An Introduction to the Analysis of Paths on a Riemannian Manifold

Daniel W. Stroock

Selected Titles in This Series

74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000
73 John Locker, Spectral theory of non-self-adjoint two-point differential operators, 2000
72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999
64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998
61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C^{*}-algebras, 1998
59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998
58 Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, 1998
57 Marc Levine, Mixed motives, 1998
56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998
55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998
54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997
53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997
52 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997
51 Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, 1997
50 Jon Aaronson, An introduction to infinite ergodic theory, 1997
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997

46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

An Introduction to the Analysis of Paths on a Riemannian Manifold

An Introduction to the Analysis of Paths on a Riemannian Manifold

Daniel W. Stroock

Editorial Board

Georgia Benkart
Peter Landweber
Michael Loss
Tudor Ratiu, Chair

1991 Mathematics Subject Classification. Primary 60J65; Secondary 60J60, 60D05.
Abstract. This book provides an introduction to Brownian motion on a Riemannian manifold. Although the reader is expected to have some familiarity with both probability theory and differential geometry, the author has attempted to make the book self-contained. Thus, whenever technically demanding topics are introduced (e.g., Brownian motion in probability theory and the orthonormal bundle of frames in differential geometry), he has provided some background. His hope is that the book will be accessible to anyone who has had semester courses in probability theory and differential geometry at the graduate level.

Library of Congress Cataloging-in-Publication Data

Stroock, Daniel W.
An introduction to the analysis of paths on a Riemannian manifold / Daniel W. Stroock. p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 74)

Includes bibliographical references and index.
ISBN 0-8218-2020-6 (alk. paper)

1. Riemannian manifolds. 2. Brownian motion processes. I. Title. II. Mathematical surveys and monographs; no. 74 .
QA649.S76 1999
516.3'73-dc21

99-044329
Softcover ISBN 0-8218-3839-3

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2000 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

This book is dedicated to my friends and mentors:

Paul G. Malliavin and Shing Tung Yau

Contents

Preface ix
Chapter 1 Brownian Motion in Euclidean Space 1
1.1. Wiener Measure 1
1.1.1. Deconstructing Brownian Paths 2
1.1.2. Lévy's Construction 5
1.1.3. Modulus of Continuity 6
1.1.4. Multi-dimensional Brownian Motion 8
1.2. The Infinite Dimensional Sphere and Related Matters 9
1.2.1. Square Variation of Brownian Paths 9
1.2.2. Paley-Wiener Integrals 10
1.2.3. Fourier Characterization 11
1.2.4. Extension to Higher Dimensions 11
1.2.5. The Cameron-Martin Formula 12
1.2.6. Integration by Parts 14
1.3. Feynman's Picture of Wiener Measure 15
1.3.1. Rescaling Feynman's Picture 16
1.4. Wiener Measure, the Laplacian, and Martingales 18
1.4.1. A Preliminary Manipulation 18
1.4.2. Reinterpretation 20
1.4.3. A Heuristic Interpretation 23
Chapter 2 Diffusions in Euclidean Space 27
2.1. Martingale Problems for Operators in Hörmander Form 27
2.2. The Abelian Case 28
2.2.1. A Single Vector Field 29
2.2.2. A Single Vector Field Squared 30
2.2.3. Several Commuting Vector Fields 32
2.3. The Non-Abelian Case 34
2.3.1. The Scheme for Smooth Paths 35
2.3.2. The Scheme in the Stochastic Case 39
2.3.3. Basic Size Estimates 44
2.3.4. A Continuity Estimate 47
2.4. Derivatives 47
2.4.1. Burkholder's Inequality 48
2.4.2. Estimating Derivatives 49
2.4.3. A Little Bit of Sobolev 51
2.4.4. Existence of a Smooth Choice 53
2.4.5. Loosening Things Up 54
2.5. The Flow Property 55
2.5.1. Renewal at Stopping Times 55
2.5.2. The Heat Flow Semigroup for \mathcal{L} and Uniqueness 56
Chapter 3 Some Addenda, Extensions, and Refinements 59
3.1. Explosion and Non-explosion 59
3.1.1. An Example 59
3.2. Localization 61
3.2.1. Random Paths which may Explode 62
3.2.2. Splicing 63
3.2.3. Localizing the Martingale Problem 65
3.2.4. A Non-explosion Criterion 66
3.2.5. Well-posed Martingale Problems 67
3.3. A Polygonal Approximation Scheme 67
3.3.1. The Bounded Case 68
3.3.2. The General Case 68
3.4. Subordination 69
3.4.1. Time Dependent Vector Fields 70
3.4.2. Subordination for Diffusions 74
3.5. Semigroups of Diffeomorphisms 76
3.5.1. Flowing Backwards 76
3.5.2. Existence of a Continuous Version 77
3.5.3. Non-Degenerate Jacobian 79
3.5.4. In General 80
3.6. Invariant and Symmetric Measures 81
3.6.1. Criterion for Invariance 82
3.6.2. Symmetric Measures 84
3.6.3. An Application to the Explosion Problem 86
Chapter 4 Doing it on a Manifold, An Extrinsic Approach 89
4.1. Diffusions on a Submanifold of \mathbb{R}^{N} 89
4.1.1. The Martingale Problem 89
4.1.2. Invariant and Symmetric Measures 91
4.1.3. Non-Explosion Criterion 95
4.2. Brownian Motion on a Submanifold 95
4.2.1. Extrinsic Expressions 97
4.2.2. Extrinsic Brownian Motion 99
4.2.3. Brownian Motion Normal to a Submanifold 100
4.2.4. An Extrinsic Non-Explosion Criterion for Brownian Motion 103
4.3. A Question of Measurable Interest 104
4.3.1. An Internal Approximation Scheme 104
Chapter 5 More about Extrinsic Riemannian Geometry 111
5.1. Parallel Transport 111
5.1.1. Parallel Transport along Smooth Paths 111
5.1.2. Parallel Transport along Brownian Paths 113
5.1.3. An Internal Description 115
5.2. Riemannian Connection, Covariant Derivatives, \& Curvature 116
5.2.1. Riemannian Connection and Covariant Derivatives 116
5.2.2. The Second Fundamental Form \& Minimal Submanifolds 117
5.2.3. Riemannian and Ricci Curvature 120
5.3. The Distance Function and Explosion 122
5.3.1. Derivatives of the Distance Function 123
5.3.2. An Intrinsic Non-Explosion Criterion for Brownian Motion 128
5.3.3. A Comparison of Explosion Criteria 131
5.3.4. Growth Estimate when Ricci Curvature is Bounded Below 133
Chapter 6 Bochner's Identity 137
6.1. The Jacobian Process \& Bochner's Identity 137
6.1.1. The Martingale Characterization of the Jacobian Process 137
6.1.2. A Stochastic Version of Bochner's Identity 139
6.1.3. The Classical Bochner's Identity 145
6.1.4. The Case of Positive Ricci Curvature 146
6.2. Applications of Bochner's Identity 149
6.2.1. A Couple of Important Analytic Facts 149
6.2.2. Integrating Bochner's Identity 153
6.2.3. A Logarithmic Sobolev Inequality 155
6.3. Bismut's Formula 157
6.3.1. Variations on Bochner's Identity 157
6.3.2. The Bismut Factor 158
6.3.3. Measurability Again 161
6.3.4. An Estimate on Logarithmic Gradients 162
Chapter 7 Some Intrinsic Riemannian Geometry 165
7.1. Diffusions on an Abstract Manifold 166
7.1.1. Basic Existence Statement 166
7.2. Riemannian Manifolds 167
7.2.1. Basic Quantities 167
7.2.2. The Levi-Civita Connection 168
7.2.3. Parallel Transport 169
7.2.4. An Alternative Expression for the Divergence 171
7.2.5. The Laplacian as the Trace of the Hessian 173
7.3. Brownian Motion on M 174
7.3.1. Localizing the Laplacian 174
7.3.2. Construction of Brownian Motion via Localization 175
Chapter 8 The Bundle of Orthonormal Frames 177
8.1. The Bundle $\mathcal{O}(M)$ 178
8.1.1. The Riemannian Connection and the Horizontal Subspace 179
8.1.2. Rolling, Geodesics, and Completeness 184
8.1.3. Canonical Vector Fields and the Laplacian 185
8.1.4. A Measure on $\mathcal{O}(M)$ 185
8.2. Brownian Motion on M via Projection from $\mathcal{O}(M)$ 187
8.2.1. The Basic Construction 187
8.2.2. Parallel Transport along Brownian Paths 188
8.2.3. Measurability Considerations 189
8.3. Curvature Considerations and an Explosion Criterion 192
8.3.1. Cartan's Structural Equations 192
8.3.2. Riemann and Ricci Curvatures 195
8.4. Derivatives of the Distance Function 197
8.4.1. Yau's Non-Explosion Criterion 197
8.4.2. An Example of Explosion 200
8.5. Bochner on $\mathcal{O}(M)$ 201
8.5.1. Bochner's Identity 202
8.5.2. Integrated Version of Bochner's Identity 203
8.5.3. Bismut's Formula on $\mathcal{O}(M)$ 204
8.5.4. A Technical Comment 205
Chapter 9 Local Analysis of Brownian Motion 207
9.1. Normal Coordinates 207
9.1.1. Relationship to the Distance Function 208
9.2. Brownian Motion in Normal Coordinates 210
9.3. Asymptotic Expansion of Metric in Normal Coordinates 211
9.3.1. Relationship to Jacobi Fields 212
9.3.2. The Laplacian in Non-Divergence Form 216
9.4. Coupling 218
9.4.1. Applications 223
Chapter 10 Perturbing Brownian Paths 227
10.1. Heuristic Explanation 227
10.2. Formulation as a Flow 231
10.2.1. Initial Reformulation 231
10.2.2. Formulation as a System of O.D.E.'s on Pathspace 232
10.2.3. The State Space and Vector Fields 235
10.2.4. Perturbed Brownian Motion 237
10.3. Bochner via Perturbation of Brownian Paths 240
10.3.1. A Generalization of Bochner's Identity 240
10.3.2. An Application to Coupling 242
10.4. Bismut via Perturbation of Brownian Paths 243
10.4.1. The Perturbation and the Radon-Nikodym Factor 244
10.5. Second Derivatives 249
10.5.1. Derivative of the Bismut Factor 249
10.5.2. An Expression for Second Covariant Derivatives 255
10.5.3. Estimates for Derivatives of the Heat Flow 257
10.5.4. Estimate on Derivatives of the Heat Kernel 258
10.6. An Admission of Defeat 261
10.6.1. Li and Yau for Einstein Manifolds 262
Bibliography 265
Index 267

