 

yW =y [ 3 ] / +Poy + iqoy' 

MAM = i4vlZ =W 2 ) ) ( 2 ) + (PU/)' + (poy) 
+ i[((Ziy,)(2) + (W2)) ,]+<[((Z02/) , + ( W ) 
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Also y,y',y",y(3>> are all in AC\oc(J), if and only if y^\ yM, y^2\ y^ are all in 
ACiocCO, s o ^ ( M ) = ^ ( ^ 4 ) . Thus (A.50) is valid. 

EXHIBIT 3. Construct A = A+ e Zn(J), so MA = M (or, possibly, MA = -M 
when n is odd), for any given general classical differential expression M, of order 
n > 2, formally self-adjoint, and with suitably smooth complex coefficients on the 
real interval J. 

As indicated above, the cases for n even and odd are somewhat different, and 
we shall treat these separately. Also certain peculiarities arise for low order n, but 
we have already covered these cases n = 2,3,4—and so we examine only the general 
format valid for larger n. 

Thus consider first the general formally self-adjoint classical differential expres
sion M of even order n = 2m > 6, with suitably smooth complex coefficients on 
the real interval 3. As is well-known [DS], we can write M in the special format. 

m m— 1 

(A.51) M[y] = $ > r » ( r ) ) ( r ) + i Y, [(Qry{r)){r+1} + (qry{r+1))ir)}, 
r=0 r=0 

in terms of the real smooth functions PrmPm-i, • • • iPiiPo a n d g™-i, • •., <?i, #o- For 
defmiteness we assume 

(A.52) 

pr eCr{3) for r = 0 , 1 , . . . , m; 

and 

qr e C r + 1(J) for r = 0 , 1 , . . . ,m - 1. 

The initial leading terms for M are 

(Pm2/(m))(m) + i[(5m-i!/ ( m-1 )) ( m ) + (qm-iyim)){m-% 

and, as usual we assume that 

(A.53) pm(x) ^ 0 for all xe3. 

Next construct the required even ordered matrix Ae = Af £ Zn(3) (where 
n = 2m is even) such that MAe — M on D(Ae) = D(M), and for this we introduce 
the notation in [ER]. For even order n = 2m > 6 the matrix for M in (A.51) has 
the format Ae where 
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(A.54) 

Ae = 

- o 
0 
0 

0 
iPo 

- OLQ 

1 
0 
0 

ipi 
Oil 

iPo 

0 
1 
0 

Oi.2 

iPi 
0 

0 
0 
1 

0 
0 

iPm-2 
Ot-m-2 

1 

dra-1 

i(3m-2 

0 
OLm 

iPm-1 
0 

0 
0 
1 
0 

0 
0 
0 

1 
0 
0 

0 
0 
0 

0 
1 
0 

The terms ifim-i are on the main diagonal, which otherwise consists of zeros; 
and the term a m is on the first superdiagonal, which otherwise consists of l's. All 
other entries not specified or indicated are zero. 
Here 

(A.55) am = ( - l ) " ^ " 1 (so am E Cm and am(x) ^ 0 on J) 

OLm-l = ( - l ) m + 1 ( P m - l + P ^ m - l ) 

ak = {-l)m+1Pk (0<k<m-2), 

and 

Pm-l = —Qm-lPm 

0k = (-l)m+1qk (0<k<m-2). 

Since all the entries a m , . . . , a o , /3 m _i , . . . ,/3o are real continuous functions 
on J, and am(x) ^ 0, it follows that Ae G Zn(3)—also Ae is real if and only if 
qm-i = qm-2 — ''' = Qo — 0, that is, M is real. 

It is easy to verify that 

(A.56) Ae = At = - A - ^ A n , or AnAe = {KnAe)\ 

since KnAe is obtained from Ae by reversing the order of the rows, and changing 
signs in alternate rows. 

Next we compute the appropriate quasi-derivatives, relative to Ae of (A.54), in 
order to verify that 

MAe[y} = M[y] on V(Ae) = D(M). 

Here (again surpressing the subscript Ae): 

(A.57) j/[°]' = y[1] so 2/W = y' 
yW = ym s o y[2] = y(2) 

y[m-2}' _ y[m-l] g 0 y[m-l] _ (m- l )_ 
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Further 

y [ r o - 1 ] ' = t | 9 m - i j / [ m - 1 1 + a r o l / H , 

» H ' = ipm-2y[m-2] + am-iy[m-1] + ipm-iy[m] + y[m+1] 

y^+lY =iPm_3ylrn-3} +am_2ylm-2] + 0 m _ 2 y [ m - l ] +y[m+2}^ 

and continue 

y[™+2]' = i/3m_4 2/ [ m-4 1 + am_3 2 /m-3 ' + i/3m-3</[m"2] + 2/[m+3] 

y [m+31 ' = i/3m_5y[m-51 + am-4y [ m"4 1 + ipm-4y[m-3] + ylm+4] 

so finally the next to last row determines y'™-1', 

yl""2!' = {fay + ou/ ' + i/3ij/<2> + yl""1! 

and then 

yN = y[n-l]> + ( _ 1 ) > 0 ? / + (-iriq0y>. 

Next re-write and examine the critical rows: 

ylm-l]' = _i
<hn^y(m-l) + (_ym J_y[m] 

Pm Pm 

SO 

( - l ) m » H = P m y ( m ) + i ? m - i j / ( m - 1 ) , 
j ,M' = i ( - l ) -+ l ( ? m _ 2 j / (— 2 ) + ( - l ) m + 1 ( P m _ ! + ( ?

2
f t_1/Pm)2/(m-2) 

+ j (_ 1)m+l?m= l [m] + [m+1] 

Pm 

y[m+1] = ( - i ) m (Pmy ( m ) ) ' + ( - i ) m i ( 9m- iy ( m - 1 ) ) ' 

+ (-i)roigm_2j/(m-2) + ( - l ) m fPm_i + ̂ =±) y{m~l) 

\ Pm J 

SO 

and 

(-i)"Vm + 1 ] = ( W ^ ) ' + (pm-is/(ro-1)) 
+ iiKg™-!^"1')' + (<7m_u/(m))] + [(gm-2i/(m-2))]}. 

The next step of computing ?/[m+2] sets the future pattern, since the exceptional 
elements am, c*m-i, /?m-i are not involved—and a similar pattern holds to y^1"1^. 

That is, we note 

y[m+2] = ylm+,Y _ i0m_3y(m-3) _ a m _ 2 y (m-2) _ ^ . ^ " D 

y [m+21 = (-i)m{(pmy{m)){2) + (Pm-iy^-1)'} 
+ {-l)mi{[{qm^m-V^ + (qm-iy

(m])'} + [{qm-2y(m-2))']} 

+ ( - l ) m i g m _ 3 y ( m - 3 ) + (-l)miqm-2y{m-1) + ( - l ) " W 2 y ( m - 2 ) . 
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Thus 

( _ l ) m y [ m + 2 ] = { ( p m | / ( m ) ) ( 2 ) + ( p m _ i y ( m - l ) y + Pm_2y(™-2) } 

+ i{[(qm-iy{m-1)){2) + (qm-iy{m))'} 
+ [{qm-^m-V)' + {qm-2y^-^)} + [(9m_3y (m-3)]}. 

Thus, in passing from y[m+1l to y[m+2l we impose one additional order of differen
tiation on all the p-terms and g-terms of y\-m+1\ then add one additional p-term 
and two additional g-terms to extend the pattern. Hence we proceed step-by-step 
until yl™"1' =y[m+™~l\; 

(_l)my[n-l] = {(pmy(-))(m-l) + (pm_ i y(—D)(—2) + . . . + ( p i 2 / ' ) } 

+ iiKqm-iV1"1-1^"1-" + (qm-iy(m))(m-2)} 
+ [(<7m-2y(m-2))(m"2) + (gm-22/(m-1))(m-3)] + • • • 

+ l(qiy')' + (qiy{2))} + l(qoy)}}. 

Then 

y[n] = yln-1]' _ aoy _ i/3oy, = y[n-l]' + ( _ 1 ) > 0 ? / + (-l)™iq0y> 

(-i)m j /W = {{pmy{m)){m) + {pm-iy{m-l))(m-l) + ••• + (Piy'Y + (Poy)} 

+ i{[(g r o_iy ( m-1 )) ( m ) + (« m - iy ( m ) ) ( m - 1 ) ] 

+ [ (g m - 2 t / ( m - 2 ) ) ( m - 1 ) + (Qm-2J/ ( m-1 )) ( m-2 )] + • • • 

+ [(Qiy')(2) + ( W 2 ) ) ' ] + [(90?/)' + (qov')}}. 

Hence, since ( - l ) m = ( - l ) _ m = i2rn = zn, MAAV] = ^VA > a s required for all 
suitably smooth y. But we still must verify that T>(Ae) = D(M). 

However a careful study of the prior formulas shows that: 

if y,y',y",... Jn~l) are all in ACloc{3), 
(A.58) then also the quasi-derivatives, relative to Ae, 

7 / t ° U W , . . . , ^ - 1 ] a r e a l l i n ^ C l o c p ) . 

This conclusion follows directly from the assumed smoothness properties of the 
functions pr and qr. It is trivial for y ^ on r = 0 , 1 , . . . , m — 1, and thereafter the 
formulas for y^, for r = m, m + 1 , . . . , n — 1, give the required smoothness at each 
step. 

The converse also holds by similar arguments using the inductive nature of the 
successive steps—say relating y^ to y, y', y",..., y^-1' in the definition of y^r\ 

Hence we conclude that for the case of even order n, we have verified that 

(A.59) MAe[y] = M[y] on V(Ae) = D(M). 

The second construction in this Exhibit 3 treats the general formally self-adjoint 
classical differential expression M of odd order n = 2 m + 1 > 5, with suitably 
smooth complex coefficients on the real interval J. In this case we can write M in 
the special format [DS]: 

771 777 

(A.60) M[y] = 5 > , ? / ( r ) ) ( r ) + i E [ ( ^ ( r ) ) ( r + 1 ) + (?r j / ( r + 1 ) ) ( r ) ] , 
r=0 r=0 
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involving the real smooth functions p m , p m _ i , . . . ,Pi,Po a n d real qm,..., #i, q$. For 
definiteness we assume 

(A.61) pr G C r , gr G C r + on J, for r = 0 , . . . , m, and also 

(A.62) (- l)m9m(£) > 0 for all x G J, 

(otherwise replace M by — M to attain this sign convention). We note that for n 
odd, M must have some non-real coefficients. 

Then, for M in (A.60) with odd order n = 2m + 1 > 5, we define the odd order 
matrix AQ = AQ G Zn(J) (see [ER]) and then verify that 

(A.63) MAo[y]=M[y] on <D(A0) = D(M). 

For odd order n = 2ra + 1 > 5 the matrix for M in (A.60) has the format AQ 
where 
(A.64) 

0 1 0 0 - • 0 (T 
0 0 1 0 0 0 
0 0 0 1 - 0 0 

A0 = 

0 

iao 

Pi 
iai 
Po 

IOL2 

Pi 
0 

0 
Pm-l 
iam-i 

Pm 
iOLm 

Pm-1 

0 

1 0 
0 1 
0 0 

The term iam is on the main diagonal, which otherwise consists of zeros; and 
the terms /3m are on the first superdiagonal, which otherwise consists of l's. All 
other entries not specified or indicated are zero. 

Here 

(A.65) 
/3m = [ ( - l ) m 2 g m ] - 1 / 2 > 0 (so /3m G C m + 1 and /3m(x) > 0 o n J ) 

Pm-l = ( — l ) m Qm-lPm 

Pk = ( ~ l ) m + 1 
Qk for (0 < k < m - 2) 

and 

ak = (-irPk for (0 < k <m- 1). 

Since all the entries a m , . . . , ao and / 3 m , . . . , /?o are real continuous functions on J, 
and /3m(x) / 0, it follows that A0 G Zn(3). 

It is easy to verify that 

Ao - A ^ ^ A n , or {AnA0) = -(AnA0)*. 

We now proceed to verify (A.63) by computing the appropriate quasi-derivatives, 
relative to the matrix A0 of (A.64). 
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Here we compute (again surpressing the subscript AQ): 

(A.66) yW =yV>\ so yW = y> 

yW=yV\ so yW=y» 

Further 

y[m-2]' = y[m-l]) S Q y[m-l) = y(m-l)_ 

y[m-lY =pmy[m\ s o y H = / 3 - y m ) 

yW = (3m-iy[m-1] + iamy[m] + / W m + 1 ] 

so 

ylm+1] = p-m&yWy - (3m-iy[m'1] - iamyW}. 

Recall that (3m = [ ( - l ) m 2( ? m ] - 1 / 2 , pm-1 = (-l)m+1qm^pm and the identity 
(see (A.41)): 

(A.67) faHPmV(m)Y = (-i)mWmy(m) + 2qmy{rn+1)} 
= {-i)m{{qmy(m))' + qmy(m+l)}-

Then we can write 

("l)m!/ [m+1] = l(qmy{m)y + {qmy{rn+l))\ + [(Zm-l^-^] - *Pm2/(m), 

and we recognize this expression as the beginning of the construction anticipated 
for y K 

Continue to compute directly from 7/[m+1^ , namely 

y 
[m+2] = y[m+l]' _ 0m_2y(m-2) _ iam_iy(m-l) _ ^ ^ H 

SO 

(_l)mj,[m+2] = [(gmyM)(2) + ( g ^ + D )'] + [(</m_1y(—1))' + (9m_l2/TO))] 

+ [qm-2y{m-2)} -i{{Pmy{m))'+Pm-iy(m~l)}-

Now all the similar successive calculations, from ^/fm+2] to the "last full row" 
labeled by y\-n~2^ and involving the term ?/n _ 1^ follow the same pattern, since the 
exceptional terms /?m, /?m_i, a m no longer enter these formulas. Hence we continue 
to find 

(_l)"»j,[»-H = [(gm!/("'))('») + (gmj/(m+1))(m-1)] 

+ [(«m_i!/<m-1>)<m-1> + (Qm - iy ( m ) ) ( m - 2 ) ] 

+ --- + [(«U/)' + ( W 2 ) ) ] + [<M/] 

- * { ( P n , ! / ( m ) ) ( m - 1 ) + " - + P i y ' } . 

Then 
y[n] = y[n-l] ' _ iaQy _ ̂  = yln-l]' + ( _ l ) - { g o J / ' _ ip0y}, 
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and thus, for suitably smooth y, 
m m 

MAM = inv[2\ = E^2>(r))(r) + i£K<M(P))(r+1) + (9,2/(r+1))(r)]-

But just as in the case of even orders n, we can show that (see (A.58)): 

(A.68) y, y', y",..., y{n~l) are all in AC]oc(3) 
if and only if the quasi-derivatives relative to AQ 

2/[°],y[1],... ,2/["-1]areallinAC l oc(a). 

Hence the required result (A.63) holds: 

(A.69) MAo[y] = M[y] on D(A0) = D(M). 

Thus, in this Exhibit 3, we have displayed for each formally self-adjoint classical 
(smooth) differential operator M of order n > 2, a suitable Shin-Zettl matrix 
A = A+ G Zn(3) such that the corresponding quasi-differential expression satisfies 

MA[y] = M[y] for y G V{A) = D(M), 

(or MA = —M for some cases when n is odd). 

EXHIBIT 4. Another symmetric differential expression, also a general format 
for the formally self-adjoint classical differential operator of order n > 2, with 
smooth complex coefficients, is given by (after E. Coddington, with minor nota-
tional modifications [CL]): 

(A.70) 
M[y] = inqn(- • • (qn(qny)y • • •) ' + i^Qn-ii' • • ( ^ - i f e - i ^ T • • •) ' 

+ • • • + i2q2(q2(q2y)'y + %(<?i2/)' + qoV-

The complex qr G Cr for r = 0 , 1 , . . . , n on the real interval J, must further satisfy 
the conditions 

[qr(x)}r+1 G R with qn(x) ^ 0 for all x G l 

Thus the (n + l)-st power of qn, the n-th power of g n _ i , . . . , the first power of go, 
are all real for x G J. The domain of M is 

D(M) = {y.3^C\y,y', y", • • • , y^" 1 ) in ACloc(l)}-

Then M describes the most general classical differential operator of order 
n > 2, with smooth complex coefficients, which is formally self-adjoint in the sense 
of Section I (1.8); and accordingly there exist representations of M by M^, for 
A = T4+ G Zn(3) (or of — M in some cases with n odd). There does not seem to be 
any simple direct method of constructing such a matrix A in terms of the functions 
gn ,gn_i, • • • , go of (A.70). However we can attempt to resolve this difficulty by 
"unwrapping" the differential expression (A.70) for M to recover the usual classical 
expression 

n 

M[y] = YJKy{r\ 
r=0 
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with bn G AC\oc(3) and bn(x) ^ 0 for all x G J, and otherwise br G &locC3) for 
r = 0 , 1 , . . . , n — 1. This procedure is too awkward and cumbersome for large values 
of n, but we shall illustrate the concept for n = 2. 

Thus consider the formally self-adjoint expression (A.70) for n = 2, 

(A.71) M[y] = -q2{q2(q2yY)f + %0/i2/)' + 3o2/ 

where 
(q2(x))3 7̂  0 is real, and also (#i)2 and qo are real on J. 

Then compute 

(A.72) M[y] = - ( 9 2 ) V + h(<fe)2<£ - 2<£(<z2)2 + « V 

+ [-^{q'2)2 - {q2)2q2' + niq'i + go]2/. 

Now we seek B = £?+ G ^2 00 m the familiar form (A.26) for the Sturm-
Liouville operator, namely take 

(A.73) B= \ r P ! 
I q — r 

where p, g, and ir are real on J. In this case 

(A.74) MB [y] = -vv" + [-p' + p(r - f)]y' + [(pr)' + g + rfp]y. 

Upon equating like coefficients in (A.72) and (A.74) we obtain the desired formulas: 

P=(Q2)3, r = i{qif[2{q2f}-1 

q = qo~ 92(^)2 - («2)V2' + (qifMto)3]-1, 

at each x G J. This last result allows us to relax the original differentiability 
conditions on #2> #i> qo to the weaker demands: 

g2, #2 a n d q\ G ACioc(^) (with g^OO 7̂  0 on J) 

which guarantee that B = # + G ^ ( J ) . 
The last topic in this Appendix A is an analysis and proof of the Density 

Theorem for quasi-differential expressions M^, for any given Shin-Zettl matrix 
A G ZnCJ), as described in Sections 1(1.15), 11(1.3 (vii)), and above in (A.3), (A.4), 
(A.5), (A.6), and (A.7); and applications to basic results on adjoint operators. 

In order to re-state the setting for this theorem, consider the complex Hilbert 
space £2(3; w), relative to a real weight function w G £>\oc(J) with w(x) > 0 a.e. on U, 
where J is any prescribed nondegenerate real interval, say with endpoints — 00 < a < 
b < +00—as in Section I above. Then for any given Shin-Zettl matrix A G Zn(3) 
(satisfying conditions (ai) and (0:2) of Section I (2.3)—but not necessarily (as) of 
Section I (2.13)), we construct the quasi-differential expression (as in Example 2 in 
Section I, and as we recalled earlier in this appendix): 

(A.3) MA[y]=inyW, 

on the domain "D(MA) or 1>{A) specified by 

(A.4) V(A) = {y : 3 - C | y[$ e ACloc(3) for r = 0 , 1 , . . . , n - 1}. 
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As in Section I, w 1MA generates a maximal linear operator T\ on the domain 

(A.75) D(7\) = {ye V(A) \ y and W^MA^] in £2(J;w)}. 

