Stochastic Partial Differential Equations: Six Perspectives

Rene A. Carmona
Boris Rozovskii
Editors

American Mathematical Society
Selected Titles in This Series

64 Rene A. Carmona and Boris Rozovskii, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998
61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998
59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998
57 Marc Levine, Mixed motives, 1998
56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998
55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998
54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997
53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997
52 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997
50 Jon Aaronson, An introduction to infinite ergodic theory, 1997
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997
46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996
43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.3 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 3, 1998
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990

(Continued in the back of this publication)
Stochastic Partial Differential Equations: Six Perspectives
Stochastic Partial Differential Equations: Six Perspectives

Rene A. Carmona
Boris Rozovskii
Editors

American Mathematical Society
Providence, Rhode Island
ABSTRACT. Stochastic Partial Differential Equations is an interdisciplinary area on the crossroads of stochastic processes (random fields) and partial differential equations. This volume presents the topic of SPDE's from different perspectives, as seen by six groups of researchers working in the most active and promising areas of the field. The goal of this book is to indicate what the main topics of interest are in this fascinating field, and where breakthroughs are being made today.

This book will be of interest to graduate students and researchers in various areas of Mathematics, Physics, Engineering, Economics, etc.

Library of Congress Cataloging-in-Publication Data
 p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 64)
 Includes bibliographical references (p. –) and index.
 ISBN 0-8218-0806-0 (alk. paper)
1. Stochastic partial differential equations. I. Carmona, R. (René) II. Rozovskii, B. L. (Boris L'vovich) III. Series: Mathematical surveys and monographs ; no. 64.
QA274.25.S74 1998 519.2—dc21 98-38392
CIP

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 1999 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

10 9 8 7 6 5 4 3 2 04 03 02 01 00 99
Contents

Preface

<table>
<thead>
<tr>
<th>PART 1. Stochastic Models</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1. Stochastic Partial Differential Equations:</td>
<td>1</td>
</tr>
<tr>
<td>Selected Applications in Continuum Physics</td>
<td>3</td>
</tr>
<tr>
<td>by J. GLIMM AND D. SHARP</td>
<td>3</td>
</tr>
<tr>
<td>1. The Physical Basis of Stochastic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>3. Multi-phase Flow</td>
<td>21</td>
</tr>
<tr>
<td>4. Transport and Dispersion</td>
<td>34</td>
</tr>
<tr>
<td>Bibliography</td>
<td>40</td>
</tr>
</tbody>
</table>

Chapter 2. Measure-Valued Processes and Renormalization of Branching Particle Systems	45
by D. A. DAWSON AND E. A. PERKINS	45
1. Branching and Interacting Particle Systems.	45
2. Historical Brownian Motion	58
3. Formulation of a General Class of Measure-Valued Branching Processes	61
4. Small Scale Behavior	64
5. Large Scale Behavior	74
6. A Survey of Interactive Branching Systems	84
Bibliography	102

Chapter 3. Deterministic and Stochastic Hydrodynamic Equations Arising From Simple Microscopic Model Systems	107
by G. GIACOMIN, J. L. LEBOWITZ AND E. PRESUTTI	107
1. Introduction	107
PART I	
Non Reversible Dynamical Systems:	
Asymmetric Models with Shocks	111
2. The Burgers Equation	111
3. The Asymmetric Simple Exclusion and the Independent Particle System	113
5. Driven Surfaces and Fluctuations	126
PART II	
Reversible Dynamical Systems:	
Symmetric Models with Long Range Interactions	128
6. Ising Models with Kac Potentials: Glauber and Kawasaki Dynamics	128
8. Macroscopic Effects of Small Fluctuations: the Origin of Spatial Patterns ... 141
9. The Dynamics on Very Long Times: a Brief Look at Large Deviations .. 148
Bibliography ... 149

