Rings and Things
and a Fine Array of
Twentieth Century
Associative Algebra

Second Edition

Revised and enlarged by the author with the collaboration
and technical assistance of Japheth Wood.
Rings and Things and a Fine Array of Twentieth Century Associative Algebra

Second Edition

Carl Faith

American Mathematical Society
Dedications

To my wife: Molly Kathleen Sullivan

You are my sun
You are my moon
You are my day
You are my night
My lodestar
My terra incognita
My guiding light
My terra firma
My earth
My sky
My heaven
Mi luna caliente
Mi manzana carnal
Y el pequeño infinito
Tuyo es mi vida!

To the memory and love of Mama: Vila Belle Foster

“So mayest thou, ’till suddenly like a ripe fruit, drop in thy mother’s lap.”
(from Paradise Lost by John Milton)

To the memory and love of Dad, Herbert Spencer Faith

And his gentleness, kindness and passion for reading.

For my daughter, Heidi Lee, Numero Uno

Your heroism in saving two Princeton University students from drowning in Lake Carnegie where they fell through the ice when you were just fifteen, won you a Red Cross Medal and taught me what greatness truly is: Nobody I know has ever done anything as great. And congratulations on your induction into the Rutgers Sports Hall of Fame in Lacrosse and Field Hockey.

To my “little” brother: Frederick Thomas Faith

You taught me the meaning, and the sweetness, of the word brother: May all your parachute leaps land you on feather beds.
To my son: Zeno

For your dedication to CISPES, the El Salvador support organization, as director both in Detroit and Minneapolis, for making the long trek to San Salvador in a caravan of forty trucks full of medical, food and other needed supplies. And for your training in music at Rutgers’ Mason Gross School for Arts and the New England Conservatory of Music that enabled you to apply your perfect pitch to tuning Steinways at Steinway in Manhattan, New York City. And for that New York Irish lass, Jill Dowling, your wife, who lights up our lives, and for both of you following Thoreau’s advice on civil disobedience to oppose oppressive local, national, and international government policies.

To my son: Japheth

For showing that minimal algebras of types two and four are not computable in your Berkeley Ph.D. Thesis, May 23, 1997. Congratulations and thank you. You may be the only one in the family who can read this book! And thanks for putting the corrections in AMS-TEX for the revision: A true gift of love.

To my son: Malachi

For your linguistic skills in Latin, Spanish, French and Portuguese (among others) which you are passing on to the new generation as a teacher, and formerly as a court translator. And for your gift of friendship for people both Americans and of other lands which has so enriched our family life, especially for your Bangladeshi wife, Jhilam Iqbal, and her family.

To my son (El niño): Ezra

For winning honors at your Rutgers graduation, May 22, 1997: Chemistry, Phi Beta Kappa, Hypercube, the Howard Hughes Research Award, and College Honors. And after receiving Fellowship offers for graduate school in environmental chemistry from Berkeley, UCLA, the University of Texas at Austin, University of Washington, Seattle, and the University of Colorado at Boulder, for receiving your Ph.D. at Berkeley. Congratulations! (I’m in awe.)

To a friend: Barbara Lou Miller

You are the sine qua non of this book. Your skill and art in compositing at the computer, and the spunk it takes to do it, are inspirational. You have in jurisprudence terms aided and abetted me on every page (not that writing a book per se is a criminal offense, but maybe the way I write is?)

1The patronymic of Molly’s sons, whom I adopted, is Wood
Contents

Symbols xxiii

Preface to the Second Edition .. xxv

Acknowledgements to the Second Edition xxvii

Preface to the First Edition .. xxix

Acknowledgements to the First Edition .. xxxv

Part I. An Array of Twentieth Century Associative Algebra

Chapter 1. Direct Product and Sums of Rings and Modules and the Structure of Fields ... 3
 §1.1 General Concepts ... 3
 §1.2 Internal Direct Sums ... 4
 §1.3 Products of Rings and Central Idempotents 5
 §1.4 Direct Summands and Independent Submodules 5
 §1.5 Dual Modules and Torsionless Modules 5
 §1.6 Torsion Abelian Groups ... 6
 §1.7 Primary Groups ... 6
 §1.8 Bounded Order .. 6
 §1.9 Theorems of Zippin and Frobenius-Stickelberger 6
 §1.10 Divisible Groups .. 7
 §1.11 Splitting Theorem for Divisible Groups 7
 §1.12 Second Splitting Theorem 7
 §1.13 Decomposition Theorem for Division Groups 7
 §1.14 Torsion Group Splits Off Theorem 7
 §1.15 Fundamental Theorem of Abelian Groups and Kulikoff’s Subgroup Theorem ... 8
 §1.16 Corner’s Theorem and the Dugas-Göbel Theorem 8
 §1.17 Direct Products as Summands of Direct Sums 8
 §1.18 Baer’s Theorem .. 9
 §1.19 Specker-Nöbeling-Balcerzyk Theorems ... 9
 §1.20 Dubois’ Theorem .. 9
 §1.21 Balcerzyk, Bialynicki, Birula and Loś Theorem, Nunke’s Theorem, and O’Neill’s Theorem 9
§1.22 Direct Sums as Summands of Their Direct Product 10
§1.23 Camillo’s Theorem 10
§1.24 Lenzing’s Theorem 10
§1.25 Zimmermann’s Theorem on Pure Injective Modules 10
§1.26 Szele-Fuchs-Ayoub-Huynh Theorems 10
§1.27 Kertész-Huynh-Tominaga Torsion Splitting Theorems 11
§1.28 Three Theorems of Steinitz on the Structure of Fields 11
§1.29 Lüroth’s Theorem 13
§1.30 Artin-Schreier Theory of Formally Real Fields 13
§1.31 Theorem of Castelnuovo-Zariski 14
§1.32 Monotone Minimal Generator Functions 15
§1.33 Quigley’s Theorem: Maximal Subfields without α 15

Chapter 2. Introduction to Ring Theory: Schur’s Lemma and Semisimple Rings, Prime and Primitive Rings, Noetherian and Artinian Modules, Nil, Prime and Jacobson Radicals 17
• Quaternions 17
• Hilbert’s Division Algebra 18
• When Everybody Splits 18
• Artinian Rings and the Hopkins-levitzki Theorem 19
• Automorphisms of Simple Algebras: The Theorem of Skolem-Noether 20
• Wedderburn Theory of Simple Algebras 21
• Crossed Products and Factor Sets 21
• Primitive Rings 22
• Nil Ideals and the Jacobson Radical 22
• The Chevalley-Jacobson Density Theorem 22
• Semiprimitive Rings 23
• Semiprimitive Polynomial Rings 23
• Matrix Algebraic Algebras 23
• Primitive Polynomial Rings 24
• The Structure of Division Algebras 25
• Tsen’s Theorem 25
• Cartan-Jacobson Galois Theory of Division Rings 25
• Historical Note: Artin’s Question 26
• Jacobson’s $a^{n(\alpha)} = a$ Theorems and Kaplansky’s Generalization 26
• Kaplansky’s Characterization of Radical Field Extensions 27
• Radical Extensions of Rings 27
• The Cartan-Brauer-Hua Theorem on Conjugates in Division Rings 29
• Hua’s Identity 29
• Amitsur’s Theorem and Conjugates in Simple Rings 30
• Invariant Subrings of Matrix Rings 31
• Rings Generated by Units 31
• Transvections and Invariance 32
• Other Commutativity Theorems 32
• Noetherian and Artinian Modules 33
• The Maximum and Minimum Conditions 33
• Inductive Sets and Zorn’s Lemma 33
• Subdirectly Irreducible Modules: Birkhoff’s Theorem 34
CONTENTS

- Jordan-Hölder Theorem for Composition Series 35
- Two Noether Theorems 35
- Hilbert Basis Theorem 36
- Hilbert's Fourteenth Problem: Nagata's Solution 37
- Noether's Problem in Galois Theory: Swan's Solution 37
- Realizing Groups as Galois Groups 37
- Prime Rings and Ideals 38
- Chains of Prime Ideals 39
- The Principal Ideal Theorems and the DCC on Prime Ideals 39
- Primary and Radical Ideals 39
- Lasker-Noether Decomposition Theorem 40
- Hilbert Nullstellensatz 41
- Prime Radical 42
- Nil and Nilpotent Ideals 43
- Nil Radicals 44
- Simple Radical and Nil Rings 45
- Semiprime Ideals and Unions of Prime Ideals 45
- Maximal Annihilator Ideals Are Prime 45
- Rings with Acc on Annihilator Ideals 46
- The Baer Lower Nil Radical 47
- Group Algebras over Formally Real Fields 48
- Jacobson's Conjecture for Group Algebras 49
- Simplicity of the Lie and Jordan Rings of Associative Rings:
 - Herstein's Theorems 49
- Simple Rings with Involution 49
- Symmetric Elements Satisfying Polynomial Identities 50
- Historical Notes 51
- Separable Fields and Algebras 51
- Wedderburn's Principal or Factor Theorem 52
- Invariant Wedderburn Factors 52

Chapter 3. Direct Decompositions of Projective and Injective Modules 53
- Direct Sums of Countably Generated Modules 53
- Injective Modules and the Injective Hull 54
- Injective Hulls: Baer's and Eckmann-Schopf's Theorems 54
- Complement Submodules and Maximal Essential Extensions 54
- The Cantor-Bernstein Theorem for Injectives 55
- Generators and Cogenerators of Mod-R 55
- Minimal Cogenerators 56
- Cartan-Eilenberg, Bass, and Matlis-Papp Theorems 56
- Two Theorems of Chase 57
- Sets vs. Classes of Modules: The Faith-Walker Theorems 57
- Polynomial Rings over Self-injective or QF Rings 58
- Σ-injective Modules 59
- Quasi-injective Modules and the Johnson-Wong Theorem 59
Dense Rings of Linear Transformations and Primitive Rings
Revisited

Harada-Ishii Double Annihilator Theorem

Double Annihilator Conditions for Cogenerators

Koehler’s and Boyle’s Theorems

Quasi-injective Hulls

The Teply-Miller Theorem

Semilocal and Semiprimary Rings

Regular Elements and Ore Rings

Finite Goldie Dimension and Goldie’s Theorem

* The Wedderburn-Artin Theorem Revisited

* The Faith-Utumi Theorem

* Goldie’s Principal Ideal Ring Theorem

Cailleau’s Theorem

Local Rings and Chain Rings

Uniform Submodules and Maximal Complements

Beck’s Theorems

Dade’s Theorem

When Cyclic Modules Are Injective

When Simple Modules Are Injective: V-Rings

Cozzens’ V-Domains

Projective Modules over Local or Semilocal Rings, or Semihereditary Rings

Serre’s Conjecture, the Quillen-Suslin Solution and Seshadri’s Theorem

Bass’ Theorem on When Big Projectives Are Free

Projective Modules over Semiperfect Rings

Bass’ Perfect Rings

Theorems of Björk and Jonah

Max Ring Theorems of Hamsher, Koifman, and Renault

* Flat Covers Exist

The Socle Series of a Module and Loewy Modules

Semi-Artinian Rings and Modules

The Perlis Radical and the Jacobson Radical

The Frattini Subgroup of a Group

Krull’s Intersection Theorem and Jacobson’s Conjecture

Nakayama’s Lemma

The Jacobson Radical and Jacobson-Hilbert Rings

* Fully Bounded and FBN Rings

When Nil Implies Nilpotency

Shock’s Theorem

Kurosch’s Problem

The Nagata-Higman Theorem

R_0-Categorical Nil Rings Are Nilpotent

The Golod-Shafarevitch Theorem

Some Amitsur Theorems on the Jacobson Radical

Köthe’s Radical and Conjecture

A General Wedderburn Theorem

Koh’s Schur Lemma

Categories
Chapter 4. Direct Product Decompositions of von Neumann Regular Rings and Self-injective Rings

* Clean Rings
* Flat Modules
* Character Modules and the Bourbaki-Lambek Theorem
* When Everybody Is Flat
* Singular Splitting
* Utumi’s Theorems
* Weak or $F \cdot G$ Injectivity
* Abelian VNR Rings
* The Maximal Regular Ideal
* Products of Matrix Rings over Abelian VNR Rings
* Products of Full Linear Rings
* Dedekind Finite
* Jacobson’s Theorem
* Shepherdson’s and Montgomery’s Examples
* Group Algebras in Characteristic 0 Are Dedekind Finite
* Prime Right Self-injective VNR Rings
* Goodearl-Handelman Characterization of Purely Infinite Rings
* Kaplansky’s Direct Product Decompositions of VNR Rings
* Kaplansky’s Conjecture on VNR Rings: Domanov’s Counterexample and Goodearl’s and Fisher-Snider’s Theorems
* Azumaya Algebras
* Hochschild’s Theorem on Separable Algebras
* The Auslander-Goldman-Brauer Group of a Commutative Ring
* Menal’s Theorem on Tensor Products of SI or VNR Algebras
• Lawrence’s Theorem on Tensor Products of Semilocal Algebras 107
• Armendariz-Steinberg Theorem 108
• Strongly Regular Extensions of Rings 108
• Pseudo-Frobenius (PF) Rings 108
• Kasch Rings 109
• FPF Rings 111

Chapter 5. Direct Sums of Cyclic Modules 113
• Uniserial and Serial Rings 113
• Nonsingular Rings 115
* Bounded Rings 115
• FGC Rings 116
• Linearly and Semicompact Modules 117
• Maximal Rings 117
• Almost Maximal Valuation, and Arithmetic Rings 118
• Torch Rings 119
• Fractionally Self-injective Rings 119
• FGC Classification Theorem 119
* Classification of FPF and CFPF Rings 120
• Maximal Completions of Valuation Rings 120
• Mac Lane’s and Vámos’ Theorems 121
• Gill’s Theorem 121
• Vamosian Rings 122
• Quotient Finite Dimensional Modules 122
• The Genus of a Module and Generic Families of Rings 123
• The Product Theorem 124
• Serre’s Condition 125
• FPF Split Null Extensions 126
• Characterization of Commutative FPF Rings 127
• Semiperfect FPF Rings 127
• Faticoni’s Theorem 128
• Kaplansky’s and Levy’s Maximal Valuation Rings 128
• Page’s Theorems 128
• Further Examples of Valuation Rings and PF Rings 129
* Almost Finitely Generated Modules 130
* Two Theorems of Vámos on Linearly Compact Quotient Fields 131
* Vámos-Weakley Theorems on Almost Finitely Generated Modules 131
• Historical Note 131

Chapter 6. When Injectives Are Flat: Coherent FPF-injective Rings 133
• Pure Injective Modules 133
• Elementary Divisor Rings 135
• Stable Range and the Cancellation Property 136
• Fractionally Self FPF-Injective Rings 137
• Coherent Rings: Theorems of Chase, Matlis and Couchot 137
• When Injective Modules Are Flat: IF Rings 138
• Power Series over VNR and Linear Compact Rings 139
• Historical Note 140
• Locally Split Submodules 140
• Existentially Closed Rings 141
• Existentially Closed Fields 141
• Other Embeddings in Skew Fields 142
• Galois Subrings of Ore Domains Are Ore 142
• Rings with Zero Intersection Property on Annihilators: Zip Rings 143
• On a Question of Mal’cev: Klein’s Theorem 144
• Weakly Injective Modules 144
• Gauss Elimination and Weakly Injectivity 145
• Zip McCoy Rings 145
 * Associated Primes of Polynomial Rings 146
• Elementary Equivalence 147
• Pure-Injective Envelopes 147
• Ziegler’s Theorem 149
• Noetherian Pure-Injective Rings 149
• Σ-Pure-Injective Modules 150
• Pure-Semisimple Rings 150
 * II-Coherent Rings 150

Chapter 7. Direct Decompositions and Dual Generalizations of Noetherian
 Rings 151
• PP Rings and Finitely Generated Flat Ideals 151
• Right Bezout Rings 152
• Faith-Utumi Theorem 152
• Finitely Embedded Rings 153
• Simple Noetherian Rings 153
• Simple Differential Polynomial Rings 154
• The Weyl Algebra 156
• When Modules Are Direct Sums of a Projective and a Noetherian
 Module 156
• When Modules Are Direct Sums of an Injective and a Noetherian
 Module 156
• Dual Generalizations of Artinian and Noetherian Modules 157
• Completely Σ-Injective Modules 158
• Ore Rings Revisited 160
• On Hereditary Rings and Boyle’s Conjecture 160
• Δ-Injective Modules 163
• Co-Noetherian Rings 164

Chapter 8. Completely Decomposable Modules and the Krull-Schmidt-
 Azumaya Theorem 167
• Herbera-Shamsuddin and Camps-Dicks Theorems 167
• Swan’s Theorem 168
• Evans’ Theorem 168
• Matlis’ Problem 168
• The Exchange Property and Direct Sums of Indecomposable
 Injective Modules 169
• Crawley-Jónsson Theorem 170
• Warfield, Nicholson and Monk Theorems 170
• π-Regular Rings 171
• Yamagata’s Theorem 172
• Decompositions Complementing Direct Summands 173
• Fitting’s Lemma and the Krull-Schmidt Theorem 173
• A Very General Schur Lemma 174
• Rings of Finite and Bounded Module Type 174

Chapter 9. Polynomial Rings over Vamosian and Kerr Rings, Valuation

<table>
<thead>
<tr>
<th>Rings and Prüfer Rings</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerr Rings and the Camillo-Guralnick-Roitman Theorem</td>
<td>177</td>
</tr>
<tr>
<td>Rings with Few Zero Divisors Are Those with Semilocal Quotient Rings</td>
<td>179</td>
</tr>
<tr>
<td>* Heinzer-Ohm Theorem</td>
<td>179</td>
</tr>
<tr>
<td>* Cedó’s Theorem on Semilocal Rings</td>
<td>180</td>
</tr>
<tr>
<td>Manis Valuation Rings</td>
<td>180</td>
</tr>
<tr>
<td>Integrally Closed Rings</td>
<td>181</td>
</tr>
<tr>
<td>Kaplansky’s Question</td>
<td>181</td>
</tr>
<tr>
<td>Local Manis Valuation Rings</td>
<td>181</td>
</tr>
<tr>
<td>Domination of Local Rings</td>
<td>182</td>
</tr>
<tr>
<td>Marot Rings</td>
<td>183</td>
</tr>
<tr>
<td>Krull Rings</td>
<td>183</td>
</tr>
<tr>
<td>* Quotient Rings of Polynomial Rings</td>
<td>184</td>
</tr>
<tr>
<td>Rings with Krull Domain Centers: Bergman and Cohn Theorems</td>
<td>184</td>
</tr>
<tr>
<td>Annie Page’s Theorem</td>
<td>184</td>
</tr>
<tr>
<td>The Maximal Quotient Ring of a Commutative Ring</td>
<td>185</td>
</tr>
<tr>
<td>The Ring of Finite Fractions</td>
<td>185</td>
</tr>
<tr>
<td>Prüfer Rings and Davis, Griffin and Eggert Theorems</td>
<td>186</td>
</tr>
<tr>
<td>Strong Prüfer Rings</td>
<td>187</td>
</tr>
<tr>
<td>Discrete Prüfer Domains</td>
<td>188</td>
</tr>
<tr>
<td>Strongly Discrete Domains</td>
<td>188</td>
</tr>
<tr>
<td>Generalized Dedekind Rings</td>
<td>188</td>
</tr>
<tr>
<td>Facchini’s Theorems on Piecewise Noetherian Rings</td>
<td>188</td>
</tr>
<tr>
<td>* Weakley’s Theorems on Terse Modules</td>
<td>188</td>
</tr>
<tr>
<td>* Anderson and Camillo on Armendariz and Gaussian Rings</td>
<td>189</td>
</tr>
<tr>
<td>* Maximal Prime Ideals of Zero Divisors</td>
<td>191</td>
</tr>
</tbody>
</table>

Chapter 10. Isomorphic Polynomial Rings and Matrix Rings 193

Hochster’s Example of a Non-unique Coefficient Ring	193
Brewer-Rutter Theorems	193
The Theorems of Abhyankar, Heinzer and Eakin	193
Isomorphic Matrix Rings	194
Lam’s Survey	194
* Three-Element Recognition of Matrix Rings	194

Chapter 11. Group Rings and Maschke’s Theorem Revisited 197

| Connell’s Theorems on Self-injective Group Rings | 197 |
CONTENTS

- Perfect and Semilocal Group Rings 197
- Von Neumann Regular Group Rings 198
- Jacobson’s Problem on Group Algebras 198
- Isomorphism of Group Algebras: The Perlis-Walker Theorem 198
- Dade’s Examples 198
- Higman’s Problem 199
- Theorems of Higman, Kasch-Kupisch-Kneser on Group Rings of Finite Module Type 199
- Janusz and Srinivasan Theorems 199
- Morita’s Theorem 199
- Roseblade’s Theorems on Polycyclic-by-Finite Group Rings 200
- A Weak Nullstellensatz 200
- Hilbert Group Rings 200
* Classical Quotient Rings of Group Rings 200

Chapter 12. Maximal Quotient Rings

- The Maximal Quotient Ring 201
- When \(Q_{\text{max}}^\ell (R) = Q_{\text{max}}^\ell (R) \): Utumi’s Theorem 202
- Courter’s Theorem on When All Modules Are Rationally Complete 204
- Snider’s Theorem on Group Algebras of Characteristic 0 205
* Kaplansky’s Theorem on Group Algebras of Characteristic 0 206
- Galois Subrings of Quotient Rings 206
- Localizing Categories and Torsion Theories 207
- Ring Epimorphisms and Localizations 208
- Continuous Regular Rings 209
- Complemented and Modular Lattices 209
- Von Neumann’s Coordinatization Theorem 210
- Von Neumann’s Dimension Function 210
- Utumi’s Characterization of Continuous VNR Rings 210
- Semi-continuous Rings and Modules 211
* Chatters-Hajarnavis Theorems on CS-Rings 213
- CS Projective Modules 214
- Strongly Prime Rings 214

Chapter 13. Morita Duality and Dual Rings

- Dual Rings 217
- Skornyakov’s Theorem on Self-dual Lattices of Submodules 220
- Hajarnavis-Norton Theorem 220
- Faith-Menal Theorem 221
- Commutative Rings with QF Quotient Rings 222
- On a Vasconcelos Conjecture 223
- Kasch-Mueller Quasi-Frobenius Extensions 222
- Balanced Rings and a Problem of Thrall 223
- When Finitely Generated Modules Embed in Free Modules 224
- A Theorem of Pardo-Asensio and a Conjecture of Menal 226
- Johns’ Rings Revisited 226
- Two Theorems of Gentile and Levy on When Torsionfree Modules Embed in Free Modules 227
- When an Ore Ring Has Quasi-Frobenius Quotient Ring 227
- Levy’s Theorem 228