Preface

It was at a C.I.M.E. conference at the Palazzo in Cortona during the summer of 1978 that my eyes were opened to Malliavin's multi-tiered mansion in which Brownian motion on a Riemannian manifold resides. There, in the Palazzo's beautiful ballroom with its tiny blackboard presided over by Cleopatra and her adder, Malliavin held his audience in thrall with tales whose comprehension demanded simultaneous appreciation of the "upstairs story," the "downstairs story," and the profound influence that events on either exercise on the other. I have to admit that I could not have said with certainty on exactly which "level" a given event was transpiring. Indeed, at first I thought that there were only two "levels:" the upper one where Wiener measure lives and the lower one which is the manifold where the Brownian motion is taking place.

My confusion about this critical point was a direct consequence of my nearly perfect ignorance of differential geometry. In particular, because I had no idea what it was, Malliavin's frequent references to an intermediate level called the "bundle of orthonormal frames" were lost on me. Such matters are not broached in the first ten pages of even the most ambitious introductory texts about Riemannian geometry, and the first ten pages is as far as I had ever penetrated into the many differential geometry books which I had failed to read. Nor were Malliavin's intriguing lectures sufficient to persuade me to mend my ways immediately. Indeed, another fifteen years passed before my joint work with first Shigeo Kusuoka and then Ognian Enchev finally convinced me that the pain resulting from not learning more differential geometry would inevitably exceed the pain of mastering more than the first ten pages of at least one differential geometry text. Thus, about five years ago I forced myself to come to terms with Bishop and Crittenden's remarkably concise text [2]. My choice was dictated by two considerations: first, my collaborator Enchev had already assimilated the material in this book and I did not want to fall too far behind; secondly, Bishop and Crittenden emphasize the role of the bundle of orthonormal frames, and Malliavin had already alerted me to the advantages of this perspective. Of course, once I had taken the plunge, I delved into several other sources. In fact, the citations in this text give a reasonably accurate map of where I learned what.