Chapter 4. Transport by Incompressible Random Velocity Fields: Simulations & Mathematical Conjectures
by R. A. CARMONA AND F. CEROU ... 153
1. Introduction .. 153
2. Gaussian Velocity Fields with Kolmogorov Spectra ... 155
3. Abstract Ornstein Uhlenbeck Velocity Fields ... 157
4. Simulation of the Velocity Field ... 159
5. Transport Simulations .. 170
6. Homogenization & Spectral Singularity Renormalization ... 176
7. Poisson Models .. 178
Bibliography ... 179

PART 2. Mathematical Theory ... 183

Chapter 5. An analytic approach to SPDE’s
by N. V. KRYLOV ... 185
1. Introduction .. 185
2. Generalities .. 186
3. The Stochastic Banach Spaces .. 190
4. Model Equations .. 196
5. Equations with Variable Coefficients .. 207
6. Proof of Theorem 5.1 .. 214
7. Embedding Theorems for $\mathcal{H}_p^n(\tau)$.. 220
8. Applications .. 225
9. Open Problems .. 240
Bibliography ... 241

Chapter 6. Martingale Problems for Stochastic PDE’s
by R. MIKULEVICIUS AND B.L. ROZOVSKII .. 243
1. Introduction .. 243
2. Stochastic Integrals for Cylindrical Martingales in Topological Vector Spaces .. 246
3. Martingale Problems ... 261
4. Equations of Stochastic Quantization .. 295
5. Appendix ... 317
Bibliography ... 323

Indexes ... 327

Notation Index .. 329

Subject Index ... 331
Preface

This volume is an attempt to present the topic of Stochastic Partial Differential Equations (SPDE's) from different perspectives, as seen by six groups of researchers working in the most active and promising areas of the field.

As the name suggests, Stochastic Partial Differential Equations is an interdisciplinary area at the crossroads of stochastic processes (random fields) and partial differential equations. Interacting particle systems, nonlinear filtering, super processes, continuum physics, ... have heavily influenced the development of SPDE's. It is safe to say that in the last two decades SPDE's has been one of the most dynamic areas of stochastic processes. Stochastic effects are of central importance for the development of mathematical models of many phenomena in physics, biology, economics, However, most often the resulting (limiting) models end up being deterministic. (Many classes of particle systems and their hydrodynamic limits provide good examples of this effect.) These models usually result from the law of large number type of averaging and they represent the large scale mean dynamics of the modeled phenomena. The predictive power of such models might be limited especially for very complex phenomena such as turbulence, phase transition, dynamic instability, chaos, In these and some other situations, stochastic corrections to the deterministic large scale models are very much in order. These corrections are designed to account for the small scales effects neglected in the large scale models. One heuristic way to incorporate these corrections is to perturb the large scale equation by random noise of some kind. Sometimes the stochastic corrections can be derived rigorously by a type of renormalization/central limit theorem of fluctuations around stable large scale models. In fact, in many applications the derivation of the right stochastic corrections to the large scale dynamics and their practical utility present one of the fundamental challenges.

Generally speaking, any partial differential equation should be classified as a SPDE if its coefficients, forcing terms, initial and boundary conditions, or at least some of the above are random. Needless to say, this constitutes an extremely diverse area. For example, the analysis of equations with random coefficients has little in common with the analysis of deterministic equations with random free forces. As typical of research fields in their early stages of development, the paradigm of SPDE's is still fairly soft: the name SPDE covers different topics for different people. As of now, the subject of SPDE's with its numerous important applications is an exciting mosaic of interconnected topics revolving around stochastics and partial differential equations. It is arguable whether a single book could or should treat the enormously complex field of SPDE's from a unified point of view and this
is not the goal of this book. The goal of this book is to indicate what the main
topics of interest in this fascinating field are, and where breakthroughs are being
made today. As much as emphasizing breakthroughs however, we tried to explore
the role of SPDE's in stochastic modeling, how SPDE's arise and how their theory
is applied in different disciplines.