Chapter 14. Krull and Global Dimensions 229
- Homological Dimension of Rings and Modules 230
- The Hilbert Syzygy Theorem 231
- Regular Local Rings 234
- Coherent Polynomial Rings 235
- Noncommutative Rings of Finite Global Dimension 235
- Classical Krull Dimension 236
- Krull Dimension of a Module and Ring 236
* Dual Krull Dimension 237
* Krull Dimension ≤ 1 237
* Non-Noetherian Domains of Krull Dimension 2: Teply’s Example 238
- Further Results on Krull Dimension 238
- Critical Submodules 240
- Acc on Radical Ideals (Noetherian Spec) 240
- Goodearl-Zimmermann-Huisgen Upper Bounds on Krull Dimension 241
- McConnell’s Theorem on the n-th Weyl Algebra 243
* The Homological Dimension of a Quotient Field 244
* Facchini’s Theorems on Injective Dimension ≤ 1 245
- Historical Note 245

Chapter 15. Polynomial Identities and PI-Rings 247
- Amitsur-Levitski Theorem 249
- Kaplansky-Amitsur Theorem 249
- Posner’s Theorem 250
- Nil PI-Algebras Are Locally Nilpotent 250
- Rowen PI-Algebras 251
- Generic Matrix Rings Are Ore Domains 252
- Generic Division Algebras Are Not Crossed Products 252
- When Fully Bounded Noetherian Algebras Are PI-Algebras 253
- Notes on Prime Ideals 253
- Historical Notes 253

Chapter 16. Unions of Primes, Prime Avoidance, Associated Prime Ideals, Acc on Irreducible Ideals, and Annihilator Ideals in Commutative Rings 255
- McCoy’s Theorem 255
- The Baire Category Theorem and the Prime Avoidance Theorem 255
- W. W. Smith’s Prime Avoidance Theorem and Gilmer’s Dual 256
- Irreducible Modules Revisited 257
- (Subdirectly) Irreducible Submodules 257
- Associated Prime Ideals 259
* Goldie Dimension of M Bounds |Ass M| 261
• Chain Conditions on Annihilators 262
• Semilocal Kasch Quotient Rings 263
• Acc.l. Rings Have Semilocal Kasch Quotient Rings 264
• Beck’s Theorem 265
• Acc on Irreducible Right Ideals 266
• Nil Singular Ideals 266
• Primary Ideals 266
• Characterization of Noetherian Modules 268
• Camillo’s Theorem 269

Chapter 17. Dedekind’s Theorem on the Independence of Automorphisms
Revisited 271
• Conventions 271
• Resumé of Results 272
• Dependent Automorphisms of Polynomial and Power Series Rings 272
• Normal Basis 273
• The Dependence Theorem 273
• The Skew Group Ring 274
• The Induction Theorem 275
• Radical Extensions 276
• Partial Converse to Theorem 17.4 276
• Kaplansky’s Theorem Revisited 277
• Reduced Rings 277
• The Role of Ideals in Dependency 278
• Galois Subrings of Independent Automorphism Groups of
 Commutative Rings Are Quorite 279
• Automorphisms Induced in Residue Rings 280
* Rings with Automorphisms without Invariant Proper Ideals 281
• Notes on Independence of Automorphisms 282
• Letters from Victor Camillo (Excerpts) 283

Part II. Snapshots of Some Mathematical Friends and Places

Chapter 18. Snapshots of Some Mathematical Friends and Places 287
• Some Profs at Kentucky and Purdue 287
• Mama and Sis 288
• Perlis’ Pearls 288
• ‘The Ring’s the thing 289
• My “Affair” with Ulla 289
• How I Taught Fred to Drive 289
• “The Old Dog Laughed To See Such Fun” 290
• My “Lineage”—Math and Other 290
• Big Brother—“Edgie” 291
• H. S. F. Jonah and C. T. Hazard 291
• John Dyer-Bennett and Gordon Walker 292
• Henriksen, Gillman, Jerison, McKnight, Kohls, Kist and Correl 292
* Mel Henriksen 292
• Joop and Vilna, Len and Reba 293
• Some Other Fellow Students at Purdue 293
• Michigan State University (1955–1957) 294
• Sam Berberian, Bob Blair, Gene Deskins, and the Oehmkes 294
• “Cupcake” 295
• Leroy M. Kelly, Fritz Herzog, Ed Silverman and Vern Grove 295
• Orrin Frink 296
• Gottfried Köthe and Fritz Kasch 296
• Romantische Heidelberg 296
• Reinhold Baer 296
• Death in Munich (1960) 297
• “Death can be so indiscreet when it happens on the street” 297
• Marston Morse and the Invitation to the Institute 298
• What Frau Seifert Told Me 298
• “Some Like It Hot” (Manche Mög Es Heiss) 298
* Willy, the Heidelberg VW Salesman 299
* Italienische Reise 299
• Marston Morse 299
* Marston’s Disbelief in Lectures 300
• Marston and Louise 300
• Louise Morse: Picketing IDA 301
• Kay and Deane Montgomery 301
• “Leray Who?” 302
• How Deane Helped Liberate Rutgers 302
• Hassler Whitney 303
• John Milnor 303
• Paul Fussell 303
• Hetty and Atle Selberg 304
• Another Invitation to the Institute 304
• The Idea of the Institute As an Intellectual Hotel 304
• Oppie and Kitty 305
• Gaby and Armand Borel 305
• Gaby 305
• Alliluyeva 306
• George F. Kennan 306
• Kennan’s Memoirs 307
• Kurt Gödel 307
• P. J. Cohen 308
• Kurosch Meets Witt 308
• Hitler’s View of the Institute 308
• The Interesting Case of Threlfall 309
• My Friendship with Witt 309
• My First Paper at the Institute: Communicated by Nathan Jacobson 309
• “Proofs Too Short” 309
• Caroline D. Underwood 310
• Mort and Karen Brown 310
• Leah and Clifford Spector 310
• John Ernest 310
• “I Like This Motel” 311
• Institute Cats 311
• Yitz 311
• Injective Modules and Quotient Rings 312
• Fritz, Bruno, Rudy, and Ulrich 312
• The High Cost of Living in Germany (1959–1960) 312
• Steve Chase 312
• The Institute and Flexner’s Idea 313
• Lunch with Dyson, Lee, Yang and Pais 313
• Helen Dukas 313
• Arthur and Dorothy Guy 314
• Patricia Kelsh Woolf 315
• Johnny von Neumann and “The Maniac” 315
• Who Got Einstein’s Office? 316
• The Walkers, Frank Anderson, and Eben Matlis 316
• Carol and Elbert 316
• “Waiting for Gottfried” 316
• Harish-Chandra 317
• Veblen, Tea, and the Arboretum 318
• “On the Banks of the Old Raritan” (School Song) 318
• The Bumby-Osofsky Theorem 319
• Osofsky’s Ph.D. Thesis 319
• Yuzo 319
• At the Stockholm ICM (1962) 320
• Nathan Jacobson 320
• How Jake Helped Me and Rutgers 321
• Vic, John, Midge, and Ann 321
• A Problem of Bass and Cozzens’ Ph.D. Thesis 321
• Boyle’s Ph.D. Thesis and Conjecture 322
• A Problem of Thrall and Camillo’s Ph.D. Thesis 322
• Avraham and Ahuva 322
• Abraham Zaks 323
• Professor Netanyahu 323
• Jonathan and Hembda Golan 323
• Shimshon Amitsur 323
• Amitsur’s “Absence of Leave” 324
• Miriam Cohen 324
• Joy Kinsburg 324
• Paul Erdős 325
• What Is Your Erdős Number? 325
• Piatetski-Shapiro Is Coming! 326
• Gerhard Hochschild on Erdős 326
• Joachim Lambek 326
• S. K. Jain and India 327
• Kashmiri Gate at 5:00 P.M. 328
• Toot-Toot for a Day! Toot-Toot for an Age! 329
• The Rupee Mountain 329
• K. G. Ramanathan and Bhama Srinivasan (Bombay and Madras) 329
• The Indian Idea of Karma 329
• Joan and Charles Neider 330
• Charley 330
• Louis Fischer and Gandhi 331
• Sputnik! 332
• Govoru Po Russki? My Algebra Speaks Russian 332
• Walter Kaufmann and Nietzsche 332
• Hessy and Earl Taft 333
• Kenneth Wolson, Antoni Kosinki, and Glen Bredon 334
• Paul Moritz Cohn 334
• Joanne Elliott, Vince Cowling, and Jane Scanlon 335
• Rutgers Moves Up! 335
• Roz Wolson 335
• The George William Hill Center 336
• Daniel Gorenstein and the Classification of Simple Groups 336
• The Monster Group 337
• Danny and Yitz 337
• Gorenstein Rings 337
• All the News That Is Fit To Print” - New York Times 337
* Richard Brauer and the Postcard from Balestrand 338
• The Gorenstein Report and “Dream Time” 338
• Helen and Danny 338
• Ken Goodearl, Joe Johnson, and John Cozzen 339
• Hopkins and Levitzki 340
• Jakob Levitzki 340
• Chuck Weibel and Tony Geramita at the Institute (1977-1978) 341
• How I Helped Recruit Chuck 341
• Poobhalan Pillay, Lalita, and Karma 342
• “Tommy” Tominaga and “Tokyo Rose” 342
• Ted Faticoni, the Walkers and Me at Las Cruces 343
• New Mexico 343
• Rio Grande 344
• Dolors Herbera and Ahmad Shamsuddin at Rutgers (1993-1994) 344
* Arthur Chatters and Marta Lombard at Rutgers (Fall 1994) 345
• Pere Menal 345
• Alberto Facchini and More Karma 346
• Barcelona and Bellaterra 347
• Gaudi’s Genius 348
• The Ramblas 348
• Norman Steenrod 349
• Kaplansky, Steenrod and Borel 349
• Kap 350
• Kap’s “Rings and Things” 350
• “The World’s Greatest Algebra Seminar” 350
• Samuel Eilenberg 351
• Myles “Tiernovsky” 351
• Sammy Collects Indian Sculpture 351
• “The Only Thing They Would Let Us Do” 352
• Emil Artin 352
• Michael Artin 353
• University Towns 353
• Some Cafés and Coffee Houses 354
CONTENTS

- “Crazy Eddie”, Svetlana, “Capt.” Bill, and Jay 355
- Jay and Stan 356
- Roy Hutson and Vic Camillo—Two Poet Mathematicians 357
- Marc Rieffel, Serge Lang, Steve Smale and Me 357
- Parlez-Vous Français? My Proof Speaks French 357
- Mario Savio and The Berkeley Free Speech Movement (1964) 358
- Jerry Rubin 358
- Steve Smale 358
 * Ibram Lassaw, Elmer Bischoff, and other Berkeley Artists 359
- Some Undergraduate Gems at Rutgers and Penn State 360
- “Carl, You Will Always Have Dumb Students” 361
- Envoi to My Century 362

Index to Part II (Snapshots) 365

Bibliography 371

Register of Names 443

Index of Terms and Authors of Theorems 449
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\forall</td>
<td>(= universal quantifier) $\forall a \in A$</td>
</tr>
<tr>
<td>\exists</td>
<td>(= existential quantifier) $\exists a \in A$</td>
</tr>
<tr>
<td>\in</td>
<td>(= membership) $a \in A$</td>
</tr>
<tr>
<td>\notin</td>
<td>(= nonmembership) $a \notin A$</td>
</tr>
<tr>
<td>\subset</td>
<td>(= proper containment) $A \subset B$</td>
</tr>
<tr>
<td>\subseteq</td>
<td>(= containment) $A \subseteq B$</td>
</tr>
<tr>
<td>\hookrightarrow</td>
<td>(= embedding) $A \hookrightarrow B$</td>
</tr>
<tr>
<td>\Rightarrow</td>
<td>(= implication) $A \Rightarrow B$</td>
</tr>
<tr>
<td>$=$</td>
<td>(= equals) $A = B$</td>
</tr>
<tr>
<td>\neq</td>
<td>(= unequals) $A \neq B$</td>
</tr>
<tr>
<td>\setminus</td>
<td>(= backslash) $A \setminus B$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>(= empty set) $A = \emptyset$</td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>(= natural numbers) $1, 2, \ldots$</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>(= integers) $0, \pm 1, \pm 2, \ldots$</td>
</tr>
<tr>
<td>\mathbb{Q}</td>
<td>(= rational numbers) $a/b, a, b \in \mathbb{Z}, b \neq 0$</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>(= real numbers) $\sqrt{2}, \pi$</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>(= complex numbers) $a + bi, i^2 = -1, a, b \in \mathbb{R}$</td>
</tr>
<tr>
<td>\langle, \rangle</td>
<td>(= ordered pair) (a, b)</td>
</tr>
<tr>
<td>\bigcup</td>
<td>(= union) $A \cup B$</td>
</tr>
<tr>
<td>\bigcap</td>
<td>(= intersection) $A \cap B$</td>
</tr>
<tr>
<td>$+$</td>
<td>(= plus) $a + b$</td>
</tr>
<tr>
<td>$-$</td>
<td>(= minus) $a - b$</td>
</tr>
<tr>
<td>\times</td>
<td>(= Cartesian product) $\alpha \times \beta$</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>(= mapping) $A \rightarrow B$</td>
</tr>
<tr>
<td>\mapsto</td>
<td>(= corresponds to) $a \mapsto b$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\prod</td>
<td>(= product) $\prod_i A_i$</td>
</tr>
<tr>
<td>\bigsqcup</td>
<td>(= coproduct) $\bigsqcup_i A_i$</td>
</tr>
<tr>
<td>\cong</td>
<td>(= isomorphism) $A \cong B$</td>
</tr>
<tr>
<td>\wedge</td>
<td>(= wedge) $A \wedge B$</td>
</tr>
<tr>
<td>\vee</td>
<td>(= vee) $A \vee B$</td>
</tr>
<tr>
<td>$>$</td>
<td>(= greater than) $a > b$</td>
</tr>
<tr>
<td>$<$</td>
<td>(= less than) $a < b$</td>
</tr>
<tr>
<td>\times</td>
<td>(= split-null extension) $A \times B$</td>
</tr>
<tr>
<td>\perp</td>
<td>(= perpendicular ("perp") $A \perp$ and $\perp A$</td>
</tr>
<tr>
<td>\sum</td>
<td>(= summation) $\sum_{i \in I} A_i$</td>
</tr>
<tr>
<td>\oplus</td>
<td>(= direct sum) $A \oplus B$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>\otimes</td>
<td>(= tensor product)</td>
</tr>
<tr>
<td>mod-R</td>
<td>(= category of right R-modules)</td>
</tr>
<tr>
<td>R-mod</td>
<td>(= category of left R-modules)</td>
</tr>
<tr>
<td>\sim</td>
<td>(= similarity or Morita equivalence of rings)</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>A^I</td>
<td>(= exponentiation of cardinals)</td>
</tr>
<tr>
<td>$A^{(I)}$</td>
<td>(= all $f : I \rightarrow A$ with finite support. Cf. p.1)</td>
</tr>
<tr>
<td>$T : \text{mod-}A \sim \text{mod-}B$</td>
<td>functor from mod-A to mod-B</td>
</tr>
<tr>
<td>$R[[x]]$</td>
<td>power series ring over R in the variables x</td>
</tr>
<tr>
<td>$R[x]$</td>
<td>polynomial ring over R in the variables x</td>
</tr>
<tr>
<td>$R\langle x \rangle$</td>
<td>free algebra over R in the variables x</td>
</tr>
</tbody>
</table>
Preface to the Second Edition

I am pleased to have the opportunity to make corrections and additions to the first edition. The text has been enlarged by 38 pages, about 10% of the original, while the Bibliography has grown by 15% to 2100 entries. To call attention to completely new paragraphs, I have placed an asterisk before their headings in the Table of Contents.

All errata are annoying to the reader, if not misleading, and I have spent considerable time and effort in eliminating them. For three years (1999–2001) I placed these on my website <http://www.carlfaith.com> as soon as they were discovered, but this approach was abandoned after I began changing the \LaTeX file for the second edition. For whomever might be interested, the most egregious errors may be corrected as follows. (The pagination is that of the first edition.)

Egregious Errata

<table>
<thead>
<tr>
<th>page/line</th>
<th>is/ought</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/</td>
<td>In (3) of 2.6F, replace the definition in parenthesis by: See sup. 3.3E.</td>
</tr>
<tr>
<td>72/18,19</td>
<td>Replace by: Note A local ring R is Jacobson-Hilbert iff it has nil radical. A power series ring $R[[X]]$ is never Jacobson-Hilbert. See 9.25B in this connection.</td>
</tr>
<tr>
<td>127/21,22</td>
<td>Delete the statement about the Brewer-Heinzer Theorem, and instead refer to Theorem 9.25B, which has been added. (Note, a local domain can be Jacobson-Hilbert only if it is a field!)</td>
</tr>
<tr>
<td>133/</td>
<td>Theorem 6.39 has been replaced by the Brewer-Heinzer Theorem 6.39.</td>
</tr>
<tr>
<td>144/–2</td>
<td>Replace $r \approx R/a^\perp$ by $rR \approx R/r^\perp$</td>
</tr>
<tr>
<td>144/–1</td>
<td>Replace a^\perp by r^\perp, and replace $a^\perp \supset M$ by $r^\perp = J$.</td>
</tr>
<tr>
<td>145/–1</td>
<td>Replace M by R.</td>
</tr>
<tr>
<td>157/–23</td>
<td>Replace Example 4 by: EXAMPLE 4 (LAM). A Dedekind finite exchange ring R need not be semiperfect, e.g., any infinite product R of copies of any field R is self-injective hence suitable by 4.2A hence an exchange ring by 8.4C.</td>
</tr>
<tr>
<td>164/20</td>
<td>acc.\perp/Goldie</td>
</tr>
<tr>
<td>168/–4</td>
<td>monic polynomials/polynomials of unit content</td>
</tr>
<tr>
<td>180/–3→181/4</td>
<td>Replaced by Props. 12D, 12E and Example 12F.</td>
</tr>
<tr>
<td>181/–15</td>
<td>singular/nonsingular</td>
</tr>
</tbody>
</table>

xxv
annihilator/complement...complement/annihilator

Replace “Remark” by: **Remark.** In any right self-injective ring R, any complement right ideal is a right annihilator since it is a direct summand.

Replace 4. by the following: 4. If S is a submodule of a $f \cdot g$ projective right R-module P that is minimal with respect to $S + T = P$ for some submodule T, then S (called a “complement submodule,” *ibid.*) is a direct summand of P.

no coefficient...annihilates $A.$/ when A does not have a unit element, assume that not all coefficients of f annihilate A. (See strongly regular polynomial, 15.9, and Definition 1, 15.13f.)

Preceding 16.33: replace the definition by:

DEFINITION. Let $0 \to M \to M_0 \to \cdots \to M_i \to \cdots$

be a minimal injective resolution of the R-module M, and define the *Noetherian depth* of M, denoted $n.d. M$, as the maximal i such that M_n is Σ-injective $\forall n \leq i$.

If M_0 is not Σ-injective, we let $n.d. M = -1$; and if M_i is Σ-injective for all i, set $n.d. M = \infty$.

independent/dependent

[60].../[60] H. Bass,
Acknowledgements to the Second Edition

To Tsit Yuen Lam for his kindness in calling my attention to typos and other errata which I duly acknowledge in the text. He has my gratitude.

To Luigi Salce for several references, and Bhama Srinivasan for sending me the correct spelling of Mahabalipuram, and for taking me there in 1968 to see the ancient temples. (For more on Mahabalipuram, see, e.g., “Lost Civilizations,” F. Bourbon (ed.), Barnes and Noble reprint (1998); also pub. by White Star S.r.l., Vercelli, Italy 1998).

To Paul M. Cohn for his many excellent comments and corrections of December 1999 and June 2003. He found sixteen pages of desiderata in addition to what others and I found and thereby immensely eased the reading of this book. He has my great thanks.

To Dinh Van Huynh, S. K. Jain and R. Sergio López-Permouth for sending me numerous requested reprints, and published copies of their lecture notes, books, and conference proceedings.

To Ram Gupta for an e-mail inquiry in November '99 which led me to research and add the theorem of Jategaonkar in 7.8A.

To Keith Nicholson and Mohamed Yousif for supplying requested reprints, and for sending an advance copy of their new book “QF Rings”.

To Keith Nicholson for a page correction in Björk [69].

To Ferran Cedó, for supplying a reference to Theorem 9.3’ (Roitman [90]) which I added and for communicating his theorem with Antoine (Theorem 9.3’).”

To Daniel D. Anderson, for his reference to the Gilmer-Heinzer theorem 9.25A, and to Robert Gilmer for sending me this and other reprints. I also am indebted to Dan for giving me a concentrated short (one hour) course on his 1998 paper with Vic Camillo. (See 9.47ff.)

To Toma (“Tommy”) Albu and Patrick Smith for bibliographical citations, and reprints, e.g., dual Krull dimension (sup. 14.27A) and rings with Krull dimension 1. See 14.27A and B.

To Toma Albu and Tariq Rizvi for their 2001 paper generalizing Theorem 16.50.

To John Hannah for his communication in answer to my query regarding quotient rings of group rings. (See Theorem 12.0F.)

To Bill Heinzer, David Lantz, and William (“Doug”) Weakley for communications regarding almost finitely generated modules. (See Theorems 5.57–61, and 5.63.)

To Dolors Herbera and Robert El Bashir for their communications on Enoch’s conjecture and solution (See 3.32Diff.)
ACKNOWLEDGEMENTS

To Earl Taft for his communication on the existence of simple nil rings by Smoktunowicz [02], and to Agata Smoktunowicz for her lecture on these at Rutgers University, New Brunswick, April 2002.

To Lance Small for his e-mail of 5/8/02 for enlightenment on the Brewer-Heinzer theorem 6.25B and Osofsky’s theorems 14.52-54 on the homological dimension of a quotient field.

To my longtime friend, Barbara Miller, who typed the first edition and for her help and advice.

To another longtime friend, Pete Belluce, for proofreading and for putting the page numbers for the Index to Snapshots into \textsc{AMSTeX}.

To my angel, Molly Sullivan, for putting the Addenda and Errata on the internet for me. \textit{Ave Molly!}

For my daughter, Heidi, for designing my website and getting it up on the internet, and updating it when needed.

To my son, Japheth Wood, for “volunteering” to effect the changes needed for the original \textsc{AMSTeX} file, and for co-editing. His has been a deeply appreciated labor of love.

To Dr. Sergei Gelfand, the American Mathematical Society and the mathematical community for making this new edition possible.

In December 2002 and January 2003 I was hospitalized, and underwent a pentuple coronary artery bypass graft (CABG). I owe my life to Dr. James Beattie of Princeton, and Dr. Albert Guerraty, the head cardiac surgeon (and his skillful team at Graduate Hospital in Philadelphia.) In addition I owe my recovery to the healing love and affection of my wife, Molly Sullivan, who stayed by my side during the entire ordeal that lasted over a month. I also thank my children who rallied around us both for their love and support.