Having benefitted from the efforts of differential geometers to explain their subject to me through their writings, I decided to reciprocate by writing this book, which is my attempt to explain my subject to them. With this in mind, I have tried to minimize the weight of "probabilistic" baggage which my readers must bring to a reading of this book. Further, wherever the option was available, I have chosen to emphasize the geometric over the stochastic aspect of the topic at hand. In particular, I never have made explicit use here
of Itô's stochastic calculus. In spite of the grand and beautiful edifice erected by L. Schwartz, R. Darling, P.A. Meyer, and others (cf. [14] for an excellent explanation of their ideas or Ikeda and Watanabe's famous [22] for a more standard treatment) to convince me and the world otherwise, I remain firmly convinced that Stratonovich calculus is the calculus of choice if one wants to maximize ones geometric insight into stochastic analysis on differentiable manifolds. Thus, I have, from the outset, solved all "my stochastic integral equations" (the quotation marks are here because this is the last time that the term "stochastic integral equation" makes an appearance in this book) by passing to limits after mollification. My hope was that this procedure will make the book more accessible to readers who have not been reared in the probabilistic tradition. My fear is that I may very well have produced a book which is incomprehensible equally to the probabilistic and differential geometric communities. Be that as it may, here is a summary of the material which I have tried to convey.

Because I did not want to assume that my reader is acquainted with Wiener measure, I have devoted Chapter 1 to the construction of Wiener measure and a brief resume of some of its properties. There are, by now, a myriad construction methods. The one which I have chosen is basically the one given by P. Lévy. Not only is Lévy's construction stunningly beautiful, it has the advantage that, in some sense, it sets the pattern for all the other constructions which follow.

Following Itô's ideas, but not his procedure, I use the techniques, orignally explained in [39], to show in Chapters 2 and 3 how one can massage Wiener paths into the paths of more general diffusions on \mathbb{R}^{N}. Chapter 2 covers the basic case, the one in which everything is sufficiently bounded that no problems about possible explosion ever arise. In Chapter 3, it is shown that much of what is done in Chapter 2 continues to hold even after the boundedness assumptions are removed. In addition, Chapter 3 addresses several other topics of importance, chief of which are subordination and invariant measures.

Differentiable manifolds make their initial appearance in Chapter 4, where they appear as an embedded submanifold M of \mathbb{R}^{N}. First it is shown that quite general diffusions on M can be viewed as special cases of the diffusions constructed in Chapters 2 and 3. Second, when M is given the Riemannian structure which it inherits from \mathbb{R}^{N}, it is shown that the Brownian motion on M can be realized by "projecting" Wiener paths from the ambient \mathbb{R}^{N} onto $M .{ }^{1}$ The unabashedly extrinsic ideas initiated in Chapter 4 are developed further in Chapters 5 and 6. Specifically, curvature considerations are introduced in Chapter 5, where, in connection with Yau's non-explosion criterion,

[^0]I present the first evidence that Ricci curvature has a lot to say about the behavior of Brownian paths. Further evidence of the same fact is provided in Chapter 6, where I prove Bochner's identity in an integrated form which leads to a beautiful interpretation given by J.-M. Bismut in [3].

The rest of the book takes an intrinsic point of view. In Chapter 7, it is explained how the material in Chapters 2, 3, and 4 transfers, without difficulty, to the setting of an abstract differentiable manifold M. In particular, Chapter 7 ends with a "dirty," hands-on construction of Brownian motion via localization. In order to prepare the way for the intrinsic construction of Brownian motion due to Eells, Elworthy, and Malliavin (cf. [11] and [29]), Chapter 8 starts with a quick summary of the basic facts about the bundle $\mathcal{O}(M)$ of orthonormal frames, gives the E-E-M construction of Brownian motion as the projection from $\mathcal{O}(M)$ to M of the diffusion on $\mathcal{O}(M)$ associated with Bochner's Laplacian, and ends with a demonstration that all the essentially intrinsic results proved earlier about Brownian motion on a submanifold are, if anything, easier to understand in this abstract setting.

Chapter 9 is something of a digression. The idea is to expose how systematic use of normal coordinates enters into the study of Brownian motion on a manifold. Not surprisingly, the applications are strictly local. For example, it is shown how familiar expansions of the metric in normal coordinates are manifested in the computation of the exit time and exit place of Brownian motion from very small balls.

Finally, in the concluding chapter I take up the topic which originally stimulated my own interest in Brownian paths on Riemannian manifolds. Namely, for many years I worked on a set of ideas which I dubbed the Malliavin calculus. The essential, unifying theme of these ideas is that useful analytic information can be obtained from doing differential calculus in pathspace. More precisely, by perturbing paths and examining the infinitesimal response of their distribution to the perturbation, one can gain insight into various analytic quantities which are representable in terms of distribution of those paths. I had (most successfully with Shigeo Kusuoka) practiced this art in the Euclidean context. Around the same time, Jean-Michel Bismut (cf. [3]) was taking the initial steps which are necessary if one wants to do the same thing in a differential geometric setting. Somewhat later, Bismut's program was given an enormous boost by Bruce Driver's key article [9]. Motivated, at least in part, by the desire not to read all 104 pages of Driver's paper, Ognian Enchev and I embarked on a program to obtain Driver's conclusions on our own, and Chapter 10 is derived from the paper [15] which grew out of our efforts.

Finally, I have to recognize the critical role that my friend S.-T. Yau has played in all this. In particular, Yau consistently challenged me to come up with something that probability theory could do that Yau himself could not. Of course, I knew all along that such an example does not exist, but I was damned if I would tell Yau. Now I have.

References

1. Bakry, D., L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992), LNM \#1581, Springer-Verlag, 1994, pp. 1-114.
2. Bishop, R. \& Crittenden, R., Geometry of Manifolds, Pure \& Appl. Math. Series \#15, Academic Press, 1964.
3. Bismut, J.-M., Large Deviations and the Malliavin Calculus, Progress in Math. \#45, Birkhäuser, 1984.
4. Calabi, E., An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1957), 45-56.
5. Chavel, I., Riemannian Geometry: a Modern Introduction, Cambridge Tracts in Math. \#108, Cambridge U. Press, 1993.
6. Cranston, M., Gradient estimates on manifolds using coupling, J. Fnal. Anal. 99 (1991), 110-124.
7. Deuschel, J-D \& Stroock, D., Large Deviations, Pure \& Appl. Math. Series \#137, Academic Press, 1989.
8. do Carmo, M., Riemannain Geometry, Mathematics: Theory \& Applications, Birkhäuser, 1993.
9. Driver, B., A Cameron-Martin type quasi-invariance theorem for Brownian motion on compact Riemannian manifolds, Jour. Funct. Anal. 110 (1992), 272-376.
10. Echverria, P., A criterion for invariant measures of a Markov process, Zeit. Wahr. und Verw. Gebiete 62\#1 (1982), 1-16.
11. Eells, J. \& Elworthy, D., Stochastic dynamical systems, Control Theory and Topics in Functional Analysis, Vol. III, Intern. Atomic Energy Agency, Vienna, 1979, pp. 179-185.
12. Einstein, A., On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat [English tranlation of German title], English translation in Investigations on the theory of the Brownian movement, Edited by R. Fürth and published by Dutton in 1926, Ann. d. Physik (ser. 4) 17 (1905), 549-560.
13. Elworthy, K.D. \& Yor, M., Conditional expectations for the derivatives of certain stochastic flows, Sémaire de Probabilités XXVII, LNM 1557, Springer-Verlag, 1993, pp. 159172.
14. Emery, M., Stochastic Calculus in Manifolds, Universitext Series, Springer-Verlag, 1989.
15. Enchev, O. and Stroock, D., Towards a Riemannian geometry on the path space over a Riemannian manifold, J. Fnal. Anal. 134 (1995), 392-416.
16. Friedman, A., Partial Differential Equations of the Parabolic Type, Prentice Hall, 1964.
17. Gallot, S., Hulin, D., and Lafontaine, J., Riemann Geometry, 2nd. ed., Universitext Series, Springer-Verlag, 1990.
18. Gangolli, R., On the construction of certain diffusions on a differentiable manifold, Zeit. Wahr. und Verw. Gebiete 2 (1964), 406-419.
19. Grigor'yan, A.A., On stochastically complete manifolds, Soviet Math. Dokl. (English translation) 34 \#2 (1987), 310-313.
20. , Analytic and geometric background of recurrent and non-explosion of the Brownian motion on Riemannian manifolds, BAMS 32 \#2 (1999), 135-251.
21. Hörmander, L., Hypoelliptic second order differential operators, Acta Math. 121 (1968), 147-171.
22. Ikeda, N. \& Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1981.
23. Kendell, W., Non-negative Ricci curvature and the Brownian coupling property, Stochastics 19 (1986), 110-124.
24. Kobayashi, S. \& Nomizu, K., Foundations of Differential Geometry, I © II, Iterscience Tracts in Pure \& Appl. Math. \#15, J. Wiley, 1969.
25. Ladyženskaja, O.A., Solonnikov, V.A., \& Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Math. Monographs \#23, AMS, 1968.
26. Lewis, J., Brownian motion on a submanifold of Euclidean Space, Bull. London Math. Soc. (1984), 144-150.
27. Li, P. \& Yau, S.-T., On the parabolic kernel of the Schrödinger operator, Acta. Math. 156 (1986), 153-201.
28. Malliavin, P., Formule de la moyenne, calcul des perturbations, et théorème d'annulation pour les formes harmoniques, J. Fnal. Anal. 17 (1974), 274-291.
29. Malliavin, P. \& Stroock, D., Short time behavior of the heat kernel and its logarithmic derivatives, J. Diff. Geom. 44 (1996), 550-570.
30. Milnor, J., Morse Theory, Annals of Math. Studies \#51, Princton U. Press, 1963.
31. Nash, J., The embedding theorem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
32. Pinsky, M., Brownian motion and Riemannian geometry, Probability Theory (Chen, L, Choi, K.P., Hu, K., \& Lou, J.-H., eds.), de Gruyter, 1991.
33. Rogers, L.C.G. \& Williams, D,, Diffusions, Markov Processes, and Martingales, vol. 2, J. Wiley, 1987.
34. Spivak, M., A Comprehensive Introduction to Riemannian Geometry, II, Publish or Perish, Inc., 1970.
35. Stroock, D., Probability Theory, An Analytic View, Cambridge Univ. Press, 1993.
36. \qquad , A Concise Introduction to the Theory of Integration, Birkhäuser, 1994.
37. , Non-divergence form operators and variations on Yau's explosion criterion, J. Fourier Anal. \& Appl. 4 \#4 \& 5 (1998), 565-574.
38. 340-344.
39. Stroock, D. \& Taniguchi, S., Diffusions as integral curves, or Stratonovich without Itô (1994), Birkhäuser, 331-369.
40. Stroock, D. \& Turetsky, J., Upper bounds on derivatives of the logarithm of the heat kernel, Comm. Anal. \& Geom. 6 \#4 (1998), 669-685.
41. , Short time behavior of logarithmic derivatives of the heat kernel, Asian J. Math. 1 \#1 (1997), 17-33.
42. Stroock, D. \& Varadhan, S.R.S., Multidimensional Diffusion Processes, Grundlehren Series \#233, Springer-Verlag, 1979 \& 1998.
43. Taylor, M., Pseudodifferential Operators, Princeton Math. Series \#34, Princeton U. Press, 1981.
44. Whitney, H., Differentiable manifolds, Ann. of Math. 37 (1936), 645-680.
45. Wiener, N., Differential space, J. Math. \& Physics 2 (1923), 131-174.
46. Yau, S.-T., On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl., ser. 957 (1978), 191-201.

Index

A

adapted, 44
$\left\{\mathcal{F}_{t}:, t \geq 0\right\}$-adapted, 44

B

$\mathcal{B}_{t}, 8$
$\overline{\mathcal{B}}_{T}, 43$
Bianci identities
first, 121
second, 195
Bianci identity
first, 196
Bismut factor, 161
on $\mathcal{O}(M), 204$
Bismut's formula, 161, 205, 249
Bochner's identity
stochastic version, 144
via perturbation, 240
submanifold of $\mathbb{R}^{N}, 145$
Bochner's Laplacian, 185
Brownian motion
by projection from $\mathcal{O}(M), 187$
in normal coordinates, 210
local construction, 174
normal to a submanifold, 100
on a submanifold of $\mathbb{R}^{N}, 99$
bundle of orthonormal frames, 178
section of, 179
Burkholder's Inequality, 48

C

Cameron-Martin formula, 13
canonical vector field $\mathfrak{E}(\boldsymbol{\xi}), 181$
Cartan's structural equations, 194 centered Gaussian random variable, 1
Chapman-Kolmogorov equation, 150
Christoffel symbols, 169
commutator of vector fields, 33
complete Riemannian manifold, 184
complete vector field, 30,166
forward, 29
conditional expectation, 20
connection 1-form $\omega, 181$
coordinate chart, 165
coupling, 218
Kendell's, 242
covariant derivative, 169
along a path, 117
in terms of $\mathcal{O}(M), 183$
submanifold of $\mathbb{R}^{N}, 116$
curvature 2-form $\Omega, 193$
equivariance of, 194
cut locus, 207
cut point, 207

D

$\delta_{s} \mathbf{w}, 54$
development map, 188
diffeomorphism group, 90
distribution of a random variable, 5
ν-distribution, 34
divergence
Euclidean, 79
for submanifold of $\mathbb{R}^{N}, 93$
in terms of o.n. vector fields, 171
local definition, 167
Doob's Inequality, 39
Doob's Stopping Time Theorem, 22

E

Einstein manifold, 262
exit place
from small Riemannian balls, 226
exit time
from small Riemmanian balls, 223
explosion, 59, 66
of Brownian motion, 200
exponential map, 207

F
Feller continuous, 81
Feynman's picture of Wiener measure
for $\mathbb{R}^{d}, 17$
for $M, 188$
fiber map on $\mathcal{O}(M), 178$
first Bianci identity, 196
first exit time, 62
first structural equation, 194
flow, 29
semigroup property, 29
formal adjoint, 82
forward complete vector field, 29
frame, 178
as an isometry, 178

G

Gauss Lemma, 214
Gaussian family, 2
geodesic, 184
Grad^{M} operation on $\mathcal{O}(M), 201$
gradient, 168
for submanifold of $\mathbb{R}^{N}, 96$
in terms of Grad^{M} on $\mathcal{O}(M), 202$
group of homeomorphisms, 78

H

Hölder conjugate, 6
Hörmander form operator, 27
heat kernel, 149, 211, 258
derivative estimates, 260
estimate, 258
Hessian operator $H^{M}, 173$
in terms of Hess ${ }^{M}$ on $\mathcal{O}(M), 202$
horizontal
curve, 180
lift of curve, 180
lift of vector, 180
part of vector, 182
subspace of $T_{\mathfrak{f}} \mathfrak{O}(M), 181$
vector, 181

I

independent increments of Wiener process, 1
strong form, 54
injection radius, 216
integral curve, 24
invariant measure, 82

J
Jacobi field, 213
Jacobian
for submanifold of $\mathbb{R}^{N}, 92$
process, 137

K

Kendell's coupling, 242
Kolmogorov's Continuity Criterion, 77

L

Laplacian, 95, 168
as trace of the Hessian, 173
in terms of canonical vector fields, 185
in terms of div and grad, 95
local coordinates, 96
spectrum, 148
length of a vector in $T_{x} M, 167$
Levi-Civita connection, 117, 168
Li-Yau estimate, 152, 261
for Einstein manifold, 264
Lichnerowitz estimate, 149
Lie algebra

$$
\begin{aligned}
& \text { of } O\left(\mathbb{R}^{d}\right), 179 \\
& \text { of } O\left(\mathbb{R}^{N}\right), 113
\end{aligned}
$$

localization of martingale problem, 61
logarithmic Sobolev inequality, 155

```
M
```

Markov
property, 67
strong, 67
martingale, 21
\mathbb{P}-martingale, 21
martingale problem, 27
submanifolds of $\mathbb{R}^{N}, 90$
time-dependent, 73
well-posed, 67
submanifold of $\mathbb{R}^{N}, 90$
mean curvature normal, 102, 117
minimal geodesic, 122, 197
minimal submanifold, $104,118,131$
non-explosion of Brownian motion, 104
transience of Brownian motion, 119
$\mu_{\mathbb{R}^{d}}$, see Wiener measure

N
non-explosion criterion, 66
commuting vector fields, 59
extended, 88
extrinsic criterion for Brownian motion, 103
for submanifold of $\mathbb{R}^{N}, 95$
Yau's, 199
normal coordinate systems, 208
null set for a measure, 11

0

orthogonal group, 112
action on $\mathcal{O}(M), 178$
\mathbf{P}
$\mathbb{P}_{x}^{\mathcal{L}}, 27$
$\mathbb{P}_{x}^{M}, 99$
Paley-Wiener integrals, 10
parallel transport, 170
along Brownian paths, 113, 188
submanifold of $\mathbb{R}^{N}, 111$
pathspace
$\mathcal{P}\left(\mathbb{R}^{N}\right), 27$
$\mathcal{P}(M), 90$
$\Pi_{x}^{M}, 97$
\mathbb{P}-martingale, 21
$\mathbb{P}_{f}^{\mathcal{O}(M)}, 187$
pushforward
map, 90
measure, 5

R

random holonomy along Brownian path, 162
Ricci curvature, 121, 196 traceless, 226
Riemann curvature, 195
in terms of $\Omega, 195$
submanifold of $\mathbb{R}^{N}, 121$
Riemann manifold, 167
Riemann measure, 167
submanifold of $\mathbb{R}^{N}, 92$
Riemannian connection abstract setting, 168 for submanifold of $\mathbb{R}^{N}, 117$
Riemannian distance, 197 submanifold of $\mathbb{R}^{N}, 122$
Riemannian metric, 167
right invariant vector field on $O\left(\mathbb{R}^{N}\right), 113$
rolling a curve, 184
second Bianci identity, 195
second derivatives
of heat kernel, 260
of the heat flow, 255
second fundamental form, 118
second structural equation, 194
section of $\mathcal{O}(M), 179$
semigroup, 56
contraction, 55
Feller, 81
invariant measure for, 82
Markov, 81
symmetric measure for, 84
shift map, 64
solder form $\phi, 181$
splicing measures, 64
stopping time, 54
strong independent increment property, 54
strong Markov property, 56
subordination, 74
symmetric measure for a semigroup, 84

T

tangent space
submanifold of $\mathbb{R}^{N}, 89$
tangent space $T_{x} M$ to M at $x, 165$
time-space, 70
torsion free
Riemannian connection, 168
torsion free Riemannian connection submanifold of $\mathbb{R}^{N}, 117$
vector field, 166
along a curve, 117
complete, 166
forward complete, 29
vector fields
submanifold of $\mathbb{R}^{N}, 89$
version of a stochastic process, 53
vertical
part of vector, 182
subspace of $T_{\mathrm{f}}(\mathcal{O}(M)), 179$
vertical vector field $\lambda(a), 179$

W

Wiener measure
rotation invariance, 9
scaling invariance, 11
standard on $\mathfrak{W}\left(\mathbb{R}^{d}\right)$, 8

ISBN 0-8218-3839-3

$91780821 \mid 1838396$ SURV/74.S WWW.ams.O1g

[^0]: ${ }^{1}$ So far as I know, the first time that such a construction of Brownian motion appears is when, as Itô pointed out, I had stumbled upon it in [38] for the 2 -sphere in \mathbb{R}^{3}. Subsequently, John Lewis [26] realized that the same construction works in general, although he lost the interpretation in terms of a projection. Nonetheless, the projection reappeared in the treatment given by Chris Rogers and David Williams [33].