The book is divided into two parts. Part I, *SPDE's and Stochastic Modeling*,
deals with fundamental problems in continuum physics, fluid dynamics, statistical
mechanics, and branching particle systems and geneses of various types of SPDE's
in these fields. Part II, *Mathematical Theory of SPDE's*, is concerned with meth-
ods of solutions and related stochastic analysis. Every chapter of the book presents
a comparatively self-contained review of a particular sub-field of SPDE's or a re-
lated area. Many new previously unpublished results are included as well. Part
I consists of four chapters. Chapter 1 emphasizes the conceptual basis for sto-
chastic modeling and more specifically, modeling with SPDE's. This chapter also
investigates the relations between stochastic and deterministic models in contin-
umum physics. It should provide the reader with a considerable insight of the role
of SPDE's in modeling of physical phenomena. Chapter 2 deals with the asymptotic
renormalization of systems of particles undergoing branching and spatial motion
and some classes of measure-valued processes, which arise in the limit. The small
scale and large scale behavior of these systems are described and various general-
izations and extensions of these models which include interactions both between
particles and between particles and the medium in which they live are surveyed.
Chapter 3 addresses deterministic and stochastic hydrodynamic equations arising
from microscopic model systems. Physical and mathematical aspects of stochas-
tic corrections to the hydrodynamic scaling limit for various important types of
interacting particle systems are discussed in this chapter. Chapter 4 is devoted
to transport of passive scalars by 2D incompressible random velocity fields. The
chapter pays special attention to stochastic numerics. Numerical simulations are
used both to illustrate the relevance of the theoretical results and to formulate new
conjectures, some of them proved later on. Chapter 5 and 6 constitute the second
part of the book. Chapter 5 is devoted to linear and some quasi-linear parabolic
SPDE's. Equations of this type arise for example in nonlinear filtering of diffusion
processes, the problem that was one of the most important original impetuses for
the development of SPDE's. This chapter presents a detailed exposition of recent
advances in solvability of these equations in Sobolev spaces and spaces of Bessel
potentials with exponent of summability greater than or equal to 2. Chapter 6 is
concerned with nonlinear stochastic PDE's with nonsmooth (in some cases singu-
lar) coefficients. The examples include stochastic Navier-Stokes equation, Langevin
(stochastic quantization) equation in Euclidean quantum field theory, SPDE's for
the super-Brownian motion and some related super processes. The emphasis in this
chapter is on existence and uniqueness of weak solutions, absolute continuity and
singularity of distributions, and ergodicity problems for these equations.

Of course, this book could not possibly cover all or even most of the important
developments and problems of SPDE's. However, we believe that it will provide
the interested reader an informative snapshot of this rapidly developing area. The
idea of the book was conceived at the Workshop on Stochastic Partial Differential
Equations held at the University of Southern California, Los Angeles, in January
of 1996. In more than one way the discussions and the lectures at the Workshop prompted this book.

Acknowledgments

As the editors of this volume and the organizers of the Workshop, we would like to take this opportunity to acknowledge the support of the Army Research Office, the Office of Naval Research, and the Institute for Mathematics and Its Applications. Our thanks are due to Patricia Shapiro for the help in editing this volume. Finally, we would like to thank the AMS staff for their cooperation and patience. The contribution of J. Glimm was partially supported by the Applied Mathematics Subprogram of the U.S. Department of Energy DE-FG02-90ER25084, the Army Research Office, grant DAAL03-92-G-0185 and the National Science Foundation, grant DMS-9500568 while D. Sharp was supported by the U.S. Department of Energy. Both D. Dawson and E. Perkins would like to acknowledge the support of NSERC of Canada Research Grants and of a joint NSERC of Canada Collaborative Grant. During the preparation of their manuscript, G. Giacomini was partially supported by the Swiss National Foundation project 20-41’925.94, the IHES and Rutgers University, while J. L. Lebowitz was partially supported by AFOSR grant 92-J0115, NSF grant DMR-95-23266 and the IHES and E. Presutti was partially supported by CEE grant CHRX. CT93-0411, the Courant Institute and Rutgers University. R. A. Carmona’s contribution was supported in part by ONR grant # ONR N00014-91-1010. N.V. Krylov’s work was partially supported by the NSF Grant DMS-9625483. Finally, B. Rozovskii and M. Mikulevicius were supported by ONR Grant N00014-95-1-0229 and ARO Grant DAAH04-95-1-0164.

RENE A. CARMONA
Statistics & Operations Research, C.E.O.R.
Princeton University
Princeton, N.J. 08544

BORIS ROZOVSII
Center for Applied Mathematics Sciences
University of Southern California
Los Angeles, CA 90089-1113

March, 1998
Indexes
Notation Index

(1 + β)-branching superprocess, 56
(1 - Δ)n/2, 187
(L, Λ), 190, 215
(Ω, F, P), 190
(φ, u), 191
(ξ, Φ, K)-superprocess, 63
(u, φ), 191
B(R^d), 207
B[n]+, 207
B[n]+(l_2), 207
C(t), 174
Cα, 220
C[n]+γ(R^d), 207
C[n]+γ(R^d), 207
C^∞, 187
E^2_φ(w, k), 160
E_{j,1}(w, k), 156
H^1_p(T), 187
H^2_p, 187
H^2_p(R^d), 186
L(t, t), 214
L_p, 187
L_u, 186
T_i, 187
W^2_p(R^d), 185
W^2_p, 191
Γ_p(t, x), 156
Λ(t, t), 214
Λ_u, 186
α_1, 196, 208
α_k, 171
Δ, 192
H^p_α, 191
H^p_α(t, x), 191
H_p(t, l_2), 191
L_1, 191
R^d, 186
S, 192
α, 209
β(t), 156
C^α, 220
Δ, 186
E(t), 156
E^{(res)}(t), 157
E_α(t), 160
F^p_α, 191
F^p_α(τ), 191
F_t, 190
H^p_α(T), 189
H^p_α(t, τ), 191
H^p_α(t), 191
R_1, 188
R_0, 189, 219
τ, 157
γ, 207
γ_i, 172
h_m, 212
P, 190
D, 201
D(l_2), 201
ν_j, δ(du, dk), 156
(0, r], 191
φ(t, x), 159
φ_k(t, x), 165
σ_k, 171
ψ(t, x), 154, 155
ξ-superprocess, 53
ξ_i, 165
n, 210
n, 210
n, 210
ρ-tempered measure, 56
w^k_i, 186, 190
z, 157
|φ|^2_p, 191
||·||_1, 2, p, 187
||·||_{H^p_α}(t, τ), 191
||·||_{H^p_α}, 187
||·||_p, 187
||·||_{H^p_α}, 191
ASEP, 113
CS, 91
HSL, 109, 112, 119
IPP, 110, 113
RM, 25, 30
RNG, 27-30, 33, 39
RT, 27

329
Subject Index

Kelvin-Helmholtz
- instability, 21

adjoint covariance space, 252
auto-regressive, 166
averaged equation, 30, 31

Bakry-Emery conditions, 49
branching
- catalytic, 95
- measure-valued process
 - critical, 62
- particle system, 45
 - interacting, 45

Brownian
- excursion density, 57
- rescaling, 90

Brownian motion
- historical, 58

Buckley-Leverett, 11, 34, 37
Burgers equation, 110, 111, 148
- inviscid, 110, 111, 116
- stochastic, 111, 123–125
 - with viscosity, 110, 111, 119, 120

Burgers vector, 8

Cahn–Allen equation, 113, 144
- stochastic, 130, 135, 138

Cahn–Hilliard equation, 111, 146
- stochastic, 111, 135, 140

Campbell measure, 87
- normalized, 77

canonical measure, 52
- Poisson, 52
 - super-Browninan motion, 52

catalytic branching, 95
clan
- recurrent, 81
- transience, 81
closure, 6, 8, 11, 18, 30, 32, 36
- cluster representation, 52
- coarse graining, 110, 114, 116
collision
- local time, 73
 - system, 91
constitutive laws, 8, 30
continuous random tree, 58

