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Preface 

It was at a C.I.M.E. conference at the Palazzo in Cortona during the summer 
of 1978 that my eyes were opened to Malliavin's multi-tiered mansion in which 
Brownian motion on a Riemannian manifold resides. There, in the Palazzo's 
beautiful ballroom with its tiny blackboard presided over by Cleopatra and her 
adder, Malliavin held his audience in thrall with tales whose comprehension 
demanded simultaneous appreciation of the "upstairs story," the "downstairs 
story," and the profound influence that events on either exercise on the other. 
I have to admit that I could not have said with certainty on exactly which 
"level" a given event was transpiring. Indeed, at first I thought that there 
were only two "levels:" the upper one where Wiener measure lives and the 
lower one which is the manifold where the Brownian motion is taking place. 

My confusion about this critical point was a direct consequence of my nearly 
perfect ignorance of differential geometry. In particular, because I had no idea 
what it was, Malliavin's frequent references to an intermediate level called 
the "bundle of orthonormal frames" were lost on me. Such matters are not 
broached in the first ten pages of even the most ambitious introductory texts 
about Riemannian geometry, and the first ten pages is as far as I had ever 
penetrated into the many differential geometry books which I had failed to 
read. Nor were Malliavin's intriguing lectures sufficient to persuade me to 
mend my ways immediately. Indeed, another fifteen years passed before my 
joint work with first Shigeo Kusuoka and then Ognian Enchev finally convinced 
me that the pain resulting from not learning more differential geometry would 
inevitably exceed the pain of mastering more than the first ten pages of at least 
one differential geometry text. Thus, about five years ago I forced myself to 
come to terms with Bishop and Crittenden's remarkably concise text [2]. My 
choice was dictated by two considerations: first, my collaborator Enchev had 
already assimilated the material in this book and I did not want to fall too far 
behind; secondly, Bishop and Crittenden emphasize the role of the bundle of 
orthonormal frames, and Malliavin had already alerted me to the advantages of 
this perspective. Of course, once I had taken the plunge, I delved into several 
other sources. In fact, the citations in this text give a reasonably accurate map 
of where I learned what. 

Having benefitted from the efforts of differential geometers to explain their 
subject to me through their writings, I decided to reciprocate by writing this 
book, which is my attempt to explain my subject to them. With this in 
mind, I have tried to minimize the weight of "probabilistic" baggage which my 
readers must bring to a reading of this book. Further, wherever the option 
was available, I have chosen to emphasize the geometric over the stochastic 
aspect of the topic at hand. In particular, I never have made explicit use here 

xv 
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of Ito's stochastic calculus. In spite of the grand and beautiful edifice erected 
by L. Schwartz, R. Darling, P.A. Meyer, and others (cf. [14] for an excellent 
explanation of their ideas or Ikeda and Watanabe's famous [22] for a more 
standard treatment) to convince me and the world otherwise, I remain firmly 
convinced that Stratonovich calculus is the calculus of choice if one wants 
to maximize ones geometric insight into stochastic analysis on differentiable 
manifolds. Thus, I have, from the outset, solved all "my stochastic integral 
equations" (the quotation marks are here because this is the last time that 
the term "stochastic integral equation" makes an appearance in this book) 
by passing to limits after mollification. My hope was that this procedure 
will make the book more accessible to readers who have not been reared in 
the probabilistic tradition. My fear is that I may very well have produced 
a book which is incomprehensible equally to the probabilistic and differential 
geometric communities. Be that as it may, here is a summary of the material 
which I have tried to convey. 

Because I did not want to assume that my reader is acquainted with Wiener 
measure, I have devoted Chapter 1 to the construction of Wiener measure 
and a brief resume of some of its properties. There are, by now, a myriad 
construction methods. The one which I have chosen is basically the one given 
by P. Levy. Not only is Levy's construction stunningly beautiful, it has the 
advantage that, in some sense, it sets the pattern for all the other constructions 
which follow. 