Carl Faith
Princeton, NJ
July 4, 2003
Preface to the First Edition

“There is no royal road to mathematics”
(From Proclus, Commentary on Euclid, Prologue)

My two Springer-Verlag volumes, Algebra I and II, written a quarter of a century ago (see References) are devoted to the development of modern associative algebra and ring and module theory, so here I am faced with the challenging questions of where to begin, what to leave out and how much to add. Nevertheless, I hope the reader will discover that the various topics have an uncanny affinity for each other. Or maybe that I had a canny affinity for them: the apples fall near the apple tree (Russian Proverb).

Maschke’s Theorem

We begin with a theorem published a century ago (in 1898) by H. Maschke about the representation theory of a group algebra kG over a field k. For a field k of characteristic not dividing the order of G, it states that every representation for G, that is, any kG-module M, is a direct sum $\oplus V_i$ of “irreducible” representations V_i, where “irreducible” means that V_i has no smaller representations, that is, V_i is a module with no proper submodules. In the terminology introduced below, we say that V_i is a simple kG-module, and that M is a semisimple kG-module. (In §11, we shall come back to Maschke’s theorem and group algebras.)

Other Nineteenth Century Theorems

Those of D. Hilbert—the Basis theorem (1888) and the Nullstellensatz (1893)—are taken up in Chapter 2, see 2.20 and 2.30, and their modern forms are scattered throughout the text, e.g. the Generalized or Weak Nullstellensatz is Theorem 3.36B.

In 1893 an Estonian mathematician T. Molien obtained the decomposition of semisimple algebras over the field \mathbb{C} of complex numbers into matrix algebras, fifteen years before Wedderburn’s Theorem over arbitrary fields.

Going back even further, a theorem proved in 1878 by G. Frobenius and L. Stickelberger is that every finite commutative (= Abelian) group is a direct sum of primary cyclic groups (Cf. 1.9B and 1.14). The Fundamental Theorem of Abelian Groups (= FTAG) and the Wedderburn-Artinian Theorems (= WAT) are offered as paradigms for algebraic structure theorems, and inter alia, both state that finitely generated (= $f \cdot g$) modules are direct sum of cyclic modules! And WAT further states that all modules over semisimple rings are direct sums of cyclic modules, and actually every indecomposable cyclic module is simple. Further, WAT not only implies that (1) every module is a direct summand of every over-module, but that (2) every module is a direct summand of a free R-module. Thus, by (1)
every module over a semisimple ring is injective (N.B.) and by (2) every module is projective.

Those Twins: Injective and Projective Modules

An R-module E is *injective* if every embedding $E \hookrightarrow F$ into an overmodule splits, i.e., is a direct summand, while a *projective* module P has the dual property: every onto homomorphism $M \to P$ splits in the sense that the kernel is a direct summand.

And so it goes. You *have* to have injectives and you *have* to have projectives in any discussion of direct summands. But if $\{E_a\}_{a \in A}$ is a set of injectives indexed by a set A, it is natural to ask when is their direct sum $\bigoplus_{a \in A} E_a$ injective? When this is so, then the direct sum splits off in the direct product. This is trivially true when A is finite but it is true for all direct sums of injectives iff R is Noetherian, i.e., R satisfies the ascending chain condition ($= \text{acc}$) on all right ideals (assuming the E_a are *right* R-modules (see 3.4B)).

If every direct sum of copies of an injective module E is injective, then E is said to be \sum-injective. This happens iff R satisfies the acc on right annihilators in R from subsets of E (see 3.7A).

Another Twin: Acc and Dcc

So you *have* to have ascending chain conditions on certain (right) ideals, and *maybe* the descending chain condition ($= \text{dcc}$) on certain ideals. The latter happens whenever you have direct sum splitting in the direct product of an infinite set $\{M_a\}_{a \in A}$ of modules that are not even injective (1.23,1.24 and 1.25). Furthermore, the dual condition regarding a direct product of projectives also produces chain conditions (see 1.17A and 3.31; Cf. 6.6).

These theorems show the power of the condition that direct sums split off, but other direct sum conditions are also powerful: if every injective R-module is a direct sum of indecomposable modules, then ring R is again right Noetherian (3.4C). Moreover, if we assume every injective R-module is isomorphic to a direct sum of modules from a *given* set of modules, then R is Noetherian (3.5A); and if every module is isomorphic to a direct sum of modules in a given set, then R is Artinian (3.5A), that is, satisfies the dcc on all right ideals.

FGC Rings

Much of the survey is an elaboration of these themes. For example, §5 is devoted to describing the classification of all commutative rings, called *FGC* rings, over which every $f \cdot g$ module is a direct sum of cyclics, and even more generally, in §6, when all finitely presented modules are direct sum of cyclics (6.3). The first question involves the notions of (almost) maximal rings, equivalently (almost) linearly compact rings in the discrete topology, and Bezout domains (sup. 5.4B), h-local domains (sup. 5.4A), and fractionally self-injective (=FSI) rings (sup. 5.9). The FGC Classification Theorem 5.11 states *inter alia* that R is FGC iff FSI and Bezout.

A Companion to the Fundamental Theorem

The companion theorem to FTAG for finitely presented ($= f \cdot p$) modules (the aforementioned Theorem 6.3) involves elementary divisor rings (=EDR’s), i.e., rings
over which every matrix is equivalent to a diagonal matrix. Thus: every \(f \cdot p R \)-module is a direct sum of cyclics iff \(R \) is an EDR (Cf. also 6.5B).

FP-Injective Modules and Rings

One might call these latter rings FPC rings. A concept that pops up in this regard is that of FP-injectivity (Cf. 6.2ff.). And the concept of fractionally self-FP-injective (=FSFPI) also appears, and to an extent parallels FSI in the description of FGC rings (6.4).

Every ring \(R \) can be embedded in an FP-injective ring (6.21). This is a consequence of the fact that every ring can be embedded in an existentially closed (=EC) ring (6.20). In this connection the conception of EC fields is of interest: every sfield (= skew field) can be embedded in an EC sfield (6.24).

Mal’cev Domains

On the subject of embeddings, Mal’cev domains are not embeddable in sfields (6.27), and moreover, there exist integral domains not embeddable in left Noetherian nor in right Artinian rings (6.34).

IF and QF Rings

On the subject of FP-injective rings, there pop up IF rings, or rings over which every injective \(R \)-module is flat. This happens iff \(R \) is a coherent FP-injective ring (Cf. 6.9).

The IF rings parallel the QF (= quasi-Frobenius rings) in that QF rings are those over which every injective is projective (3.5B) and similarly over which every projective is injective (3.5C).

Another parallel: \(R \) is right IF iff every \(f \cdot p \) right \(R \)-module embeds in a free module (6.8), whereas \(R \) is QF iff every right \(R \)-module embeds in a free module. Furthermore, \(R \) is QF iff every cyclic right and every cyclic left \(R \)-module embeds in a free \(R \)-module (3.5D).

Duality via Annihilators

Yet another parallel: a duality by annihilation between one-sided \(f \cdot g \) ideals characterizes IF rings (6.9), and QF rings too since every one-sided ideal is \(f \cdot g \) (sup. 3.5B). Cf. Dual rings in §13.

Pure-injective (algebraically compact) modules, i.e., modules \(M \) that are direct summands of any module containing \(M \) as a pure submodule are defined in §6, sup. 6B (Cf. 1.26).

Krull-Schmidt Theorems and Failure

Any Noetherian (resp. Artinian) module \(M \) is decomposable into a finite direct sum of indecomposable modules, but this decomposition need not be unique. The Krull-Schmidt theorem gives uniqueness assuming that \(M \) is both Noetherian and Artinian. Krull-Schmidt also holds over a complete local Noetherian ring \(R \), i.e., for just Noetherian modules over \(R \). The failure of the Krull-Schmidt theorem for just Artinian modules was proved in 1995, and I have included an account of this and related questions including the decomposition of modules into an arbitrary set of indecomposables in §8. This introduces the concepts of exchange rings and modules, sup. 8.4.
Acc on Annihilators

In §9, we find that the acc on annihilators (= acc \perp) of a ring R is not inherited by the polynomial ring (9.2), but that it is if R contains an uncountable field as a subring (9.3) or if R is Goldie and locally Noetherian (9.6), or if R has finite Goldie dimension and the quotient ring Q of R has nil Jacobson radical (9.4), e.g. if Q is an algebraic algebra over a field k of cardinality larger than the dimension of Q over k (9.5).

Non-uniqueness of the Coefficient Ring

In §10, we find for a polynomial ring $R[X]$ that the coefficient ring R need not be uniquely determined up to isomorphism, even if R is a Noetherian domain (10.1) but it is if R is a zero dimensional ring (10.2), e.g. a von Neumann regular ring (10.3), or a finite product of local rings (10.4), or a domain of transcendence degree 1 over a field (10.5), etc. We also list some matrix cancellable rings from Lam’s survey [95].

Group Rings

§11 is devoted to various properties of group rings AG; in particular, when AG is QF, self-injective, QF, perfect, VNR, semisimple, etc. Also considered is the question of when the group ring determines the group.

Maximal Quotient Rings, Duality, Krull and Global Dimension, and Polynomial Identities

§12 is on the subject of maximal quotient rings, localizing functors, and torsion theories. §13 is on Morita and other duality and applications. §14 is on classical Krull dimension $\dim R$ of commutative Noetherian rings, the global dimension, $gl.\dim R$, of any ring R, and regular rings (= Noetherian R of finite global dimension, in which case $= \dim R$). Also in §14, noncommutative Krull dimension of rings and modules is sketched and various applications given. §15 is on PI-rings, that is, rings with polynomial identities.

Aspects of Commutative Algebra and the Rest of the Story

Chapter 16 is on the subjects in commutative algebra: unions of prime ideals, prime avoidance, associated prime ideals, and the acc on annihilator ideals and irreducible ideals.

Chapter 17 is on the subject of the author’s Ph.D. thesis (Purdue 1955): Galois theory and independence of automorphisms. But whereas his thesis was devoted to fields, this chapter is on the subject of papers dating to 1982, on the linear independence of automorphisms of commutative rings, or, as the title suggests: “Dedekind’s Theorem Revisited.”

The above sketches cover perhaps only twenty-five percent of the text. Since the titles only sketchily indicate the chapter contents, we have included the paragraph headings in Contents to tell “the rest of the story.”

Mathematical Commentaries on the Works of Wedderburn, Artin, Noether, and Jacobson

Extensive commentaries on the work of Emmy Noether appear in Brewer-Smith [81], notably Swan on “Galois Theory” (Chap. 6), Gilmer on “Commutative Ring
Theory” (Chap. 8), Lam on “Representation Theory” (Chap. 9),\(^1\) and Fröhlich on “Algebraic Number Theory” (Chap. 10). Also included is Noether’s address to the ICM in 1932 on “Hypercomplex Systems and Their Relations to Commutative Algebra and Number Theory.” Also included are personal reminiscences of Emmy Noether by Clark Kimberling, Saunders Mac Lane, B. L. van der Waerden, and P. S. Alexandroff. (Also see Jacobson’s introduction to Noether’s Collected Papers [83].)

Additional commentaries appear in Srinivasan-Sally [82], including Jacobson’s “Brauer Factor Sets, Noether Factor Sets, and Crossed Products”, Swan’s “Noether’s Problem in Galois Theory”, Sally’s “Noether’s Normalization”, LaDuke’s “The Study of Linear Associative Algebras in the United States, 1870–1927” (Cf. Parshall [85]), and personal reminiscences by a number of her students and colleagues. Also see Lang-Tate [65] for a succinct discussion of Artin’s life and work. Van der Waerden acknowledged the lectures of E. Artin and E. Noether as a basis for his books [31–48], and for many years these books were the standards for abstract algebra. (The 4th edition in 1959 incorporated the Perlis-Jacobson radical (p. 204ff.).) In his Collected Mathematical Papers [89], Jacobson included memoirs of his world travels and his meetings with hundreds of mathematicians.

Krull, Struik, Boyer and van der Waerden

Other books outlining the development of modern algebra are those of Struik [87], Boyer-Merzbach [91] and van der Waerden [85]. For those who thought that Dedekind originated the ring concept-definition, Kleiner [96] has a surprise for you: it was Fraenkel (in 1914) who was better known as a logician. Kronecker is generally credited for the concepts of a module and tensor products.

Kaplansky’s Afterthoughts

In the interim, I have read Irving Kaplansky’s retiring presidential address “Rings and Things” in January 1996 to the American Mathematical Society (unpublished) where he cites Bourbaki, who earlier vouched for Fraenkel. I also have read with the greatest pleasure Kaplansky’s “Selected Papers and Other Writings” [95] including his insightful “Afterthoughts,” and the introduction by Hyman Bass. In these few pages an entire era of mathematics is highlighted by Kaplansky’s mathematical vigor and vision.

Snapshots

In writing “Snapshots” I have tried to share how friendship shapes lives and mathematics. My hope is that people, especially young people, will take note, and forget about accumulating information at the expense of friendship and personal contact. Because of the widespread use of the World Wide Web and e-mail, there is a real peril here in the loss of the art of friendship.

Georgia O’Keefe’s epigram, accompanying a sheet of U.S. postage stamps depicting her “Red Poppy, 1927,” says it beautifully:

\(^1\)Lam also discusses (ibid., pp.149–150) the work of T. Moliën mentioned under “Other Nineteenth Century Theorems” earlier in the Preface, its influence on Noether, and its applications to representation theory.
No one sees a flower really. It's small and takes time to see, like a friend takes time.

I wrote the above in a Christmas letter to Jim Huckaba in which I thanked him for taking the time to read “Snapshots,” and for his enthusiastic response.

When I asked Claudia Menini what in the book would she like to see changed, she said, “Nothing!” And Jim Huckaba said the same thing (in other words): “I like the way you are writing it.”

In addition to Huckaba, Chantal and Greg Cherlin, Sarah Donnelly, Barbara Miller and many people encouraged me, indeed, “aided and abetted” me in writing “Snapshots” (see Acknowledgements). John D. O’Neill has had a benign influence on the entire book. My friendship with John grew out of a letter I wrote to him in Fall 1995 telling him how much I admired his great theorem on direct summands of copies of the integers that had just been published in Communications in Algebra. (See Theorem 1.27C.) A lot of the group theory in Chapter 1 was suggested by him, mostly other people’s work.

A similar instance occasioned my friendship with the late Pere Menal (see “Snapshots,” p.308). There are dozens and dozens of such instances, in fact, everybody mentioned in “Snapshots” is a friend, mathematical or other. Like the rose, some friends are prickly, and may not take kindly to the often too brief mention given them, and other friendships are like violets in Wordsworth’s “Lucy” poem:

“Lucy”

......
......
A violet by a mossy stone
Half-hidden from the eye
As fair as a star, when only one
Is shining in the sky.
She lived unknown, and few could know
When Lucy ceased to be;
But she is in her grave, and, oh,
The difference to me!

(from “She Dwelt among the Untrodden Ways” (1800))

Carl Faith
Princeton and New Brunswick
Tibi dabo, 28 April 1998
Acknowledgements to the First Edition

This survey was written during the year 1996–1997 starting in May, and I am hoping to finish it in time for my seventieth birthday (late April). I wish to thank Rutgers University and the Mathematics Department, particularly Deans Joseph A. Potenza, Robert L. Wilson, Chairman Antoni Kosinski and Acting Chairman Richard Falk, for not only their help in arranging my Faculty Academic Leave (despite a late application!) but also for their kind expression of concern during an interim illness that I experienced.

I am also deeply indebted to Barbara Miller of the Rutgers Mathematics Department for her skill and editorial ability, without which this survey might never have seen the light of day and certainly not been nearly as readable! In addition I am grateful to Barbara for her constant, often daily encouragement in the form of her avid interest in “Snapshots”, which kept me thinking about the people and places appearing there, many of which she knows from her own wide experiences in life and travel.

As I told Sarah Donnelly of the Acquisitions Department of the American Mathematical Society, this book is the work of two septuagenarians—Barbara Miller and me.

I wish to take this opportunity to thank Pat “Patty” Barr, who copied countless drafts and regaled us with her hilariously funny jokes: What a morale booster! She is deserving of thanks for her five years (1990–1995) of service as a Rutgers Central Telephone operator; Pat handled countless telephone calls for me. In “Snapshots” (see Part II), I told the story about Arthur Guy, whom I knew at the Dearborn Navy Radio Materiel School only as a voice. The parallel here was exactly the same, except that Pat knew me as a “name”. Was I ever surprised when she came to us in 1995 (after the switchboard was fully automated) as the mathematics department’s Xerox secretary and told me the story I just told you...Pat recognized my name from her telephone days.

Furthermore, I am indebted to John D. O’Neill for reading the manuscript in various editions, for making constructive remarks, for additional references and for picking out as many solecisms and barbarisms as I would permit. (John’s background as a classics major surely made this an ordeal for him!) Thanks, also, to Toma Albu, Pere Ara, Pete Belluce, Victor Camillo, Ferran Cedó, Gregory Cherlin, Gertrude Ehrlich, Alberto Facchini, José-Luis Gómez Pardo, Ken Goodearl, Ram Gupta, Carolyn Huff, Dinh Van Huynh, Tsit Yuen Lam, Jim Lambek, Richard Lyons, Ahmad Shamsuddin, Stefan Schmidt, Wolmer Vasconcelos, and Weimin Xue for a number of references and/or corrections. I also wish to thank the Ohio Ring

1Note: I was off by a whole year!
Theory “ring”, consisting of S. K. Jain and Sergio López-Permouth (at Athens) and Tariq Rizvi (at Lima) for numerous constructive suggestions. I also take pleasure in thanking Donald Babbitt, Pat Barr, Greg and Chantal Cherlin, Sarah Donnelly, Sergei Gelland, Jim Huckaba, Claudia Menini, Barbara Miller, Jaime Moncasi, Keith Nicholson, and John O’Neill for their encouraging words of support for this survey while it was a work-in-progress. In addition, Dr. Rita Csákány (our newest Ph.D.) has my gratitude for constructing the Register of Names and checking out the Index and Contents.

Mere mention of the people who helped me write this book does not sufficiently express my deep gratitude to those few who went way beyond the call of collegiality and truly became “mathematical friends” by giving the manuscript a thoroughly rigorous reading. They have relieved the prospective reader of the burden of hundreds of typos, dozens of “howlers,” and so many mea culpas!

I am deeply honored by the beautiful song by Linda York (Undergraduate Secretary Extraordinaire of the Department) composed on the occasion of my retirement in April 1997, and for her kind permission to reprint it in “Snapshots.”

And how can I ever repay Billy Reeves for his hilarious poem in the summer of ’58 at Penn State: “Carl, You Will Always Have Dumb Students?” See “Snapshots” just preceding “Envoi.”

I am also indebted to Antoni Kosinski, the Chair, Judy Lige, Business Manager, and the Mathematics Department for supporting my writing this book after my retirement.

I am grateful to Professor I. Kaplansky for the title of my book, which I filched from his retiring presidential address referred to in “Kap’s Rings and Things” in “Snapshots”. When I wrote for his permission to use it, he replied, “But of course. Anyway, Shakespeare has first claim.” (Letter of April 6, 1998)

What can I say about my wife’s indulgence that left me time to create this book? As my daughter, Heidi, has said, “Dad, there are always tradeoffs!” Well, Molly teaches Latin to six classes of high school students in nearby Hamilton, which keeps her from being a “book widow.” Sic semper magistrae! Et carpe librum!

And that’s not all—Molly’s careful reading of “Snapshots” resulted in the addition of so many commas that I nicknamed her the Kommakazi Kid!