In this Appendix A we shall show that the set (compare Section I (1.11) and 
Section I (1.15)): 

(A.76) Do(Xi) = {y e D(7\) | (suppy) lies in a compact set interior to 3} 

is dense in the Hilbert space £2(J;u>), under appropriate hypotheses—as asserted 
later in The Density Theorem 1. 

LEMMA 1. Let A G Zn(3) and w G &\oc(3) be a positive weight on the interval 
3, so the quasi-differential expression W~1MA generates a maximal linear operator 
T\ on D(Ti) C L2{3\w), as above. Then Do(Ti), as in (A.76), is an infinite 
dimensional linear manifold in L2{3\w). 

P R O O F . It is clear that D0(Ti) C D(Ti) C H2(3;w) is a linear manifold in the 
complex Hilbert space £2(J; w); however it is not obvious that it is non-trivial (not 
the zero only). 

Fix any non-degenerate compact interval [a,/?] lying interior to J, and we shall 
prove the stronger result that the linear manifold Do ([a,/?]) C D0(Ti), where 

(A.77) Do([a,/?]) := {y e D ( ^ ) | (suppj/) C [a,/?]}, 

is an infinite dimensional linear manifold in L2{3]w). 
To construct functions in 1)(A) consider the quasi-differential control system 

(A.78) y[2] = wip, for controllers y G ££CCJ), 

(so wip G L\oc{3), which is sufficient for the usual existence and uniqueness theo
rems) or equally well, the linear differential control system 

(A.79) y'A = Ay A + 

ylZ\*) 

o 

0 

W 

y>> 

with responses ?/A(#) = • G Cn for all x G 3. Take the initial data 
. n - l 74 — 1 / \ 

,yA 0*0, 
for (A.79) to be yAip) — 0> a n d select an arbitrary vector c ^ 0 in Cn and an 
intermediate point 7 in (a, /3). Then it is known [EM] that there exists a controller 
(f G £°°([a,7]) so that the corresponding solution of (A.79) on a < x < 7 is the 
response yA(x;c) with 3/̂ 4(7; c) = c. Then further continue the controller </? on 

[7,/3], with (p G £°°([7,/3]), so that 2/A(#; C) is defined on a < x < f3 with 

yA(a; c) = 0, yA{l\ C) = c, 2/A(/?5 C) = 0. 



128 W. NORRIE E V E R I T T AND LAWRENCE MARKUS 

Finally continue to define ip(x) = 0 for x outside [a, ft] on J, and thus ip G £°°(3), 
and 2/A(^J g) is defined for all x G 3. 

Clearly 2/A(#; g) £ ^LCIOCOO so y(x; g) = yA (x; c) G 2)(-A), and also (suppy) C 

[a,/?]. Moreover 
|W - 1MA [ 2 / ] | 2

U ;=^ 2«; |Gi: 1([a , /3]) 
SO 

y(x;c) G D(Ti), and furthermore y(x,c) G D0([a,/?]). 

Finally replace the single intermediate point 7 by an arbitrary finite number of 
points, say 7^ for /c = 1, 2 , . . . , £, 

a < 71 < 72 < • • • < 7^ < /?, 

and also take an arbitrary assignment of complex values Ci, C2,.. . , Q G C and write 
c = (ci, C2,.. . , Q ) G C^. Following [EM], choose the required controller if G £°°(J) 
so that the corresponding response yA(x] c\,..., Q ) := y^(x; C) lies in ACioc(3) and 

satisfies the conditions 

y^(x; c) = 0 for x < a and for x > j3 on J, 

2/(x; c) = y% (x; c) satisfies 2/(7^,0) = cfc for fc = 1 , . . . , L 

Just as before y(x;c) G D(A) and also y(x\c) G D(Ti) with supp?/ C [a,/?]. There
fore 2/(x;c) GD 0 ( [Q: , / ? ] ) . 

Since the finite set of values c\, c<i,..., Q G C is arbitrary, 

dim D0([a, /?]) > ^, for arbitrary £ > 1, 

as required. • 

As indicated by the procedures in Lemma 1, we shall consider several spaces 
of complex functions defined on the compact interval [a, /?] that lies interior to 3— 
for instance AC ([a, (3]), £1([a,/^]), £2([a,/3]; w), £°°([a,/?]), etc., in the familiar 
notations. 

We note that the controllability methods, see [EM], applied in the proof of 
Lemma 1 have been employed in special cases by Naimark, leading to his result 
[NA, Ch. V 17.3, Lemma 2] which we refer to as the "patching lemma". For easy 
reference we reformulate this particular result as a corollary, which is an immediate 
consequence of the calculations of our Lemma 1 above. 

COROLLARY 1 (Patching Lemma). In the terminology of Lemma 1 above, pre
scribe data: 

£ G Cn , 77 G Cn at points 71 < 72 interior to 3. 

Then there exists an n-vector function yA(x) for x G [71,72]? with compo

nents y[
A~l] G -AC([7i,72]) such that y^ (li) = £r and yA

1](-f2) = rjr for 

r = l , 2 , . . . , n . Furthermore y = yA satisfies 

w-lMA[y] e£2([7i ,72];w). 
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Using this formulation of the "patching lemma", it is clear that we can "patch 
together" appropriate functions on disjoint subintervals of 3 to construct functions 
in D(Ti). We next use these techniques to produce extensions of complex-valued 
functions, defined on a compact interval [a,/3] C J, to functions defined on the 
full interval 3—while preserving important global properties, as indicated in the 
following remarks. 

REMARK 1. Let z(x) be a complex function defined for x G [a, /?], interior to J, 
where the quasi-derivatives (relative t o i e Zn{3))\ 

zV} G AC{[a, (3)) for r = 0 , 1 , . . . , n - 1. 

Also assume that 
rP rP 
/ \z\2wdx < co and / \w~l MA[Z]\2 w dx < oo. 

J a Jo. 

Then there exists an extension (non-unique) of z to a function defined on 3 and 
there belonging to *DQ(TI). 

To construct the required extension, say z(x) on J, choose a compact interval 
[a — e,f3 + e], for some small e > 0, which lies interior to 3. We then define z(x) as 
the solution of the quasi-differential equation (A.78) 

VA ~ W{P-> with initial data z^(a) = z^(a) for r = 0 , 1 , . . . , n — 1. 

Here we shall select the controller ip(x) on 3 so that wip G £1
1

oc(J), according to the 
following scheme: 

(i) ip(x) = W~1ZA (x) for a < x < /?, and note that 

rP \ rP f rP X 1 / 2 / / ^ r 1 \ : / 2 

/ \w(p\dx)= w1/2\(pw1/2\dx<( wdx) I \u)-lz[^\2wdx\ < 

Then z(x) — z(x) on [a,/?] by the uniqueness theorem for (A.78). 
(ii) ip G /C°° on [a — £, a] and on [/?, /3 + £], as in Lemma 1, so as to control z(x) 

from 

4r](a) = z^(a) to 4r](«-£) = o 
and from 

i^](/9) = ^ ]( /3) to i£](/? + e) = 0, forr = 0 , l , . . . , n - l . 

(hi) v?(x) = 0 outside [a — £,/? + £] on J, so z(x) = 0 for x < a — £ and for 
x > (3 + e on J. 

Then it is easy to observe that z^ G .AC(!J), and moreover 

/ \z\2wdx < oo, / |w;-1M^[£]|2w;(ix < oo, 

so z G Do(Xi), as required. 
We shall denote z by the same symbol z, and refer to the extension of z in 

Do(Ti). 

OO. 
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REMARK 2. Define the complex Hilbert space L2{[a,j3\,w) C £J2(3;W) by 

(A.80) L2{[a,(3\,w) := {z G L2{3-w) \ z = 0 a.e. outside [a,/?]}. 

It is then trivial that each complex function z on [a, j3\ with 

/ \z\2wdx < oo, 
./a 

can be extended (say, identically zero outside [a,/?]) to determine a function (still 
called z on 3) with z G L2(\a,fl\\w). 

DEFINITION 1. Let <KA([ct,P}) C £2([a,/?];w) consist of all solutions z(x), for 
x G [a,/?], of the homogeneous quasi-differential equation 

MA[z}=0 ona<x<(3, 

with the convention that we set 

z{x) = 0 for x outside [a,/?], 

so z G £2([a,/3]; w). 

Also define the linear manifold 3£o([#5/?]) C £2([a,/?]; w) as the image of the 
maximal linear operator 7\, as generated by W~1MA (as in Lemma 1), when re
stricted to the domain D0([c*,/?]) C ©(Ti), see (A.77); that is, 

(A.81) Tx : Do([a,/?]) - 3lo([a,/?]) : y -+ ^ ^ . [ i / ] . 

For £fte remainder of this discussion we assume that A = A+ G Zn(3)^ so that 
MA is formally self-adjoint. In this case W~1MA generates a symmetric minimal 
operator T0 on D(T0) C £2(J;u>), as defined earlier in Section 1(1.17), as well as 
the maximal operator T\ (these facts are not needed here). 

LEMMA 2. Let A — A+ G Zn(3) so the quasi-differential expression MA is 
formally self-adjoint. Then for each compact interval [a, j3] interior to 3, using the 
notations of Definition 1, 

(A.82) L\[a,0\;w) = %([«,/?]) ®OiA([a,0\) 

is an orthogonal direct sum decomposition of the Hilbert space £2([a, /?]; w) into two 
closed subspaces. Thus 

and 

3lo([a,/?])x = MA([a,/3]) 

in £j2([a,/3};w). 
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PROOF. (See [NA, page 62] for a special case, with the general case treated 
below.) 

The Lagrange-Green identity Section 11(1.3 (hi)), under the assumption 
A = A + , becomes 

rP rP 
(A.83) / w^M^gwdx- hw^M^wdx = {h,g\A(f3)-\h,g\A(a) 

J ex J ex 

for each pair of functions h,g G D(7\). Furthermore if g G Do([^^)]5 then the 
boundary form [/^g]^^) = 0 for x < a and for x > j3 in 3—because the quasi-
derivatives gA (x) = 0, for r = 0 , 1 , . . . , n — 1, outside [a,/?]. In this case, where 
#GD0([a,/?]), 

rP rP 
(A.84) / M[h]gdx= I hMA[g)dx. 

J ex J ex 

Now take any function / G %)([a,/3]), that is, 

w-lMA[y] =f or MA[y] = wf, 

for some y G T>o([a,/3\). We must show that / is orthogonal to !HA([a, ft]) in 
L2( [a, f3];w). 

Let z{x) be any solution of the homogeneous quasi-differential equation 
MA[Z] = 0 on a < x < (3. We can extend z{x) for I G J , with either z G D0(Ti) or 
with z G Jd([#,/?])—whichever is convenient—and both choices agree for calcula
tions restricted to [a,/?]. Hence we can compute (from (A.83)) 

rP 
/ fzwdx = I w~lMA[y]zwdx 

J a J ex 

J ex 
yMA[z)dx+ly,z\A{t3)-ly,z\A{pL) 

But since MA[z}=0 on [a,/?], and since yeT>o([a,/3]) so [y, z\A{f3) = \y, zjA(a) = 0, 
we obtain 

(A.85) / fzwdx = 0 
J a 

However z stands for any function in <HA{\a,(3}), so (A.85) asserts that / is 
orthogonal to (HA[a,f3}) in £2([a,/?]; w). Hence 

(A.86) %>{[arf])c%A([a,l3])^. 

For the converse, take / G <KA([a,0\)1- C £2([a,/3]; w). We must now show 
that / G #o ([<*,/?]), that is, there exists a function y G Do ([a,/?]) such that 
w~1MA[y]=f. 

For this purpose fix a basis z\, z^, • • •, zn of solutions of the homogeneous quasi-
differential equation: 

MA[z] = 0 ona<x<(3, 
with the prescribed initial conditions at x = (5: 

(A.87) 4 f c _ 1 ] (/?) = ft (Kronecker-<5) 
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for k = 1,2,.. . , n and v — 1, 2 , . . . , n. Consider each zu extended as zero out
side [a,/?], so zv G !K^([a,/?]) for v — l , 2 , . . . , n . Then our assumption on 
/ £ <^A{[^^])± guarantees that 

/ . 
fzu w dx = 0 for each v = 1, 2 , . . . , n. 

We next define y(#) on a < x < /3 as the unique solution of the quasi-differential 
equation 

(A.88) MA[y]=wf, for a < x < / 3 , 

with the initial data at x = a 

y%-1\a) = 0 for k = 1,2, . . . ,n. 

Note that the existence of y(x) follows because wf G £1([a,/3]); namely, 
\wf\ = \wl^\\w^2f\ and so / f |w/|dx < ( / f wdx)1'2^ \f\2wdx)^2 < oo. The 
extension of y(#) = 0, for x outside [a, /?], must be still be verified to be absolutely 
continuous on J, in order that y G 2)o([a,/?]). 

We note that for any extension of y(x) such that y G Do(Ti), and any extension 
o f ^ e D o C T i ) , 

(A.89) 

rP rP 
= / fziywdx= / w~1MA[y]zuwdx 

= / yw xMA[zv\wdx+%zl/\A(p)-\$,zv\A(a). 
J a 

Because MA[ZV] = 0 on [a,/3], and [?/, z^JA(a) = 0, (since y[
A \a) = 0), we 

conclude that 

(A.90) ly,z„]A(f3) = 0 for v = 1, 2 , . . . ,n. 

But we treat (A.90) as a system of n homogeneous linear (algebraic) equations 
in the n unknowns yA

 J(/3). Therefore, using (A.87), we find that 

(A.91) ^ - 1 ] ( / 3 ) = 0 for k = l , 2 , . . . , n . 

This implies that every extension of y{x) from [a,/?] to J, with y G Do(Ti), neces
sarily satisfies 

(A.92) V[!~X\oL)=y[*-x\P) = <i forfc = l , 2 , . . . , n . 

Hence we conclude that the global solution of (A.88) (with / = 0 outside [a,/3]) 
is y(x) on 3, with 2/(x) = 0 for x outside [a,/?]. Therefore y(x) G Do([a,/3]), as 
required, and furthermore / = W~1MA[II] G #o([a,/?])-

Thus JiUQa,/?])1- C ft0([a,/?]) and so, with (A.86), 

(A.93) %>([a,p]) = MA([a,(3})± in £,2([a,/?];w). 

But !KA([O:,/3]) is finite dimensional and hence closed, and therefore %o([a,/3]) 
is also a closed subspace of £2([ce, /3]\w), and they are orthogonally complementary 
subspaces. • 
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DENSITY THEOREM 1. Let A = A+ G Zn(3) so the quasi-differential expression 
MA is formally self adjoint, and let the positive weight w G &\oc{3) on the interval 3, 
so W~XMA generates a maximal linear operator T\ on D(7\) C L2(3\w), as above. 
Then 

^o(Ti) is dense in £J2(3;W). 

PROOF. It is sufficient to prove that: 

for each compact interval [a,/?] interior to J, Do([a,/3]) is dense in &2([a,/3];w). 

From this assertion the conclusion of the theorem follows immediately from the clas
sical approximation of functions in L2(3\w) by functions in various £j2([a, (3];w)— 
say, for a sequence of compact intervals [a, (3} expanding to exhaust 3. 

Accordingly fix any one such compact interval [a, (3] interior to 3. Then let 
h G L2{[a,f3]',w) satisfy 

(A.94) (h,y)= hywdx = 0 for all y G D0([a,/3]). 
J a 

We shall show that this implies h = 0 (a.e), and consequently that Do ([a,/?]) must 
be dense in £2([a,/?]; w), which will prove the Density Theorem. 

Let z be any solution of the quasi-differential equation 

(A.95) W^MA^^H ona<x<(3, 

and extend z over 3 so z G D0(Ti). Then for each y G Do ([a,/?]) 
rP rP 

(A.96) (h,y)= w~1MA[z]ywdx= zw~lMA[y)wdx (see A.84). 
J ot J a 

Of course, the same result (A.96) holds if we use the extension z(x) = 0 for x 
outside [a,/3], with z G £2([a,/?];i(;). Then (A.96) implies that z is orthogonal to 
$o ([<*,/?]) in £j2([a,/3];w) and, by Lemma 2, we have z G J^Qa,/?]) . 

But z G 5Ci([a:,/?]) means that M^[£] = 0 on a < x < (3, and consequently 
w(x)h(x) = 0 on [a, /3]. Since w(x) > 0 a.e. on [a, /?], we conclude that h = 0 a.e. on 
[a,/3], as required. The final result is that Do ([a,/?]) is dense in £2([a,/3];u>), and 
hence the Density Theorem is proved. • 

As in the Density Theorem 1, we again consider A = A+ G Zn(J) determin
ing the formally self-adjoint quasi-differential expression MA on the real interval 
J, which bears the given positive weight function w. Then W~1MA generates the 
corresponding minimal and maximal operators To on D(To) and T\ on D(Ti), as 
defined in Section I (1.17) and (1.11), respectively, in the complex Hilbert space 
£j2(3;w)—according to the notations listed in Section II (1.1) (1.2) (1.3). In par
ticular, for convenience we recall that 

D(A) = {/ : 3 -+ CI/JC1 G ACloc(3) for r = 0 , 1 , . . . , n - 1} 
D(7\) = {/ G D(A) | / and Txf in £ 2 ( J ;^ )} 
D(T0) = {/ G D(T!)|[/ : D(Tx)]A = 0}. 

In the Density Theorem 1, we proved that the linear manifold (see Section 
1(1.15)) 

(A.97) 2>o(Ti) := {/ € D(Ti)| supp / lies in a compact set interior to 3} 
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is dense in £2(!J; w). We now denote the restriction of T\ to D0(Ti) by Too, that is, 
D(Too) := ^o(^i) and we observe that 

(A.98) Too C T0 C Tx on D0(Ti) C D(T0) C D(Ti), 

where all these operators are restrictions of T\. In the following Theorem 2 we shall 
prove that the adjoint operators satisfy 

(A.99) T0*=Ti, T*=T0 

and that Too is a symmetric operator whose closure is 

(A. 100) Too = T0. 

LEMMA 1. Let A = A+ G Zn{3) and consider the minimal and maximal oper
ators TQ on 2)(To) and T\ on T)(Ti), respectively, as generated by W~1MA in the 
complex Hilbert space L2{3]w), as before. Then, for each function F G L2{3\w) 
there exists a function y G 1)(A) on 3 such that 

T\y — F on 3. 

PROOF. Consider the quasi-differential equation for y, 

(A.101) TlV = F or y[2] = i~nwF on 3. 