Corrsin's hypothesis, 36
covariance
 - operator function, 246
 - space, 252
critical phenomena, 110
cylindrical
 - Brownian motion, 246
 - martingale, 246
 - standard Brownian motion, 246

Darcy's law, 11, 12, 34, 35, 37
dead mass process, 69
diffusive clustering, 75, 83
diffusivity constant, 177
direct numerical simulation, 18
Dirichlet Laplacian, 318
discrete Laplacian generator, 53
discretization
 - Euler scheme, 166, 170
 - Fourier domain, 165
 - stream function, 161
 - time, 161
dislocation, 8
dispersion, 34, 36–38
 - coefficient, 35
dissipation scale, 157
effective equation, 6, 16, 30
empirical measure process, 47
entrance law, 83
equation of state, 7, 8
equilibrium clan, 84
Euler scheme, 166
exchange particle system, 46
exchangeable particle system
 - non-interacting, 46
excursions, 53
exponential martingale problem, 50
extinction law, 52

Feller branching
 - fixed point property, 82
 - process, 51
financial decision making, 3
fluctuating hydrodynamic, 108, 111, 120, 134
fluctuations, 108, 109
 - critical, 129
macroscopic effects of, 141, 147
nonlinear, 111, 122, 125, 126, 130, 135, 141
of the shock, 116, 120
small(normal), 121, 122, 134, 135
fractal, 35, 37
fractional Brownian process, 163
fracture, 9
front tracking, 18
full martingale problem, 64
Gibbs measure, 129–131, 133, 138, 148
Glauber dynamics, 109, 128
nonlinear fluctuations, 136
pattern formation, 141
with long range interactions, 131
Glauber+Kawasaki dynamics, 146, 148
historical
Brownian motion, 58
cluster representation, 59
martingale problem, 59
modulus of continuity, 60
homogenization, 13, 17, 155, 176, 177, 179
simulations, 178
Hurst exponent, 35
hydrodynamic
behavior, 110
equations, 109, 112
laws, 107
scaling limit, 109, 112, 119, 120, 133
hydrodynamic limit
central limit theorem, 110
large deviations, 148
law of large numbers, 110
IC, 55
incompressible limit, 112, 122
independent particle process, 110, 113–115
integral
martingale problem, 50
scale, 39, 157
scales, 38
integrated super-exursion, 57
interacting particle system (IPS), 109
interaction chain, 83
interface
fluctuations, 127, 128
growth model, 126, 127
motion, 113, 147
intermittency, 10, 15, 38
Ising, 34
model, 109, 128, 130
Ising model, 131
Kac potentials, 128
Kardar–Parisi–Zhang equation, 127
Kawasaki dynamics, 109, 128, 146, 148
nonlinear fluctuations, 140
with long range interactions, 131
Kelvin-Helmhotz instability, 18
Kolmogorov, 10, 13
law, 39
point, 39
spectrum, 38, 154
classical, 156
cut-off, 157
parameters, 157
theory of turbulence, 156
integral and dissipation scales, 157
Lévy catalytic medium, 96
Laplace functional, 51
level set, 20
lifting, 48
additive functional, 63
local time
collision, 73
super-Brownian, 69
log Laplace equation, 51
Lorenz equations, 5
low dimensional clumping, 84
LSI, 246
Lyapunov exponent, 155, 172
approximation, 170
positivity, see also mixing
martingale measure, 249
martingale problem, 49, 263
Historical, 59
MP, 89
absolute continuity of measures, 261
collision system, 91
equivalent formulation, 49
exponential, 50
full, 64
integral, 50
MP, 92
partial, 63
measure-valued
additive functional, 62
cylindrical martingale, 249
mesh refinement, 19
metastable behavior, 129, 148
microscopic models, 108
mixing, 22, 31, 176
layer, 25
model
stepping stone, 100
moment, 31
expansion, 15
multi-phase flow, 9, 10, 21, 32
multiplicative property
strong, 52
weak, 52
Navier–Stokes
corrections, 110, 112, 115, 119
equation, 107, 110, 112, 122
non local evolution equations, 132, 134
non-interacting exchangeable particle system, 46
normalized Campbell measure, 77
occupation
density field, 69
time process, 57
occupation measure
weighted, 68
Ornstein–Uhlenbeck process, 111, 120, 121
Palm measure, 78
parametrix method, 100
partial martingale problem, 63
particle models
non-reversible, 110, 111, 148
reversible, 128, 131, 148
particle system
exchangeable, 46
path-valued process, 58
permeability, 12, 34
persistence, 74
petroleum reservoir, 3
phase
segregation, 144, 147
separation, 144, 147
transition, 110, 128–130, 132
Poisson
cluster representation, 52
point processes, 155, 178
porous
media, 11, 34, 37
medium, 12
random
cluster, 47
field, 5, 7, 12, 13, 20, 34
Rayleigh–Taylor
instability, 18, 19
mixing, 37
reaction–diffusion equations, 108
stochastic, 111, 135, 140
renormalization, 8
group, 16
Reynolds stress, 32
Richtmyer-Meshkov instability, 19
Riemann problem, 19, 23
RM
instability, 22
mixing, 22
RNG, 38
dynamics, 27
equation, 17
operation, 16
RT
instability, 21, 26
mixing, 22, 27, 33
problem, 24
sampling rate, 92
scale
macroscopic, 109, 110
microscopic, 109, 110
scaling
diffusive, 109, 112, 113, 116, 120, 148
Euler, 109, 110, 112, 116
Schwartz pair, 246
second class particle, 118
shear
band, 9
flow, 163, 164
shocks
absence of, 110, 115
fluctuations of, 116, 119
formation of, 114
location of, 118
models with, 111
propagation of, 111
speed of the, 117
simple exclusion process
asymmetric, 113
symmetric, 129
weakly asymmetric, 119
smooth function, 50
statistical mechanics
equilibrium, 108, 110, 129, 140
non equilibrium, 109
stepping stone model, 100
stochastic
heat equation, 125, 128
stochastic integral, 254
normalized, 257
stochastic quantization equation, 296
stationary solutions, 306
 absolute continuity, 309
 ergodicity, 314
 Markov property, 313
 singularity of measures, 315
stream function, 159
strong solution, 262
structure function, 163
super Brownian motion, 45, 275