Carl Faith
Index to Part II (Snapshots)

A-bomb 329	Bischoff, Elmer 360
Adamek, Gabe 360	Bishop, Errett 311
Adkins, Theodore 287	—, Jane 311
Albert, Adrian A. 290, 292, 321	Blair, Robert (“Bob”) 294–95
“Alice-in-Wonderland” 313	Bessenohl, D., 289
Algebra Seminar (“World’s Greatest”) 350–51	Bloustein, Edward J., 336
Allen, Woody 305n	Bochner, Solomon 354
Alliluyeva, Svetlana 306, 355	Bollobás, B., 325n
Altucher, Lauren 360	Bonic, Robert (“Bob”) 354
AMIAS 313, 333	Borel, Armand 201–02, 305–06, 349
Amitzur, Shimshon 323–24, 340–41	—, Gaby, 305
Anderson, Frank W. 316	Bott, Raoul 202n
“Anonymous”, Dr. 350n	Bourbaki, N. 350
Ara, Pere 345	Boyle, Ann Koski 321–22
Armstrong, Neil 338	Brandeis “Twins” 334
Artin, Emil 352–53	Brando, Marlon 331
—, Karin 353	Brauer, Richard 326, 338
—, Michael (“Mike”) 200n, 353	Bredon, Glen 334
—, Natalie (Natascha) Jasny 308n, 353	Bronowski, Jacob 336
—, Thomas 353	Browder, Bill 353
Ashbacher, Michael 337	Brown, Mort 310
Atiyah, Sir Michael 363	—, Karen 310
Attenborough, Sir Richard 331	Buchsbaum, David 335
Auslander, Maurice (“Moe”) 335, 352	Bullock
Babai, L. 325n	—, Allen 306
Baer, Reinhold 296–97, 319, 334	—, Fred 359
Bamberger, Louis 307	Bumby, Dick, 318–19, 351
Barr, Patricia (“Patty”) 290	Busqué, Cláudí 345
Barrow, John D. 288, 307n	Caeser, Julius 348
Bashmakova 287n	Calaprice, Alice 352n, 362
Bass, Hyman (“Hy”) 322	Caldwell, Bill 318
Batterton, Steve 359	Camillo, Vic 305, 321–22, 349, 357
Becket, Samuel 316	—, Barbara 305
Begin, Menachem 323	Camps, Rosa 345
Bell, J. L. 307n	Camus, Albert 355
Berberian, Sterling (“Sam”) 294	Cantor, Georg 319
Berlin Wall 306	“Captain” Bill 355–56
Bernstein, Felix 319	Carleson, Lennart 304
Berra, Yogi 363	Carr, Raymond 348n
Bigelow, Julian 315–16	Cartan, Henri 295
Birkhoff, Garrett D., 287, 326	Castellet, Manuel 345–46
Babai, L. 325n	Cedó, Ferran 345

365
Chandra, Harish 317-18
 —, Lily 317
Chandrasekaran, K. 202n
Chase, Stephen (“Steve”) 312, 334
Chatters, Arthur 345
 —, Marta Lombard 345
Cherlin, Gregory 292, 200n, 320
Chern, S. S. 349
Chevalley, C. 312
“Chicago Seven” 358
Chihara, Theodore (“Ted”) 294
Clemens, Samuel (see Mark Twain)
 —, Susy 330
Clouseau, “Inspector” 329
Cohen, Miriam 324
Cohen, Paul J. 308-09, 334
Cohn, Paul Moritz 314n, 318, 325, 334
Cohn, Richard Moses (“Dick”) 318, 351
Cole (Prize) 317
Connell, Ian 327
Correl, Ellen 294
Courtier, Dick 318
Cowling, Vincent 335
Coxeter, H.S.M. 326
Cozzens, John 290, 321-22, 340, 349
Cozzens, Margaret (“Midge”) 321
“Crazy Eddie” 355
Croisot, Robert 319
Curie, Pierre 358
Curtis, Tony 298

Dales, H. G. 292
Deskins, W. E. (“Cupcake”) 294-95
 —, Barbara 295
Dewey, Thomas 334
Dicks, Warren 345-46
Dickson, Leonard E. 290
Diebenkorn, Richard 360
Diophantus (Diophantos) 287n
Diab, V. (“Vlasta”) 322
Dold, Albrecht (“Al”) 298, 312
Dukas, Helen 313, 351n
Durheim, Emil 310
Dyer-Bennett, John 292
Dyson, Freeman 305, 313, 317, 337, 352n
 —, Ima 317

Eastwood, Clint 326
Eckert, P. 315n
Eckmann, Beno 312
ECP 315
Eddy, Captain 324
Eilenberg, Samuel (“Sammy”) 245, 351-52, 357
Einstein, Albert 313-14, 316, 321, 351, 352-53
Eisenbud, David 349

Electronic Computer Project (ECP) 315
Elliott, Joanne 334
“Eniac”, 315n
Erdős, Paul 325-26, 337, 343
Erikson, Erik 307n
Ernest, John A. 310
Euclid 353, 361

Facchini, Alberto 346-47
Faith, Carl 287ff
 —, Cindy 294, 299, 203
 —, Eldridge (“Edgie”) 291
 —, Frederick (“Fred”) 289-90
 —, Heidi 294, 299, 203, 311-12, 327, 332
 —, Herbert Spencer (“Dad”) 291
 —, Vila Belle Foster (“Mama”) 288
 —, Louise (“Sis”) 288
Falk, Rick 290
Faticoni, Theodore (“Ted”) 343
Faulkner, William 363
Feit, Walter 336
Fermat, Pierre 355, 362
Feynman, Richard 316
Fieldhouse, David 327
Fine, Nathan 292, 329
Fintushel, R. 202n
Fisher, B. 337
Fisher, Louis 331, 354
Fitzgerald, F. Scott 354
Flexner, Abraham 305, 313, 316, 353
Foster, Vila Belle (“Mama”) 288
Fraenkel, A. 350
Franco, Generalissimo 347
Fred, see Faith
Freud, Sigmund 310
Friend, David 325n
Frink, Orrin 295n, 296
 —, Aileen 296
Fulbright 296, 339, 344, 353
Fuld, Mrs. Felix 307
Fuller, Kent R. 322
Fussell, Paul 303-04

Gaddis, John Lewis 307
Galois, Evariste 288
Gambill, Robert (“Bob”) 293-94
Gandhi (“Mahatma”) 317, 331
Gangoli, Minoto 317n
Gårding, Lars 304
Garrison, Cindy 360
Gaudí, Antonio 347, 358
Gauss, Carl Friedrich 287, 325
Gelfand, I. M. 260, 306
Germamita, Anthony Vito 338
Gillman, Leonard (“Lenny”) 292-93
 —, Reba 293
Gödel, Kurt 288, 307-11, 356
Goethe, Johann Wolfgang von 298
Golan, Jonathan 323
—, Henda 323
Goldie, Alfred 319–20, 334
Goldstine, Herman 315n, 316
Gonshor, Harry 318–19, 351
Goodearl, Kenneth (“Ken”) 339–40, 345–46
Goodman, Adolph (“Al”) W. 287, 327
Goodman, Roe 351
Gorbachev, Mikhail 306
Gorenstein, Daniel (“Danny”) 312n, 335–39, 352
—, Helen 338–39
—, Julia 339
Gould, Sidney H. (“Sid”) 288, 326
Grad, Arthur 336
Graham, Ron 325
Graves, Robert 362
Griess, R. L. 337
Griffith, Phillip A. 202n
Grobman, Arnold 321
Gross, Mason 321
Grove, Vernon (“Verne”) 295
Grothendieck, Alexandre 337
Gupta, Ram 327
Guy, Arthur 314
—, Dorothy 314
—, Jennifer 314n

Hadamard, Jacques 355
“Hagar The Horrible” 336
Hale, Jack 293
Halmos, Paul 293, 315n, 316
Halperin, I. 325
Harada, K. 336
Hardy, Thomas 200
Hartley, Brian 346
“Haas”, see Whitney
Hazard, Clifton 291
Heaton, Bob 318
Heidi, see Faith
Henriksen, Melvin (“Mel”) 292–93, 295
Heracleitus 333n
Herbera, Dolores 342, 344–45
Herstein, Israel (“Yitz”) 311, 321, 337, 352
Herzog, Fritz 295
Hilbert, David 201, 305, 345
Hildebrandt, T. H. 326
Hill, George William 336
Hille, Einar 350
Hingley, Ronald 339
Hitler, Adolf 299, 304, 306, 308, 324, 330, 340
Hochschild, Gerhard 326, 337
Hocking, John G. 295
Hoffman, Abbie 358n
Hoffman, Banesh 314
Hofmann, Hans 360
Hofstadter, Douglas 316
Holmes, Oliver Wendell 333
Hope, Bob 297
Hopkins, Charles 340
Howard, Michael 306
Hughes, Pam 313
Hughes, Robert 348n
Hull, Ralph 291
Humphrey, Hubert 304
Huneke, Craig 307, 337n
Hutson, H. Leroy (“Roy”) 290, 357

“Iliac” 315
Indian A-bomb 329
Irving, Washington 330

Jacobson, Nathan (“Jake”) 309, 320–21, 336, 337n, 341
—, Florie 321
Jacobsson, Ulla 289
Jain, Saroj 327
Jain, S. K. 327
James, I.oa M. 323
James, William 362
Jarrell, Randall 358
Jategaonkar, Arun 335
Jech, T. 356n
Jensen, Christian U. 356n
Jerison, Meyer (“Jerry”) 292–93
Johns, Baxter 322
Johnson, K. 289
Johnson, Don 292–95, 342
Johnson, Joseph (“Joe”) 340
Johnson, Lyndon Baines (“LBJ”) 304
Johnson, R. E. 319
Johnson, Samuel 203
Jonah, Harold S. F. 291
—, David 291
Juvenal 363
Kafka, Franz 330
Kahler, Erich 354
Kaplansky, Irving (“Kap”) 316, 326, 349–50
Karma (Indian Goddess) 329–30, 341–42, 346
Kasch, Friedrich (“Fritz”) 296, 298, 312
Kashmiri Gate 328
Kaufmann, Walter 332, 354
Kelly, Leroy M. 295
Kelsh, Pat 315
Kemperman, Johann (“Joop”) 290, 293
—, Vilna 293
Kennon, George F. 306–07
Kent, Conrad 348n
King 328
King James 363
Kingsley, Ben 331n
Kinsburg, Joy Marks 324
INDEX TO PART II (SNAPSHOTS)

Kist, Joseph ("Joe") 292, 295n, 342
Kohls, Carl 292
Koifman, L. A. 332
Kolchin, Ellis 322
Kosinski, Antoni 290, 321, 334
—, Renate 334
Köthe (also Koethe), Gottfried 296, 316–17
Kuhn, Thomas 316
Kurosch (also Kuroš), A. G. 308

Lambek, Joachim ("Jim") 292, 326–27, 334, 353n
—, Hanna 327
Landauer, Susan 360
Lang, Serge 357
Lassaw, Ibram 359
Lawrence, D. H. 343
—, John 327
Lax, Peter 336
Lee, Tsung Dao 313
Lemmon, Jack 298
Lenin 306, 331
Lenzing, H. 352n
Lepowsky, James ("Jim") 350
Leray, Jean 202
Lesieur, L. 319
Lesser, Wendy 358
Levitzki, Jakob 340–41
Lilly, Eli 291
Lombard, Marta 314
Lyons, Richard 336–38, 350

Mack, Mary Ellen 290
Mac Lane, Saunders 287
"Maniac" 315–16
Mann, Thomas 330
Mastrian, Barbara 290
Matlis, Eben 316
Mauchly, J. W. 315n
Mazur, Barry C. 354n
Mazur, the "Famous" 354n
McKenzie, Ralph 326
McKinney, Jennifer 360
McKnight, J. D., Jr. ("Jim") 292
Meiss, Millard 318
Menal, Pere 319, 322, 345–47
Mikhael, A. B. 332
Millay, Edna St. Vincent 362
Miller, Barbara 290
Milnor, John ("Jack") 203, 350
Mintz, Rose ("Rosie") 342
Miro, Joan 348n
Mitchell
—, Barry 341, 350–51
—, Jane 313
Mittag-Leffler (Institute) 304
Mohamed, Saad 327
Moncasi, Jaume 345–46
Montgomery, Deane 201–02
—, Kay 201
Monroe, Marilyn 298
Moore, E. H. 290
Morita, Kiiti 357
Morse, Marston 299–01, 310
—, Louise 200–01
Mostow, G. D. 202n
Moskowitz, Morris ("Moe") 288
Mostert, Paul 288, 294
Mueller, Bruno 312

Nash, John 361
Nasser, Sylvia 341
Neider, Charles 203, 330–31
—, Joan 203, 330
—, Susy 330
Nelson, Edward ("Ed") 317
Netanyahu 323
Newton, H. 290
Nietzsche, Friedrich 299, 332
Nixon, Richard Milhous 304
Nobel (Prize) 313
Noether, Emmy 320

Oberst, Ulrich 312
Odhnoff, Jan E. 289
Oehmke, Bob 295
—, Theresa 295
Oertel, Thomas 359
O’Keefe, Georgia 343
O’Nan, Michael ("Mike") 336
Oppenheimer, Joseph ("Joe") 318
Oppenheimer, J. Robert ("Oppie") 305, 316
—, Kitty 305
Ornstein, Avraham 322–23
—, Ahuva 322–23
Orton, William ("Bill") 329
Osofsky, Barbara 290, 311, 318–19, 345–46, 351
—, Abe 311

Page, S. 323, 342
Pais, Abraham 313
Parshall, Karen H. 290
Pedoe, A. 326
Penrose, Sir Roger 362
Perelló, Carles 346
Perlis, Sam 288–92, 294
Piatetski-Shapiro, I. 326
Picasso, Pablo 305, 348n, 363
Pillay, Poobhalan ("Poo") 320, 342, 345–46
—, Khandon 342
—, Kanyakumari 342
—, Lalita 341–42
Poincaré, Henri 336
INDEX TO PART II (SNAPSHOTS)

Singh, Surjeet 327
Skalba, Justine 351
Skolem, A. T. 307n
Skornyakov, L. A. 319, 332
Slomson, A. B. 307n
Smale, Steve 357–59
Smithsonian 315
Smirnova 287n
Smulian, Ray 325n
Solomon, Ron 336
Solovay 356n
Souslin (or Suslin) 356
South, Dudley E. 287
Soukhanov, Anne H. 306n, 308n
Spector, Clifford 310
—, Leah 310
Spencer, D. C. 318
Spencer, J. 325n
Sputnik 332
Srinivasan, Bhama 327, 329
Stalin 306–07
Steele (Prize) 320
Steenrod, Norman 349
Stephans, Dorothy 202
Stevenson, Robert Louis 330
Stone, M. H. 290n
Sullivan, Molly Kathleen 203, 313, 341–42, 349
Swan, Richard 341

Taft, Earl 290, 333–34, 351
—, Hessy 333–34
Taft, Robert Alphonso 334n
Taft, William Howard 334n
Tarski, Alfred 307n, 325, 343
Tata (Institute) 317
Tate, John 353n
Tennenbaum, Stanley 356
—, Jonathan 356
—, Susan 356
Tennonson, Lord Alfred 298n
Thompson, John G. 336
Thrall, Robert 322
Threlfall, William 309
Tierney, Myles (“Tiernovsky”) 351
“Tiger” (Walker) 316
“Tinkers to Evers to Chance” 340n
“Tokyo Rose” 342
Toland, John 308
Tolskaya, T. C. 332
Tolstoy, Leo 339
Tomber, Marvin 295
Tominaga, Hisao (“Tommy”) 342
Triantfillou, Georgia V. 200n
Tuchman, Herb 354
Twain, Mark (Samuel Clemens) 203, 330

Sadat, Anwar 323
Salinger, J. D. 354
Sartre, Jean-Paul 354
Savio, Mario 358
Scanlon, Jane 335
Schmidt, F. K. 298
Schoenfliess 310
Schlatter, Richard 321, 324
Schwartz, Binyamin 340
Scott, Robert F. 330
Seifert, Herbert 298, 309
—, Frau Herbert 298, 309
Selberg, Atle 202n, 304, 323–24
—, Hetty 304
—, Ingrid 304
—, Lars 304
—, Peter 304
Sellers, Peter 329
Shackleton, Ernest 330
Shakespeare 324, 335, 350
Shamsuddin, Ahmad 344
Shanks, Nelson 294
Shields, Brooke (“Pretty Baby”) 355
Silverman, Ed 294
Sims, Charles (“Chuck”) 336, 350
Singh, Simon 362

Prindle, Dennis 348n
Proust, Marcel 318

Ramanathan, K. G. 329
Ramanujan (Prize) 317
Rao, Ranga 327
Raphael, Robert 346
Reagan, Ronald (“Ron”) 306
Reeves, Billy 361–58
Regis, Ed 316, 353
Rentschler, Rudolf 312
Resco, Richard 322
Richmond, Fred 342
Rief, Rita 351
Rieffel, Marc 357
Rinehart, George 340n
Riney, David 294
Ringel, Klaus 322
Ritt, Joseph K. 322
Rockefeller (Institute) 313
—, David 359
Robertson, Malcolm 326
Rosenberg, Alex 340
Rosenthal, Arthur 287–88, 294
Rothenberger, Fritz 326–27
Ross, Kenneth 293
Royster, Kimberly 287
Rubin, Jerry 358
Russell, Bertrand 362

Pomerance, C. 325n
Ramanuja
Reeves
Reagan
Raphael
Rao
Ramanathan
Proust
Pomerance
Royster
Rief
Richmond
Resco
Russell
Rubin
Ross
Rothenberger
Rosenthal
Rosenberg
Robertson
Rockefeller
Rang
Josep
Davi
Anwa
Sadat
Shakespear
Selberg
Seifert
Scott
Schwartz
Shamsuddin
Shackelton
Singh
Tenn
Twain

INDEX TO PART II (SNAPSHOTS)

369
“Undergraduate Gems at Rutgers and Penn State” 360–62
Underwood, Caroline 310
Upham, Mary 327
Uspekhy 287
Utrillo, Maurice 348n
Utumi, Yuzo 319–21

Vámos, Peter 345–46
Vandermeer, Johnny 340n
Van der Waerden 287
Vasconcelos, Wolmer 351, 357n
Vaserštejn, Boris 345
Veblen, Oswald 313, 318
Vinsonhaler, Charles 309
von Neumann, John (“Johnny”) 315–16, 326, 340

Waksman Institute 333
Waldheim, Kurt 308n
Walker, Carol 316, 343
Walker, Elbert A. 316, 343
Walker, Gordon L. 292
Walker, R. J. 292
Ward, James A. 287
Warfield, Robert 346
Wasan, Kamlesh 327
Wedderburn, J. H. M. 320, 351, 356
Weibel, Charles (“Chuck”) 341, 351
Weil, André 313
Weiss, Marie 287
Weyl, Hermann 320
Whitney, Hassler (“Hass”) 203, 330
—, Gertrude 327
Wiegand, Roger 346
Wiegand, Sylvia 346
Wilder, Billy 298
Wiles, Andrew 337, 355
Willett, R. 350
Wilson, Jay 355–52
Wilson, Robert Lee 350
Witherspoon, John (Street) 355
Witt, Ernst 308–09
Wolfson, Kenneth 321n, 334–35
—, Roz 335
Wood, Ezra 345
Wood, Japheth 290, 325, 361, 363
Woodin, H. G. 292
Woolf, Harry 313, 315
Woolf, Patricia Kelsh 314–15

Yandell, B. H. 309n, 353n
Yang, C. T. 202n
Yang, Chen Ning 313
Yeager, “Chuck” 294
York, Linda 290
Youngman, Henny 290

Zaks, Abraham 323
Zaring, Wilson 319
Zariski, Oscar 337
Zeno, of Citrium 332n
Zeno, of Elea 332n
Zippin, Leo 201, 202n
Zitarelli, D. 290n
Zuckerman, G. M. 332
Bibliography

Note: The notation [72] denotes 1972, the year the paper was published. Additional listings are in the author’s Algebra I and II, and in the Russian translations published by MIR Publishers.

If more than one paper by an author appears e.g. in 1981, we list them as [81a], [81b], . . . , or sometimes, [81], [81b], . . . , or maybe [81], [81a], [81b], . . . , etc. We apologize for this inconsistency.

[72b] ———, *Nil radicals: Historical notes and some new results*, in Kertesz [72].

[98] ______, $AB - 5^*$ for module and ring extensions, in Dikranjan and Salce [98], 59–68.

[64a] ———, *Projective modules over free groups are free*, J. Algebra 1 (1964), 367–373.

[61] A. Bialynicki-Birula, *See Balcerzyk*.

W. D. Blair, *See Beachy.*

———, *Eléments de mathématique (A.S.I.N° 1314)*, Algèbre Commutative, Chapitre 7 (Diviseurs), Hermann, Paris 1965.

[65] R. T. Bumby, Modules which are isomorphic to submodules of each other, Arch. Math. 16 (1965), 184–185.
[88] C. Busqué, Directly finite R_0-complete regular rings are unit regular, in Ring Theory, pp. 38-49, See P. Bueso [88].
[75a] , Commutative rings whose quotients are Goldie, Glasgow Math. J. 16 (1975), 32–33.
[76] , Rings whose faithful modules are flat, Arch. Math. 27 (1976), 522–525.
[78] , On the homological independence of injective hulls of simple modules over commutative rings, Comm. in Alg. 6 (1978), 1459–1469.
[90] , Coherence for polynomial rings, J. Algebra 132 (1990), 72–76.
[98a] , See Anderson.

[01] ———, *See Antoine.*

[75] ______, A nonsingular Noetherian ring need not have a classical quotient ring, J. London Math. Soc. 10 (1975), 66–68.

[02] ______, E-mail to the author, Jan. 22, 2002.

[74,77,91] P. M. Cohn, Algebra, 3 vols., John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1974, 1977, 1991; published in revision and new format as Cohn [00,02,03].

[85] P. M. Cohn, Second Edition of Cohn [71b].

[91] P. M. Cohn, See Cohn [74,77,91].

[1887] R. Dedekind, *Was sind und was sollen die Zahlen?*, Vieweg, Braunschweig, 1969 (reprint), Braunschweig, 1887.

[94] ______, *See Menal*.

[90] N. V. Dung, See Huynh.

[01] ———, See Bican.

[82] ———, Commutative rings whose finitely embedded modules have injective dimension \(\leq 1\), J. Algebra **77** (1982), 467–83.

[89] ———, See Azumaya.

[97] ———, See Dung.

———, *Galois extensions in which every element with regular trace is a normal basis element*, Proc. A.M.S. **9** (1958), 222–229.

———, *See Chase.

[90a], Embedding torsionless modules in projectives, Publ. Mat. 34 (1990), 379–387.

[90b], Review of Huckaba [89], Bull. Amer. Math. Soc. 22 (1990), 331–335.

[95a], Locally perfect commutative rings are those whose modules have maximal submodules, Comm. Algebra 33 (1995), 4885–4886.

[96c], Rings with few zero divisors are those with semilocal Kasch quotient rings, Houston J. Math. 22 (1996), 687–690; Note: The result implied by the title is incorrect unless the word “Kasch” is deleted. The corrected statement is a result of E. Davis [64]. See Theorem 9.9 in the text.

[97a], See Facchini.

[99], Quotient finite dimensional modules with acc on subdirectly irreducible submodules are Noetherian, Comm. Algebra 27 (1999), 1807–10.

[00b], Associated primes in commutative polynomial rings, Comm. Algebra 28 (2000), 3983–86.

[03a] , When cyclic modules have sigma injective hulls, Comm. Algebra 31 (2003), 4161–4173.
[64b] , Baer modules, Archiv der Math. 15 (1964), 266-270.

[56] ______, *See Szele.*

[72,75] K. R. Fuller, *See Anderson.*

[72,76] ______, *See Camillo.*

[64] ______, *See Popescu.*

[67] ______, *See Rentschler.*

A. Giambruno (ed.), *See Drensky.*

L. Gillman, *See Fine.*

———, *An intersection condition for prime ideals*, pp. 327–331 in Anderson (ed.), [97].

———, *See Fu.*

R. Göbel, *See Dugas.*

H. P. Goeters, *Warfield duality and module extensions over a Noetherian domain*, pp. 239–249, in Facchini and Menini [95].

BIBLIOGRAPHY

[98a] ———, *Torsionless modules and rings with finite essential socle*, in Dikranjan and Salce [98], pp. 261–278.

[00] ———, *Chain conditions on direct summands and pure quotient modules*, in Van Oystaeyen and Saorín [00], pp. 195–203.

[97] , See Ara, and see Arhangel'skii.

BIBLIOGRAPHY

[71] ______, See Eisenbud.

[82] ______, See Brown.

[75] D. Handelman, See Goodearl.

———, *See Kharchenko*, (Note Kharchenko = Harčenko).

D. K. Harrison, *See Chase*.

———, *See Eilenberg*.

[71] W. Heinzer, *See Abhyankar*.

[73] _____, *See Eakin*.

[74] _____, *See Brewer*.

[82,83,97] _____, *See Gilmer*.

[80] _____, *See Brewer*.

[95] _____, *See Cedó*.

[97] _____, *See Anh*.

[97] _____, *See Faith*.

[66] ———, See Belluce.
[1897] ———, Bericht über die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker Vereinigung, iv, reprinted in Hilbert [32].
[97] E. Houston, See Cahen et al (eds.).
[90] ———, See Faith [90b].

[96] ———, *See Fontana.*

[79,80] ———, *See Zimmermann-Huisgen.*

[97] ———, *See Arhangel’skii.*

[94] ———, *See Clark; also Dung.*

[02] ———, *See Faith.*

[01] ———, *See Cohn.*

[66] , See Belluce.
[92] , See Al-Huzali.
[96,98] , See Huynh.