Note that for each compact interval [a, /?] interior to 3 

1 / 2 

\F\2wdx f\wF\dx= fw1/2\w1/2F\dx< I fwdx\ I f\ 
a. a \a / \a 

so the coefficient i~nwF G iL1
1
oc(J). Therefore, upon regarding this quasi-differential 

equation (A. 101) as a first-order matrix ordinary differential system (see Section 
1.2), we conclude that there exist solutions, each defined on all 3 and in class T)(A). 
That is, for each such solution y, the quasi-derivatives 

[0] [1] [n-l] 
yA =Vi VAT-IVA 

all exist on 3 and belong to AC\oc(3). • 

THEOREM 2. Let A = A+ G Zn{3) and consider the minimal and maximal 
operators TQ on D(T0) and T\ on D(Ti), respectively, as generated by W~1MA in 
the complex Hilbert space L2{3\w), as before. Also consider the restriction Too °f 
T\ to the domain D Q ( T I ) , SO 

(A.102) Too C T0 C Tx on D0(Ti) C D(T0) C D(TX), 

respectively, where each operator is a restriction of T\. 
Then the adjoint operators exist in L2(3;w) and satisfy 

(A.103) T0*0 = T0* = Ti and T* = T0. 

Hence, both T0 and Ti are closed operators with dense domains in L2(3\w). Also, 
the minimal closure of the symmetric operator Too is Too = TQ . 
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PROOF. Since D0(Ti) = D(T00) is dense in £2(3;w), the adjoints T0*0, T0*, T{ 
all exist as closed operators in L2(^\w). Moreover, by elementary arguments [DS] 

(A.104) D{T{) C !D(T0*) C D(T0*0), 

and each of 7\*, T0*, T0*0 is a restriction of T0*0. 
We first prove that T0*0 = T\. Recall that the condition for a function 

/ G £J2(J;W) to belong to D(TQ 0 ) is that there exists some (unique) F G £2(J;?i;) 
for which the scalar products satisfy 

(f,Tl9) = (F, #), for all g G D0(Ti) = D(T00). 

According to Lemma 1 above, there exists y G 'D(A) so 

Tiy = F and y[^ G ACioc(3), for r = 0 , 1 , . . . ,n - 1. 

Then, on each compact interval [a, /3] interior to J, 

(3 (3 0 

/ yTigwdx = / Tiygwdx = / Fgwdx, 
a a, a 

for every g G DQ([O:,/?]), that is, provided suppg lies in [a,/?] (see notation in 
Lemma 2 before Theorem 1 above). Hence 

/ fTigwdx = / yTigwdx, 
a a 

for all g G <Do([a,0\). We note that this implies that: 

/ — y is orthogonal to 3£Q([#>/?]) m &2([a,P]'->w) 

where ^od^,/?]) is the Ti-image of the domain Do ([a,/?]). 
By Lemma 2 of Theorem 1 

f-y = z on [a,/?], 

where z is some solution of the homogeneous equation MA[Z) = 0 or z^ = 0 on J. 
Since z G D(A) on J, we conclude that 

f%] G AC([a, /?]) for r = 0 , 1 , . . . , n - 1. 

But [a, j3\ is an arbitrary compact interval interior to J, so we conclude that 

/ G D(A) on X 

Moreover, 
Txf = Txy o n ! 

We summarize the argument thus far. For each / G D(TQ 0 ) we find that 
/ G D(A) and T i / = Tiy = F on 3. Therefore both / and TYj belong to £2(J;w) 
which means that / G D(7\). Also we note that 

( / ,T l 5 ) = (Ti/ ,3), for all g e © o ^ ) = D(T00). 

Thus, we have shown that 

D(T0*0) C D(T0 and T0*0/= 7 \ / . 
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But the reverse inclusion is trivial. Because for any ft € D(Ti) we always have 

(h,Tl9) = (Tift,p), for all g G D0(Ti). 

That is, because A = A+ we know that 

[h:g]A = (T1h,g)-(h,T1g)=0 

for all ft G D(Ti) and g G Do(Ti). Therefore 

D(T0*0) = H ^ ) and T0*0/ = Tx/, for / G D ^ ) . 

Accordingly, Ti is a closed operator in £J2CJ;W). 

Next, consider T0* on the domain D(T0*) C D(Ti). But for each / G D(Ti) we 
have 

[/ : g]A = (Ti/ ,^) - (/,Ti(/) - 0, for all g G £(T0) . 
Therefore, D(Ti) C D(T0*) so 

D(T0*) = ©(TO and T0*/ = Ti / , for / G D(Ti). 

Now the definition of To on D(To), see Section I (1.17), leads directly to the 
conclusion that To is a closed operator in the Hilbert space L2(3;w). This is an 
elementary argument now that it is known that T\ is closed. 

Furthermore, the general theory of adjoint operators in Hilbert space, [DS] and 
[WE], then guarantees that 

(A.105) T^=T0 orT?=T0 on D(T*) = D(T0). 

Also T0*0*=?oo,so 

(A.106) T o o - T * - T 0 , 

as required. • 

Note that the proof of The Density Theorem 1 does not depend on the prop
erties of the minimal and maximal operators, To and Ti, but consists essentially 
of an analysis of quasi-differential equations and their solutions. In Theorem 2 the 
basic properties of To and T\ are established, with respect to the closure and the 
adjoint relationships. Thus, through Theorems 1 and 2 above, the foundations of 
the von Neumann theory [DS] for self-adjoint extensions of the symmetric operator 
TQ have been established, in accord with the assertions made in Section 1.1. 



APPENDIX B 

Complexification of real symplectic spaces, 
and the real GKN-Theorem for real operators 

In classical mechanics and geometry [AM] [MH] a real symplectic space SR 
is defined as a real vector space, together with a real bilinear form [:]R that is 
skew-symmetric and nondegenerate. As a generalization of this concept we have 
defined a complex symplectic space S (see Sections I (2.32) and III (1.1)) as a 
complex vector space, together with a complex semibilinear form [:] that is skew-
Hermit ian and nondegenerate. In each case we define a Lagrangian subspace as 
one on which the symplectic form vanishes identically. In this Appendix B we 
formulate results on the existence and uniqueness of the complexification of any 
real symplectic space SR to a complex symplectic space 5, and we then apply these 
ideas to assert and demonstrate a "real version" of the Glazman-Krein-Naimark 
(GKN)-Theorem (see Section II, Theorem 1) holding for self-adjoint real operators 
generated by real quasi-differential expressions. Finally we apply this real GKN-
Theorem to the boundary value problems for real quasi-differential operators, and 
relate these considerations to the global differential geometry of real Lagrangian 
Grassmannians. 

DEFINITION 1. Let S be a complex symplectic space, with complex symplectic 
form [:]. A complex conjugation in S is an involutory bijective map on S: 

(B.l) Z1-+Z1 with Z1 = Z1, 

such that 

(B.2) ^1Z1+^i2Z2 = JixZx + /Z2Z2, [Zi : Z2] = \ZX : Z2], 

for all vectors Zi, Z2 6 S and all complex scalars /xi, \i2 G C. 

REMARK. One should not confuse the conjugation of complex numbers 
li = a-\-i(3^p, = a — i/3 with the involutory conjugation map of vectors Z —> Z. 
In particular, it is easy to show that the 1-dimensional complex symplectic space C, 
with [ 1 : 1 ] = i, does not admit any involutory conjugation—since each real vector 
r would then have to satisfy [r : r] = 0, see Proposition 1 below. 

The concept of an isomorphism between two complex symplectic spaces S'and 
S has been introduced previously; namely, a map F of S onto S, 

F:S->S 

which is a vector-space isomorphism (over C) preserving the corresponding sym
plectic products. We further assert that F is an isomorphism between two such 
complex symplectic spaces S and 5, each with a distinguished complex conjugation, 

137 
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in case F also commutes with the respective conjugation maps, 

(B.3) ~F\Z) = F(Z) for all Z G S. 

DEFINITION 2. Let 5, with the symplectic form [:], be a complex symplectic 
space having a prescribed complex conjugation. 

A vector Z\ G S is called real in case Z\ is invariant (or fixed) under the 
conjugation map, that is, 

Z\ = Zi, 

and we denote the set of all such real vectors in S by 

(B.4) S'R = {Z € S | Z = Z}. 

Furthermore the set SR, together with the algebraic operations inherited from 
S—for instance, see (B.2), 

(B.5) a1Z1 + a2Z2 G S'R, [Zx : Z2)R := [ZUZ2] G R 

for all Z\,Z2 G SR and real scalars a i , a2 G M—specifies the real symplectic space 
S'R of all real vectors of S. 

REMARK. It is trivial that S'R is, in fact, a real symplectic space, and we can 
further describe it as 

S'R = {Z e S | ReZ = Z} = {Z G S | ImZ = 0}. 

Here we introduce the familiar notation 

(B.6) R e Z = | ( Z + Z), I m Z = ±(Z - Z) = Re( - iZ) , 

so Re Z and Im Z are real vectors in SR for each Z E S. Furthermore 

(B.7) Z = Re Z + z Im Z, Z = Re Z - i Im Z, 

so 

(B.8) 5 ^ = { R e Z | Z e S}. 

We shall verify that the complex symplectic space S, with its prescribed com
plex conjugation, is determined uniquely as the complexification of the real sym
plectic space SR, in the sense of the following definition and proposition. 

DEFINITION 3. The complexification of a real symplectic space SR is a complex 
symplectic space 5, together with a distinguished complex conjugation, such that 
the real vectors SR of S constitute a real symplectic space that is isomorphic with 
SR. 

Often we omit the explicit specification of the complex conjugation in 5, when 
this is apparent from the context. 
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PROPOSITION 1. Let SR, together with a real symplectic form [:]R, be a real 
symplectic space. Then there exists a complex symplectic space S, together with a 
complex symplectic form [:] and a specified complex conjugation, such that S is a 
complexification of SR; that is, there exists an isomorphism (see (B.ll) below) of 
the real symplectic space SR, of all real vectors of S, onto SR. Furthermore, the 
complexification S of SR is unique in the following sense: 

Let S be any complexification of SR. Then S is isomorphic to S, as complex 
symplectic spaces with complex conjugations. 

Also 

(B.9) (real) dim SR = (complex) dim 5, 

and, if either is infinite then so is the other. 

PROOF. A complexification S of SR has already been constructed in Section 
III.l. Recall that a vector Z of S is an ordered pair (X,Y) with X, Y G SR; with 
vector addition in S componentwise, and the multiplication by complex scalars and 
the computation of the complex symplectic form [:] as in Section III (1.2) and (1.3). 
As before, we introduce the convenient notation Z — X + iY G S for X, Y in SR. 
The complex involutory conjugation in 5, see Section III (1.4), (1.5), is given by 

Z = X + iY - • Z = X - iY. 

In this notation 

(B.10) X = ReZ = \{Z + Z) a n d 7 = I m Z = ±{Z - Z) = Re(-zZ), 

are real vectors in 5, and the real symplectic space Sf
R of all such real vectors in S 

is given by 
S'R = {Z = X + iY eS\Y = 0}. 

It is then obvious that the map 

(B.ll) Sf
R -+ SR : Z = X + i0 -> X 

is a natural isomorphism between these two real symplectic spaces. In addition, 
(real) dim SR = (complex) dim 5, see Section III (1.7). 

It remains to demonstrate the required uniqueness of this complexification S 
of SR. Let S be any other complex symplectic space with a specified complex 
conjugation, such that the corresponding set SR of real vectors constitutes a real 
symplectic space isomorphic with SR. Since SR is isomorphic with SR, it is also 
isomorphic with S'R; and we fix this isomorphism and indicate it by 

(B.12) S'R^S'R, X^X. 

We must extend this map to a surjective isomorphism of S onto 5, as complex 
symplectic spaces with conjugation. 

Each vector Z G S can be written as 

Z = X + iY for X,Y eS'R, 

and X,Y are unique; namely X — ReZ, Y = ImZ, as in (B.10). Similarly each 
vector of S can be expressed uniquely in terms of its real and imaginary parts, 
relative to the conjugation involution in S. Then consider the map 

(B.13) S -> 5, Z = X + iY -+ Z = X + iY, 
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with X, Y G SR and X,Y G SR, as in (B.12). Since the map in (B.12) is surjective 
onto S'R, the map in (B.13) is surjective onto S. 

Clearly (B.13) defines an isomorphism of S onto S, since the algebraic and 
conjugation operations in S, and also in S, are defined explicitly in terms of the 
corresponding operations in the isomorphic spaces SR and SR, respectively, i.e. 
compare the formulas in Section III (1.2), (1.3), and (1.4). • 

REMARK 1. Recall that a real symplectic space of finite dimension D must 
have D = 2ra even, and is then unique (up to isomorphism). We denote this real 
symplectic space by M2m. The complexification of R2m is the complex symplectic 
space C2 m with Ex = 0, see Theorem 1 in Section III.l above. 

REMARK 2. The complexification of a real vector space VR to a complex vector 
space Vc, with a complex conjugation involution, can be constructed in an analo
gous manner—and this complexification is unique in the sense of Proposition 1. 

For example, the real vector space WD has the complexification CD , with the 
usual conjugation of complex vectors of C D , for each integer D > 1. 

As another example, the complex Hilbert space &2(3;w) of Section 1.1 is the 
complexification of the real Hilbert space 

(B.14) H2
R(3; w) = {f€ £ 2 0 J ; w)\f = / " } . 

As indicated, the relevant complex conjugation involution in £2(J; w) is the familiar 
conjugation of complex-valued functions. Hence the real vectors in £2(J; w) are just 
the real-valued functions (or equivalence classes of such functions agreeing a.e. on 3). 
As a warning, we mention the possibility of introducing some different conjugation 
involution in £2(J; w)—say, 

/ + ig -* - / + ig, for f,g G £#(5; w), 

so then the "real vectors" would have the form ig for g G £#(3; w). Needless to say, 
we shall not do this, but we shall always use the standard complex conjugation in 
£2(3; w), and also in other complex vector spaces of complex-valued functions on 3. 

The next two corollaries are obvious consequences of the constructions in 
Proposition 1, and are presented only as convenient summaries, useful for the sub
sequent examples (B.17) through (B.28). 

COROLLARY 1. A complex symplectic space S, with a complex conjugation, is 
necessarily the complexification of some real symplectic space; namely S'R, the real 
vectors in S. 

Further, a complex symplectic space S with finite dimension D, admits a com
plex conjugation if and only if S has invariants dim S = D even, and excess Ex = 0. 
In this case S is the complexification of the real symplectic space 1RD. 

COROLLARY 2. Let S be a complex symplectic space with a complex symplectic 
form [:] and with a prescribed complex conjugation. Let S'R, with the real symplectic 
form [{\R as in (B.4) and (B.5), be the corresponding real symplectic space of all 
real vectors in S. Assume 

(real) dim SR — (complex) dim S = D < oo 

for an even integer D. 
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Fix any basis of SR to define an isomorphism of SR onto the real symplectic 
space RD , and then the real symplectic form in SR is specified via a real skew-
symmetric, nonsingular D x D matrix H. This same ureal basis" serves also as a 
basis for S to define an isomorphism of S onto CD, with the corresponding sym
plectic form specified by the same real matrix H. 

Furthermore, using such a real basis, the complex conjugation in S maps each 
vector w = (ixi, ̂ 2, • • •, UD) £ S by 

u -» u= (ui,v,2,. • • ,WD), 

and hence u G SR if and only if all the components of u are real. 

In this way we observe that the symplectic invariants of a real symplectic space 
5 R , with dim SR = D < oc, are the same as the corresponding symplectic invariants 
of its complexification S. 

Now let us return briefly to the real symplectic space R2m and its complexifi
cation C2 m . In R2m the real symplectic form is given by 

(B.15) [u : v]R = uHvl = (uu . . . ,u2m)H(yi,... ,v2m)t, 

for the real row 2m-vectors u,v E R2m , and an appropriate real 2m x 2m matrix 
H (depending on the chosen basis and coordinates in R2rn) such that 

(B.16) H = -H\ d e t i ^ O . 

It is a classical result [AM] of elementary matrix theory that there always exists a 
canonical basis {e1, e 2 , . . . , em; e m + 1 , . . . , e2m} in R2m for which H has the format 
K, (see Section 111(1.12)), 

(B.17) K = (-°I ^ ) ' f o r e a c h m - 1 ' 

From the existence of such a canonical basis it follows that a real symplectic space 
cannot have an odd dimension, and moreover any two real symplectic spaces of 
finite dimension 2m > 2 are necessarily isomorphic. 

In the real symplectic space R2m , the symplectic product (B.15) has a spe
cial expression in the corresponding canonical coordinates (using the corresponding 
matrix (B.17)), namely 

771 

(B .18) [U : V]R = ^2(urVm+r - Um+rVr). 

r = l 

In C2 m with the complex symplectic structure generated by the complexification 
of the real symplectic space R2m , the symplectic product of two complex row 
2m-vectors w,vG C2 m is given by 

(B.19) [u :v] =uHv* = (uu . . . ,u2m)H(vi,... ,v2m)*, 

where the complex 2m x 2m matrix H (depending on the chosen basis and complex 
coordinates in C2m) is such that 

(B.20) H=-H\ d e t i J ^ O . 
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But the same canonical basis for R2m (considered as "real vectors" in C ) yields 
the formula for the symplectic products in C2 m 

m 

(B.21) [U'.V]= Y^{UrVm+r ~ Um+rVr). 

r= l 

Other convenient bases in R2m are available so as to choose H in the format 
(B.22) 

H = diag s f _ 1 o ) ' ( - l o ) ' ' " ' ( - 1 0 ) | ' ( m " c o P i e s ' f o r a11 m > x)> 

or also 

(B.23) 

# = (-i) s 

/ . (" i ) m 

V ( + ! ) ( - ! ) • 
. (-1) 

7 7 1 — 1 , for m = 2s even. 

/ 

These special bases,and corresponding expressions for H, can also serve equally 
well in the complexification of R2m to the corresponding complex symplectic space 
C 2 m . 

However, in C2 m (as the complexification of the real symplectic space R2 m) 
there are other useful complex bases in terms of which H becomes other formats 
than K (see Section III.l, especially Theorem 1), for instance H can be replaced 
by the format: 

(B.24) 

or else 

(B.25) 

where 

(B.26) 

K 

J = in 

( ° 

Urn 0 

0 -ilm 

[Jm 0 

V 0 -Jrr 

for m > 1, 

for m > 1, 

0 

(_ l )m-l 

0 (+1) 
\ ( - i ) o 

( - l ) m \ 

0 

o / 

( J can be examined separately in the cases where m is even, or m is odd—as in 
Section III.l). 

N O T E 1. In the complex symplectic space C2 m , with the symplectic form pre
scribed by the 2ra x 2ra skew-Hermitian matrix J given by (B.25) and (B.26), 
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the symplectic product of vectors u = (m, U2,..., ^ m , ^m+i5 • • •, ^2m), and v = 
(v i ,v 2 , . . . ,v m , t ; m + i , . . . , i ;2m) is computed by 

ra —1 
(B.27) [u : v] = t /JV = zm ^ ( - l ) r { w 2 m - ^ m + i + r - um-rvi+r}. 

r=0 

When m — 2s is even, then J in (B.25) reduces to the real skew-symmetric matrix 
H in (B.23) and then 

ra —1 

(B.28) [u:v]= uHv* = ( - l ) s ^ ( - l ) r {w 2 m- r v m + i+r - w m _ r ^ i + r } , 
r=0 

with the real case u = u, v = ^ of special interest. 