Taylor-Saffman instability, 18
tempered distributions, 54
total mass process, 51
turbulence, 6, 10, 14, 15, 32
two-phase flow, 31

velocity field
 homogeneous in space, 155
 incompressibility, 156
 isotropy, 156
 Markovian, 156
 stationarity, 155
 vorticity, 168, 179

wavelets, 167, 169, 178
weak solution, 262
weather, 5
 forecasts, 3
weighted occupation measure, 68
white noise, 108, 119, 121, 122, 124, 125, 134, 145, 250
Wick products, 298
 approximations, 303
 multiple integrals, 301
Selected Titles in This Series

(Continued from the front of this publication)

33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
29 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in H^∞, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
19 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980
16 O. Timothy O'Meara, Symplectic groups, 1978
15 J. Diestel and J. J. Uhl, Jr., Vector measures, 1977
14 V. Guillemin and S. Sternberg, Geometric asymptotics, 1977
13 C. Pearcy, Editor, Topics in operator theory, 1974
12 J. R. Isbell, Uniform spaces, 1964
11 J. Cronin, Fixed points and topological degree in nonlinear analysis, 1964
10 R. Ayoub, An introduction to the analytic theory of numbers, 1963
9 Arthur Sard, Linear approximation, 1963
8 J. Lehner, Discontinuous groups and automorphic functions, 1964
6 C. C. Chevalley, Introduction to the theory of algebraic functions of one variable, 1951
5 S. Bergman, The kernel function and conformal mapping, 1950
4 O. F. G. Schilling, The theory of valuations, 1950
3 M. Marden, Geometry of polynomials, 1949
2 N. Jacobson, The theory of rings, 1943
1 J. A. Shohat and J. D. Tamarkin, The problem of moments, 1943