[90] , Rings whose cyclics are essentially embeddable in projectives, J. Algebra 128 (1990), 257–269.

[65] , See Curtis.

[88] P. Jara Martinez, See Bueso.

A. V. Jategaonkar, *See Formanek.

M. Jerison, *See Gilman.

M. Jerison, *See Henriksen.

J. Ježek, *See Freese.

U. K. Johnsen, *See Blessenohl.

[61] ——, Quasi-injective modules and irreducible rings, J. Lond. Math. Soc. 36 (1961), 260–268, (See also Wong and Johnson).
[64] ——, See Crawley.
BIBLIOGRAPHY

[95b] ———, Commutativity Theorems revisited, in Selected Papers [95a].
[48] ———, See Arens.
[00] ———, See Benkart.

[92] ———, The power series ring over an Ore domain need not be Ore, J. Algebra 75 (1992), 175–177.

[00] ———, Fixed rings and noncommutative invariant theory, in Hazewinkel [00], pp. 359–98.

[73,74,77] ———, See Harčenko, (Kharchenko = Harčenko).

[90] ———, Modules with regular, perfect, Noetherian, or Artinian endomorphism rings, pp.7–18, in Jain-López-Permouth [90].

[97] ———, See Birkenmeier.

BIBLIOGRAPHY

[57] M. Kneser, See Kasch.

[70] L.A. Koifman, Rings over which each module has a maximal submodule (Russian), Mat. Zametki 7 (1970), 359–367.

[71a,b] , Rings over which singular modules are injective, I,II (Russian) 6 (1971), 85–104,161; 62–84,199–200.

[99] A. A. Koochakpoor, See Karamzadeh.

[77] ———, "See F. Kasch.
[58] ______, See Findlay.
[65] ______, See Fine.
[65] S. Lang, See Artin.
[85,02] D. Lantz, See Heinzer.
[75] ______, See Handelman.

[73] ——, *See Gordon.*

[89] ——, *See Jensen.*

[39] ——, *On rings which satisfy the minimum condition for right-hand ideals*, Compositio Math. 7 (1939), 214–222.

[75] , Matriz equivalence and finite representation type, Comm. Algebra 3 (1975), 739–748.
[69] , See Klatt.
[95] , See Facchini.
[75] , See Heitman.
[70] A. I. Lichtman, Rings radical over a commutative subring, Mat. Sb. (N. S.) 83 (125) (1970), 513–523, (note: "Lichtman" was earlier spelled "Lihtman").
[74] W. J. Lewis, See Larsen, also Shores.
[92] , See Al-Huzali.
[90–93] , See Jain.
[96,00] , See Huynh.
[78] , See Lawrence.
[66] ______, See Eilenberg et al., (eds.).
[79] ______, See Lam.
[37] A. I. Mal’cev (also Malcev), On the immersion of an algebraic ring into a field, Math. Ann. 113 (1937), 686–691.
[01] A. Mann, See Amitsur.
[66] ______, See Kasch.
[01] H. B. Matzat, See Malle.
[00] K. McCrimmon, See Benkart.
[50] , See Brown.
416 CARL FAITH

[84] ———, See Ara.
[89] ———, See Herbera.
[79] ———, See Dicks.
[92,94,95] ———, See Faith.

[95] ———, See Facchini.
[97] ———, See Ánh.
[91] U. C. Merzbach, See Boyer.

[89] ———, *See Goodearl.*

[81] ———, *See Menal and Moncasi [81].*

[82] ———, *See Menal and Moncasi [82].*

[94] ———, *See Menal [81c] and [94].*

[71] ———, *See Herstein.*

[75] ———, *See Cohen.*

______, *Localizations of categories*, IV, cited by Onodera [76].

______, *See Kamal.

______, *See Mohamed.

W. Müller, *See Dischinger.*

______, *See Tominaga.

______, *See Ikeda.*

______, *See Jans.*
BIBLIOGRAPHY

[95] B. Nation, See Freese.

[77] O. M.聂罗斯拉夫斯基, See Zalesski.

[01] ______, See Han.

______, *See Heinzer*.

______, *See Hannah*.

______, *See Ara*.

______, *Survey of rings whose additive subgroups are subrings or ideals*, pp.161–167 in Jain [77].

______, *When an infinite direct product of modules is a free module of finite rank*, Communications in Algebra **21** (1993), 3829–3837.

[58] , see Nagahara.

H-submodules, essential, hereditary, of unique, closed.

9s on n-algebra FPF.

H, nice the.

See Pac, need e.

Veblen, Bull.

Krull hypothesis, of H; 2 twisted.

approximation 9 The Archive Amer.

J, rings, (Comm

Ara. with.

- of and n0 Modules, E. f

1 e be.

theorem, .

ring, Pub
domains, 1 Comm

d complement n polynomials conjectures See, dimension.

community.

Wedderburn, .

On Theory, Dickson

Homological Oswald Huckaba.

directed s dimension, 8.

of.

Faith.

continuum ­
in, e a Hirano.

m, Theorie have.

Loewy over non-singular, FPF Minimal.

s 2, s and mathematical Comm.

cogenerators.

J, nonstandard a beyond:

founding injective.

finite division Semiprime 9.

______, See Faith.

I. Papick, See Huckaba.

______, See Fontana.

______, See Fontana.

E. Pardo, See Ara.

J. K. Park, See Hirano.

______, See Birkenmeier.

[80] ______, See Goursaud.

[97] E. Pardo, See Ara.

[97] ______, See Birkenmeier.

[98] ——, *Semiprimitive of group algebras*, pp.199–212 in Drensky et al [98],

[84] ——, *See Montgomery*.

[70] ——, *See Cox*.

[80] P. F. Pickel, *see Hartley*.

[90] ——, *See Faith*.

[93] ——, *See Herbera*.

[68] ——, *See Nastasescu*.

[95] ——, *See Fontana*.

[84] ______, *See Menal.*

[68] F. Ringdal, See Amdal.

[90,93,97] ———, See S. K. Jain.

[96] S. T. Rizvi, See Huynh; also Oshiro.

[97] ———, See Huynh.

[01] ———, See Albu.

[70a] ———, See Eisenbud.

[73] ———, See Gordon.

[87] ———, See McConnell.

[94] ———, See Levy.

[96] ———, See Agnarsson.

[66] H. Röhrl, See Eilenberg et al, (eds.).

[77] B. Rose, see Baldwin.

[81] V. Roselli, See Orsatti.

[57] ———, See Eilenberg.

[65] ———, See Chase.
See Rinehart.

G. C. Rota (ed.), *See Jacobson*.

———, *See Colby*.

Šafarevič, *See Shafarevitch*.

Y. Sai, *See Harada*.

Sajendinejad, *See Karamzadeh*.

L. Salce, *See Fuchs*.

———, *See Facchini*.

———, *See Fuchs*.

———, *See Dikranjan*.

M. A. Saleh, *See Jain*.

D. Saltman, *See Benkhart*.

———, *See Amitsur*.

J. Sally, *See Srinivasan*.

[58-60] , *See Zariski*.

[68] , *See Cateforis*.

[89] , *See A. Mohammed*.

[67] , *See Cohn*.

[71] H. Schneider, *See Oberst*.

[26] , *See Artin*.

[02] ———, see Milies.

G. Seligman, *See Benkhart*.

[64] ———, *See Golod 64*.

[84,92] ———, *See Hanna*.

[95,96] ———, *See Herbera*.

S. Shelah, *See Fuchs*.

A. Shenitzer, *See Bashmakova and Smirnova*.

[69,75,92] ———, See Jain.

[77] A. B. Slomson, See Bell.

Remarks on the homological dimension of a quotient field, Mimeographed Notes, U. of California, Berkeley, 1966.

See Herstein.

See Procesi.

See Goldie.

See Schelter.

See Blair.

See Amitsur.

H. J. S. Smith, Phil. Trans. of the Royal Soc. of London 151 (1861), 293-326.

M. K. Smith, See Brewer.

Rings characterized by their cyclic submodules, Canad. Math. J. XXXI (1979), 93-111.

Nonsingular extending modules, in Advances in Ring Theory (Jain and Rizvi, eds), Birkhäuser, Boston, Basel, Berlin, 1997.

See Levy.

See Huynh.

See Ososky.

See Dung.

See Pusat-Yilmaz; also Santa Clara.

See Albu.

----, *See Huh.*

----, *See Formanek.*

----, *See Fisher.*

----, *See Parkas.*

R. Solomon, *See Gorenstein.*

E. D. Sontag, *See Dicks.*

----, *Un anneau cohérent dont l’anneau des polynômes n’est pas cohérent*, ibid, A241–3.

----, *See Rosenberg.*

----, *See Levy.*

N. Steenrod, *See Eilenberg.*

S. A. Steinberg, *See Armendariz.*

BIBLIOGRAPHY

[65] ________, *See Artin.*

[72] ________, *See Fueberth.*

[46] ________, *See Nesbitt.*

[58] H. Tominaga, *see Nagahara.*

[61] ________, *See Onodera.*

BIBLIOGRAPHY

[64,65] ________, See Faith.

[71] ________, Direct decompositions of modules, Algebra Seminar Notes, Dept. of Math., Univ. of Sheffield, 1971G.

[71] ———, See Sharpe.
[84] ———, See Menal.
[77, 85] ———, See Sharp.
[95] ———, See Facchini.
[98] ———, See Albu.

[89] ———, *See Goodearl.*

[78] ———, *See Vasconcelos.*

[79] ———, *See Faith and Wiegand (eds.) [79].*

[85] ———, *See Marki.*

[69] C. N. Winton, *see Mewborn.*

[91] ———, See Huynh.

[95] ———, See Puninski.

[61] E. T. Wong, See Johnson.

[01] ———, see McKenzie.

[96] W. H. Woodin, See Dales.

[76] ———, See Lawrence.

[90] M. Yousif, See Rizvi.

[71a] ______, Dedekind subrings of $k[x_1 \ldots, x_n]$ are rings of polynomials, Israel J. Math. 9 (1971), 285–289.
modules, module.
Math (Russian but of Amer.
2.
Menge 3rings.
of Israel.
Jacobson jede J.
annihilator.
torsionless g.
drings 0.
, with wohlgeordnet An.
Density a.
principal.
of 1.
J. Valuation nonsingular t.
The simple is are, Israe
I hereditary.
There, of and problem =
rings, rings, Vols.
 Trans d.
ai a See, See.
modules, and, with faithful.
3 See theorem, Goldie's
modules, See II, s
criterion theorem, density extension of d (Russian,)
a Dense 2 primitive p
ideal Salce.
of algebraic (1958),
Comm.
without, See exist.
Regular Proc.
Rings, of simple
rings, Linear.
Representations.
Kaplansky, proof, 3
categories, Weakly,
Formanek, y.
Castelnuovo's
n, werden kann, property
n, —
s, divisors l
Math.
Theorem, Algebra,
Proc,
Rationality sum
Hereditary rings, a
Noetherian Finite
s 8 See,
Some (1967) right
Sovie
d d, without zero i.
Contemp.
J.
domains modules an
on, Jacobson's
modules, and, with faithful, weakly.
Languages, Comm.
}

[08b], Untersuchungen über die Grundlagen der Mengenlehre, I., Math. Ann. 65 (1908), 261–281.

[77] See Meyberg.

[97] See Arhangel’skii.

Register of Names

Notes: (1) To avoid unnecessary duplication, authors of theorems appearing in the index, with few exceptions, are not given page citations here; (2) Part II is omitted from the Register (see the Index to Snapshots).

[P] denotes the Prefaces and the Acknowledgments

Abrams 281
Albert 49
Albu [P], 216, 235, 267
Aldosray 45
Alexandroff [P]
Amitsur 19, 24, 36, 74, 105, 154, 197, 250
Anarín 30
Annin 144
Anderson, D. D. [P], 182
Anderson, F. W. 52, 167, 281
Ánh 115, 119, 137, 219
Arens 98
Arhangel'skii 215
Armendariz 201
Artin, E. [P], 13, 21, 23, 49, 57, 79
Artin, M. 104
Asano 162
Asensio, see Guil
Atkins 271
Auslander 104–105, 173, 230, 232, 269, 279
Azumaya 24, 50, 74, 104, 148, 165, 169, 216

Baer 5, 46, 52, 144, 218
Bashir [P], 72
Bass [P], 61, 69, 71, 90–91, 104, 176, 239
Baxter 49
Beachy 107, 202
Beck 177
Bell 145
Belluce [P]
Bergman 20, 140, 142
Berman 91
Bezout [P]
Bican 72
Birkenmeier 110

Birkhoff 31–34
Björk 71, 90, 154, 205, 223, 231
Blumenthal 23
Bokut' 142
Boole 33
Borel 90
Borho 242
Bourbaki [P], 88
Bowntell 142
Boyer [P]
Brandal 119
Brauer [P], 19, 103–105
Brewer [P], 36, 271
Brown 50, 99, 204, 234
Bruns 227
Buchsbaum 232
Bumby 53
Burch 254
Burgess 49
Burnside 18
Busqué 105–106

Cahen 181
Cailleau 63
Caldwell 173
Camillo 54, 62, 94, 142, 182, 281
Camps 134, 172
Copson 254
Carlson 99
Carson 233
Cartan 52, 61, 228
Cauchon 74
Cayley 15, 21
Cedó [P], 142–144, 213
Chase 18, 24, 90, 117–118, 209, 243, 271, 279
Chatters 193, 233
Cheatham 95
Cherlin, C. [P]
Cherlin, G. [P]
Chevalley 23, 88
Chhawchharia 188
Clark 106, 109
Cohen, I. S. 111, 115, 117
Cohn [P], 10–12, 16, 19, 23, 24, 43, 69, 92, 131, 139–141, 182, 192, 219, 231, 246–247, 249–250
Colby 173
Cox 220
Cozzens 68, 71, 153, 160, 219
Crawley 167
Croisot 62, 80
Curtis 18, 49
Dade 176, 206
Davis 178
Dedekind [P], 100
Dehn 245
Deligne 12
DeMeyer 104, 271
Desargues 23
Dicks 134, 141, 172
Dickson, L. E. 15, 19, 23
Dickson, S. E. 206
Dieudonné 24, 72
Dikranjan 216
Dischinger 108
Dixmier 242
Dlab 281
Domanov 103
Domokos 62
Donnelly, S. [P]
Drazin 31, 106
Dubnov 77
Dung 210
Dyson 49
Eakin 205, 271
Eckstein 50
Egert 213
Ehrlich 29, 93, 98
Eilenberg 52, 54, 61, 80, 228–229, 243
Eisenbud 38, 112, 122, 205, 253, 257–258
Elliott 137
Endo 125, 271n
Enochs 72
Evans 170
Facchini 65, 112, 117, 131, 172, 243
Faith-Herbera 172
Faith-Menal 67
Faticoni 109, 125
Fieldhouse 96
Findlay 183, 200
Finkel Jones 148
Fisher 204
Fitting 38, 86, 89, 111, 171
Fontana 133, 139, 184, 186
Formanek 77, 103, 203, 251
Forsythe 98
Fossum 181
Fraenkel [P]
Frattini 73
Freyd 52, 80
Frobenius [P], 5
Fröhlich [P]
Fu 38
Fuchs 6n, 73, 132, 146, 170, 179
Fuller 52, 60, 167, 173, 281
Gabriel 52, 205–206, 234, 242
Galois [P], 23–24
Gauss 143
Gelfand, S. [P]
Gentile 192
Gill 116, 119
Gilman 38
Gilmer [P], 184
Ginn 220
Goldie 64, 76, 80, 82, 237–238, 251
Goldman 74–75, 104–105, 269, 279
Golod 77–78
Gomez Pardo 94n, 146, 223
Goodearl-Warfield 17, 22, 65, 82, 114, 236
Gopalakrishnan 231
Gordon 74, 77, 234
Goursaud 61
Govorov 70, 94n
Green 233
Greenberg 233
Grell 88
Griffith 178, 184,
Griffith 55, 112, 118, 178
Grothendieck 105, 205
Gruson 132n, 233
Guil Asensio 146, 223
Gulliksen 239–240
Gupta [P], 68
Guralnick 142
Hajarnavis 233–234
Hall, M. 49, 99
Hall, P. 198
Hamilton 15, 21
Hamshier 71
Han 94
Handelman 213
Hannah [P], 100, 102
Harada 170–171, 243
Harčenko (Kharchenko) 46, 140
Harmani 30
Harris 233
Harrison 24, 271, 279
Hart 79, 238
Hartley 196
Hasse 19
Hauger 153
Hausdorff 31
Heidi Faith [P]
Heinzer [P], 137
Heitman 133, 182
Hensel 89
Herbera [P], 106, 109, 129, 172, 182, 219
Herstein 18-19, 21, 25, 26, 30, 49, 74, 78, 247-249
Herzog 173, 227
Hertzweck 197
Higgins 77
Higman D. G. 197
Higman Graham 77, 197
Hilbert [P], 22, 36
Hinojara 116, 133
Hirano 67, 137
Hochschild 24, 50, 230
Hochster 192
Hölder, see Jordan
Hopkins 17, 33
Horrocks 69
Houston 181
Hrbacek 10
Huckaba, J. [P], 143, 175, 177, 261
Hudry 100
Huh 188
Huisgen-Zimmermann 80, 215
Hung 137
Hungertford 179
Huppert 73
Hutchinson 100
Huynh [P], 96, 161
Ikeda 55
Ingraham 104, 271
Isaacs 140
Ivanov 77
Jackson 197
Jacobinski 244
Jacobson 13, 18-19, 23, 26, 42, 49-50, 57, 62, 70, 77-78, 87, 104, 168, 207, 244, 248-250, 256
Jain S. K. [P], 142
Jans 173, 243
Jansen 215
Janusz 197
Jategaonkar 74, 198, 202, 237, 251
Jech 10
Jensen 132, 145-147, 166
Jespers 91
Johns 220, 225
Johnson 57, 97, 140, 142
Jonah 71
Jendrudp 94, 212
Jones, see Finkel
Jönsson 167, 256
Jordan-Hölder 165
Kahlon 170-171
Kamal 107, 211
Karamzadeh 137, 235
Kargapolov 91
Kasch 24, 70, 177, 197, 213
Kato 56, 106
Kawada 142
Kegel 79
Kelarev 79
Keller 143
Kerr 175-177
Kharchenko 204
Khurana 94
Kiepiński 146
Kim 99, 137
Kimberling [P]
Kitamura 24, 140, 204, 277
Klein 142
Kleiner [P], 9, 119
Kneser 197
Kobayashi 109
Koh 80
Koifman 68, 149
Kolchin 68, 87,90
Komarnitskii 68
Koochakapoor 137
Kosler 60
Köthe 76, 85, 89, 92
Krause 74, 234, 239-240
Kronecker [P]
Krull [P], 24, 37-38, 74-75, 88, 165, 171-172, 178, 180
Kupisch 197
Kurosch 77
Kürschak 119
Kurshan 220
Kuyk 35
LaDuke [P]
Lafon 116
Lam [P], 134, 144, 177, 192, 203, 257, 265, 267
Lambek 89, 100, 140, 183, 200, 251, 262
Lang [P], 23
Lanski 49
Lantz [P]
Lasker [P], 39
Lawrence 105, 203, 213
Lazard 70, 144
Leary 100
Lee 49
Lemonnier 234-235
Lenagan 76-77
Lenstra 35
Lenzing 7, 132, 145–147, 166, 223
Leptin 219
Lesieur 62, 80
Levitizki 17, 33, 43, 86, 89–90
Levy 126, 133, 172, 193
Lie 49
Ligh 30
Loewy 72
López-Permouth [P], 223
Louden 195, 203
Lowenstein-Skolem 145
Lucas 181
Macaulay [P]
MacDonald 201
MacEacharn 234
Mac Lane [P], 52, 80, 228
MacLean 179
Mahdou 92
Mal’cev (Malcev) [P], 50, 90, 99, 132
Malle 36
Manis 178–180
Mares 70
Marot 181
Martindale 49, 106
Maschke [P], 195
Matlis 64–65, 98, 129, 147, 151, 243, 255
Matsumura 236
Matzat 36
McAdam 258
McConnell 237
McCoy 41, 98–99, 144
Menal [P], 30, 67, 109, 131, 169, 172, 182
Menini [P], 219
Merzbach [P]
Merzljakov 91
Mewborn 125
Meyberg 71
Michler 60, 67, 89, 100, 159, 251
Mikhovskii (Mihovski) 280
Milles 91
Miller, B. [P]
Milnor 91
Ming 67
Mitchell 52, 80
Miyashita 60
Mohammed 209, 211
Molien [P]
Moncasi 30, 135
Montgomery, S. 49, 101, 280
Morita [P], 18, 79, 81, 115, 173, 197, 216
Mostow 50
Mueller (Müller, B.) 70, 115, 162, 202, 209, 211, 219
Müller, W. 108
Miyashita 60
Mycielski 131
Nagahara 24, 277

Nagao 243
Nagata 34–35, 77, 89, 115, 181, 233
Nakayama 23, 24, 31, 55, 243
Nashier 91
Nastasescu 61, 216
Neratlovskii 151
Neumann, B. H. 196
Nichol 91
Nicholson [P], 71, 94, 168, 170n, 219
Nobusawa 24
Noether [P], 18–19, 23, 33, 39, 89
Northcote 228, 236

Oberst 71
Ohm 255
O’Keefe, G. [P]
O’Meara 100
O’Neill [P], 8, 69, 133
Onodera 132, 144, 277
Ore 153
Ornstein 149
Orsatti 216
Oshiro 209, 217
Osmanagic 181
Osofsky 36, 52, 54, 66, 73, 97, 165, 173, 179, 187, 223, 229, 231–232
Osterburg 204
Ostrowski 119

Page, S. 109, 127, 185
Papp 64
Pappus 23
Pardo, see Gómez
Park 99
Parshall [P], 23
Pascaud 106
Passman 47, 101, 196–197
Pendleton 255
Perlis 73
Pierce 240
Pillay 62, 118, 126, 129, 185
Popescu 186
Posner 251
Procesi 74, 104
Prüfer [P]
Puczyłowski 78
Puninski 65
Pusat-Yılma 239