The motivation for the symplectic form (B.27) is the regular boundary value 
problem, MA[V] = Xwy, as in Section 1(1.1), for given A = A+ G Zn(3) and 
w(x) > 0 in &ioc{3)—where we assume that 3 = [a, b] is compact so the deficiency 
index d = n. Then the endpoint space § = <D(Ti)/D(T0) (see Section II (1.3), (1.4) 
and Section IV) is a complex symplectic 2n-space, isomorphic with C2 n (complex-
ification of R2n) under the map 

/ = {/ + D ( T 0 ) } ^ ( / i 0 l ( a ) , f%\a),...,f[r1](a), f%](b),..., / j?"1 1 (6)). 

Further, the symplectic product of two such vectors / , ^ G § can be expressed in 
the coordinates of C2 n according to 

(B.29) [/ : g}A = fJ§* = i^-lYU^1'^^) ~ / J T 1 " ^ ) ^ } -

Hence the symplectic product in § can be computed in terms of the skew-Hermitian 
matrix J of (B.25). 

However there is a confusion of notation (e.g. fA (a) corresponds to m, f]^ (b) 
corresponds to wm+i, n corresponds to m, etc.). We have used the dimension 2ra 
for the general algebraic treatment of symplectic spaces, and 2n for the space S 
arising from quasi-differential expressions of order n. Further we have here written 
m = 2s when m is even, yet we later shall often write n = 2ra when n is even (in 
accord with current literature), and care must be taken appropriately - although 
the use of a consistent notation within each discussion and topic should minimize 
any confusions. 

Finally we remark that C2 m , and also CD for each dimension D > 1, bears 
many non-isomorphic complex symplectic structures—see Examples at the end of 
Section 1.2, and also Theorem 1 of Section III. For instance, consider the complex 
symplectic space CD with some arbitrarily prescribed complex symplectic structure, 
say specified by some skew-Hermitian, nonsingular D x D matrix H. Then H can 
always be chosen (in appropriate complex coordinates in CD) to have the format 
K, where 

. (Up 0 \ 
(B.30) K=\ 

and p = q if and only if C2p is the complexification of E2 p , see Section III, Theo
rem 1. We shall often use this notation K for all such diagonal matrices with p > 0 
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terms of (+i) and q = D — p > 0 terms of (—i), in some arrangement along the 
diagonal. 

We next turn to the study of Lagrangian subspaces of an arbitrary complex 
symplectic space S which is the complexification of some given real symplectic space 
SR. 

PROPOSITION 2. Consider a real symplectic space SR with real symplectic form 
[:]R, and its complexification S with complex symplectic form [:], as before. 

(1) Then for each Lagrangian subspace L C S the conjugate (with respect to the 
complex conjugation in S) 

L = {Z\Z eL} 

is also a Lagrangian subspace of S. 

(2) For each real Lagrangian subspace LR C SR the complexification Lc C S, 

Lc = {Z = X + iY\X,YeLR} 

is a Lagrangian subspace of S. Furthermore 

Lc = Lc = {Z = X-iY\X,Ye LR}, 

so Lc is self-conjugate. Different real Lagrangian subspaces of SR have 
different complexifications in S. 

(3) In fact, a complex Lagrangian subspace L\ C S is self-conjugate (that is, 
L\ = L\) if and only if L\ is the complexification of a real Lagrangian 
subspace LR C SR, namely LR = L\ Pi S'R — L\ D SR (identifying SR = 
Sf

R C S, as usual). 

P R O O F . Conclusions (1) and (2) are trivial. In order to demonstrate (3) let 
L\ —L\ be a self-conjugate Lagrangian subspace of the complex symplectic space 
S. Then X = ReZ = \{Z + Z) and Y = ImZ = ±(Z - Z) both belong to Lu for 
each Z = X + iY eLi. 

Now consider the Lagrangian subspace LR = L\ HSR, (identifying SR = S'RCS)1 

consisting of all the real vectors in L\. But X and Y are each real vectors in LR, 
so L\ is the complexification of LR, as required. D 

COROLLARY 1. Under the circumstances of Proposition 2, 

(real) dim SR = (complex) dim S 
(real) dim LR — (complex) dim Lc 
(complex) dim L = (complex) dim L 

(and in each case, if one is infinite so is the other). 

It should be noted that, under the conditions of Proposition 2, [Z : 2} = 0 for 
each vector Z G S. This follows easily because we can write Z = X + iY, with 
X, Y real vectors in S'R, and then 

[Z : 2} = [X + iY : X - iY] = [X : X]R - [Y : Y]R + i{[Y : X]R + [X : Y]R} = 0. 

Yet it does not follow that Z G L implies 2 G L. It may happen that L ^ Z, so 
that L is not the complexification of any real Lagrangian subspace of SR, and we 
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give illustrations of this phenomenon later in the study of GKN-Theory for real 
quasi-differential expressions. 

We shall next apply these algebraic results of Proposition 2 to formulate and 
demonstrate a real version of the complex GKiV-Theorem which was previously 
propounded in Section II Theorem 1. That is, we prove a real version of the 
GKN-Theovem corresponding to real operators and real boundary conditions (as 
expressed by real Lagrangian spaces)—see [NA]. For this purpose we shall require 
that the Shin-Zettl matrix A = A+ G Zn(3) shall be real-valued and of even order 
n = 2ra, so that the quasi-differential expression M^[y] = iny2 > a n d also W~1MA 
for real w{x) > 0 in L\oc{3)), are formal differential operators with real coefficients 
on the interval 3. In this situation MA is also formally self-adjoint, and hence 
W~XMA generates maximal and minimal operators T\ on CD(Xi) and To on D(To), 
respectively, in addition to self-adjoint operators T on D(T) in the complex Hilbert 
space £J2(3;W), (note: the deficiency index d — d± > 0 automatically in this real 
case)—see Section II (1.1), (1.2), (1.3). 

Under these conditions the complex GKN-Theorem is certainly valid and as
serts the existence of a natural one-to-one correspondence 

(B.31) {T} ~ {L}, 

between the set {T} of all self-adjoint operators T on D(T), as generated by W~1MA 
in £2(J; w), and the set {L} of all Lagrangian <i-spaces L in the complex symplectic 
2d-space § = D(Ti)/D(To). Namely, take the natural correspondence T ^ L as 
defined by 

(B.32) ttD(T) = L and D(T) = ^~ 1 L , 

where 

(B.33) *D(T!) -* S = 'D(Tl)/1)(To), / - > * / = / = { / + D(T0)} 

is the natural projection (set) map—see Section II (1.5) and Theorem 1. 
We seek to refine this GKTV-correspondence (B.31) to "real operators" 

TR G {T} and "real Lagrangian d-spaces" LR corresponding to self-conjugate La
grangian d-spaces Lc = Lc G {L}, under the hypothesis that A = A+ G Zn(3) is 
a real n x n matrix with even order n = 2m—and, with this goal in mind, we next 
present the required definitions and special constructs. However, we remark that 
even under this "reality hypothesis" there can exist self-adjoint non-real operators, 
as generated by W~1MA in £2(J; w), corresponding to complex boundary conditions 
(specified by complex Lagrangian d-spaces in 8). This phenomenon will be illus
trated later in this Appendix B by an elementary example of a real Sturm-Liouville 
operator with n = 2—and then investigated for higher order quasi-differential ex
pressions with various kinds of boundary conditions. 

DEFINITION 4. A linear operator r in the complex Hilbert space L2(3\w) is a 
real operator in case: 

(1) The domain D r of r is self-conjugate, that is, 

f e D r if and only if / G DT , 

and 
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(2) r commutes with the (usual) complex conjugation in L2{3]w), tha t is, 

rf' = g implies rf = g, for all / G B T . 

In particular, a real operator r maps real functions into real functions. 

P R O P O S I T I O N 3. Consider the quasi-differential expression W~~1MA, where 
A = A = A+ G Zn{3) is a real Shin-Zettl matrix of even order n = 2m, and 
w G &\oc(3) is a positive weight function on the real interval 3—as before. Then 
MA is formally self-adjoint, and W~1MA has real coefficients (as a formal differ
ential expression). 

Let T\ on T>{T\) and TQ on 2)(To) be the maximal and minimal operators, 
respectively, with deficiency indices 0 < d~,d+ < n, as generated by W~1MA on 
the complex Hilbert space L2(3]w). Also let S = D(Ti ) /D(To) be the corresponding 
complex symplectic space with endpoint decomposition § = S _ 0 S + 7 so [S_ : § + ] ^ = 0. 

Then, under these circumstances, T\ and To are real operators on £J2(3;W) with 

(B.34) D ( T 1 ) = D ( 7 T ) , D ( T 0 ) = D ( 2 b ) , 

and 
d~ =d+. 

In addition 
o = S, S-j- = o± 

are all complex symplectic spaces with complex conjugation (defined, as usual, by 
the complex conjugation f —> / for f G T>(Ti)). Hence S has finite dimension 
2d — 2d± < 2n and excess Ex = 0. Similarly the excess for S± is Ex± = 0, and 
the corresponding symplectic invariants satisfy 

A_ + A + = A = d. 

P R O O F . Since W~1MA is a real linear quasi-differential operator on D(Ti) C 
£ 2 ( J ; w ) , it is clear tha t D(Ti) = D(TX) and thereon T\f = Tj, so Tx is a real 
operator on L2{3\w). From the formula, for f = JR + ifi G D(Ti) (with real 
/ f l , / / G D ( r i ) ) , 

[/ : ?){TI)]A = \JR + ifi : T>(Ti)]A = [/B : 2>(Ti)]A + 1 [ / „ : D ( T 0 ] A , 

it follows tha t / = fR + ifi G 2)(To) ^ an<^ o m y ^ ^ s conjugate function 
/ = fR~ ifj G D(T 0 ) . Hence D(T 0 ) = D(T 0 ) , and T0 is a real operator on 
&2(3;w). 

Now take / = {/ + D(To)} G § and define the complex conjugation involution 

on § by using the map / - • { / + 2)(T0)} = { / + £>(T0)} = f e S. Then it is 
easy to verify tha t § is a complex symplectic space with a complex conjugation (see 
Lemma 1 below for further details), and moreover each of the symplectic subspaces 
S_ and S + is individually invariant under this conjugation and hence also inherits 
the complex conjugation involution. 

But the deficiency spaces specified by W~1MA in L2(3;w) satisfy D ~ = £>+, 
from which it is obvious tha t d~ = d+ = d. Thus dim S = 2d < 2n and its excess 
is Ex = 0 (see Corollary 1 to Proposition 1 above). It also follows tha t each of 
the complex symplectic subspaces S± has finite dimension d i m § ± = 2A±, so then 
A_ + A + = A = d, as required. • 
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- 1 1 0 \ 
1 0 1 
0 0 1 / 

| ez3(3) withMBl[y] = i3y[Bl 

REMARKS. Let B G Zn(3) be a real Shin-Zettl matrix. Then the quasi-
differential expression MB[V] = ^VB n a s r ea^ coefficients (so it is real for all real 
y G T)(B)) if and only if n = 2m is even. As an aside note the interesting example 
Bx € Z3(3): 

B, = B, = B+ = 

but MBX is not a real operator on £2(J), in the sense of Definition 4. 
Now return to a general real Shin-Zettl matrix B = B G Z2m(J) and assume 

that MB is formally self-adjoint. By Proposition 1 of Appendix A, there exists a 
matrix A = A+ G Z2m(3) for which MA = MB on T)(A) = T)(B). We would wish 
to take A to be real (as guaranteed for smooth B by the formulas of Appendix A), 
but the general case is unclear and still awaits a re-interpretation of the Theorem 
of Frentzen [FR] in Appendix A. 

With this caution we henceforth follow the pattern of the previous complex 
cases, but study quasi-differential expressions MA with the assumption that 
A = A = A+ e Z2m(J), hence by-passing any need for extensions of [FR]. 

DEFINITION 5. Consider a real matrix A — A+ G Zn(3) of even order n > 2, so 
MA is formally self-adjoint and has real coefficients. Let the maximal and minimal 
operators T\ on D(Ti)and To on D(7b), respectively, be generated by W~1MA in 
the complex Hilbert space £2(U;w), as in Proposition 3 above. 

Then define the real Hilbert space (see (B.14)) 

C2
R(3;w) = {feL2(l;™)\f = f} 

and the corresponding real linear submanifolds 

(B.35) VR(T1)='D(T1)nL2
R(3;w) 

Dfl(To)=B(T 0 )n£ 2
H ( 3 ; u , ) , 

and the quotient or identification space 

(B.36) SR = 'DR(T1)/VR(T0). 

We note that D f i(Ti) and T)R(T0) consist of all the real functions in D(Ti) 
and D(To), respectively. Moreover, under these circumstances we can alternatively 
define 
(B.37) 

VR(TI) = {/ : 3 - R | /M € ,4Cioc(IJ) for r = 0 , 1 , . . . ,n - 1, 

and both / and w _ 1 M A [ / ] G H%(3;w)}, 

and, noting (B.34), 

(B.38) 
VR{T0) = {/ £ 2)fl(Ti) | [/ : g]A = 0 for all 5 e ,DR(T1)}. 

Also we recognize that S^ is a real vector space, with the natural algebraic 
operations performed on the cosets 

(B.39) hR = {h + D H ( T 0 ) } for each h G D ^ T i ) , 
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so that the projection map 

(B.40) VR : Dfl(Ti) -+ SR = D ^ T ^ / D ^ T o ) 

ft -+ ^Rh = hR = {h + VR{T0)} 

is a linear map of DR(Ti) onto SR. AS before, we use the notations ^R and ty^1 

for the corresponding induced maps on subsets of D^(Ti) or SR, respectively. 
In the next lemma we show that §R is a real symplectic 2d-space. Then in the 

subsequent real GXiV-Theorem we shall demonstrate the existence of a natural 
one-to-one correspondence between the self-adjoint real operators, generated by 
W~1MA in L2(3\w), and the real Lagrangian d-spaces in §R. But first we must 
clarify the relation between §>R and S; compare (B.33) and (B.40). 

LEMMA 1. Consider a real matrix A = A + G Zn{3), of even order n > 2, 
and the corresponding formally self-adjoint quasi-differential expression MA, SO 
w~1MA generates the maximal and minimal operators T\ on D(Ti) and TQ on 
D(Xb), respectively, with deficiency index 0 < d < 0 in £2(3; w) - as in Proposition 3 
above. 

Then S = D(Xi)/D(To) is a complex symplectic 2d-space with complex conjuga
tion (with algebraic operations inherited from T>(Ti)). An element f = {/+ D(To)} 
is real in § if and only if f — f G *D(To), or, equally well, f contains a real function, 
say h = ft G ©i?(Ti), so f = ft = {h + 2)(T0)}. As in (B.6) and (B.7) the real 
vectors of § constitute a real symplectic 2d-space S'R, whose complexification is §. 

Further, SR = DR(Ti) /©R(TO) is a real symplectic 2d-space (with algebraic 
operations inherited from D(Ti)J. If a coset {ft + D#(To)} ofSR intersects a coset 
{#4-D(T0)} of§ (as subsets ofV^)), then 

{h + VR(T0} C{g + £(T0)} = {ft + D(T0)}, 

and in this way {ft4-T>R(TQ)} specifies the unique element {ft-f-2)(To)} G S. There
fore the natural map ofSR into S, 

(B.41) SH -f S'R, hR = {h + VR(T0)} -+h = {h + D(T0)} 

is a symplectic isomorphism ofSR onto S'R, (and we use (B.Jf.1) to identify §R with 

PROOF. According to the GKN-Theorem 1 and Lemma 1 in Section II, 
§ = £>(Ti)/D(To) is a complex symplectic 2d-space, with the complex symplec
tic product of vectors / = {/ 4- D(T0)} and g = {g + D(T0)}, 

(B.42) [/ : g]A = [/ 4- D(T0) : g 4- V(TQ)]A = [/ : g]A, 

for all f,g G D(Ti). Now define the complex conjugation in S by 

(B.43) f^{JTWo)} = {/+D(T0)}, 

noting that D(T0) = D(T0). 
A vector / = {/ 4- 2)(T0)} G S is real just in case {/ + D(T0)}_ = 

{/ + D(T0)}, which holds if and only i f / - / G D(T0), or equally well, f-\{f + f) = 
\{f — f) € 2)(To). But the function ft — | ( / 4- / ) is real; hence the vector / is 
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real in S if and only if {/ + £>(T0} = {ft + D(T0)}, with ft G D«(Ti). As previ
ously discussed, see (B.6) and (B.7) and Proposition 1 above, the real vectors of § 
constitute a real symplectic 2<i-space S'R whose complexification is S. 

Next consider the real vector space SR — T>R(TI)/T>R(TO), with vectors 
kR = {k + T>R(T0)}, IR = {£ + T>R(T0)} for real functions kj G D ^ T i ) , and 
define the real bilinear form 

(B.44) [kR : £R]A = [k + Dfl(ro) : * + ^ ( T 0 ) U = [fc : ^ 

Since [A: : £]A is defined already on D(Xi), it is clear that this bilinear product is 
well-defined on S#, and furthermore it is skew-symmetric, [kR : £R]A = ~[£R • kR\A-

We now verify that this real bilinear form is nondegenerate on the real vector 
space §>R. Accordingly, suppose [kR : £R)A = 0 for all £R = {£ -f D*(To)} G S*. 
But using the reality of the matrix A and the function fc, we compute 

[fc : D(Ti)]A = [fc : VR{TX) + £Dfl(Ti)]A = [A; : V^T^U - i[fc : D*( I i )U = 0, 

and so [k : D(Ti)U = °- T h i s implies that k G D(T0), so fe G Df l(T0) and fcH = 0 
in SR. This proves that the skew-symmetric bilinear form [:}A is nondegenerate on 
S#, and we conclude that SR is a real symplectic space. 

We still wish to relate the real symplectic space SR to the real vectors SR C S. 
For this purpose assume that a coset 

hR = {h + T>R(T0)} G SR intersects a coset g = {g + D(T0)} G S 

(with ft G D J R(TI) and g G D(Xi)—and both these cosets interpreted as subsets of 
D(7i)). Then {ft + D(T0)} meets {# + £>(T0)} within D(7i), and hence these two 
cosets are the same element in § = D(Ti)/D(To). In this case 

{ft + VR(T0)} c {ft + D(T0)} = {# + ©(To)}. 

Since ft is real, the coset {ft + 2) (To)} is necessarily a real vector in S'R C §. 
In this way we define a linear map of §R onto § ^ C § , 

ft* = {ft + VR(T0)} -+ ft = {ft + D(To)}, 

as in (B.41). If ft = 0 in S, then ft G D(T0) so ft G D^To) and hence ft* = 0 in 
§R. Thus the map (B.41) is injective, and so it defines a (natural) isomorphism of 
SR onto §*, as real vector spaces and also as real symplectic spaces. • 

The next lemma re-casts the results of Proposition 2 so as to apply to the real 
and complex symplectic spaces SR and §, respectively. 