Following Ito's ideas, but not his procedure, I use the techniques, orignally 
explained in [39], to show in Chapters 2 and 3 how one can massage Wiener 
paths into the paths of more general diffusions on R ^ . Chapter 2 covers 
the basic case, the one in which everything is sufficiently bounded that no 
problems about possible explosion ever arise. In Chapter 3, it is shown that 
much of what is done in Chapter 2 continues to hold even after the boundedness 
assumptions are removed. In addition, Chapter 3 addresses several other topics 
of importance, chief of which are subordination and invariant measures. 

Differentiable manifolds make their initial appearance in Chapter 4, where 
they appear as an embedded submanifold M of RN. First it is shown that 
quite general diffusions on M can be viewed as special cases of the diffusions 
constructed in Chapters 2 and 3. Second, when M is given the Riemannian 
structure which it inherits from M.N, it is shown that the Brownian motion on 
M can be realized by "projecting" Wiener paths from the ambient RN onto 
M . 1 The unabashedly extrinsic ideas initiated in Chapter 4 are developed 
further in Chapters 5 and 6. Specifically, curvature considerations are intro­
duced in Chapter 5, where, in connection with Yau's non-explosion criterion, 

1 So far as I know, the first time that such a construction of Brownian motion appears is 
when, as ltd pointed out, I had stumbled upon it in [38] for the 2-sphere in M3. Subse­
quently, John Lewis [26] realized that the same construction works in general, although he 
lost the interpretation in terms of a projection. Nonetheless, the projection reappeared in 
the treatment given by Chris Rogers and David Williams [33]. 
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I present the first evidence that Ricci curvature has a lot to say about the 
behavior of Brownian paths. Further evidence of the same fact is provided in 
Chapter 6, where I prove Bochner's identity in an integrated form which leads 
to a beautiful interpretation given by J.-M. Bismut in [3]. 

The rest of the book takes an intrinsic point of view. In Chapter 7, it is 
explained how the material in Chapters 2, 3, and 4 transfers, without diffi­
culty, to the setting of an abstract differentiable manifold M . In particular, 
Chapter 7 ends with a "dirty," hands-on construction of Brownian motion via 
localization. In order to prepare the way for the intrinsic construction of Brow­
nian motion due to Eells, Elworthy, and Malliavin (cf. [11] and [29]), Chapter 
8 starts with a quick summary of the basic facts about the bundle O(M) 
of orthonormal frames, gives the E-E-M construction of Brownian motion as 
the projection from 0{M) to M of the diffusion on O(M) associated with 
Bochner's Laplacian, and ends with a demonstration that all the essentially 
intrinsic results proved earlier about Brownian motion on a submanifold are, 
if anything, easier to understand in this abstract setting. 

Chapter 9 is something of a digression. The idea is to expose how system­
atic use of normal coordinates enters into the study of Brownian motion on 
a manifold. Not surprisingly, the applications are strictly local. For example, 
it is shown how familiar expansions of the metric in normal coordinates are 
manifested in the computation of the exit time and exit place of Brownian 
motion from very small balls. 

Finally, in the concluding chapter I take up the topic which originally stim­
ulated my own interest in Brownian paths on Riemannian manifolds. Namely, 
for many years I worked on a set of ideas which I dubbed the Malliavin calculus. 
The essential, unifying theme of these ideas is that useful analytic information 
can be obtained from doing differential calculus in pathspace. More precisely, 
by perturbing paths and examining the infinitesimal response of their distribu­
tion to the perturbation, one can gain insight into various analytic quantities 
which are representable in terms of distribution of those paths. I had (most 
successfully with Shigeo Kusuoka) practiced this art in the Euclidean context. 
Around the same time, Jean-Michel Bismut (cf. [3]) was taking the initial steps 
which are necessary if one wants to do the same thing in a differential geomet­
ric setting. Somewhat later, Bismut's program was given an enormous boost 
by Bruce Driver's key article [9]. Motivated, at least in part, by the desire not 
to read all 104 pages of Driver's paper, Ognian Enchev and I embarked on a 
program to obtain Driver's conclusions on our own, and Chapter 10 is derived 
from the paper [15] which grew out of our efforts. 

Finally, I have to recognize the critical role that my friend S.-T. Yau has 
played in all this. In particular, Yau consistently challenged me to come up 
with something that probability theory could do that Yau himself could not. 
Of course, I knew all along that such an example does not exist, but I was 
damned if I would tell Yau. Now I have. 

Daniel W. Stroock, June 1999 
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BT, 43 
Bianci identities 
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second, 195 
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first, 196 

Bismut factor, 161 
on O ( M ) , 204 

Bismut 's formula, 161, 205, 249 
Bochner 's identity 

stochastic version, 144 
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submanifold of RN, 145 
Bochner 's Laplacian, 185 
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local construction, 174 
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Burkholder 's Inequality, 48 
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Cameron-Mar t in formula, 13 
canonical vector field £(£) , 181 
Car t an 's s t ructural equations, 194 
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complete Riemannian manifold, 184 
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forward, 29 
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coordinate chart , 165 
coupling, 218 
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covariant derivative, 169 
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equivariance of, 194 

cut locus, 207 
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<5sw, 54 
development map , 188 
diffeomorphism group, 90 
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^/-distribution, 34 
divergence 

Euclidean, 79 
for submanifold of RN, 93 
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local definition, 167 

Doob's Inequality, 39 
Doob's Stopping Time Theorem, 22 
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Einstein manifold, 262 
exit place 
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exit t ime 

from small Riemmanian balls, 223 
explosion, 59, 66 

of Brownian motion, 200 
exponential map , 207 
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first Bianci identity, 196 
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first s t ructura l equation, 194 
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semigroup property, 29 
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Gauss Lemma, 214 
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gradient, 168 
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Holder conjugate, 6 
Hormander form operator, 27 
heat kernel, 149, 211, 258 

derivative est imates, 260 
est imate, 258 

Hessian operator HM, 173 
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curve, 180 
lift of curve, 180 
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subspace of T f D ( M ) , 181 
vector, 181 

I 

independent increments of Wiener process, 
strong form, 54 

injection radius, 216 
integral curve, 24 
invariant measure, 82 

J 

Jacobi field, 213 
Jacobian 

for submanifold of RN, 92 
process, 137 

K 

Kendell 's coupling, 242 
Kolmogorov's Continuity Criterion, 77 

L 

Laplacian, 95, 168 
as trace of the Hessian, 173 
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in terms of div and grad, 95 
local coordinates, 96 
spectrum, 148 
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Levi-Civita connection, 117, 168 
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Lichnerowitz es t imate , 149 
Lie algebra 
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localization of mart ingale problem, 61 
logarithmic Sobolev inequality, 155 
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Markov 
property, 67 

strong, 67 
mart ingale , 21 
P-martingale, 21 
mart ingale problem, 27 

submanifolds of RN , 90 
t ime-dependent , 73 
well-posed, 67 

submanifold of RN , 90 
mean curvature normal , 102, 117 

I minimal geodesic, 122, 197 
minimal submanifold, 104, 118, 131 
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Yau's, 199 
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orthogonal group, 112 
action on O(M), 178 
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P ^ , 99 
Paley-Wiener integrals, 10 
parallel transport, 170 

along Brownian paths, 113, 188 
submanifold of RN, 111 
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V(RN), 27 
V(M), 90 

n f , 97 
P-martingale, 21 
Pf (M), 187 
pushforward 

map, 90 
measure, 5 
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Ricci curvature, 121, 196 

traceless, 226 
Riemann curvature, 195 

in terms of Q, 195 
submanifold of R^, 121 

Riemann manifold, 167 
Riemann measure, 167 

submanifold of RN, 92 
Riemannian connection 

abstract setting, 168 
for submanifold of RN, 117 

Riemannian distance, 197 
submanifold of RN, 122 

Riemannian metric, 167 
right invariant vector field on 0(RN), 113 
rolling a curve, 184 

S 

second Bianci identity, 195 
second derivatives 

of heat kernel, 260 
of the heat flow, 255 

second fundamental form, 118 
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section of O(M), 179 
semigroup, 56 
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invariant measure for, 82 
Markov, 81 
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tangent space 
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vector field, 166 
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version of a stochastic process, 53 
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Wiener measure 
rotation invariance, 9 
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