Quillen 69

Rao 104
Ratliff 181
Raynaud 233
Razmyslov 251
Redei 128
Rege 188
Reiner 18, 109, 243
Reis 254
Reisel 50
Reiten 173
Remak 165
Rentschler 234, 242
Resco 22, 68
Ribenboim 18, 119, 137, 196
Ricoux 30
Rieffer 79
Rim 281
Rinehart 154, 231
Ringel 173, 281
Ritt 153
Ritter 91
Rizvi [P], 161, 267
Robinson 139
Robson 77, 83, 193, 237
Roggenkamp 197
Roiter 173
Roitman 142
Roos 154, 231
Roselli 216
Rosenberg 4, 24, 50, 173, 229, 231, 271, 279
Rowen 45, 79
Rubin 213
Rutter 107
Ryabukhin 43
Saheav 94
Sai 170
Sajedinejad 235
Salce [P], 6n, 146, 179
Sally, J. [P], 35
Saltman 19, 35
Samuel, see Zariski
Sandomierski 94, 175, 202, 213
Sarath 8
Sgsia 43, 76
Sathaye 271
Schauweiler 94
Schilling 119
Schmidt, F. K. [P], 119, 165, 171–172
Schmidt, O. 165
Schmidt, S. 23
Schneider 71
Schofield 24
Schreier 13
Schur 172
Scott 197
Sehgal 91
Serre 90, 205, 232
Seshadri 69
Shafarevich 36
Shamsuddin 120, 152, 172
Sharp 255, 258
Shelah 179
Shepherdson 101
Shock 62, 87, 120, 144, 155, 175
Shoda 29
Shores 72, 117–118
Shulting 184
Silver 192
Simon 223, 281n
Singh, S. 142
Skolem 23, 145
Slomson 145
Small [P], 28, 62, 76–77, 94, 104–105, 142, 182, 237, 243, 249, 280
Smith, H. J. S. 133
Smith, M. K. [P], 36
Smith, P. F. [P], 235, 237, 239
Smoktunowicz [P], 43, 78, 188
Snider 103, 251
Sontag 141
Soblin 233
Sridharan 231
Srinivasan [P], 35, 197
Stafford 83, 151, 178, 193, 231
Steenrod 54
Steininitz 133
Stenström 146
Stephenson 81, 281
Stewart 50
Stickelberger [P], 5
Stone 95
Storrer 206
Struik [P]
Suprunenko 90
Sullivan [P]
Suslin 69
Szwed [P], 35, 63, 134, 150, 165
Sweedler 105
Sylow 197
Tachikawa 173
Taft [P], 50
Tate 23, 57
Temly 142
Thrall 221
Tits 90
Tol'skaya 223
Tominaga 24, 140, 204, 277
Trifaj 147
Tsang 188
Ts'en 23
Tsuda 67
Tuganbaev 142
Ulrich 35
Utumi 31, 100, 106, 199
Uzkov 88
Valette 61, 106
Valle 62
Vámos 54–55, 118, 121, 127, 131, 144, 172, 255, 258
van der Waerden [P], 9, 11–12, 38, 39, 41, 49
Varadarajan 8
Vasconcelos 220, 233
Vasershtei 134
Vicknair 119
Vila 35–36
Villamayor 60, 67, 159
Viola-Prioli 213
Viswanathan 254
von Neumann [P], 93
Voss 78, 281

Wadsworth 182
Wagner 49
Walker, C. L. 206
Walker, E. A. 118, 173, 206
Wang 35
Warfield 75–76, 131, 146, 234–235
Warning 23
Weakley [P]
Webber 154
Wedderburn 21, 23–24, 27, 57, 79
Wehren 50
Whitcomb 197
Wiegand, R. 116, 166
Wielandt 73
Wilkerson 62
Winton 125
Witt 23
Wong 57, 97, 256
Wood [P]
Wordsworth [P]

Xue 112, 215–217, 219

Yamagata 171
Yoshimura 110, 129, 207, 213
Yousif [P], 109–110, 209, 219
Yu 94, 169
Yue 65

Zaleski 101, 151
Zanardo 6n, 146
Zariski-Samuel 13, 34, 37, 39, 115, 232
Zassenhaus 90
Zelinsky 4, 50, 115, 173, 175, 216, 229
Zel’manov 77
Zelmanowitz 36, 62, 67, 141, 200, 215, 261
Zimmermann 211
Zimmermann-Huisgen 71, 173, 211
Zippin 5
Zjabko 30
Zöschinger 212
Index of Terms and Authors of Theorems

Note:
This index does not cover Part II.
1.2f denotes below 1.2
1.2ff denotes below 1.2 and more
1.2s denotes above 1.2
1.2ss denotes above 1.2 and more
P denotes the preface

Abelian
idempotent, 4.3A

absolute value, 1.30ff
acc (see ascending chain condition)
acci (= acc on irreducible ideals), 16.35s
acc[P], 16.9D

accpa (= acc on point annihilators), 2.38E, 9.3B, 16.27, 16.38

accL (= acc on annihilator right ideals), P, 1.24A
⊥acc (= acc on annihilator left ideals), P, 1.24A
accra (= acc on right annihilator ideals), 2.37G
accsi (= acc on subdirectly irreducible ideals), 16.35s

sqrt{acc} on radical ideals, 14.34s
acc⊕ = acc on direct sums, 3.13s

Abhyankar
— -Heinzer-Eakin Theorem, 10.5

affine algebra, 14.46
ring (= f · g ring), 2.21Bs, 2.21Bf

Ahsan theorem, 12.4C’f

Akasaki theorem, 3.29

Akiba theorem, 9.24(3)

Alamelu theorem, 12.23–4

Albert theorem, 2.50f

Albrecht theorem, 3.23A–B

Albu — -Smith theorem, 14.27B

algebra
affine —, 14.46
algebraic —, 1.28As
free —, 15.1s, 15.14s, 15.14ff
polynomial identity (= PI) —, 15.1s, 15.14s
separable —, 14.15Bs
split-split —, 4.15B

algebraic
absolutely —, 1.28As, 2.40s
algebra, 1.28As, 15.1(7)
bounded degree, 15.1(7), 15.12
function field, 1.28As
matrix —, 2.6Bs
number field, 1.28C(2)
algebraically
 closed field, 1.28B
 compact, 1.25s, 6.Af

Al-Huzali
 - Jain-López-Permout theorem, 6.37

almost maximal
 ring, 5.4Bs, 5.16
 valuation ring, 5.4D, 5.52s

Amdal
 - Ringdal theorem, 5.2C

Amitsur
 - Kaplansky Theorem, 15.4
 - Levitzki Theorem, 15.2
 - Small Theorem, 3.36D, 15.17
 theorem, 2.6C, 216A, 2.40, 2.49, 3.43–3.49, 15.14

AMVR, see almost maximal valuation ring

Anarín-Zjabko
 theorem, 2.16Cf

Anderson, D. D.
 - Camillo, theorems 9.52–9.57, 9.59–9.60

Anderson-Fuller
 theorem, 8.6, 8.8

Ánh
 theorem, 13.6

Antoine
 - theorem, 9.3’

annihilator
 chain conditions on —, 3.7A–B, 16.19
 double — condition, 3.8, maximal, 2.33Es
 point or principal —, 2.38E, 9.9B, 16.26s
 right ideal, 2.16F, 2.37Es

annulet, 2.37Es, 16.30s

Arens
 - Kaplansky Theorem, 4.19A
 \(A_r(E, R) \), see 3.7A

Arithmetic ring, 6.4

Armendariz
 - Steinberg Theorem, 4.5, 4.18

 ring, 9.47
 theorem, 6.4, 9.49

Artin, E.
 conjecture, 2.6ff
 problem, 2.7s
 question, 2.7s
 - Schreier Theorem, 1.30ff
 - Tate Theorem, 3.8s
 - Wedderburn Theorem, 2.1ff

Artin, M.
 theorem, 4.14s, 15.8

Artinian
 modules, P, 2.17As
 rings, P, 2.1f

Asano
 criterion, 5.1A
 theorem, 5.1A

ascending chain condition (acc)
 on right annihilators (\(acc \perp \)), P, 1.24A
 on right ideals, 2.2s
 on submodules, 2.17As

Ass \(R \), Ass* \(R \), Ass \(M \), Ass* \(M \), 3.16Cs, 6.39s, 16.11, 16.17

Assassinator, 3.16Cs, 16.11f

Auslander
 - Buchsbaum theorem, 14.16
 - Goldman theorem, 4.13f
 theorem, 4.1A, 11.9, 14.11–12, 14.15.1

automorphism
 definition, 2.5As
 group, 2.7s
 inner- —, 2.5A

automorphism group
 cleft- —, 17.13As
 dependent- —, 17.0s, 17.9ff
 independence theorem, 17.0
 quorite- —, 17.9s
 see Galois

avoidance
 prime- — theorem, 16.5, 16.7A–B, 16.8A

Ayoub, C.
 theorem, 1.26A

Azumaya
 algebra, 4.13
INDEX OF TERMS AND AUTHORS OF THEOREMS 451

diagram, 8.As
— Krull-Schmidt unique decomposition theorem, 8As
theorem, 3.3D, 4.15, 4.20, 13.7

Baer
criterion, 3.2C
lower nil radical, 2.38A
theorem, 1.18, 3.2

Baire
category theorem, 16.6

balanced
module, 3.50Bf, 13.29s, 13.30As
rings, 13.29s
strongly —, 5.54

Balcerzyk
theorem, 1.19A, 1.20A

Baldwin
— theorem 3.43As

Ballet
theorem, 13.11A

Bashir
theorem, 3.32ff

basic
indempotent, 3.53
module, 3.53
ring, 3.52

basis
countable, 1.1
finite —, 1.1
free —, 1.1, 3.63(3)
normal —, 17.1s
number, 1.1, 3.63
transcendence —, 1.28

Bass
theorem, 2.24, 3.4B, 3.24A, 3.26–7, 3.30–2, 3.33C, 13.21

Beachy
— Blair, 6.32A
theorem, 3.58–3.61, 7.9

Beck
— Trosborg theorem, 3.79
theorem, 3.15, 3.16, 3.28, 16.33

Bergman
Cohn— theorem, 9.26C

— theorem, 6.33f, 9.26A

Bezout
domain, P, 5.4Bs, 7.5Bs
ring, P, 5.4Bs, 7.5Bs

Bialnicki
theorem, 1.21A

Bican
theorem, 3.32ff

biendomorphism (bicentralizer)
— ring, 3.50Bf

Birkhoff
theorem, 2.17C

Birula
theorem, 1.21A

Björk
theorem, 3.5F, 3.32f

Blair
theorem, 6.32A

bounded
fully — Noetherian (FBN) ring, 3.36Es, 15.17s
fully — ring, 3.36Es, 5.3Es
generator (BG), 8.8ff
order, 1.8, 1.14
ring, 2.6F, 5.3Es, 15.17s
strongly —, 5.3Es
weakly —, 5.3Es

Bourbaki
— Lambek theorem, 4.B

Boyle
conjecture, 3.9C
theorem, 3.9B, 3.18B

Brandal
theorem, 5.6, 6.19A

Brauer
— Auslander-Goldman—group, 4.15Af
— group, 2.5Bff, 4.16As
— Hasse-Noether Theorem, 2.5Bff
— Thrall conjecture

Brewer
— Heinzer, 6.39, 9.25B
— Rutter Theorem, 10.2–4
— Rutter-Watkins, 6.12, 6.13
INDEX OF TERMS AND AUTHORS OF THEOREMS

Brodski
theorem, 3.77B-3.78

Bumby
— -Osofsky Theorem, 3.3

Burgess
theorem, 4.28B

Burnside
theorem, 2.4

Busqué
— -Herbera Theorem, 4.17A

Cailleau
theorem, 3.14

Camillo
— -Fuller Theorem, 3.33 F–H, 4.26, 13.30, 13.30D
— -Guralnick theorem, 9.3
remarks (letters), §17 Notes
theorem, 1.23, 3.33F, H, 3.51’, 4++, 4.1B, 5.20B, 6.60–61, 13.29, 13.30E, 16.51
— -Yousif Theorem, 3.19C, 12.15
see Anderson, D. D.

Camps
— -Dicks Theorem, 8.D
— -Menal Theorem, 8.8ff

cancellation
matrix —, 10.8f
module, 6.3Ds
property, 6.3Ds

Cantor
— -Bernstein Theorem, 3.3

Cartan
— -Brauer-Hua Theorem, 2.15As
— -Jacobson Theorem, 2.7
theorem, 2.6, 2.7, 3.4

Carson
— theorem, 14.21A

Castelnuovo
theorem, 1.31A

Cateforis
— -Sandomierski theorem, 4.1E

category
mod-R, 3.51s

of right R-modules, 3.51s

Cauchon
theorem, 3.34A(1)

Cayley
see Hamilton

Cedó
example, 12.13f
— -Herbera theorem, 9.7
theorem, 6.33–4, 9.3″, 9.9C, D

center, 2.5s

centralizer, 2.5Cs

CF ring, 13.31s

CFPF
ring, 5.12

chain
ascending — condition (acc)
ascending Loewy —, 3.33As
composition —, 2.17Cs
equivalent —, 2.17Fs
module, 5.1A′f, 16.46s
refinement of —, 2.17C
ring (= valuation ring), 3.15As

change
of rings theorem, 14.8A,B,C

characteristic
— equation, 2.6B
— of a ring R (charR), 1.2s, 1.28

character module, 4.Bs

Chase
— -Faith Theorem, 4.6
theorem, 1.17A, 3.4D–E, 6.6

Chatters
module, 7.21s
theorem, 7.1–2, 7.21
— -Hajarnavis theorem, 12.5A

Cherlin
theorem, 3.43As

Chevalley
theorem, 2.6, 2.6ff, 3.8A, 5.4A″, 9.19(4)

Chinese remainder theorem
(reference), 5.1A′f
quotients, 14.33s
submodule, 14.33s
crossed product, 2.5Dff
CS
module, 12.4Cs
quotient —, 12.4C
ring, 12.4Cs
cyclic
algebra, 2.5Bff
group, 1.6
presented, 6.5As
Σ —, 5.1As
σ —, 5.1As
D, see dual
Dade theorem, 3.17, 11.11ff
Damiano
— -Faith theorem, 3.18C
Davis theorem, 9.9, 9.29
decomposable module, 1.2
decomposition unique — theorem, 8.As
Dedekind finite ring, 4.6A, 4.6A’
generalized — ring, 9.36s
independence theorem, 17.0
infinite, 4.6B
ring, 9.29s
see §17
degree bounded —, 5.1
of a field extension, 1.29B
Dehn definition, 15.1
Deligne theorem, 1.31B
delta (Δ)
injective module, 3.10A,, 7.45s, 13.4E
ring, 7.47s
dense right ideal, 9.27s, §12
rings of linear transformations (l.t.’s), 2.6, 3.8A
density theorem Chevalley-Jacobson —, 2.6, 3.8A
dependence theorem, 17.1
derivation, 1.32B
inner —, 2.5f
Dicks Camps- — theorem, 8.D
— -Menal theorem, 3.24B
Dickson theorem 2.5f-2.6s
Dickson, S. E. theorem, §13
differential
φ —, 7.14f
ordinary —, 7.15s
polynomial ring, 3.20f, 7.15s
universal — field, 3.20f
dimension global —, 14.3s
Goldie —, 3.13s
homological —, 14.3s
injective —, 14.3s
Krull- —, 14.1s, 14.24, 14.26, 14.28s
of a prime ideal, 2.22s
of a ring, 14.1s, 14.2
dim₉ M, 14.3s
direct factor (= summand), 1.1–1.4, 2.0ss
product, 1.1
sum, 1.1
summand, 1.1–1.4
directly finite ring, 4.6A
discrete Prüfer ring, 9.35f
strongly — ring, 9.35ff
valuation domain, 6.46f, 9.28s
divisible group, 1.10
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>division</td>
<td>1.2, 2.7s</td>
</tr>
<tr>
<td>ring (= skew field), 2.0s</td>
<td>2.6Gs</td>
</tr>
<tr>
<td>transcendental — ring</td>
<td>14.47</td>
</tr>
<tr>
<td>Dixmier theorem</td>
<td>14.47</td>
</tr>
<tr>
<td>Dlab — -Ringel theorem</td>
<td>13.30A</td>
</tr>
<tr>
<td>Domanov theorem</td>
<td>11.9</td>
</tr>
<tr>
<td>domination of local ring</td>
<td>9.18</td>
</tr>
<tr>
<td>D-ring, see dual</td>
<td></td>
</tr>
<tr>
<td>dual module</td>
<td>1.5</td>
</tr>
<tr>
<td>ring</td>
<td>13.12s</td>
</tr>
<tr>
<td>duality context</td>
<td>13.1s</td>
</tr>
<tr>
<td>functor</td>
<td>13.1s</td>
</tr>
<tr>
<td>inverse of —</td>
<td>13.1a</td>
</tr>
<tr>
<td>Morita —</td>
<td>13.1s</td>
</tr>
<tr>
<td>Dubois theorem</td>
<td>1.20</td>
</tr>
<tr>
<td>Dugas — -Göbel theorem</td>
<td>1.16A,B</td>
</tr>
<tr>
<td>Dung — see Huynh</td>
<td></td>
</tr>
<tr>
<td>DVD (= discrete valuation domain)</td>
<td></td>
</tr>
<tr>
<td>Eakin theorem</td>
<td>10.5–7</td>
</tr>
<tr>
<td>EC, see existentially closed</td>
<td></td>
</tr>
<tr>
<td>Eckmann — -Schopf theorem</td>
<td>3.2D</td>
</tr>
<tr>
<td>Eggert theorem</td>
<td>9.31</td>
</tr>
<tr>
<td>Ehrlich theorem</td>
<td>4*, 4.3As, 6.3B</td>
</tr>
<tr>
<td>Eilenberg theorem</td>
<td>3.4</td>
</tr>
<tr>
<td>Eisenbud — -Griffith theorem</td>
<td>5.3A–B</td>
</tr>
<tr>
<td>Eklof — -Sabbagh theorem</td>
<td>6.20</td>
</tr>
<tr>
<td>elementary divisor ring (= EDR), 3.6Bs</td>
<td>6.43</td>
</tr>
<tr>
<td>E = E(M) injective hull of M</td>
<td>3.2C</td>
</tr>
<tr>
<td>$\mathcal{E}{\text{max}}, \mathcal{E}{\text{min}}$ ring, 6.38(4), 16.27s</td>
<td></td>
</tr>
<tr>
<td>embedding — of a group (module)</td>
<td>3.3s</td>
</tr>
<tr>
<td>endomorphism ring</td>
<td>1.2</td>
</tr>
<tr>
<td>Enochs conjecture</td>
<td>3.32ff</td>
</tr>
<tr>
<td>theorem</td>
<td>3.32ff</td>
</tr>
<tr>
<td>epimorphism flat —</td>
<td>12.3, 12.14</td>
</tr>
<tr>
<td>module —</td>
<td>3.0</td>
</tr>
<tr>
<td>ring —</td>
<td>12.1</td>
</tr>
<tr>
<td>equivalence of categories</td>
<td>3.51f</td>
</tr>
<tr>
<td>chains, 2.17Fs</td>
<td></td>
</tr>
<tr>
<td>Morita —</td>
<td>3.51f</td>
</tr>
<tr>
<td>equivalent categories</td>
<td>3.51f</td>
</tr>
<tr>
<td>matrices, 6.3As</td>
<td></td>
</tr>
<tr>
<td>essential — extension</td>
<td>3.2Ds</td>
</tr>
<tr>
<td>maximal — extension</td>
<td>3.2D,E</td>
</tr>
<tr>
<td>submodule, 3.2Ds</td>
<td></td>
</tr>
<tr>
<td>Evans theorem</td>
<td>6.3F, 8.G</td>
</tr>
<tr>
<td>exact sequences</td>
<td>14.3s</td>
</tr>
<tr>
<td>exchange finite exchange property</td>
<td>8.3s</td>
</tr>
<tr>
<td>lemma</td>
<td></td>
</tr>
<tr>
<td>module</td>
<td>8.3s</td>
</tr>
</tbody>
</table>
property, 8.3s
ring, 8.4As

Existentially closed (= EC)
rings, 6.20s
fields, 6.24

FA, see finitely annihilated

Facchin
— -Faith theorem, 6.4
theorem, 5.4E, 6.17–18, 8.8f, 9.36, 9.37, 13.11B
— injective dimension theorem, see end
of Chapter 14

factor
set, 2.5Bff–2.6ss

f.a.e.c = the following are equivalent
conditions

Faith
Chase- — theorem, 4.6
Cozzens- — theorem, 2.6G, 7.7A, 7.12
Damiano- — theorem, 3.18C
Facchini- — theorem, 6.4
— -Herbera theorem, 8.8ff, 13.10
— -Menal theorem, 13.18–20, 13.37A–B, 13.38
Nakayama- — theorem, 2.13, 13.7A–B
— -Utumi theorem, 3.13B, 4.2A, 3.9D, 7.6
Vamos- —, 5.19
— -Walker theorem, 3.5A,B,D, 4.21A, 8.2A,B, 13.33

faithful
co —, 3.9, 6.32As
Module, 2.6s

Farkas
— -Snider theorem, 12.1C
theorem, 11.2

Faticconi

theorem, 5.46, 5.48

FBN, see bounded

f.e., see finitely embedded

FFM (finite module type)
ring, 8.8ff, 11.11ff

f · g, see finitely generated

FGC
classification theorem, 5.11
ring P, 5.1As

FGF (f · g modules→ freebees)
ring, 13.31s

f.g.(t.)f. ring, 13.40

field
absolutely algebraic —, 1.28, 2.40s
algebraic —, 1.28
formally real —, 1.30,1.40s, 2.39s
ordered —, 1.30
separable — extension, 2.51s
splitting —, 2.5Bff–2.6ss, 2.51
transcendental —, 1.28f