LEMMA 2. Consider a real matrix A = A+ G Zn(J) of even order n > 2, and 
the corresponding formally self-adjoint quasi-differential expression MA, SO W~1MA 
generates the maximal and minimal operators T\ on D(Ti) and To on D(To), re
spectively, with deficiency index 0 < d < n in L2(3;w)—as before. Consider also 
the complex symplectic 2d-space 8 = !D(Ti)/D(To), with complex conjugation in
volution and real vectors %'R C S, so §f

R is a real symplectic 2d-space. Identify 
SR = D J R(TI) /D J R(TO) with S'R as in Lemma 1. 

Then each real Lagrangian d-space LR C SR has a complexification LQ which 
is a self-conjugate complex Lagrangian d-space in S. Moreover, each such self-
conjugate complex Lagrangian d-space in S is the complexification of exactly one 
real Lagrangian d-space in §R. 
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In this way there is established a one-to-one correspondence 

(B.45) {LR} <-+ {Lc} 

between the set {LR} of all real Lagrangian d-space in SR, and the set {Lc} of all 
self-conjugate complex Lagrangian d-spaces in S. 

PROOF. These conclusions follow immediately from Proposition 2, upon the 
identification of the isomorphic real symplectic spaces SR and §'fi C §, as prescribed 
in Lemma 1 above. • 

The next theorem is the principal goal of this Appendix B, and it gives the real 
version of the complex GKiV-Theorem 1 of Section II—but under additional reality 
assumptions: namely, assuming a real matrix A — A+ G Zn{3) of even order n > 2 
so that the corresponding quasi-differential expression M^[y] = iny2 is a formally 
self-adjoint quasi-differential operator with real coefficients on the interval 3. Then, 
with a given real weight function w(x) > 0 in £1

1
oc(J), W~1MA generates self-adjoint 

operators T on D(T) in the complex Hilbert space L2(3;w)—since necessarily the 
deficiency index d — d+ = d~—see Section II (1.3). 

The complex Gif TV-Theorem then applies, and asserts, as we recall from Sec
tion II, the existence of the one-to-one correspondence {T} <-> {L}, see (B.31), 
(B.32), (B.33), between all such self-adjoint operators T G {T}, and all complex 
Lagrangian d-spaces L G {L} of the complex symplectic 2d-space §. 

THEOREM 1. (Real GKN). Consider the quasi-differential expression 

on the real interval 3, as defined by a real matrix A = A + G Zn{3) of even order 
n>2, and with the given real weight function w(x) > 0 in &loc(3). Let T\ on D(Ti) 
and To on D(TQ) be the maximal and minimal operators, respectively, as generated 
by W~1MA in the complex Hilbert space ^(J^w) (recall that the deficiency index 
0 < d < n—as in Section II (1.3)). 

Then for this real case in the GKN-Theorem (where we refer to the general 
GKN-correspondence {T} <-> {L} of (B.31)): 

(1) TR G {T} is a self-adjoint real operator on D ( T R ) C £ 2 ( J ; I U ) if and only if 
the corresponding complex Lagrangian d-space Lc G {L} is self-conjugate, that is, 
Lc = Lc in the complex symplectic 2d-space § = T)(Ti)/D(T0). 

Furthermore, the real operator TR can always be determined by real boundary 
conditions, as next follows: 

(2) There exists a natural one-to-one correspondence between the set {TR} of 
all self-adjoint real operators TR on D ( T R ) (as generated by W~1MA in £J2(3;W)), 
and the set {LR} of all real Lagrangian d-spaces LR in the real symplectic 2d-space 
SR = 'DR{T1)/VR(T0). Namely: 

For each TR £ {TR} take the corresponding LR G {LR} to be the unique real 
Lagrangian d-space in SR, whose complexification Lc = Lc in § is defined by 

VD(TR) = Lc. 
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Conversely, for each real Lagrangian d-space LR in §R the complexiftcation 
Lc = Lc in S determines TR G {TR} by 

V{TR) = V^Lc, 

where 
V : D(Ti) - • § 

is the natural projection (set) map (B.33). 

In more detail, for each set of d real functions Z1, / 2 , . . . , fd in D^(Ti), such 
that {/^,..., / ^ } constitutes a basis for LR C SR (and consequently [/r : JS]A = 0 
for 1 < r, s < d), the domain 2 ) (TR) of the corresponding self-adjoint real operator 
7* is 

D(T*) = {/ G ©(TO | [/ : f s } A = 0 for s = 1 , . . . , d} 
or equally well, 

V(TR) = cj1 + c 2 / 2 + • • • + c d / d + D(T0), 

where ci, C2,.. . , Cd are arbitrary complex constants, as in (B.50). 

PROOF. Take a self-adjoint real operator TR G {T} with the domain T>(TR) C 
D ( T I ) , as generated by W~1MA on £2(J; to). Then the complex GKTV-Theorem 1 of 
Section II asserts that there is determined a complex Lagrangian d-space Lc G {L} 
in the complex symplectic 2d-space S = D(Ti)/!D(To), according to (B.32) 

(B.46) ^D(T i ?) = L c and V(TR) = V~1LC. 

But this natural projection (set) map 

(B.47) * : D(Tx) ^ S, / - / = {/ + D(T0)}, 

carries the conjugate / to \£/ = {/ + D(To)}. That is, ^ preserves the conjugation 
operations that are given on the two complex vector spaces D(Ti) and S. Since TR 
is a real operator D ( T R ) = T)(TR), and hence Lc = Lc is self-conjugate in §. 

On the other hand, take any such self-conjugate Lc = Lc G {L} in S. Then 
the corresponding self-adjoint operator T G {T} has a domain D(T) C 2)(Ti) 
specified by D(T) = ^ _ 1 L C . That is, D(T) is the union in £2(3; w) of all the cosets 
/ = {/ + D(T0)} for / G L c . But {/ + D(T0)} = { / + D(T0)} also belongs to 
L c = Lc, and hence £>(T) = 2>(T) is self-conjugate in £2(J;w). Further, w ^ M ^ 
has real coefficients, since A = A+ is real of even order n > 2, and therefore T is a 
real operator in accord with Definition 4 above, and we denote it by TR to match 
the conclusion (1) of this theorem. 

Now conclusion (2) is an easy consequence of the complex GKiV-Theorem, 
especially the existence of the bi-unique correspondence {T} <-> {L}. Namely, this 
same GKiV-correspondence, when restricted to {TR} C {T}, establishes a one-
to-one correspondence between {TR} and the set {Lc} of all complex Lagrangian 
d-space which are self-conjugate in §. 

However, in Lemma 2 above, we have defined a natural one-to-one correspon
dence (B.45) {LR} <-> {Lc} between the real Lagrangian d-spaces LR of S#, and 
the self-conjugate complex Lagrangian d-spaces Lc in 8. In this bijective corre
spondence Lc = Lc is the complexification of a unique LR, and LR is the unique 
real Lagrangian d-space in SR which has Lc as its complexification. 
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These two bijective correspondences combine to produce the required one-to-
one correspondence 

(B.48) {TR} ~ {LR}, 

as asserted in the conclusion (2) in this theorem. • 

REMARK. Let W~1MA be a quasi-differential expression for a given complex 
matrix A = A+ G Zn(J) of order n > 2, with the corresponding deficiency index 
0 < d < n—as in the complex GKN-Theorem 1 of Section II. Then the boundary 
value problem (or eigenvalue problem for A G C), 

MA[V\ = Xwy, on real interval J, 

is self-adjoint on some linear domain D(T) C L2(3;w); that is the operator T = 
W~1MA is self-adjoint, in case there exist complex functions fl,..., fd G D(Ti) 
such that Z 1 , . . . , fd constitute a basis for a Lagrangian d-space L of the complex 
symplectic space § = D(Ti)/D(To). This can also be stated as: 

[fr:f8]A = 0 f o r l < r , s < d , 

and {fr} are linearly independent over C, (mod D(Xb)). In terms of this basis the 
linear domain for T is precisely 

(B.49) D(T) = c i / 1 + c2f + • • • + c d / d + D(To), 

where the complex constants ci, C2,.. . , Q range over C. 
Incidentally, such a basis for L can also be specified by an appropriate set of d 

linearly independent functionals on S, that is, by d linearly independent homoge
neous complex boundary conditions that vanish on D(To)—as explained earlier in 
Sections III.2 and again in Section IV. 

We compare this construction with the corresponding construction for the real 
version of the GKN-Theorem 1 above, where A = A+ G Zn(3) is a real matrix of 
even order n > 2. Then we can determine every self-adjoint real operator TR on 
T)(TR) C £2(J; w) by a selection of d real functions f1, f 2 , . . . , fd G D^(Ti) such 
that / £ = {f1 + VR(T0)},'- JR = {fd + ^R(T0)} constitute a basis for a real 
Lagrangian d-space LR in the real symplectic 2d-space SR = D J R ( T I ) / D ^ ( T O ) . This 
can also be stated as: 

[fr : fs]A = 0 for 1 < r, s < d, 

and Z 1 , . . . , fd are linearly independent over IR, (mod T)R(TO)). 

But the complexification Lc = ^ c of LR has the basis f1 — {f1 + D(To)}, . . . , 
/ d = {Zd + ?)(To)} over C, (mod D(T0)). Hence, here 

(B.50) V{TR) = af1 + c2Z2 + • • • + c d / d + D(T0), 

where again the complex constants ci, c 2 , . . . , Q range over C 
We shall later note how such a basis of real functions f1,f2,..-,fd G D J R(TI) 

can be specified by d linearly independent homogeneous real boundary conditions 
that vanish on D#(Tb). 
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REMARKS ON REAL OPERATORS. A real operator r on the complex Hilbert 
space £2(J; w), as in Definition 4, defines a linear operator on the real Hilbert space 
£J\(J\W), by the restriction to real functions. Moreover, each linear operator on 
£J2

R(3\W) extends to a unique real operator on the complex Hilbert space £J2(J;W). 
If we wish to consider the real operator TR in (B.50) as a self-adjoint operator on 

the real Hilbert space £"#(3; w), then its domain would consist of the real functions 
in T>(TR), namely 

(B.50R) VR(TR) = df1 + c2f2 + • • • + cdfd + ^ ( T 0 ) , 

where the constants ci, C2,.. . , Cd are now restricted to be real. However, we shall 
consider only operators defined on the complex Hilbert space £2(J; iu). 

We have seen that the further developments in the general GKN-Theory, and 
the corresponding boundary value problems, have been guided by the theory of 
complex symplectic spaces, as in Sections III and IV. These methods also apply 
to the theory of real quasi-differential expressions via real symplectic spaces—but 
significantly, they require that we consider their complexifications. However, these 
results may be easier to obtain and simpler to state in the real cases, since each 
real symplectic space S of finite dimension D must have D = 2ra even, and excess 
Ex = 0, so S is thus symplectically isomorphic to the standard RD . For instance, 
the real symplectic space S#, in the real GKN-Theorem 1, has the even dimension 
2d (for the corresponding deficiency index d = d^) and also its endpoint decompo
sition SR = SR- 0 SR+ leads always to the real symplectic subspaces SR± of even 
dimensions—according to Proposition 5 below. 

However, it is often possible, even advantageous, to establish interesting ver
sions of these results for real boundary value problems without any explicit reference 
to their complexifications—and with the conclusions phrased entirely within real 
analysis, just as for the real GKN-Theorem 1. Since these concepts and arguments 
in both the real and complex cases are generally parallel, we merely state some 
of the most important of those propositions of real symplectic geometry, which 
correspond to the main body of theory of Sections III and IV. 

PROPOSITION 4. Let S, together with a real symplectic form [:]R, be a real 
symplectic space of finite dimension D = 2A. Assume given a prescribed direct 
sum decomposition 

S = S-& S+, with [S_ : S+]R = 0, 

where the real symplectic subspaces S± have 

dimS'± = 2A ± , so A_ + A + = A. 

Further let L be a real Lagrangian A-space in S. 
Then 

0 < A_ - d i m L n S _ = A + - d i m L n S f
+ = min{A_,A + } . 

Moreover, in the special case where 

dimS± = A (so A_ = A+), 

then 
0 < dim L H S- = dim L n S + < A±. 
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The proof of the proposition (which may be denoted as the real version of 
the balanced intersection principle) follows closely the argument of Theorem 3 in 
Section III.l since the methods of linear algebra only are involved. Moreover, other 
results of complex symplectic algebra in Section III.l are also much easier, or even 
trivial, in the real case—for instance the analogues of Theorems 1 and 2 there. 
Accordingly, we do not present these arguments or statements here. 

REMARK. AS in Section III.l, but now in accord with the circumstances of 
Proposition 4 above, we define the coupling grade of a real Lagrangian A-space L 
in the real symplectic 2A-space S, = S ,_®S'+ , namely 

(B.51) grade L = A_ - dimL n S- = A + - dimL n S+. 

As before, a non-zero vector v G S is separated at the left (or at the right) in 
case v e S- (or v G S+); otherwise v is a coupled vector. 

Then L is strictly separated in case grade L = 0, that is, L = span{Ln5_, Lf)S+} 
so that L has a basis of vectors, each of which is separated. Also L is totally coupled 
in case grade L = A_ = A+, that is L D S- = L H 5+ = 0 so that every basis of L 
consists of vectors, each of which is coupled. 

It is easy to see that if the real symplectic 2A-space S = S- © S+, and the 
real Lagrangian A-space L C 5, are all complexified to Sc = Sc- © Sc+ and Lc, 
respectively, then grade L = grade L^. 

Proposition 4 can be applied to the analysis of real boundary value problems, 
say 

^A[2/] = ^WV (as in Section 1(1.1)) 
where A = A = A+ G Zn(3) is a real Shin-Zettl matrix of even order n = 2ra, and 
with the real weight function w(x) > 0 in £ ^ ( 3 ) , as before. Then the corresponding 
(real) endpoint space 

§R = DR(T1)/VR(T0)1 

is a real symplectic 2<i-space, for the deficiency index 0 < d < n as in the notation 
of the real GKN-Theorem 1 above. 

In order to construct the left and right endpoint decomposition of S#, in analogy 
to Definition 4 in Section III.2, we define 

(B.52) VR±(T1) = D±(T!) n VR{TX) 

and the real endpoint spaces 

(B.53) 8R± = *RVR±, 

in terms of the natural projection (set) map (B.40) 

(B.54) *R : DflCTi) -> SR = Dfl(Ti)/!Dfl(ro) 

f->*Rf=fR = {f + VR(T0)}. 

Thus SR- can be thought of as "real functions supported near the left endpoint a," 
and S#+ as "the real functions supported near the right endpoint 6" of 3. 

In this terminology we can now assert the analogue of Theorem 5 in Section 
III.2, which provides the general endpoint space decomposition for the real sym
plectic space §R. 
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PROPOSITION 5. Consider the real symplectic 2d-space §R = eDR(Ti)/eDR(To), 
determined as the endpoint space for a real quasi-differential expression W~1MA-

Here A = A = A+ G Zn(3) is a real matrix of even order n = 2m, w G £>}oc(3) is 
the positive weight function on the real interval 3, and 0 < d < n is the deficiency 
index, as in Theorem 1. 

Then §>R has a natural direct sum decomposition 

(B.55) §R = §R- 0 §i?+, with [S#_ : SR+]A = 0, 

where the left and right endpoint spaces §R- and §#+, respectively, are each real 
symplectic subspaces; 

d imS^- = 2A_, dimSjR+ = 2A+ 

and A_ + A + = A = d (in terms of the usual symplectic invariants of Theorem 1 
in Section III.l). 

In the special case where 3 = [a, b] is compact, so the corresponding boundary 
value problem is regular, then 

A = d = n and A_ = A+ = m. 

The proof of Proposition 5 follows just as in the analogous complex case, once 
we observe that the patching lemma of Naimark [NA], or the corresponding con
trollability results [EM] introduced in Appendix A above, remains valid within the 
framework of real analysis. 

Further, classifications of real Lagrangian d-spaces LR C SR can be ordered by 
means of the coupling grade of LR 

gradeLR = A± - dimL^ n SR±, 

as in Proposition 4 and the subsequent discussion (B.51). 

COROLLARY 1 (For real GKN-Theorem 1). Consider the quasi-differential ex
pression W~1MA on the real interval J, as defined by the real matrix A = A — 
A+ G Zn(3) of even order n = 2m > 2, and by the given positive weight function 
w G £>\ocC3)f as in Theorem 1. Define the real symplectic 2d-space 

SR = tDR(T1)/'DR{TQ) = §R_ 0 SR+, 

where the left and right endpoint spaces §R_ and SR+, respectively, are real sym
plectic subspaces with 

dimS#_=2A_, dim§ j R +=2A+ (so A _ + A + = A = d), 

as in Proposition 5 above. 
Let Li C SR be a real Lagrangian d-space with 

grade Lt = A± - dim LR n §R± = 6, 

for an assigned integer 0 < £ < min{A_, A + } . 
Then each basis of Li contains: 

at most (A_ — £) vectors in §_ 
(each separated at left of J), 

at most (A + — £) vectors in § + 
(each separated at right of 3), 
and 
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at least (Nee-coupling La = 2£) vectors 
(each coupled on J). 

Furthermore there exists a minimally coupled basis {gl
R, g2

Rj..., gR} of the 
d-space Li C §>R, in which precisely 2£ vectors are each coupled, and hence pre
cisely (A_ — £) vectors are each separated at the left, and precisely (A+ — £) vectors 
are each separated at the right of the interval 3. In fact, we can choose the corre
sponding representative functions g1^2,... ,gd in DR(TI) such that: 

the first (A_ — £) of these functions lie in D^_ (T\) 
(each vanishes in a neighborhood of the right end of 3), 

the next (A+ — £) of these functions lie in D#+(Ti) 
(each vanishes in a neighborhood of the left end of 3) 

the last 2£ of these functions lie neither in *DR_ (Xi) nor T)R+(TI) 
(each has a support which meets every neighborhood of the left end of 3, 
and also every neighborhood of the right end of 3—in non-empty inter
sections). 

The proof of Corollary 1 follows immediately from the real GKN-Theorem 1, 
Proposition 5—and the conceptual developments in Theorem 7 of Section III.2. 
The problem of the existence of real Lagrangian c/-spaces Li C §#, with grade 
Li — £ assigned on 0 < £ < min{A_, A + } , is discussed later in Theorem 3 and the 
subsequent Note 2 at the end of this Appendix B. 

We can also define the real Lagrangian <i-space La C §#, as in Corollary 1, 
in terms of real linear functionals on the 2<i-space SR (namely, elements of the 
dual space S^). Recall that a real boundary condition for the quasi-differential 
expression W~1MA (as in Theorem 1) is a real linear functional UJ on the linear 
2d-space SR = T>R{TI)/T)R(TO) (or more precisely, the null space of a;, abbreviated 
as "the solutions of u; = 0"). 

Accordingly, consider any linear functional 

(B.56) u : SR -> R 

(or equally well, a real linear functional on D#(T\) which vanishes on 1)R(To)). We 
denote the set of all such boundary conditions as the dual space S^. 

Just as in Definition 5 and Theorem 6 of Section III.2 we define the duality 
map 

(B.57) S H -> §* : v -+ v* 

where the real linear functional v^ is given by 

(B.58) v*[fR] = [v : fR]A for all / „ e SR, 

and we use the map to induce a real symplectic product on the real linear space §^. 
Then the duality map is a real symplectic isomorphism carrying S# = §#_ 0 S#+ 

onto SR = §>R_ ® §^ + . Further, the real symplectic subspaces S^± , the images of 
SR±, respectively, can also be recognized as annihilators (or milliners), as before: 

(B.59) S#_ = tt(S*+) and S^+ = tt(S*_). 

Thus a real boundary condition can be specified by either a functional w* G § | , or 
equally well by the corresponding vector v G §#, just as in Section III.2. 



BOUNDARY VALUE PROBLEMS AND S Y M P L E C T I C ALGEBRA 157 

Now let us turn to the regular boundary value problem 

MA[V] = Xwy (spectral parameter A G C), 

where A = A = A + = Zn(3) is a real Shin-Zettl matrix of even order n = 2ra, and 
with the positive weight function w, both in .C1^) on the compact interval 3 = [a, 6] 
as in Section IV (1.1), (1.2), (1.3). Then the results of the real GKN-Theorem 1, 
and Propositions 4 and 5 above, remain valid—but special properties hold for the 
real endpoint spaces SR = D J R ( T I ) / D J R ( T 0 ) = §#_ 0 SR+. 

These real endpoint spaces SR± can be defined quite explicitly for regular 
boundary value problems, as in Section IV where the interval 3 = [a, 6] is com
pact and where A and w both lie in L1(3). In such a case 

(B.60) 

SR- = UR e SR I /i0](6) = j f (b) = • • • = / J T 1](6) = 0}, and 

SR+ = {/* G SR I Z l V ) = /i1](a) = • ' ' = f[A~1](a) = 0}. 

because 

VR(T0) = {/ G D f l(Ti) | / i r l(a) = /ir](6) = 0, for r = 0 , 1 , . . . ,n - 1}. 

For the case of a regular boundary value problem on the compact interval 
3 = [a, b] the evaluation map, see Section IV, 

(B.61) VR : fR = {/ + D f l(T0)} -+ ( / i° !(a) , . . . , /jf" 1](«), /j?1 (&), • • •, / J T 1](*0) 

is a symplectic isomorphism of S# = S#_ 0 SR+ onto the real symplectic space 
R2n = ]R2m 0 R2rn. With these coordinates in SR we can write the symplectic 
product as follows 

(B.62) [fR : gR}A = jRHgR, 

where the real skew-symmetric matrix (see(B.23)) 
/ 0 • • • 0 (+1K 

(B.63) H = ( - l ) m ( ^ n _ ^ ) , and Hn 

In this way we compute (see (B.28)), 

(-1) 0 

o (+i)' 
V(-i) o • • • o / 

n - 1 

(B.64) [fR : gR]A = (-1)- V > i r { / r ^ M W - / J r ^ ^ W } 

for each / « = {/ + ^ P o ) } , ^ = {g + D«(T0)} in §R, with / , # G D f l(Ti). 
Furthermore the skew-symmetric matrices (—l)mHn and (—l)m+1ifn, immediately 
yield the symplectic forms on the corresponding subspaces SR_ and SR+ in SR. 

For the regular boundary value problem, as described in Proposition 5, in the 
special case where 3 = [a, b] is compact so A_ = A + = m and d = n — 2m, 
examples of such Lagrangian n-spaces of all possible coupling grades are shown 
to exist in Section III.l Theorem 4—(while Section III.l deals with complex La
grangian spaces, these particular examples are also valid, where meaningful, for 
the real case). Furthermore, it is important to emphasize that these examples of 
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Section III.l, although described entirely in terms of abstract algebra, also yield 
valid constructions for real operators TR, once A — A — A+ G Z2m(J) and W~1MA 
have been specified on 3 = [a, b]. 

We now re-formulate and summarize these conclusions in the next theorem, 
which is the real version of Theorem 2 in Section IV. 

THEOREM 2 (Real GKN-Theorem: Regular Case). 
Consider the real quasi-differential expression 

(B.65) w~lMA[y]=inw-ly[2] 

defined on the real compact interval 3 = [a, b], in terms of the real matrix 
A = A = A + G Zn(3) of even order n = 2m, and the positive weight function 
w, both in £jl{3), as for a regular real boundary value problem on 3. 

Let T\ on D(Ti) and To on D(Xb) be the maximal and minimal operators, 
respectively, as generated by W~1MA on the complex Hilbert space £J2(3;W)—as in 
the real GKN-Theorem 1. Then the real symplectic 2n-space §>R = 1)R(TI)/T)R(TO) 
has the direct sum decomposition into the left and right endpoint spaces, as before: 

(B.66) SR = §R- e S#+ , with [SR_ : SR+]A = 0, 

where the real symplectic spaces §R± have the common dimension 
2A_ = 2A+ = 2m = n. 

Each real Lagrangian n-space LR C §R has a coupling grade 

(B.67) grade LR = m — dim LR n S.R±, 

which is an integer £ G [0, m]; and moreover for each integer £ G [0, m] there exists 
(at least) one real Lagrangian n-space, say Li with 

grade Lp = £. 

According to the real GKN-Theorem 1 above, there exists a natural one-to-one 
correspondence between the self-adjoint real operators, as generated by W~1MA on 
£j2(3;w), and the real Lagrangian n-spaces in SR. For each such real Lagrangian 
n-space in SR, say Li with grade L^ = £, the corresponding self-adjoint real operator, 
say TRI, is specified by its domain 

(B.68) D(TRt) = {f€'D(T1)\[f:fa]A=0 for s = 1,2,... ,n}, 

or equally well, 

D(TRI) = c i / 1 + c 2 / 2 + • • • + cnfn + D(T0), 

where f1, f 2 : , . . . , fn are any set of n real functions in T>R(TI) such that 
{fki / I ' • • •' fn} constitutes a basis for Lt, and ci, C2,.. . , cn are arbitrary complex 
constants, as in (B.50). 

Furthermore, 

dim Li fi §R± = m — £, for £ = 0,1, 2 , . . . , ra, 

so 

(B.69) Li is strictly separated if and only if £ = 0, 
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and 

(B.70) Li is totally coupled if and only if £ — m. 

In the special case of a regular problem where 3 = [a, b] is compact, the annihi-
lator relations (B.57), (B.58), (B.59) can be demonstrated by explicit calculations in 
terms of the coordinates in §R induced via the evaluation isomorphism (B.61) with 
E 2 n . For instance, take any vector v G §i?-, written in the notation (motivated by 
the formula (B.72) below) 

(B.71) v = ( - l ) m ( a n _ i , - a n - 2 , a n - 3 , • • •, ^ i , - a o , 0, 0 , . . . , 0), 

where the real coordinates ( — l ) m a n _ i , . . . , ( — l)m(—ao) a r e n ° t all zero. In this 
situation we can compute (B.62), (B.63), (B.64): 

(B.72) v*[fR] = [v : fR]A = a0f[
A\a) + a i / j f t a ) + • • • + a n _ ! j f ~1](a) 

for each vector fR = ( / i° ](a) , . . . , f%~1](a), f[
A\b),..., fA~1](b)) in §R (where fR = 

{/ + T)R(To)} is represented by the real function / G DJR(TI) , as usual). But since 
v^[fR] involves the quasi-derivatives of / only at the left endpoint a of 3 — [a, 6], 
we see that v& annihilates all fR G §#+. In this way we can easily verify directly 
that 

Sg_ = N(Sij+), and similarly S#+ = tt(S*_). 

Thus for v G SR- the functional v^ G §^_, and these are each separated at 
the left endpoint a of 3 = [a, 6]. But this fact is emphasized by the real boundary 
condition corresponding to i;#, namely, 

(B.73) v*[fR}=0 or a 0 / I V ) + • • • + a r e - i /<T 1 ] (a) = 0. 

Similar conclusions hold in case v G S#+, so v^+ G §^ + = ?sf(S^_), and then 
the corresponding boundary condition involves data only at the right endpoint b of 
3 = [a, 6]. In this case v, and v# the corresponding boundary condition, are each 
separated at the right endpoint b of 3 = [a, 6], that is, 

(B.74) v*[fR]=0 or /?0./f(&) + • • • + 0n-if[r%) = 0, 

where the real constants /?o, / ? i , . . . , /?n-i are not all zero. If t> is neither separated 
at the left nor at the right endpoint of J, then the boundary condition corresponding 
to v# involves data at both ends a and b of 3. Then v (or v#) is called nonseparated 
or coupled, and 

v*[fR] = a0/i01(a) + • • • + a ^ / j r 1](a) + Ml°\b) + ••• + ^../^(b), 

where at least one aj ^ 0 and one (3k ^ 0, for 0 < j , k < n — 1. When A is 
smooth, the boundary condition can then be expressed as a linear combination of 
the ordinary derivatives / ^ ( a ) , . . . , / ^ ^ ) , / ^ ^ , . . . , / ^ " 1 ' ! ^ b u t t h e r e a l 

constant coefficients then depend on the matrix A, and the analogous conditions 
hold for separation or coupling. 

From these notations and comments concerning boundary conditions the fol
lowing corollary is immediate. 
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COROLLARY 1. For each integer £ = 0 ,1 ,2 , . . . , m consider the real Lagrangian 
n-space Li C SR with coupling grade £, as in Theorem 2. Let TR£ on domain 
T>(TJU) be the corresponding self-adjoint real operator, on the complex Hilbert space 
^2(3;w), as generated by the real quasi-differential expression W~1MA, with 
A = A = A+ G Zn(3) of even order n = 2m on the compact interval 3 = [a, b], in 
accord with Theorems 1 and 2 above. 

Then there exists a basis of n linearly independent real boundary conditions (a 
basis for Lf) whose solutions in SR are precisely the vectors of Li, and thus whose 
solutions in DjR(Ti) then spanD(T^) (mod D(T0)), as in (B.68). 

Moreover there exists a minimally coupled basis of n boundary conditions (basis 
for Lf) with precisely 

(B.75) m — £ separated at the left endpoint of 3, 
m — £ separated at the right endpoint of J, 
2£ coupled (nonseparated). 

Furthermore, every basis of n boundary conditions (basis of Lf) must contain at 
least 2£ coupled boundary conditions. 

REMARK. Of course, a minimally coupled basis for Lf can be also interpreted 
as a minimally coupled basis for Li, compare Corollary 1 to Theorem 1—also see 
Theorem 2 of Section IV. 

P R O O F . According to the argument in Corollary 1 of Theorem 6 in Section 
III.2, 

Lf = N(Li) and Le = 7f(Lf). 
Hence for each basis of Lf (or the corresponding set of n linearly independent real 
boundary conditions), Li is precisely the set of solutions (annihilators) of these n 
boundary conditions. 

But grade Li = m — dim Li D SR± = £ if and only if 

dim Li fi SR_ — m — £ and dimLi D §#+ = m — £. 

Therefore there exists a basis for Li which contains m — £ vectors in SR- and also 
m — £ vectors in §#+, with each of the remaining vectors lying in neither the left nor 
right endpoint space. But then the dual basis in Lf has the required properties: 

m — £ separated at the left endpoint of J, 
m — £ separated at the right endpoint of J, 
2£ coupled (nonseparated). 

Of course, a perturbation of this basis can create a basis for Lf with more basis 
vectors nonseparated, even all basis vectors nonseparated or coupled. However, 
every basis for Lf must contain at least 2£ nonseparated boundary conditions, as 
required. • 

The next topic in this Appendix B deals with the self-adjoint but non-real 
operators T, as generated by the real quasi-differential expression W~1MA on the 
complex Hilbert space L2{3]w)—where the real matrix A = A = A+ G Zn(J) is 
of even order n = 2m, and the positive weight function w G &\ocC3) on the real 
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interval 3, as before. Such a formally self-adjoint real quasi-differential expression 
W~1MA can generate self-adjoint operators T on D(T) C D(Ti), that are not real, 
through the use of certain complex non-real boundary conditions. 

We first clarify this phenomenon for the classical Sturm-Liouville differential 
operator of order n — 2, and then proceed to the more general self-adjoint real 
quasi-differential operators of order n > 4. 

PROPOSITION 6. Consider the Sturm-Liouville real quasi-differential operator 
of order n — 2ra = 2, 

(B.76) MA[y] = -y[l] = -(pyj + qy, 

(B.77) where A = A = A+ = (° p J e Z2(3) 

for smooth real coefficients p,q with p(x) / 0 on the compact interval J[a, b]. 
Then the quasi-differential expression W~1MA, for given positive weight function 
w G ̂ {3), has real coefficients, so the corresponding maximal and minimal opera
tors T\ on T>(Ti) and To on T>{TQ), respectively, are both real operators in £2(U; w). 

As usual, define the endpoint real symplectic 4~space. 

(B.78) §R = DflCTO/DflCTo) = §R_ 0 S f l + , 

and its complexification, which is isomorphic to the complex symplectic 4~space 

(B.79) S = S_ 0 S+, with [§_ : § + ] A = 0. 

Then necessarily 

(B.80) dim SR± = 2, dim S± = 2. 

Let LR be a real Lagrangian 2-space in §R, SO LR determines a self-adjoint real 
operator TR on T>(TR) C D(Ti), as generated by W~1MA in -C2(J; w)—according to 
the real GKN-Theorem 1 above. 

Then either: 
(i) grade LR = 0 (LR is strictly separated); 

In this case LR can be defined as the annihilator of an independent pair 
of real boundary conditions, one of which is separated at the left endpoint a 
of 3 and the other is separated at the right endpoint b of 3, 
or else: 

(ii) grade LR = 1 (LR is totally coupled); 
In this case each basis of real boundary conditions defining LR must 

consist of two boundary conditions each of which is coupled. 
Next let Lc be a complex Lagrangian 2-space in § so Lc determines a self-

adjoint operator T on D(T) C D(Ti), as generated by W~1MA, according to the 
general GKN- Theorem 1 of Section II. 

Then either: 
(hi) grade Lc = 0 (Lc is strictly separated); 

In this case Lc is defined by some basis of complex boundary conditions, 
each of which is separated in the sense of (i) above. More surprisingly, Lc 
is necessarily the complexification of some real Lagrangian 2-space in $R, 
and hence Lc = Lc and is defined by a basis of real boundary conditions, 
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each of which is separated. Moreover, the self-adjoint operator T on D(T) 
is necessarily a real operator, 
or else: 

(iv) grade Lc = 1 (Lc is totally coupled). 
In this case Lc is defined by a basis of complex boundary conditions, 

each of which is coupled in the sense of (ii) above. Moreover, Lc may or 
may not be the complexification of a real Lagrangian 2-space. 

If Lc = Lc, then it is such a complexification, andT on D(T) is a real operator. 
If Lc 7̂  Lc, then it is not a complexification, and then T on D(T) is not a 

real operator. 
Examples of both kinds exist. 

P R O O F . Conclusions (i) and (ii) are trivial consequences of Corollary 1 of The
orem 2 above. Accordingly we consider only the cases (iii) and (iv) for a complex 
Lagrangian 2-space Lc in the complex symplectic 4-space § = S_ ® S+. 

Since J = [a, 6] is compact, the evaluation isomorphisms of § with C4, as in 
Section IV, identifies 

(B.81) f = {f + V(T0)} with (f[Z\a)J%\a),f%](b),fW{b)) € C4. 

Then the symplectic product can be computed by 

(B.82) {f:g}A = fHg*, with H = 

for the complex 4-vectors / and g G 8. 
The real skew-symmetric matrix H also defines the symplectic product in 

§R = §/?-©§#+> as well as in its complexification § = §_®§ + . Thus there is a com
plex conjugation in S, with real vectors S^, and each vector u = (^i, u^, ^3, U4) G § 
has the conjugate u = (?2i, IZ2, ^3, ^4) G §. Then u is real just in case all its compo
nents are real numbers. 

Now assume that grade Lc — 0, so that dim L c H § _ = 1 and dimLcC)S+ = 1. 
Take vectors U- = (1/1,^2,0,0) as a basis for Lc n S_ and v+ = (0,0, u i , ^ ) as a 
basis for Lc fl S+. We can choose u- = (1,77,0,0) G S_ (or possibly (0,1,0,0)) 
after a suitable multiplication by a complex scalar. 

But U- is a neutral vector in the Lagrangian 2-space Lc, and so 

0 
1 
0 
0 

- 1 
0 
0 
0 

0 
0 
0 

- 1 

0 
0 
1 
0 

-ff«!L = ( M ) ( 5 - J ) ( 1 , ^ = 7?-77 = 0. 

Hence r? is a real number, and so U- G SR_ is a real base vector for Lc H §_. 
A similar calculation shows that we can take v+ to be a real base vector for 

Lc n § + , and thus {iz_, v+} is a real basis (lying in SR) for the complex Lagrangian 
2-space Lc-

Now observe that the conjugation in S carries 

C\U^ + C2V+ tO C\U- + C2^+ = C\U- + C2^+ G L c , 
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for complex constants c\ and c^ Hence Lc — Lc is self-conjugate in S, as required. 
Clearly Lc is thus the complexification of a real Lagrangian 2-space, say L'R C §#, 

(B.83) L'R = { n u - | r 2 v + } for rur2 <E R, 

with grade LR = 0; and conclusion (iii) is proved. 
Finally we exhibit two examples for complex Lagrangian 2-spaces Lc C § with 

grade Lc = 1, say L'c with L'c = L'c, and also L'c with L^ ^ L'Q. The other 
conclusions in (iv) then follow from Proposition 2 above. 

For example take L'c defined by the basis of vectors (1, 0,1, 0) and (0,1, 0,1) in 
S = S_ © 8+ « C4. Because this basis consists of real vectors in §, Lf

c = L^ is 
self-conjugate and so L'c is the complexification of a real Lagrangian 2-plane in S#. 
Moreover it is obvious that L'c fl §_ = L'c D S+ = 0 so that grade L'c = 1 and L'c 
is totally coupled. 

For the next example take L'c defined by the basis of vectors u = (1, 0, i, 0) and 
v = (0,1, 0, i)—or equally well by the boundary conditions 

(B.84) f$\b) = if%\a), f%](b) = i/Jfta). 

But u = (1,0,-z,0) ^ L'c so U^ ^ Lf^. Again it is obvious that L£ n §_ = 
L'c D § + = 0 , so L'c is totally coupled, yet it determines a self-adjoint operator T 
on D(T) which is not real. • 

The situation in Proposition 6 (iv)—where certain complex boundary condi
tions, necessarily coupled for the real Sturm-Liouville differential operator with 
n = 2, determine a self-adjoint operator T on 2)(T) that is not real in £2(3;u>)— 
can be illustrated more explicitly as follows. Take p(x) = q(x) = w(x) = 1 in 
3 = [0,1]. Then the function 

1 i 
(B.85) y(x) = -[COSTHT + 1] + -[COSTT(1 - x) + 1] 

lies in the domain D(T), yet y g T>(T). Hence D(T) / D(T) and T is not a real 
operator. 

Analogous examples are easily constructed for self-adjoint real quasi-differential 
expressions of even orders n > 4. 

On the other hand the phenomenon in Proposition 6 (iii)—where complex 
boundary conditions which are strictly separated force the corresponding self-
adjoint operator T on D(T) to be a real operator in L2{3]w)—is peculiar to the 
order n — 2, and fails for higher orders n > 4. 

The next example illustrates this failure for n = 4, and then the subsequent 
theorem demonstrates the corresponding result for all even n > 4. 

EXAMPLE 1. Let W~1MA be a real quasi-differential expression, where the real 
matrix A = A — A+ G Z±{$) has even order n = 2ra = 4, and the positive weight 
function w G -C1(5) on the compact interval 3 = [a, 6]. Also consider the real 
endpoint space S# = !D^(Ti)/I)jR(To) = §R_ © §#+, and its complexification 

§ = D(Ti)/D(T0) = S_ © S+, with [S_ : S+]A = 0, 

as usual. Then § is a complex symplectic 8-space, with complex conjugation that 
leaves the left and right endpoint spaces S± invariant. Thus each of S± is a complex 
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symplectic 4-space which is the complexification of the corresponding real endpoint 
space §R±. 

Under these conditions we shall construct explicitly a complex Lagrangian 
4-space Lo C S such that: 

(so dimLo fl S± = 2) (B.86) 

and yet 

(B.87) 

grade LQ = 0 

L0 ^ L0 (s 

0 
0 
0 
1 

0 
0 
1 
0 

0 
- 1 

0 
0 

1 \ 
0 
0 
o) 

(so Lo is not self-conjugate). 

Hence Lo is strictly separated, yet still defines a self-adjoint operator T on 
D(T) C D(Ti) C L2CJ;w), which is not a real operator. We shall further de
scribe Lo in terms of separated complex boundary conditions at the endpoints of 
J = [a, 6], in the customary manner. 

Let the evaluation isomorphism of S onto C8 define the complex coordinates 
for each vector / = {/ -f D(To)} G S according to: 

(B.88) f ~ (f[°\a)J[2\a)J[2\a)jW(a)J%\b)jM(b)jM(b),ff(b)), 

as in Section IV above. The corresponding skew-Hermitian matrix for evaluating 
the symplectic products in S is (see (B.63): 

(B.89) H = ( ^ 4 _°H ) , where H4 

Using these evaluation coordinates in S, we compute 

(B.90) [f--gU = fHg\ for / a n d g € S. 

More particularly, if / G S_ so that 

f[2](b) = ft]{b) = fM(b) = f®(b) = 0, 

and similarly for g G S_, then 
(B.91) 

[/ : 9]A = (fT(a)j]l\a)J^(a),f^(a))H4(g^(a),gll\a),g^(a),g^(a)y. 

Analogous formulas hold for f,g G S+. As usual [S_ : S+]A = 0. 
Now we specify the required Lagrangian 4-space Lo C § by assigning the fol

lowing four vectors as a basis for Lo: 

(B.92) u- - (i + 1,0, i - 1,0,0,0,0,0) 

v_ = (0,i + l , ( M - 1,0,0,0,0) 
u+ - (0,0,0,0,2 + 1,0,2- 1,0) 
v+ = (0,0,0,0,0,2 + l , 0 , z - 1). 

The motivations and notations for this choice of basis for Lo arose in Proposition 
6 (iv), specifically in formula (B.84). In particular we use the special calculation, 

Q f f 4 Q * = f " f 2 0^ V as in (B.63), 
0 H. 
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/ l 0 - 1 0^ 

for the real orthogonal matrix Q = 4= 

\ 0 1 0 1, 
It is then straightforward to verify that LQ is a complex Lagrangian 4-space in 

8, and also that 
dimLo fl S± = 2, so grade LQ = 0. 

Thus L0 is strictly separated i n § = § _ 0 § + . 

Moreover the vector U- has the conjugate 

u- = (-z + 1 ,0 , -2 -1 ,0 ,0 ,0 ,0 ,0 ) , 

because H is real; and we note that 

u- G Lo but U- £ LQ. 

Hence LQ ^ LQ and LQ is not self-conjugate, so LQ is not the complexification of 
any real Lagrangian subspace of §>R. 

As an alternative to the description of LQ through basis vectors, we can specify 
LQ by means of boundary conditions (linear functionals on §). For instance, Lo 
consists of all functions (mod D(TQ)) satisfying 

(B.93) ( f - l ) / i 0 l ( a ) = (i + l) / i2 l(a), (i - 1)/W(a) = (i + l)ff(a) 

and 
(i - l)f™(b) = (i + l)/i21(6), (i - l)/i1J(6) = (i + l)/i31(6), 

where the first pair of these boundary conditions are separated at the left endpoint 
a, and the second pair are separated at the right endpoint b of 3. 

As a classical treatment of this special example, let us write these boundary 
conditions for LQ, as generated by a Shin-Zettl matrix, see Appendix A (A.49), 

(B.94) A = A = A* 

for smooth real functions PQ,PI,P2 with P2(x) ^ 0 for x G 3 = [a, b]. In this case 
the quasi-differential expression MA (say, take w{x) = 1 for x e 3) reduces to the 
classical real linear differential operator 

(B.95) M[y] = fay")" + {piy')' + poy, 

for all suitably smooth functions y G T>(A). The usual formulas for the quasi-
derivatives y^ are related to the ordinary derivatives y(r\ for r = 0,1,2,3,4, 
according to 

[0] [1] / [2] // [3] / / /w . / 

VA =y,VA =v » VA = V2y , yA = \v^y ) + v\v 
and 

yW = (P2y")" + (Piyy+Poy. 
Hence the prior boundary conditions specifying the complex Lagrangian 4-space 
Lo C S are now 

(B.96) (i-l)y(a) = (i + l)p2(a)y"(a) 

0 
0 
0 
-Po 

1 
0 

-Pi 
0 

0 
P2"1 

0 
0 

0 
0 
1 
0 
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(i - l)y'(a) = (i + l)\p2(a)y"(a)+p2(a)y'"(a)+p1(a)y'(a)} 
at the left endpoint, and also 

(B.97) (i-l)y(b) = (i + l)p2(b)y"(b) 

(i - l)y'(b) = (i + lM(b)y"(b)+P2{b)y"'(b)+Pi(b)y'{b)] 
at the right endpoint b of 3. 

With these explicit results we conclude our analyses of this Example 1. 

In the next theorem we demonstrate the existence of various kinds of La
grangian n-spaces within the complex symplectic 2n-space § = §_ 0 § + , as de
termined by a formally self-adjoint real quasi-differential expression W~1MA on a 
compact interval 3 = [a, b\. However, we do not calculate the explicit descrip
tions of these Lagrangian n-spaces in terms of boundary conditions involving the 
quasi-derivatives, as was done in the preceding Example 1. 

THEOREM 3. Let W~1MA be a real quasi-differential expression, where the real 
matrix A = A = A+ G Zn(3) has even order n = 2ra > 4, and the positive weight 
function w £ ^(3) on the compact interval 3 = [a, b]. 

Let T\ on D(Ti) and TQ on 2)(To) be the maximal and minimal operators, 
respectively, as generated by W~1MA on the complex Hilbert space L2(3]w). Also 
let 

§ = £>(Ti)/D(T0) = S_ 0 S+, with [S_ : S+]A = 0, 
be the endpoint complex symplectic 2n-space with complex conjugation which leaves 
invariant the left and right endpoint n spaces S±. Then the corresponding real 
symplectic 2n-space is 

§R = tDR(T1)/tDR(T{>) = SR_ © §^+, with [§R- : SR+]A = 0, 

(with notations as in the general GKN- Theorem 1 of Section II, and the real GKN 
Theorem 1 above). 

Then for each integer f = 0 , l , 2 , . . . , r a there exist complex Lagrangian n-spaces 
Lf

£ and L"t, each of grade £ in §, that is 

(B.98) dim L't n S± = dim L"t n §± = m - £, 

and such that 

(B.99) L'e=17e but L'l^V;. 

Hence L't is the complexification of a real Lagrangian n-space in SR, but L" is not. 
As before, in each case L'£ or L" can be defined by n linearly independent 

complex boundary conditions at the endpoints of 3 (corresponding to a minimally 
coupled basis), with 

(B.100) m — £ separated at the left endpoint of 3, 
m — £ separated at the right endpoint of J, 

2£ coupled, 

and moreover every other basis of n boundary conditions for L'£ or L" must have 
at least 2£ coupled. 
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For each fixed ^ = 0 , l , 2 , . . . , m this basis of n boundary conditions for L'£ can 
be chosen to be real, and hence L't determines a self-adjoint operator TR on D ( T R ) , 

as generated by w~lMA—and TR is a real operator in £J2(J;W). 

On the other hand, for each fixed £ = 0,1, 2 , . . . , m these n boundary conditions 
for L'[ cannot all be real, and L" determines a self-adjoint operator T on T)(T), as 
generated by w~1MA—and T is definitely not a real operator in L2(3\w). 

In particular Lf
0' is strictly separated, yet the corresponding self-adjoint operator 

T is not real in L2{3;w). 

PROOF. We first review some of the constructions and notations of Section 
III.l Theorem 4, referring to L^, since these techniques will then be modified in the 
construction of L'[. 

Take a canonical basis for S#_ C S_, 

(B.101) { e \ e 2 , . . . , e m ; e m + 1 , e m + 2 , . . . , e n }, 

which are n independent real vectors in S_ such that: 

(B.102) [e? : ek]A = 0, [em+J : em+k]A = 0 

and 
[e> : em+fcU = 6jk, for 1 < j , k < m. 

Then spanje1, e 2 , . . . , em} and span{em+1 , e m + 2 , . . . , en} are each Lagrangian 
ra-spaces in §_, and they are canonical duals of one another. 

Further take another such canonical basis of real vectors on S+, namely 

(B.103) { e n + \ e n + 2 , . . . , e n + m ; e
n + m + 1 , e

n + m + 2 , . . . , e2n} 

with 

(B.104) [en+J : en+k]A = 0, [e
n+™+i : en+rn+k]A = 0 

and 

[en+3 : en+rn+k]A = 6jk, for 1 < j , jfc, < m. 

As we previously explained in Section III.l, 

(B.105) L'Q = spanje1, e 2 , . . . , em , e n + 1 , e n + 2 , . . . , e n + m } 

is a complex Lagrangian n-space in §, and is such that 

diml/Q fi §_ = dimL[) fi S+ = m, 

so Lf
0 is strictly separated and 

grade L'0 = 0. 

In addition L0 = L0 since LQ has a basis of real vectors in S. 
Next for each integer f = l , 2 , . . . , m w e proceed to specify a real basis for the 

complex Lagrangian n-space L't. Namely, we take the following four sets of real 
vectors to constitute the basis of L\ in S: 

(B.106) [ e \ e 2 , . . . , e m ~ £ } , (m - 1 ) vectors in S_ 
{e n + 1 , e n + 2 , . . . , e n + m ^ } , (m - I) vectors in § + 

(omit these 2(m — £) vectors when £ — m), 
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and then 

m - ^ + l | ^n+m — £+1 _m , _n-fm {em-^l + e , . . . , e m + e n + m } 

and also 

rn-l+l _ en+2m-£+l g n _ g2n j 

(these last 2£ vectors span a subspace that meets each of S_ and § + only at the 
origin). The schematic Diagram 1 illustrates the arrangement of these four group 
of basis vectors within § = § _ © 8 + . 

y y y y y y y y J / / X X X X X X X X o o o 

- I I 

-W// 

I e l ezn | 

DIAGRAM 1 

A straightforward calculation, using the prescribed symplectic products, shows 
that these 2(ra — £) + 21 = 2m — n real vectors span a Lagrangian n-space L'£ C S 
with 

(B.107) grade L^ = £ and L\ = L'R. 

Now we modify the previous construction of L\ by minor changes to produce 
the other Lagrangian n-spaces L" for each fixed £ = l , 2 , 3 , . . . , n . Later we return 
to resolve the more difficult case of the strictly separated Lagrangian n-space LQ, 
by means of the techniques illustrated in Example 1 above. 

We use the same real canonical bases for S± as given above, but we now select 
the basis for L'[ to consist of the following four sets of vectors: 

(B.108) 
{e\ e 2 , . . . , e m ^ } , (m - £) vectors in §_ 
{e n + 1 , e n + 2 , . . . , e n + m - £ } , (m - £) vectors in § + 

(omit these 2{m — £) vectors if £ = m), 

and then 

{e m-l+\ | n + r a - £ + l - l + e n + m - l m . ze 

and also 

„ n - £ + l „n+n-e+l n - l _ e 2 n - l n ie2"}. 
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As before, it is easy to verify that these 2(ra — £) + 2£ = 2m = n vectors are linearly 
independent in 8. Furthermore the verification that L'[ is a Lagrangian n-space is 
routine, and involves only one new calculation 

0n+m . n n2ni (B.109) [em + ie'^'"1 : e'1 - ie^\A = [e"b : eu\A + i'[e 

From the designation of the basis for L" we see that 

dimL" fl S_ - dimL" n 8+ = m -

2\^n+m . e2n] , _ , lU = o. 

so 

grade L'l — m — dim L^ D S± = £. 

However the complex Lagrangian n-space L^ is not self-conjugate in 8, since 
the base vector 

em + ien+rn G Z^, but its complex conjugate em - i e n + m £ L£. 

Here the complex conjugation in 8 carries em + i e n + m to its complex conjugate 
em — i e n + m , since the given base vectors of S± are all real, and we also use the fact 
that the vectors em and e n + m occur in L" only in the combination em + i e n + m . 

There still remains the question of the existence of the complex Lagrangian 
n-space LQ with grade LQ = 0 and with L" / L"t in 8. That is, we must construct 
a strictly separated Lagrangian n-space LQ which is not self-conjugate and hence 
which is not the complexification of any real Lagrangian n-space in S#. By Propo
sition 6 we know that no such LQ exists for n = 2, but in Example 1 above we did 
construct such a Lagrangian n-space LQ for n = 4. 

We now proceed to construct the required complex Lagrangian n-space LQ for 
all even orders n = 2m > 6, so m > 3. Use the same given real canonical bases for 
S_ and S+ as before, but now we define certain other complex symplectic subspaces 
of 8, as indicated in the schematic Diagram 2. 

(4) c(4) 

X X 

s(n-4) 

xx| x x| 

, (n-4) 

I el en+m | en+m+l 

DIAGRAM 2 
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Namely, define 

(B.110) §L4) = s p a n { e \ e 2 , e m + 1 , e m + 2 } 

§ f - s p a n { e n + 1 , e n + 2 , e n + m + 1 , e n + m + 2 } 

(recall n = 2ra > 6 so m -f 2 < n), and again 

(B.l l l ) §Ln"4) = span{e3 , . . . , em , e m + 3 , . . . , en} 

S^~4 ) = span{ew + 3 , . . . , en+™, e n + m + 3 , . . . , e 2 n } . 

Now each of these four complex symplectic subspaces of § is invariant under 
the complex conjugation of S, and hence inherits this conjugation so as to specify 
the corresponding real symplectic subspace of SR. In this sense the bases given for 
S± and S± are each real, and furthermore each such basis contains all of the 
canonical duals of its members. Hence we can now define the complex symplectic 
spaces 

S ( 4 ) = s L 4 ) e § i 4 ) , with [§L4) : S f U = 0 
(B.112) 

and 

(B.113) 
g(n-4) = g (n-4) 0 g(n-4)^ ^ [ § ( n - 4 ) . g ^ n - 4 ) ^ = Q 

The dimension of these complex symplectic spaces are then 

dim§ ( 4 ) = 8, and d i m S ^ = 4, 

d imS ( n - 4 ) = 2(n - 4), and d imS^~ 4 ) = n - 4. 

Also they each have excess zero, since they admit a complex conjugation. 
Note that §(4) is isomorphic, as a complex symplectic space with complex con

jugation, to the complex symplectic space analysed in the Example 1 above. As in 
Example 1, there exists a complex Lagrangian 4-space L0 C § ^ such that L0 is 
strictly separated within §̂ 4^ = S_ ©S+ , that is, grade L0 — 0, and furthermore 

Next consider the complex symplectic space 

§ ( n - 4 ) = § (n-4) 0 gCr-4^ ^ [§(n-4) . § £ - 4 ) ^ = Q 

Use the techniques employed in the first part of this theorem to construct a complex 
Lagrangian [n — 4)-space L0

n~ which is strictly separated in §(n - 4) (without any 
regard to demands on self-conjugacy of LQ

n }). 
Finally define the required complex Lagrangian n-space LQ C S by 

(B.114) Ll = S pan{4 4 ) , 4 " " 4 ) } = hf 0 4 " " 4 ) . 

Clearly L'0' is strictly separated in § = §_ 0 S+, (see Diagram 2 as a guide), and so 

(B.115) grade LQ = 0 . 
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Also 

(B.116) Ll + Z[f, since hf ^ hf. 

Therefore LQ is the required Lagrangian n-space which is strictly separated in 
S = S_ 0 S+, yet which is not self-conjugate. 

Thus the constructions for L't and L'[ as in (B.98) and (B.99) are completed, and 
the remaining conclusions in (B.100) are immediate consequences. In particular, 
the Lagrangian n-space LQ of S, with 

g r a d e d = 0, yet L'0V ££, 

can be defined by n complex boundary conditions; which cannot be all real, but 
which can be chosen so that m are separated at the left endpoint a, and m are 
separated at the right endpoint b of 3 = [a, b}. Furthermore, since LQ ^ LQ, 
the self-adjoint operator T on D(T) C D(Ti), generated by W~1MA and uniquely 
determined by LQ, is definitely not a real operator in £2(J; w). D 

N O T E 2. Return briefly to the general singular boundary value problem for the 
real quasi-differential expression W~1MA-) with real matrix A — A — A^ G Zn{3) 
of even order n > 2 and positive weight function w £ &\ocC3)—as in Theorem 3 
above—but on a non-compact interval J. Then the real sympletic 2d-space §# has 
a direct sum decomposition 

§# = Si?- © S.R+, [&R- • §i?+]^ = 0, 

in which the real symplectic subspaces S#_ and SR+ can have different dimensions 
2A_ and 2A+ , respectively. Here 

dimSi? = 2A = 2A_ + 2A+ , 

where the deficiency index d = A < n. If A_ = A + , then the analysis and the 
results are just as in Theorem 3 above, with A± playing the role of m. Otherwise, 
we assume A + ^ A_, and for definiteness A + > A_ > 0. 

Nevertheless, the constructions for complex Lagrangian A-spaces L^ with 
grade Ln = £ within the complexification 

§ = S _ 0 § + , [§_ :g+]A = 0, 

can be achieved for £ = 0,1, 2 , . . . , min{A_, A + } , according to Theorem 4 of Section 
III.l. 

However, we now can modify the arguments of our preceding Theorem 3 (say, 
with A + > A_ > 2) to obtain the corresponding Lagrangian A-spaces L'£ and L", 
real and non-real respectively, 

Lf
£=17e but L'l^lJl, 

for every grade £ = 0,1, 2 , . . . , A_. [Note that if A + > 2 but A_ = 0 or 1, then 
both real and non-real Lagrangian A-spaces exist with all grades < A_; and the 
special properties of the special cases A + = 1 and A_ = 0 or 1 have already been 
treated in earlier examples.] 

We extend the techniques of Theorem 3 by writing 
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where the complex symplectic subspaces have the indicated dimensions (2A_) and 
2(A+ — A_), and each has excess zero. Then apply the constructions in Theorem 3 
to the complex symplectic space S_ ® §̂ _ ~' to obtain complex Lagrangian spaces 
LfA~] of dimension (2A_), and with grade of £ = 0,1, 2 , . . . , A_ in S_ 0 S^2A-}. 
Afterward, take the direct sum of such a Lagrangian subspace L\ ~} with a La
grangian subspace of S+ +~ ~̂  having the dimension (A+ — A). The resulting 
Lagrangian space Li C S has dimension A = (2A__) + (A+ — A_) = A__ + A+, and 
moreover 

d imL^nS_ = £, d imL*nS+ = £ + (A+ - A_) 

so 
g r a d e d = A _ - ^ , for £ = 0,1, 2 , . . . , A_. 

We can select L\ "̂  so as to produce either the real Lf
£ or the non-real L", as 

required, and the corresponding conclusions of Theorem 3 also hold in this singular 
boundary value problem. 

Based on the treatment of the real boundary value problem for real quasi-
differential operators W~1MA, with A = A = A+ G Zn(3) for n — 2m even, as is 
described in the regular case in Theorems 2 and 3 above, and in the singular case in 
the subsequent Note 2, we next tabulate all the kinds of boundary conditions that 
arise for real self-adjoint operators. In this analysis we follow the earlier Theorem 7 
of Section III.2, and Theorem 2 of Section IV for the descriptions and calculations 
for minimally coupled bases of the appropriate (real or complex) Lagrangian spaces. 
In particular the table of symplectic invariants in Theorem 1 of Section V, with the 
subsequent remarks on the real cases, and the exhaustive results in the Examples 2 
and 3 of Section V, all provide a complete guide for the following examples below. 

EXAMPLE 2. Consider a real quasi-differential expression W~1MA of even order 
n = 2m > 2, with both positive weight w and A = A = A+ G Zn(3) in ^ ( J ) on 
the compact interval 3 = [a, 6], so as to specify a regular boundary value problem. 
Then, just as in Section IV, the endpoint real symplectic 2n-space S# has the 
decomposition. 

§i* = S/2- © S^+ w i t n [§fl- : &R+}A = 0, 

and the corresponding symplectic invariants are 

dim SR = 2n, Ex = 0, A = d — n 
dimS^i = n, Ex± = 0, A± = m. 

Here d = d±, and Ex = 0, Ex± = 0, because W~1MA is a real quasi-differential 
expression. 

We use these invariants to describe all possible kinds of minimally coupled 
boundary conditions (BC) that can define real Lagrangian n-spaces L in S^, and 
hence self-adjoint real operators TR on D ( T R ) , as generated by W~1MA on £2(J; w). 
We follow the format of Example 1 in Section IV, and comment that each such 
case for prescribed n and grade L does actually arise for some existent real quasi-
differential expression W~1MA on 3 — [a, 6]; and we tabulate these for n < 6. 
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n = 2 so A± = ra = 1, and dimL D §>R± = ra— grade L. 
grade L = 0 so Nec-coupling L = 2 grade L = 0. 

1 separated at left, 1 separated at right, 0 coupled BC. 
grade L — 1 so Nec-coupling L = 2. 

0 separated at left, 0 separated at right, 2 coupled BC. 

n = 4 so A± = ra = 2. 
grade L = 0: 2 left, 2 right, 0 coupled BC. 
grade L — 1: 1 left, 1 right, 2 coupled BC. 
grade L = 2: 0 left, 0 right, 4 coupled BC. 

n = 6 so A± = ra = 3. 
grade L = 0: 3 left, 3 right, 0 coupled BC. 
grade L = 1: 2 left, 2 right, 2 coupled BC. 
grade L = 2: 1 left, 1 right, 4 coupled BC. 
grade L = 3: 0 left, 0 right, 6 coupled BC. 

EXAMPLE 3. Consider a real quasi-differential expression W~1MA of even order 
n = 2ra > 2, with positive weight w and A = A = A+ G Zn(3) both in £ ^ ( 3 ) 
on the interval J = (a, 6), so as to specify a singular boundary value problem in 
the sense of Section V. Then the endpoint real symplectic 2d-space S# has the 
decomposition 

SR = §>R- 0 §R+ with [S#_ : SR+]A = 0, 
and the corresponding symplectic invariants are 

dimSi? = 2d, 
dim §R- = 2d£ 
dim S#+ = 2dr 

- n , 
- n , 

Ex = 0, 
Ex- = 0, 
Ex+ = 0, 

A = d < n 
A_ = dn — m 
A + = dr — ra 

(See Proposition 5 above, and apply the real version of Theorem 7 in Section III.2). 
Here d — G^, dg = df, dr = d^:, and ra < d ,̂ dr < n, with .Ex = i£x_ = £^x+ = 0, 
according to the reality assumptions. 

Now use d£ + dr = d + n for d = 1, 2 , . . . , n (omit the trivial case d = 0 
where there are no boundary conditions) and we describe all possible kinds of min
imally coupled boundary conditions (BC) that can define real Lagrangian d-spaces 
L C §#, and hence self-adjoint real operators TR on D ( T R ) , as generated by W~1MA 

in L>2(3',w). We follow the format of Example 2 of Section V, and comment that 
each possible pair of deficiency indices {d^, d r} (satisfying the Weyl-Kodaira condi
tions above) does actually arise from a real quasi-differential expression W~1MA on 
J = (a, 6), (see [AG,App. 2] and [GZ]); and we tabulate these cases for n < 6 in 
terms of n, d, {d^, d r }, A± and dimL n §>R± = A± — grade L. 

n = 2 so ra = 1, d = 1, d̂  + dr = 3, A_ = d̂  — 1, A + = dr — 1. 
{d*,dr} = {1,2}, so A_ = 0, A+ = 1 

grade L = 0: 0 left, 1 right, 0 coupled BC 

{d£,dr} = {2,1}, so A_ = 1, A+ = 0 
grade L = 0: 1 left, 0 right, 0 coupled BC 

n = 2 so ra = 1, d = 2, d̂  + dr = 4, A_ = d̂  — 1, A + = dr — 1. 
{d^dr} = {2,2}, so A_ = 1, A+ = 1 
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grade L = 0: 1 left, 1 right, 0 coupled BC 
grade L = 1: 0 left, 0 right, 2 coupled BC. 

n = 4 so m — 2, d = 1, d,£ + dr = 5, A_ = d̂  - 2, A + = dr - 2. 
{d£,d r} = {2,3}, so A_ = 0, A+ = 1 

grade L = 0: 0 left, 1 right, 0 coupled BC. 

{d£, dr} = {3,2}, so A_ = 1, A+ = 0 
grade L = 0: 1 left, 0 right, 0 coupled BC. 

n = 4 so m = 2, d = 2, d* + dr = 6, A_ = d̂  - 2, A + = dr - 2. 
{d£, d r} = {2,4}, so A_ = 0, A + = 2 

grade L = 0: 0 left, 2 right, 0 coupled BC. 

{de, dr} = {3,3}, so A_ = 1, A+ = 1 
grade L = 0: 1 left, 1 right, 0 coupled BC. 
grade L = 1: 0 left, 0 right, 2 coupled BC. 

{d£, dr} = {4, 2}, so A_ = 2, A + - 0 
grade L = 0: 2 left, 0 right, 0 coupled BC. 

n = 4 so m = 2, d = 3, di -f dr = 7, A_ = d̂  - 2, A + = dr - 2. 
{d^,dr} = {3,4}, so A_ = 1, A + = 2 

grade L = 0: 1 left, 2 right, 0 coupled BC. 
grade L = 1: 0 left, 1 right, 2 coupled BC. 

{d^,dr} - {4,3}, so A_ = 2, A + - 1 
grade L = 0: 2 left, 1 right, 0 coupled BC. 
grade L = 1: 1 left, 0 right, 2 coupled BC. 

n = 4 so m = 2, d = 4, d̂  + dr = 8, A_ = d̂  — 2, A + = dr — 2. 
{d^, d r} = {4,4}, so A_ = 2, A + = 2 

grade L = 0: 2 left, 2 right, 0 coupled BC. 
grade L = 1: 1 left, 1 right, 2 coupled BC. 
grade L = 2: 0 left, 0 right, 4 coupled BC. 

n — 6 so m = 3, d = 1, di + dr = 7, A_ = d̂  — 3, A + = dr — 3. 
{d£ ,d r} = {3,4}, so A_ = 0, A+ = 1 

grade L = 0: 0 left, 1 right, 0 coupled BC. 

{d£, d r} = {4,3}, so A_ = 1, A+ = 0 
grade L = 0: 1 left, 0 right, 0 coupled BC. 

n = 6 so m — 3, d = 2, d̂  + dr = 8, A_ = dg — 3, A + = dr — 3. 
{d£, dr} = {3,5}, so A_ = 0, A+ = 2 

grade L = 0: 0 left, 2 right, 0 coupled BC. 

{d^dr} = {4,4}, so A_ = 1, A + = 1 
grade L = 0: 1 left, 1 right, 0 coupled BC. 
grade L = 1: 0 left, 0 right, 2 coupled BC. 

{d£, dr} = {5,3}, so A_ = 2, A + = 0 
grade L = 0: 2 left, 0 right, 0 coupled BC. 

n — 6 so TTi = 3, d = 3, dt + dr = 9, A_ = d̂  — 3, A + = dr — 3. 
{d£, dr} = {3,6}, so A_ = 0, A + = 3 

grade L = 0: 0 left, 3 right, 0 coupled BC. 
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{dt, dr} = {4, 5}, so A_ = 1, A+ = 2 
grade L = 0: 1 left, 2 right, 0 coupled BC. 
grade L = 1: 0 left, 1 right, 2 coupled BC. 

{d£, dr} = {5,4}, so A_ = 2, A + - 1 
grade L = 0: 2 left, 1 right, 0 coupled BC. 
grade L = 1: 1 left, 0 right, 2 coupled BC. 

{d£, dr} = {6,3}, so A_ = 3, A + = 0 
grade L = 0: 3 left, 0 right, 0 coupled BC. 

n = 6 so m = 3, d = 4, d̂  + dr — 10, A_ = d̂  — 3, A + = dr — 3. 
{d^, d r} = {4,6}, so A_ = 1, A+ = 3 

grade L = 0: 1 left, 3 right, 0 coupled BC. 
grade L — 1: 0 left, 2 right, 2 coupled BC. 

{d£, dr} = {5, 5}, so A_ = 2, A+ = 2 
grade L = 0: 2 left, 2 right, 0 coupled BC. 
grade L — 1: 1 left, 1 right, 2 coupled BC. 
grade L = 2: 0 left, 0 right, 4 coupled BC. 

{d*, d r} - {6,4}, so A_ = 3, A + = 1 
grade L = 0: 3 left, 1 right, 0 coupled BC. 
grade L = 1: 2 left, 0 right, 2 coupled BC. 

n = 6 so m = 3, d = 5, di + dr = 11, A_ = d̂  — 3, A + = dr — 3. 
{du dr) = {5, 6}, so A_ = 2, A + = 3 

grade L — 0: 2 left, 3 right, 0 coupled BC. 
grade L = 1: 1 left, 2 right, 2 coupled BC. 
grade L = 2: 0 left, 1 right, 4 coupled BC. 

{de, dr} = {6, 5}, so A_ = 3, A + = 2 
grade L = 0: 3 left, 2 right, 0 coupled BC. 
grade L = 1: 2 left, 1 right, 2 coupled BC. 
grade L = 2: 1 left, 0 right, 4 coupled BC. 

n = 6 so m = 3, d = 6, d̂  + dr = 12, A_ = dg — 3, A + = dr — 3. 
{d£, d r} = {6,6}, so A_ = 3, A + = 3 

grade L = 0: 3 left, 3 right, 0 coupled BC. 
grade L = 1: 2 left, 2 right, 2 coupled BC. 
grade L = 2: 1 left, 1 right, 4 coupled BC. 
grade L = 3: 0 left, 0 right, 6 coupled BC. 

EXAMPLE 4. As a modification of the analysis and classification scheme of 
Example 3 above, we next consider the real quasi-differential expression W~1MA of 
even order n — 2m > 2, with positive weight w and A — A = A+ G Zn(3), but 
now in &\ocC3) where 3 = [a, 6), so the boundary value problem is regular at the left 
endpoint a of J. Then, in the notation of Example 3, 

dimS# = 2d, 
d imS^- = n, 
dim SR+ = 2d -- n, 

Ex = 0, 
Ex- = 0, 
Ex+ = 0, 

A = d < n 
A_ = m 
A + = d — m 
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since di — df = n, dr = df = d, and m < d < n. Again we tabulate all cases 
arising (algebraically) for n < 6, and each such possibility can actually arise from 
some real quasi-differential expression W~1MA on J — [a, b). 

n = 2 so m = 1, d = 1, A_ = 1, A + = d - 1 = 0. 
grade L = 0: 1 left, 0 right, 0 coupled BC. 

n = 2, d = 2, A_ = 1,A+ = 1 
grade L = 0: 1 left, 1 right, 0 coupled BC. 
grade L = 1: 0 left, 0 right, 2 coupled BC. 

n = 4 so m = 2, d = 2, A_ = 2, A+ = 0. 
grade L = 0: 2 left, 0 right, 0 coupled BC. 

n = 4, d = 3, A_ = 2 , A + = 1 
grade L = 0: 2 left, 1 right, 0 coupled BC. 
grade L = 1: 1 left, 0 right, 2 coupled BC. 

n = 4 so d - 4, A_ = 2, A + = 2. 
grade L = 0: 2 left, 2 right, 0 coupled BC. 
grade L = 1: 1 left, 1 right, 2 coupled BC. 
grade L = 2: 0 left, 0 right, 4 coupled BC. 

n = 6 so m = 3 d = 3, A_ = 3, A + = 0 
grade L = 0: 3 left, 0 right, 0 coupled BC 

n = 6 so d = 4, A_ = 3, A + = 1. 
grade L = 0: 3 left, 1 right, 0 coupled BC. 
grade L = 1: 2 left, 0 right, 2 coupled BC. 

n = 6 so d = 5, A_ = 3, A + = 2. 
grade L = 0: 3 left, 2 right, 0 coupled BC. 
grade L = 1: 2 left, 1 right, 2 coupled BC. 
grade L = 2: 1 left, 0 right, 4 coupled BC. 

n = 6, d = 6, A_ - 3 , A + - 3 
grade L = 0: 3 left, 3 right, 0 coupled BC 
grade L = 1: 2 left, 2 right, 2 coupled BC 
grade L = 2: 1 left, 1 right, 4 coupled BC 
grade L = 3: 0 left, 0 right, 6 coupled BC 

As the final topic in this Appendix B, we indicate briefly an approach to the 
real boundary value problem through the methods of global differential topology— 
compare the parallel treatment for the complex case at the end of Section III.2 
above. 

The set of all (non-oriented) real linear A:-spaces through the origin in M.2n is the 
real Grassmannian, denoted by Grassy(fc, 2n). This real Grassmannian can thus 
be constructed as a homogeneous space whereon the real orthogonal group 0(2n) 
acts transitively so that 

(B.117) GrassH(/c, 2n) = 0(2n)/[0(k) x 0(2n - fc)], 

since the stability subsgroup 0(k) x 0(2n — k)c 0(2n) consists of all real matrices 
diag{F, G} with F G O(k) and G = 0(2n-k). In this way we define the topology on 
Grassy (A;, 2n) as that of a homogeneous space of 0(2n) or, equally well, by means of 
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convenient coordinate charts, say with Plucker coordinates. Then Grassy (A:, 2n) is 
a (connected) compact real-analytic manifold [ST]. In the case of greatest interest 
to us, when k = n, 

(B.118) dimGrassjR(n,2n) = n2, 

and this n2-manifold is not simply connected but has a fundamental group Z2, see 
[ST]. For example, when n = 2 we have 

dimGrass#(2,4) = 4. 

Next we impose the (unique) real symplectic structure on M2n, and define the 
real Lagrangian Grassmannian 

(B.119) Lag^(n, 2rc) C Grassi?(n, 2rc) 

which consists of all real Lagrangian n-spaces in R2n. It can be shown that 
Lag^(n,2n) is a (connected) compact real-analytic submanifold of Grassy(n, 2n). 
In fact, 

(B.120) Lag#(n, 2n) = U(n)/0(n), 

and so it has dimension n(n + l ) /2 , and has the fundamental group Z, see [MS]. 
We shall not pursue further these introductory remarks on the global geom

etry of the real Lagrangian Grassmannians, but merely comment that this study 
has applications to parametrized families of self-adjoint boundary conditions for 
any specified formally self-adjoint real quasi-differential expression of even order 
n = 2m. We illustrate one simple application for the regular real Sturm-Liouville 
problem, following the line of development in Proposition 6 above. 

PROPOSITION 7. Consider the Sturm-Liouville real quasi-differential operator 
of order n = 2m = 2, 

MA[y] = -y[l]=-{Vy')l + qy, 
where 

A = A = A+=(°q S ^ m 
for smooth real coefficients p,q with p{x) ^ 0 on the compact interval 3 = [a, b]. 
Then the quasi-differential expression W~1MA, for a given positive weight function 
w G 'C1(5), specifies the endpoint real symplectic J^-space (as in Proposition 6): 

&R = &R- © S.R+ ~ H& • 

Consider the corresponding real Lagrangian Grassmannian 

Lagfl(2,4) = J7(2)/0(2), 

which is a compact 3-manifold. Then the set of all strictly separated real Lagrangian 
2-spaces in §R W M4 constitutes a 2-dimensional submanifold o/Lag^(2,4)7 which 
is topologically a torus surface T2 . The set of all totally coupled real Lagrangian 
2-spaces in %R constitutes an open-dense submanifold of Lag^(2,4), namely, the 
complement of T2 C Lag^(2,4). 
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P R O O F . Let Lg be a real Lagrangian 2-space with grade LQ = 0 in SR. That is, 
Lo is strictly separated so dimLo HS#± = 1. Then there exist linearly independent 
vectors V- G LQHSR_ and v+ G L0 P\SR+ which form a basis for LQ in SR. That is, 
V- and v+ (or equally well, their 1-dimensional subspaces £- and £+, respectively) 
spanLo-

On the other hand, each such pair of lines ^_ and -£+, through the origin in the 
2-planes S#_ and §#+, respectively, determine exactly one such 2-space which is 
necessarily a real Lagrangian 2-space that is strictly separated in SR. But, trivially, 
the set of all lines through the origin in R2 is homeomorphic to a circle S1 . Hence 
the set of all strictly separated real Lagrangian 2-spaces in SR is topologically the 
product of two circles 5 1 x 5 1 , which is a torus surface T2 in Lag^(2,4). 

Since every real Lagrangian 2-space in SR has a coupling grade of either 0 
or 1, the set of all totally coupled Lagrangian 2-spaces is the complement of the 
set of all strictly separated Lagrangians within LagjR(2,4). As a consequence, the 
set of all totally coupled real Lagrangian 2-spaces in SR fills the complement of 
T2 C Lag^(2,4), which is an open-dense 3-manifold in Lagfi(2,4). • 

In the sense of Proposition 7 the totally coupled real Lagrangian 2-spaces in 
$R, for the regular real Sturm-Liouville problem, describe the "generic case", and 
the strictly separated real Lagrangian 2-spaces are non-generic. 
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