Findlay-Lambe
theorem, 9.27s, 12.Bs

finite
basis of a module, 1.1
fractions, 9.28s
module —, 8G
representation type, see FFM

finitely annihilated (FA), 13.36s

finitely embedded (= f.e.)
module, 3.58s
ring, 3.58s, 7.8s, 7.8ff

finitely generated (= f · g)
module, 1.1
ring, 2.21A, 2.21Af

finitely presented (= f · p)
module, 6.As

fir, see free ideal ring
(semi) —, 6.31

Fisher
INDEX OF TERMS AND AUTHORS OF THEOREMS

— Osterburg theorem, 12.1D₁, 12.1D₂
— Snider theorem, 4.12
Fitting
 lemma, 3.64–6, 8.8
 theorem, 3.38, 3.69, 5.1A'f
definition, theorem 2.29Af
flat
 embedding, 3.16C, 16.33
 epimorphism, 12.3, 12.14
 module, 4.4As
Formanek
 — Jategoankar theorem, 12.1G
Fossum
 — Griffith-Reiten theorem, 4.25
f.p, see finitely presented
FPC ring, P
FPF (= finitely pseudo Frobenius)
 product theorem, 5.28
 ring, 4.26s
 ring theorem, 5.42
 see PF
 semiperfect — ring, 5.43ff
 split-null extension, 5.41
FP-injective
 module, 6.2As
 ring, 6.Es
fractionally
 FP-injective, 6.4s
 self-injective (FSI), P, 5.9s
 semilocal, 6.4, 9.9Bs
Frattini subgroup, 3.34s
free
 algebra, 15.15
 basis, 1.1
 direct summands, 3.79, 5.34s
 — ideal ring (= fir), 6.31
 module, 1.1, 3.1As
 rank, 5.34s
 ring, 14.15(4)
 see algebra
freebee (= free module)
Frobenius, 2.0
 pseudo—(PF) ring, 4.20
 Quasi—(QF) ring, 3.5Bs
Froeschl
 theorem, 9.15C
FSI, see fractionally
FSFPI
 — ring, P, 6.4
FTAG, P, 1.6, 1.15A
Fuchs
 — Salce theorem, 6.19, 9.13f
 — Salce-Zanardo theorem, 9.46A
 — Szele theorem, 1.26A
Fuelberth
 — Teply theorem, 4.1F
Fuller
 see Camillo
 theorem, 5.2E, 6.57
Fundamental Theorem of Abelian Groups
 see FTAG
Gabriel
 theorem, 4.D₁, 12.1Gf, 14.27, 14.28A,B
Galois
 group, 2.7s
 strictly — extension, 17.12s
 subring (= fixring), 2.7ss, 17.0ff
 theory, 2.7
Gauss
 theorem, 1.28C(2)
Gaussian ring, 9.47
generated
 N—, 1.1, 3.1B
 countably —, 1.1
 finitely —, 1.1
generator
 of a category, 3.3f
 of a field, 1.28ff, 1.32A
 function, 1.32A
 of a group, 1.6
 of a module, 1.1
 of mod-R, 3.3f
generic
 division algebra, 15.16f
 matrix ring, 15.15
 product of rings, 5.23As
Gentile
theorem, 13.39–40

genus
big —, 5.22f
little —, 5.22f
of a module, 5.22f

geometry
continuous —, 12.4s
projective —, 12.4As

Gill
theorem, 5.1, 5.4D, 5.16

Gilmer
Abhyankar-Heinzer- — theorem, 10.5
—-Heinzer theorem, 5.59, 9.19(5), 9.25A
theorem, 9.19, 9.35f, 16.8B-C

Ginn
—-Moss theorem, 7.8

Global dimension, 14.3s
— theorem, 14.12
— two theorem, 7.12

Göbel, see Dugas

Goldie
dimension, 3.13s, 16.9B, 16.16
dual — dimension, 8.C, 13.15C
ring, 3.13s
—-Small theorem, 14.31A
theorem, 3.13, 3.13D, 6.29

Goldman
see Auslander
theorems 3.36, 3.36B

Goldod
—-Shafarevitch theorem, 3.43As

Gómez Pardo
—-Guil Asensio theorem, 12.8A, 13.34–5
theorem, 13.31 (10)

Goodearl
—-Handelman theorem, 4.8
Warfield- — theorem, 6.3H, 8.4H
—-Zimmermann-Huisgen theorem, 14.41–5
theorems, 4.1G, 4.1K, 4.2F, 4.8–9, 4.11, 14.15.9–11

Gordon
—-Robson theorem, 14.29A,B, 14.30–31, 14.43s
theorems, 3.34A(2), 14.33

Goursaud
theorem, 13.7A

Govorov
—-Lazard theorem, 4.A

Greenberg
—-Vasconcelos theorem, 14.20

Griffin
theorems, 9.12, 9.30, 9.33

Griffith
—-Eisenbud theorem, 3.5A,B
see Fossum
theorems 3.5Af

Grothendieck
theorems, 4.16As

group
Abelian —, F, 1.6–1.21
algebra, P, 2.39–40
bounded order, 1.8–1.9, 1.14
circle —, 17.1ss
divisible —, 1.10–1.13
free —, 3.24A,B, 3.74–6
Galois —, 2.7s
general linear —, 3.74s
integral — ring, 3.75–6, 11.11f, 11.12s
locally finite —, 11.9, 12.0C
polycyclic by finite —, 11.12
primary —, 1.7
quasi-cyclic —, 1.10
reduced —, 1.11f
rings, §11
skew — rings, 17.1As
torsion —, 1.6, 1.14
torsion free —, 1.6

Guil Asensio, see Gómez-Pardo

Gupta
theorem, 4.2E

Hajarnavis
—-Norton theorem, 13.16–17
Chatters- —, 12.5A

Hall
theorems, 2.50f
INDEX OF TERMS AND AUTHORS OF THEOREMS 459

Hamilton, 2.0s
— -Cayley theorem, 2.6B
Hamiltonian
 group, 3.75s
Hamsher
 theorem, 3.32f
Han
— -Nicholson theorem, 4**
Handelman
— -Goodearl theorem, 4.8
— -Lawrence theorem, 12.13
Hansen
 theorem, 3.11A
Harada
— -Ishii theorem, 3.8B
 theorem, 3.9D, 4.1A
Harčenko theorem, 12.1A,B
Hartley
— -Pickel theorem, 3.76
Hasse, see Brauer
Heinzer
— -Brewer theorem, 6.39, 9.25B
 Gilmer— — theorem, 5.59, 9.19, 9.25
— -Lantz theorem, 5.58
 theorem, 5.58, 10.5–7
— -Ohm theorem, 9.9B
Heitman
— -Levy theorem, 6.3Bf
Henriksen
 theorem, 2.16H, 4.7D, 6.3D
Hensel
— -ian ring, 8.Gs
Herbera
— -Faith theorem, 13.10
— -Pillay theorem, 3.6B–E
— -Shamsuddin theorem, 8.C
— -Xue theorem, 6.15
 theorem, 3.6B–E, 4.17A, 6.14, 8.8ff, 9.7
Hermite
— ring, 6.3Bs
Herstein
— -Small theorem, 2.38C, 3.41–2
 theorem, 2.15Af, 2.16Js, 2.38D, 2.44–2.47
Herzog theorem, 16.58
Higman, Graham
— problem, 11.11f
 theorem, 3.43Ass, 11.11ff
Hilbert
 basis theorem, 2.20ff
 division ring, 2.0f
 Fourteenth problem, 2.21Bf
 group ring, 11.14
— -Nullstellensatz, 2.30C, 3.36B
 Problem (= HP), 2.21Bf
 ring, 3.36s
 Seventeenth Problem, Part II (see E. Artin)
— -Syzygy theorem, 14.9
Hinohara
 theorem, 3.23C, 6.3Af
Hirano
— -Park theorem, 8.4F’, 9.50
Hochschild
 theorem, 4.15B, 14.15.4
Hochster
— -Murthy theorem, 10.1
Hölder, see Jordan
homomorphism, 1.2
— opposite scalars, 3.11As
Hopkins
— -Levitzki theorem, 2.1f,2.2s
Hua
 identity, 2.15As
Huckaba
— -Keller theorem, 6.42
 theorem, 9.22, 9.24(2)
Huynh
— -Dung-Smith theorem, 14.32B
— -Jain-López-Permout theorem, 12.4E, 12.8B
— -Rizvi-Yousif theorem, 12.4D
— -Smith theorem, 7.22–6
 theorem, 1.26, 1.27
IBN, see invariant basis number
ideal
closed — (see complement)
(co)irreducible —, 2.25s
comaximal —, 5.1A’
commutative —, 5.1A’
dense right —, 9.27s, §12
essential right —, 3.2Ds
generalized principal — theorem, 2.23
indecomposable —
invertible —, 9.29s
irreducible right —, 2.25s, 8.5As
locally nilpotent, 2.34B
nil —, 2.34s
nilpotent —, 2.37s
primary —, 2.25
prime —, 2.22s
primitive —, 2.6ss
principal cyclic —, 3.30f
principal — domain (PID), 1.14ff
principal — ring (PIR)
principal — theorem, 2.22
principal indecomposable module (= prindec), 3.30f
quasiregular —, 3.33Cf
radical of an —, 2.25s
regular —, 4.4, 9.28s
relatively prime —, 5.1A’
right essentially nilpotent—
semiprime, 2.37s
semiregular —, 9.28s
singular —, 4.2s
T-nilpotent —, 3.31
torsion —, 1.26A
vanishing —, 3.31
VNR —, 4.4

identity, see polynomial

idempotent
basic —, 3.52
central, 1.3
lifting —, 3.54f
— modulo, 3.54f
orthogonal —, 1.2, 3.52, 4.6B

IF (injectives are flat)
bring, P, 6.8s

Ikeda
— Nakayama theorem, 3.5Bs
theorem, 3.5Bs

indecomposable
— module, 1.2, 8.As

index
of nilpotency, 1.2s

inductive set, 2.17A

injective
\(\mathbb{N}_0^- \) —, 4.2Bs
— cogenerator ring, 3.3’(4), 3.5’, 4.20ff
countably —, 4.2Bs
\(\Delta^- \) —, 3.10A, 7.45s
\(f \cdot g \) — module, 4.2Bs, 6.Es
finitely —, 6.16f
FP — -ring, 6.As
— hull, 3.2C
— module P, 3.2s
p- — ring, 6.Es
pseudo — -module, 6.36As
pure- — module 1.25, 6.Bs, 6.45, 6.46ff
quasi—, 3.8s
self — -ring, 3.2s, 3.5Af, Chap. 4
\(\Sigma^- \) — module P, 3.7As, 3.14–16, 7.33—4
weak \(\mathbb{N}_0^- \) —, 4.2Bs

integrally closed
— ring, 9.11s

internal
— direct sum, 1.1

intersection
irredundant —, 2.27

invariant
basis number, 1.1, 3.63, 10.7f
fully — submodule, 1.3
(strongly) — coefficient ring, 10.1s
subring, 2.16Ds
transvectionally —, 2.16J

involution, 2.43s, 3.13s, 12.4s

irreducible
geometry, 12.4s, 12.4As
— ideal, 2.25s
lattice, 12.42, 12.4f
meet —, 8.5As
— module, 2.18As, 16.9A
— ring
subdirectly — module, 2.17Cs
subdirectly — ring, 2.17Ds
— submodule, 3.14C, 16.9A

Ishii, see Harada

Jacobson
INDEX OF TERMS AND AUTHORS OF THEOREMS

— conjecture, 2.40s, 3.34f, 2.40s, 12.0D
— Perlis- — radical, 3.33Cf
problem, 3.40s, 11.10f
radical, 2.6s
ring, 3.36s
theorem, 2.6–8, 3.8A, 4.6B, 4.15A, §12

Jain, Saroj
— theorem, 6.2B

Jain, S. K.
— -López-Permouth-Saleh example, 6.36
— -López-Permouth theorem, 13.34A
see Al-Huzali
see Huynh

Jans
— theorem, 7.49

Janusz
— theorem, 11.11ff

Jategaonkar
— theorem, 3.34f, 14.33
see Formanek

Johns
— ring, 13.36s
— strong — ring, 13.36s
— theorem, 13.37B.2

Johnson
— Mal’cev domain, 6.27f
— -Utumi maximal quotient ring, §12, 12A, C
— -Wong theorem, 3.8, 3.8s, §12, 12A

Jonah
— theorem, 3.32f

Jøndrup
— theorem, 7.A, 7.3s, 12.9

Jónsson
— Crawley- — theorem, 8.3

Jordan
— algebra, 2.42s
— -Hölder theorem, 2.17Fs
— simple, 2.42s

Kamil
— Beachy- — theorem, 3.60

Kaplansky
— Amitsur- — theorem, 15.4
— Arens- — theorem, 4.19A
— conjecture, 4.11s
— -Levitzki, 15.4
— -Levy example, 5.4F
— question, 9.14s
— theorem, 2.9, 3.1, 3.43ff, 4.1D, 4.6D, 4.10, 5.7, 6.3A, 8.4F, 12.4’, 14.15.2, 14.16, 14.38, 14.50, 14.55, 15.19

Kasch
— -Kupisch-Kneser theorem, 8.8ff, 11.11ff
quotient ring, 9.9
ring, 4.22A, 16.42
semilocal — -ring, 9.9, 16.29,
— 16.31–32
— theorem, 13.27

Kato
— theorem, 4.22C, 4.23, 13.13, 13.14A

Keller
— see Huckaba

Kerr
— ring, 9.2s
— theorem, 9.2

Kertész
— theorem, 1.27

Khurana
— Camillo- —, 4**

Kiepiński
— -Warfield theorem, 6.46

Kitamura
— theorem, 4.32, 17.12s

Klein
— theorem, 3.50, 6.35

Kneser
— see Kasch

Kobayashi
— theorem, 4.2E’, 12.3A

Koehler
— theorem, 3.9A, 12.4C’f

Koh
— theorem, 3.51s

Koifman
— theorem, 3.21s, 3.32ff
Kolchin
 theorem, 3.72

Köthe
 conjecture, 3.50As, 3.81f
 — -Levitzi theorem, 3.68
 radical, 3.50s
 theorem, 3.37, 5.1A, 5.2A

Krause
 — Definition 14.24
 — -Michler theorem, 14.31C

Krull
 classical — dimension, 14.1A, 14.24
 dimension, 14.26, 14.28s
 dual — dimension, 14.27As
 intersection theorem, 3.34
 principal ideal theorem, 2.22, 2.23
 ring, 9.21s
 — -Schmidt theorem, 8. As
 theorem, 9.11, 9.19(1)

Kulikov
 theorem, 1.15B

Kupisch
 see Kasch

Kurata
 theorem, 3.8C

Kurosh
 problem, 3.43f

Kurshan
 theorem, 5.20A

Lam
 remarks, 16.11Bs, 16.42f
 survey, 10.8f

Lambek
 — -Bourbaki theorem, 4.B
 — Findlay— — theorem, 9.27s, 12.Bs
 theorem, 12B

Lane
 — theorem, 17.16

Lanski
 theorem, 3.42

Lantz
 Heinzer— — theorem, 5.58

Larsen

 theorem, 6.3A

Lasker ring, 2.29f

Lasker-Noether
 theorem, 2.27

lattice
 complemented —, 12.4s
 distributive, 12.4s
 modular —, 12.4s
 orthocomplemented —, 12.4s
 self-dual —, 12.4s

Lawrence
 — -Handelman theorem, 12.13
 — -Wood theorem, 11.7B
 theorem, 3.5E, 4.16B, 11.7A

Lazard
 theorem, 4.A, 12.9

l.c., see linear compact

Lemonnier
 theorem, 14.29A

Lenagan
 — -Gordon-Robson theorem, 14.30
 theorem, 7.9A, 14.29D

length
 — of a module, 2.17Fs

Lenstra
 theorem, 2.21Bf

Lenzing
 theorem, 1.24, 3.78

Levitzi
 — -Fitting theorem, 3.38, 3.69
 — -Herstein-Small theorem, 3.41
 — -Kaplansky theorem, 15.4
 theorem, 2.34D—E, 2.38A, 3.37, 3.41, 3.68—9, 12.1E

Levy
 Kaplansky— — example, 5.4F
 — -Smith theorem, 5.3F
 theorem, 7.3B, 8.8f, 13.39—40, 13.45

Lewis
 theorem, 6.3A

Lichtman
 theorem 12.2′
INDEX OF TERMS AND AUTHORS OF THEOREMS

Lie
algebra (ring), 2.42s, 14.47
simple, 2.42f

lift/rad
ring, 3.30f

Lihtman (= Lichtman)
— theorem, 2.12'

linear
compact (= l.c.), 5.4Af
dense ring of — transformations, 2.6, 3.8A
full — ring, 4.6
transformation (= l.t.), 2.6, 3.8A

local
complete —, 5.4B
domination of a — ring, 9.18
FPF ring theorem, 4.30
ring, 3.14f, (Cf. historical note, 3.73ff)
semi — ring, 3.11As, (Cf. historical note, 3.73ff)

localization, 12.3s

Loewy
ascending — chain, 3.33As
— length, 3.33As, 3.33f–H
— module, 3.33As

Lopéz-Permouth
see Al-Huzali
see Huynh
see Jain

Loš
— theorem, 1.21A
l.t., see linear

Lucas
— theorem, 9.28, 9.35

Lüroth
— theorem, 1.29

Mac Lane
— theorem, 5.15B

m-adic
topology, 16.Af

Maeda
— theorem, 12.4B'(4)

Mal’cev (also Malcev)
— domain P, 6.27
— problem
— theorem, 6.27

Manis
— valuation ring, 9.10s

Marot
— ring, 9.20s

Martindale
— quotient ring, §17 Notes

Maschke
— theorem P, §10

Matlis
— Papp theorem, 3.4C, 8.1
— problem, 8.Hf, 8.3
— theorem, 5.4B,C, 5.5, 6.7A, 6.9–10, 6.19, 13.4C

matrix
cancellable, 10.8f
equivalent (or associate), 6.3As
ring, §2, 2.16D–2.16J
units, 2.16D–E, 4.6B

max
— module, 7.27s
— pair, 9.10s
— ring, 3.32f

maximal
annihilator ideal, 2.37Es
annulet (= maxulet), 2.37Es
completion, 5.14As
condition, 2.17As
ideal, 2.37s
order, 4.28
principle, 2.17B
regular ideal, 4.4
restricted — condition, 7.38s
ring, 5.4Bs
valuation ring, 5.4D

maxulet, 2.37Es, 16.30s

m.c., see closed

McAdam
— theorem, 9.11'

McCarthy
— theorem, 4.1C
McConnell
theorem, 14.46

McCoy
— rings, 6.38f
Zip — rings, 6.38f
theorem, 2.36, 2.37B, 6.40, 16.1–2

McLaughlin
theorem, 11.9

Megibben
theorem, 3.7

Menal
conjecture, 13.35s
Dicks—theorem, 3.24B
—-Monasi theorem, 6.3E
—-Vámos theorem, 6.1, 6.22–23
theorem 4.16A, 4.17B, 6.3J, 13.19, 13.20,
13.32–3

Michler
—-Villamayor theorem, 7.38s
see Krause

Mikhovski (Mihovski)
theorem, §17 Notes

Miller, see Teply

minimum
— condition on a module, 2.17As
— restricted — condition, 7.38s

mod-R, 3.51

module
aleph or (8)-generated, 1.1
algebraically compact —, 1.25s
balanced —, 3.50Bf
basic —, 3.52
character —, 4.8s
compact faithful (CF) —, 3.9, 3.62As
complement sub —, 3.2Es
completely decomposable, 8.8s
completely injective —, 7.32s
counter —, 16.9Cs
cyclic presented —, 6.5A
divisible —, 1.10
dual —, 1.5
essential over —, 3.2Ds
essential sub —, 3.2Ds
faithful —, 2.6s
finite, 8.6G
flat —, 4.8s
genus of a —, 5.23As
indecomposable —, 1.2, 8.8s
injective —, 3.2s
irreducible —, 2.18As, 16.9A
irreducible sub —, 3.14B, 16.9A
linearly compact —, 5.4Af
Loewy —, 3.33As
nonsingular —, 4.1Es
principal cyclic —, 3.30f
projective —, 3.1As
pseudo —, 6.36As
pure-injective —, 1.25s, 6.Af, 6.46–57
quasi-injective —, 3.9As
quotient finite dimensional (= q.f.d.),
see listing
radical of a —, 3.19As
semiartinian, 3.33As
sigma or Σ-completely, 7.33–4
sigma (Σ)-cyclic —, 5.1As
sigma (σ)-cyclic —, 5.1As
sigma (Σ)-injective —, 3.7As, 3.14–16,
7.33–4
singular —, 4.1Es
special —, 7.24s
subdirectly irreducible —, 2.17D
subdirect product of —, 2.6f
torsionfree —, 1.6
torsionless —, 1.5
uniform —, 3.14A
uniserial —, 5.1A′ f

Mohammed
—-Sandomierski theorem, 12.10

Molien
theorem, P

Moncasi
Goodearl- — theorem, 6.3I
Menal- — theorem, 6.3E

Monk
theorem, 8.4E

Montgomery
duality, 13.1s, 14.1A
equivalence, 3.51f, §17 Notes
example, 4.6D
see Cohen
they, 8.1f

Morita
duality, 13.1s, 13.14A
equivalence, 3.51f, §17 Notes
theorem, 3.51, 11.11s, 13.4A, 13.7, 13.30F

Molie
INDEX OF TERMS AND AUTHORS OF THEOREMS

Moss
 see Ginn

Mostow
 theorem, 2.52f

MP (Matlis’ Problem)
 see Matlis

mspec R, see Spec

Mueller (Müller, B.)
 theorem, 13.1, 13.5, 13.27

Murase
 theorem, 5.2C

Nagata
 — Higman theorem, 3.43Ass
 theorem, 2.21Bf, 5.4A’, 9.24(1), 14.21

Nakayama
 — Asano theorem, 2.13, 5.2A
 — Faith theorem, 2.13, 5.2A, 13.7
 lemma, 3.35
 theorem, 2.13, 5.2B, 13.7, 13.15A

Nastasescu
 — Popescu theorem, 3.33D

Neggers
 — theorem, 3.78

Neroslavskii
 see Zalesski

Nesbitt
 — Thrall theorem, 13.30A

NFI
 — module, 7.38, 7.43

Nicholson
 theorem, 8.4B,C
 Han- — theorem, 4**

nil
 ideal, 2.6s, 2.34As
 lower — radical, 2.38A
 radical, 2.34s, 2.35s
 ring, 2.34As

nilpotent
 element, 2.6s
 essentially —, 3.80
 ideal, 2.34As, 3.37s
 locally —, 2.34B

properly —, 2.29f
 ring, 1.2s, 2.34As
 strongly —, 2.33s
 T- —, 3.31, 3.80
 transfinately —, 3.32, 3.34A, 13.17, 13.17s

Noether (also Noetherian)
 co- —, 7.49
 depth, 16.33s
 — Lasker theorem, 2.27
 locally —, 7.23, 9.1s
 module F, 2.17As
 one-step —, 5.57s
 piecewise —, 9.36s
 prime ideal, sup. 3.15B
 P-ring, 3.15As
 problem, 2.21, 2.21Bf
 ring, 2.2s, 2.17As
 spectrum (= spec), 14.35
 theorem, 2.5A, 2.18
 see Brauer

nonsingular
 module, 4.1Es
 ring, 4.1Es, 5.3Ds, §12

Norton
 see Hajarnavis

Nouazé
 — Gabriel theorem, 14.28B

Nullstellensatz
 Hilbert- —, 2.30C, 3.36B
 weak —, 3.36B

Nunke
 theorem, 1.21A, 1.21Bf

Ohm
 Heinzer- — theorem, 9.9B
 Pendleton- — theorem, 14.36

Olberding
 theorem, 6.19A

O’Neill
 theorem, 1.21Cff

Onodera
 theorem, 13.14A, 13.30F

opposite
 ring (algebra), 2.5Bf, 2.43s, 4.13
order
of a group, 2.6ff
linear —, see chain module (ring)
maximal —, 4.28
reduced —, 2.7s

Ore
condition, 3.12Bf, 6.26
domain, 6.26f
ring, 3.12Bf, 7.35s
theorem, 6.26, 7.14ff

Ornstein
theorem, 2.19B, 3.20

orthogonal
idempotents, 1.2

Osofsky
example, 4.24
— ring, 3.3' f
— Smith theorem, 12.4C, C'
three, 3.3, 3.18A, 4.2A, 4.20, 4.22,
4.22ff, 12.4C', 13.2, 14.14A,B, 14.15.7,
14.52-54

Osterburg
see Fisher, Snider

P
completion, 5.4B, 13.4C
integers, 4.24 (Cf. Historical Note, 3.73ff)

P
example, 4.24
— ring, 3.3' f
— Smith theorem, 12.4C, C'
three, 3.3, 3.18A, 4.2A, 4.20, 4.22,
4.22ff, 12.4C', 13.2, 14.14A,B, 14.15.7,
14.52-54

P
see Fisher, Snider

ring, 6.26f

Order
example, 4.24
— ring, 3.3' f
— Smith theorem, 12.4C, C'
three, 3.3, 3.18A, 4.2A, 4.20, 4.22,
4.22ff, 12.4C', 13.2, 14.14A,B, 14.15.7,
14.52-54

P
completion, 5.4B, 13.4C
integers, 4.24 (Cf. Historical Note, 3.73ff)

P
example, 4.24
— ring, 3.3' f
— Smith theorem, 12.4C, C'
three, 3.3, 3.18A, 4.2A, 4.20, 4.22,
4.22ff, 12.4C', 13.2, 14.14A,B, 14.15.7,
14.52-54

P
see Fisher, Snider

polynomial
— content, 9.47
identity (PI) ring, 15.1s, 15.14s
proper — identity, 15.4s
Rowen —, 15.14s
standard — identity, 15.15(5)
strongly regular — identity, 15.9s

Popescu
theorem, 3.33D, 9.36s

Posner
theorem, 15.6

power series ring
\(R(x) \) (also \(R[[x]] \)), 2.0s, 6.12ff

PP (= pp) ring, 7.3A

presentation
minimal —

primary
completely — ring, 5.1A's
decomposable, 5.1A'
ideal, 2.25
ring, 5.1A's
semi — ring, 5.1A's

prime
associated —, 2.25, 3.16Cs, 6.39s, 16.11
avoidance, 16.5ff, (Cf. 2.37B–D)

Polland
see Hartley
ideal, 2.18As, 2.22s
ideal of zero divisors, 9.58A
minimal — ideal, 2.22s, 2.36A, 2.37G,
 14.34s, 16.25f (Remark)
Noetherian —, 16.9Ds
radical, 2.31f
rank of a —, 2.22s
ring, 2.22s
semi — ideal, 2.37As
Spectrum = Spec, 14.1s
strongly — ring, 12.11s

primitive
 ideal, 2.6s
 ring, 2.6s

principal ideal
domain (PID), 1.15s
ring (PIR), 5.1Bs
theorem, 2.22ff

principal indecomposable module
 (= prindec), 3.30f

prindec, see principal indecomposable

Procesi
 theorem, 4.14s, 15.8

product theorem, 5.28

projective
cover, 3.30s, 3.31
geometry, 4.Ass
module, P, 3.1As
uniformly big —, 3.26

proper identity, 15.4s

Prüfer
discrete —, 9.35f
domain, 4.1D, 9.29s
ring, 9.29s
strong —, 9.35s

Pseudo-Frobenius (= PF)
finitely — (= FPF), 4.26s
— -ring, 4.20

Puninski
 theorem, 6.E

pure
 Cohn- — submodule, 6.As
 essential extensions, 6.46, 6.46A
 — -injective envelope, 6.46
 — -injective module, 1.25s, 6.Af
 RD- — submodule, 1.17As
 Σ- — -injective module, 6.55s
 — -semisimple module, 6.56s

purely infinite ring, 4.8s

purely inseparable extension, 2.9Af

Pusat-Yilmaz
 — -Smith theorem, 14.38f (Remark)

QF
 see Quasi-Frobenius

QF-1
 — rings, 13.29s, 13.30, 13.30E

q.f.d., see quotient finite dimensional

Q(R) = classical quotient ring of R

quasi-cyclic group, 1.10

Quasi-Frobenius (= QF)
 extension, 13.27
 ring P, 3.5Af, 4.23B, §13

quasi-injective
 hull, 3.9D
 module, 3.8s
 Π- — module, 3.9

quasiregular
 element, 3.33Cf
 ideal, 3.33Cf

Quentel
 theorem, 9.24(5)

Quigley
 theorem, 1.33-4

Quillen
 — -Suslin theorem, 3.25

quotient
 classical — ring, 3.12Bf, 3.6As, 6.26,
 7.35ff
 CS, 12.4Cs
 finite dimensional module, 3.13s, 5.20As,
 7.27–31 (= q.f.d.)
 finite dimensional ring, 3.13s
 maximal — ring, 9.27s, 12.0Ass
 pure- — injective, 6.46A
 ring, 3.12Bf
 see Martindale, Ore
INDEX OF TERMS AND AUTHORS OF THEOREMS

radical (= rad)
 acc on — ideals, 14.34–38
 Baer —, 2.38A
 extension of a ring, 2.9s, 2.10s
 ideal, 2.22s
 Jacobson —, 2.6s
 Kôthe- —, 3.50s
 lower nil —, 2.38A
 of a module, 3.19As
 nil —, 2.34s
 of a ring, 2.6s
 Perlis —, 3.33Cf
 prime —, 2.31f
 T-nilpotent —, 3.31
 vanishing —, 3.31

Ramamurthi
 — -Rangaswamy theorem, 6.16

Ramras
 — -Snider theorem, 14.23

rank
 free — of a module, 5.34s
 of a free module, 1.1
 of a prime ideal, 2.22s

rational extension
 maximal —, 12.0Ass
 of a module, 12.0Ass

rationally
 complete module, 12.0B

RD (= relatively divisible), 1.17

reduced
 group, 1.11
 order of a group of automorphisms, 2.7s
 part of a group, 1.12
 rank of a ring, 3.56s
 ring, §12

refinement
 — of chains of submodules, 2.17F
 isomorphic —, 8.3f
 theorem, 2.17F

reflexive
 E- — module, 13.1s

Regev
 theorem, 15.13

regular
 element, 2.16Fs, 3.6As, 3.12Bf, 3.55
 local ring, 14.16s
 — ring, 8.4Fs
 semi- — ideal, 9.28s
 semi- — ring, 6.9f
 strongly —, 4.3As, 4.19As
 strongly — ring, 8.4Fs
 top —, 12.5s
 unit — ring, 4.Ass, 6.3B
 von Neumann- — ring, 4.Ass

Reichardt
 theorem, 2.21Bf

Reis
 — -Viswanathan theorem, 16.8Af

Reiten
 see Fossum

Renault theorem, 3.32As

Rentschler
 — -Gabriel theorem, 14.28A

representations
 of bounded degree, 15.1(7), 15.12, 15.17ff
 irreducible —, P

Resco
 — -Stafford-Warfield theorem, 3.36E

restricted
 theorem, 2.6H(2)
 right minimum condition (= RRM), 7.38s
 right socle condition (= RRS), 7.38s

Richman
 theorem, 9.29B, 12.3

Rinehart
 Rosenberg- — theorem, 14.15.11
 theorem, 14.15.8

ring
 aleph (\aleph_0)-continuous —, 12.4As
 almost maximal valuation —, 5.4Bs
 arithmetical —, 6.4, 6.5A
 Armendariz —, 9.47
 Artinian —, 2.1f
 balanced —, 13.29s
 basic —, 3.52
 Boolean —, 2.17E
 bounded —, 5.44Bs
INDEX OF TERMS AND AUTHORS OF THEOREMS

Camillo—, 3.4As, 5.20
capital of a —
chain —, 3.14As, 5.52s
clean —, 4**
cogenerator —, 3.3'(4), 3.5B', 4.20ff
completely primary —
conch —, 9.10s
co-Noetherian —, 7.49
continuous —, 12.4As
Dedekind Finite (DF) —, 4.6A, 4.6A'
Dedekind Infinite —, 4.6B
dense — of linear transformations, 2.6, 3.8A
dual (D) — ring, 13.12s
duo —, 5.45
endomorphism —, 1.2
FBM —, 8.8f, 11.11ff
FFM —, 8.8f, 11.11ff
finitely PF (= FPF) — ring, 4.26ff
finite module type —, 8.8f
finite representation type —, see FFM
FP —, 4.26s; see FPF
FP-injective — P, 6.6s
F-semiperfect —, 6.52s
generalized Boolean —, 2.8B
generalized unserial (serial), 5.1Bs
Gaussian —, 9.47
Goldie, 3.13s
Hilbert —, 3.36s
injective cogenerator —, 3.3'(4), 3.5', 4.20ff
Johnson— -Utumi maximal quotient,
§13
Krull —, 9.21s
Lasker —, 2.29f
lift/rad —, 3.30f
linear —, 4.6
linearly compact —, 5.4Af
local —, 3.14f
Loewy —, 3.33As
Manis —, 9.10s
Marot —, 9.20s
matrix —, §2, 2.16Dff
matrix cancellable —, 10.8f
max —, 3.31, 3.32f
maximal —, 5.4Af
maximal valuation — (MVR), 5.4D
minus one (= ring-1)¹, 1.2s
Noetherian —, 2.1f
nonsingular —, 4.2s, 5.3Ds, §12
opposite —, 2.5Bf, 2.43s
Osofsky —, 3.4As
perfect —, 3.31s
PF —, 4.20
PP (= pp) —, 7.3As
primary —, 5.1A'
primary-decomposable —, 5.1A'
prime —, 2.22s
primitive, 2.5s
product, 1.3
pseudo-Frobenius (PF), 4.20
QF-1 —, 13.29s
q.f.d. —, 5.20As, 7.27–31
QI —, 3.9A, 7.37f, 7.39–7.43
quasi-Frobenius (QF) P, 3.5Af, 4.23B, §12
radical extension —, 2.10s
radical of a —, 2.6s, 3.33Cf
reduced —, §12
regular local —, §15
S —, see skalar, 12.0As
sandwich —, 9.14s
SBI —, 3.54f, 8.4Bs
self-injective —, 3.2s, 3.5Af, 4.5ff, 4.20ff, 5.42, 6.28
semiartinian —, 3.33As
semilocal —, 3.11As
semiperfect —, 3.30s, 6.52s
semiprimary —, 3.11As
semiprime —, 2.2s, 2.34
semiprimitive —, 2.6f
semisimple —, 2.1
serial —, 5.1Bs
sigma cyclic —, 5.1s
Σ(Δ) —, 7.47s
similar —, 3.51f
simple —, 2.1f
SISI —, 5.11f, 5.19, 9.1s
skalar —, 12.0As
socular —
stable range of a —, 6.3Fs
star (*)-ring, 6.60
subdirectly irreducible —, 2.17D
subdirect product of —, 2.6ff
triangular matrix —, 2.6s
unserial —, 5.1Bs
Utumi —, 12.0As
valuation —, 3.14As, 5.1A'

¹A ring-1 may contain 1.

Ringdal
see Amdal

Ringel
Dlab— theorem, 13.30B–D
theorem, 13.30E
INDEX OF TERMS AND AUTHORS OF THEOREMS

470

Ritt
algebra, 7.16s

Rizvi
— -Yousif theorem, 12.4D, 12.8
theorem, 12.4D, 12.7

Robson
Gordon- — theorem, 14.30–31, 14.37, 14.43s
Lenagan- — theorem, 14.30
theorem, 7.4

Roggenkamp
— -Scott theorem, 11.10ss
theorem, 11.11f

Roitman
theorem, 9.3, 9.8

Rose, see Baldwin

Roseblade
theorem, 11.12, 11.14

Rosenberg
— -Rinehart theorem, 14.15.11
theorem, 2.16J
see Eilenberg

Rowen
— PI-algebra, 15.14s

Rubin
theorem, 12.11

Rutter
see Brewer
theorem, 13.36

Ryabukhin
theorem, 2.36f

Sabbagh
Eklof- — theorem, 6.20
theorem, 6.48

Šafarevič, see Shafarevitch

Sahaev
theorem, 12.9

Salce
— -Zanardo, 6.19
see Fuchs

Sandomierski

— Zelinsky theorem, 13.3

Sandwich
— ring, 9.14s

Sanov
theorem, 3.74

Santa Clara
— -Smith theorem, 12.4F–H

Sąsiada
— theorem, 2.36f

Schmidt
see Krull

Schofield
theorem, 2.7s

Scholz
theorem, 2.21Bf

Schopf
see Eckmann

Schur
lemma, §2, 2.0ss

Scott
see Roggenkamp

semiartinian
module, 3.33As
ring, 3.33as

semilocal ring, 3.10Af

semiperfect ring, 3.30s
F —, 6.52s

semiprimary ring, 3.11As, 5.1A’s

semiprime
ideal, 2.37As
ring, 2.2s

semiprimitive
ring, 2.6f

semisimple
factor (or part), 2.52
module F, 2.1s
ring P, 2.1

separable
algebra, 2.51, 4.15B
INDEX OF TERMS AND AUTHORS OF THEOREMS

field extension, 2.51s

serial
 ring, 5.1Bs

series
 composition —, 2.17c
 critical —
 Jordan-Hölder—, 2.17c
 Laurent—, 2.0f
 power —, 2.0f
 socle —, 3.33As

Serre
 condition, 5.34
 conjecture, 3.25

sfield (= division ring), 2.0s

Shafarevich
 theorem, 2.21Bf, 3.43As

Shamsuddin
 example, 17.15
 —Herbera theorem, 8.C
 — theorem, 17.16, 17.18

Sharp
 —Vámos theorem, 16.7A–B

Shepherdson
 example, 4.6Ds

Shizhong
 theorem, 7.11

Shock
 — module, 7.27s
 theorem, 3.32B, 3.39–40, 3.80, 7.27

Shores
 theorem, 5.7–8, 6.3A

SI (= self-injective), see injective

sigma (= Σ, σ)
 completely — injective, 7.32s, 7.32–4
 cyclic module, 5.1A’s
 cyclic ring, 5.1A’s
 finitely generated, 5.A’s
 injective, P, 3.7As, 3.14–16, 7.32s, 16.33
 ring, 7.47s

Silver
 theorem, 12.2A

similar

rings, 3.51f

similarity (of two rings), 3.5af

simple
 factor, 2.17Fs
 module, P, 2.0s
 ring, 2.1f, 2.17B, 7.15–19, 12.4””

Simson
 theorem, 4.A2

Singh, S.
 theorem, 5.3E,G

singular
 ideal, 4.1Es, §12
 submodule, 4.1Es

SISI ring, 5.11f, 5.19, 9.1s

skew field (= sfield), P, 2.0s

Skolem-Noether
 theorem, 2.5A

Skornyakov
 theorem, 5.2D, 13.15C

Small
 see Amitsur; Goldie; Herstein
 theorem, 3.41, 3.55A–D, 3.57, 14.51

Smith, P. F.
 Albu— theorem, 14.27B
 Levy— theorem, 5.3F
 Osofsky— theorem, 12.4C,
 12.4F-G
 see Huynh, Pusat-Yilmaz, Santa Clara
 theorem, 11.16

Smith, W. W.
 theorem, 16.8A–B

Smoktunowicz
 — theorem, 2.36f

Snapper
 theorem, 3.49B

Snider
 see Farkas, Fisher, Ramras
 theorem, 12.0C, 14.23

socle
 length, 3.33as
 of a module, 3.33As
series, 3.33As

Soublin
— example, 14.20s

Spec = spectrum
Spec \(R \) = the set of all prime ideals of \(R \), 14.s
mspec \(R \) = the set of all maximal ideals of \(R \), 9.35f

Specker
theorem, 1.19B
split
locally — submodule, 6.16s
null extension, 4.24
— split algebra, 4.15B

splits
off, 1.4, 2.1s
submodule —, 1.4, 2.1s

splitting
divisible group —, 1.11, 1.12
— field, 2.5Bff

Srinivasan
theorem, P, 11.12s

stable range, 6.3Fs

Stafford
see Resco
theorem, 7.13

staircase lemma, 15.3

Star (\(* \)) ring, 6.60s

Steinberg
Armendariz — theorem, 4.18

Steinitz
ring, 3.77s
theorem, 1.28

Stellenring, 3.73ff

Stenström
— Jain theorem, 6.2B
theorem, 12.2B

Stephenson
theorem, 3.51’f, §17 Notes

Stickelberger
theorem P

subdirectly
— irreducible ideal, 16.9Cs
— irreducible module, 2.17Cs
— irreducible submodule, 2.17Cs

subdirect product, 2.6f

subisomorphic, 3.3

submodule
(Cohn) pure —, 6.As
fully invariant —, 1.3
independent —, 1.4
irreducible —, 2.18As, 3.14B, 16.9Cs
RD-pure —, 1.17As
subdirectly irreducible —, 2.17Cs, 16.9Cs

subring-1, 1.1s, 16.1s²

suitable
— ring, 8.4B

summand, 1.4

support
finite —, 1.1

Suslin
Quillen- — theorem, 3.25

Swan
theorem, 2.21Bf, 8.F

Sylvestre
domains, 6.3Iff

symmetric
element, 2.44s
quotient ring, §17 Notes
skew —, 2.44s

Syzygy
theorem, 14.9

Szele
theorem, 1.26

Taft
theorem, 2.52f

Talintyre
theorem, 3.55B

Tarski
theorem, 6.45

²A subring-1 may contain 1.
INDEX OF TERMS AND AUTHORS OF THEOREMS

Tate
 Artin- —, 3.8s

Teply
 example, 14.27D
 — -Fuelberth theorem, 4.1E
 — -Miller theorem, 3.10

terse
 — groups, 9.38
 — modules, 9.38s, 9.38ff

Throll
 problem, 13.29s
 theorem, 13.29s, 13.30A

Tominga
 — theorem, 1.27

Top
 regular, 12.5s

torch ring, 5.8s

torsion
 — -free, 1.6
 — -group, 1.6
 — -ideal, 1.26As
 — -subgroup, 1.13f
 — -submodule, 1.6

torsionless
 module, 1.5

trace
 (g) —, 17.0, 17.1Cs
 map, 17.1s
 of a matrix, 3.71
 of a module, 3.3DF, 7.32f
 of an element, 4.6DF
 of an ideal, 3.3DF

transpose
 matrix, 2.43

transvection
 invariant subring, 2.16Js
 matrix, 2.16Js

triangular
 matrices, 2.6s
 strictly upper (lower) —, 3.67–8

Trosborg
 Beck- — theorem, 3.79

Tsang
 theorem, 9.51

Tsen
 theorem, 2.6ff

Two × Two (2 × 2)
 theorem, 5.38A

uniform
 — module, 3.14A, 16.9A
 — ring, 6.26, 13.26, 16.13

unimodular
 element, 5.22f

uniserial
 module, 5.1A’f
 ring, 5.1A

unit regular
 ring, 4.1s, 6.3Bs

units
 ring generated by —, 2.16E–H

Utumi
 — theorem, 4.6C’
 Faith- — theorem, 3.13B, 4.2A, 7.6
 — ring, 12.0As
 theorem, 4.2, 4.3, 4.7, 4.20, 12B, 12.0A,
 12.4”, 12.4A–B, 12.5

Uzkov
 theorem, 5.1C

Valente
 example, 9.17

valuation
 almost maximal —, 5.4C,D
 classical — ring, 9.15B
 discrete —, 9.29s
 generalized discrete —, 9.35f
 Manis —, 9.10s
 maximal — ring, 5.15Af
 para- —, 9.11f
 quasi- —, 9.10s
 — -ring, 3.15As, 5.1A’f, 5.52s

Vámos
 — -Menal theorem, 6.22–23
 ring, 5.19s, 5.21, 5.60, 5.62–3, 9.1s
 theorem, 3.36F, 3.58–3.61, 5.9,
 5.15C–D, 5.17s, 6.1, 7.50, 13.8

vanishing
 ideal, 3.31
left —, 3.31, 3.80
radical, 3.31

variety
algebraic —, 2.30As
irreducible —, 2.30As

Vasconcelos
conjecture, 13.23
theorem, 5.23A, 5.24, 12.9, 14.20

Vicknair
theorem, 5.14A,B, 5.15A

Villamayor
ring, 3.19A
theorem, 3.19A, 7.38s

Vinsonhaler
theorem, 3.5F

Viola-Prioli
theorem, 12.12

Viswanathan
Reis — theorem, 16.8Af

VNR
ring, 4.As
see von Neumann

von Neumann
Abelian — regular ring, 4.3As
coordinization theorem, 12.4
dimension function, 12.4f
regular (= VNR) ring, 4.As

V-ring, 3.9Bs, 3.19A
VR = valuation ring
VD = valuation domain

Wagner
identity, 15.1(4)
theorem, 2.50f

Walker, E. A.
Faith — theorem, 3.5A,B,D, 4.21A, 8.2A,B

Walker, G. L.
see Perlis

Warfield
Goodearl — theorem, 6.3H
see Resco

Weakley, 5.57, 5.63, 5.62, 9.39, 9.41–9.43

Webber
theorem, 7.1

Wedderburn
— Artin Theorem, P, 2.1–2.4, 3.13A
— factor, 2.52ff
General — theorem, 3.51ss
— theorem on finite division rings, 2.6ff
theorems P, §2

Weyl algebra, 7.19s, 14.15, 14.46

Wiegand, R.
problem, 5.26
theorem, 5.7–8, 5.24–5

Wong
see Johnson

Wood
see Lawrence

Würfel
theorem, 6.8–9

Xue
theorem, 6.15, 9.1

Yamagata
theorem, 8.5

Yoshimura
theorem, see Remark 12.14

Yousif
theorem, 5.43, 12.8
see Camillo

Yu
theorem, see Nicholson

Zacharias
theorem, 14.22

Zalesskii
— Neroslavskii theorem, 7.12s
theorem, 4.6E

Zanardo
see Fuchs
see Salce
INDEX OF TERMS AND AUTHORS OF THEOREMS

Zariski
 theorem, 1.31A

Zelinsky
 — Sandomierski theorem, 13.3
 theorem, 2.16G, 8.B

Zelmanowitz
 theorem, §12

zero divisors
 few —, 9.9s
 of a module, 16.11
 maximal prime ideal of —, 9.58A
 question, 11.12s

Ziegler
 theorem, 6.49

zig-zag theorem, 6.25

Zimmermann
 theorem, 1.25, 6.D', 6.55, 11.8

Zimmermann-Huisgen
 theorem, 6.56

zip rings, 6.32s, 6.38, 6.39, 16.28B

Zjabko
 theorem, 2.16JF

Zorn
 lemma, 2.17A
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century.

In the second part of the book, the author gives descriptive impressions of the last half of the twentieth century. Beginning with his teachers and fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-NATO Postdoctoral at Heidelberg and at the Institute for Advanced Study at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona.