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Preface 

What does it mean to classify the equivalence classes of some equivalence rela
tion? 

We have some tangible space whose points are very definite. Let X be the 
space. Maybe it is the reals. Or the complex numbers. Or perhaps all groups with 
underlying set N. In any case, a concrete object. 

In addition there is an equivalence relation E and we consider the quotient 
X/E. When should we judge this quotient object consisting of all equivalence 
classes to be comprehensible? When should we allow tha t the set of all equivalence 
classes, {[X]E ' x G X } , is classifiable? 

There is no absolute agreement on what constitutes a good classification theo
rem. It is necessarily a vague concept. But even granting its vagueness, there are 
probably some a t tempts one could dismiss out of hand. 

For instance, assigning the equivalence class of x as a complete invariant for 
each point in the space is hardly satisfactory, since it provides us with no progress 
at all. The complete invariants should be objects we feel to be reasonably well 
understood - or at least, less mysterious than the equivalence classes with which 
we began. 

Similarly we do have some standards concerning how the invariants can be pro
duced. Simply appealing to the axiom of choice to well order the equivalence classes 
of E1 and then using some corresponding well order of M to assign real numbers 
as complete invariants does not constitute a satisfactory system of classification, 
even though the complete invariants in this case are indeed well understood. The 
system of classification should assign invariants to the points in the space X based 
on their intrinsic properties; even though the properties we may use could be highly 
subtle or extremely complex, we would have much greater respect for a system of 
classification tha t is fantastically difficult than one tha t just pulls down the axiom 
of choice and then goes home to bed. 

In general terms a complete classification of E should consist of a reasonably 
intrinsic or definable function 

0:X - • I 

from X to a reasonably well understood collection of invariants I so tha t for all x 
and y in X 

xEy^0{x) = 6(y). 
That much is a plati tude. Beyond this there is great disagreement. 

E X A M P L E 0.1. Low d imens iona l t o p o l o g y For compact orientable surfaces 
a complete invariant can be obtained by simply counting the number of handles, 
and moreover, this invariant can be produced in a recursive or computable fash
ion from a finite triangularization of the manifold; for non-orient able surfaces the 

xi 
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structure theorem is more complicated, but again the invariant can be taken to 
be a finite object - indeed it can be represented by a natural number - and may 
be computed from a triangularization using a purely finite search. ([12], [46].) In 
higher dimensions it is known from [64] that the isomorphism relation is not com
putable in the sense of Turing machines, and this is sometimes taken by topologists 
as indicating that there is no satisfactory system of complete invariants for higher 
dimension manifolds. 

This is an extremely restrictive definition. Here a classification is a computable 
function 

0:X ^ N 
where X is a collection of finite triangularizations of manifolds so that x, y G X 
code homeomorphic manifolds if and only if 0(x) = 0(y). This is the most stringent 
notion of classification: The invariants are finite, the process by which we assign 
them finitary. 

EXAMPLE 0.2. Linear algebra A rather different example is suggested by 
linear algebra. We may reasonably regard two unitary operators over a finite di
mensional (complex) Hilbert space as somehow equivalent if there is a third that 
conjugates them - so in this sense we obtain an orbit equivalence relation on the 
space of all unitary operators on (Cn , •). A complete invariant for an operator is 
given by its finite set of eigenvalues, considered up to multiplicity, and it is always 
possible to encode finitely many complex numbers by a single real; thus we can 
assign in a Borel fashion to each element of Un, the group of unitary operators over 
(Cn , •), a real number as a complete invariant. 

Equivalence relations which in a Borel fashion allow real numbers as complete 
invariants are known as smooth or tame; thus EG on X is smooth if there is a Borel 

0:X ->R 
that reduces EG to equality on R, in the sense 

xEGy^0(x) = 0(y). 
[30], like [14] that it followed, takes classifiable to mean smooth. 

EXAMPLE 0.3. Ergodic theory Consider the classification problem for mea
sure preserving transformations of the unit interval. It is natural to say that 
7Ti,7T2 : [0,1] —• [0,1] are equivalent or isomorphic if there is some measure pre
serving bijection a : [0,1] —> [0,1] with 

a o 7Ti o a"1 — 7T2 a.e. 
This equivalence relation arises from a group action - the action of this group on 
itself by conjugation. In two special cases there are classification theorems. 

Ornstein's classification of Bernoulli shifts in [71] provides a proof that iso
morphism on this class of measure preserving transformations is smooth. One can 
assign to each Bernoulli shift its entropy - a real number that completely classifies 
a Bernoulli shift up to isomorphism. This is one of the most celebrated theorems 
of ergodic theory, but it is not true that the only notion of classification in ergodic 
theory is that of being smooth or reducible to the equality relation on R. A rather 
more generous notion of classification is suggested by a classic paper of Halmos and 
von Neumann. 

In [29] Halmos and von Neumann show that for discrete spectrum measure 
preserving transformations we can assign a countable collection {ci(n) : i G N} 
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of complex numbers tha t completely describe the equivalence class of IT. This 
assignment is indeed natural , since it arises from taking the eigenvalues of the form 
A G C for which there is some non-zero / G £2([0,1]) with / o ix = Xf a.e. 

The notion of classification here cannot be reduced to tha t of 0.2. For instance 
[20] shows tha t there is no reasonable method for representing countably infinite 
sets of real or complex numbers by single points in R; indeed without appeal to the 
axiom of choice we may find it impossible to produce any injection from V#0 (R) 
(the set of all countable collections of reals) to R. The conjugacy relation on 
discrete spectrum measure preserving transformations is non-smooth, and yet the 
perspective of say [82] would uphold this as a complete classification for discrete 
spectrum measure preserving transformations. 

E X A M P L E 0.4. Local ly c o m p a c t group ac t ions In [49] Kechris proves tha t 
the orbit equivalence relations induced by locally compact Polish groups are all 
reducible to countable equivalence relations. If we have locally compact G acting 
continuously on Polish X , with orbit equivalence relation EG, then we can find 
a Borel equivalence relation F all of whose equivalence classes are countable such 
tha t we may assign to each point x G l some corresponding 0(x) so tha t 

x1EGx2 <^ 0(x1)F0(x2)-

This result can be viewed as a classification theorem for orbit equivalence re
lations induced by locally compact group actions. We may assign to each x G X 
the countable set {y : yFO(x)} to obtain an invariant similar in s tructure to the 
Halmos-von Neumann spectral invariants. 

E X A M P L E 0.5. P o i n t set t o p o l o g y The Cantor-Bendixson derivation as de
scribed in [52] can be used to provide a classification for countable compact metric 
spaces. At the first stage we remove the isolated points. At the next we remove the 
isolated points from the remaining space, and so on, through however many count
able ordinals as are needed. This analysis provides a complete invariant of the space 
consisting of two parts: The ordinal length of this process, along with the number 
of points left standing before the termination at the final stage. Two countable 
compact metric spaces will be homeomorphic if and only if their Cantor-Bendixson 
derivations require the same ordinal number of steps and at the penult imate mo
ment they share the same finite number of points remaining. 

E X A M P L E 0.6. A b e l i a n g r o u p t h e o r y In [21] ordinals also enter stage in the 
famed Ulm invariants from abelian group theory. In essence the Ulm invariants are 
bounded subsets of Ni, the first uncountable ordinal, tha t completely describe the 
isomorphism type of a countable torsion abelian group. 

E X A M P L E 0.7. Topologica l d y n a m i c s The authors of [24] classify so called 
minimal Cantor systems up to strong orbit equivalence by assigning countable or
dered abelian groups. Two continuous 

<pi : Xi —> Xi, 

(f2
 : X2 —> X2 

which are minimal in the sense of having no non-trivial closed invariant sets and are 
Cantor in the sense of Xi, X2 being compact, uncountable, and zero-dimensional 
metric spaces, are said to be strong orbit equivalent if there is a homeomorphism 
F : X\ —> X2 which respects the orbits s tructure set wise and with the resulting 
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conjugation suffering at most a single discontinuity - so that if m : X\ —» Z, 
n : X2 —> Z are defined by 

Fo<pfx\x) = <p2(F(x)), 
then n, m are continuous on X \ {xo} for some xo G X. 

The countable group associated to (<p,X) itself arises as a homomorphic image 
of C(X, Z), the space of all continuous maps from X to (Z, -f) with the product 
topology. As important as the details of the construction may be it is also remark
able that there is any reasonable way to assign a countable structure as a complete 
invariant. 

EXAMPLE 0.8. Stone spaces Perhaps this preceding example is reminiscent 
of the duality theorem of [75] for compact separable zero-dimensional Hausdorff 
spaces. To each such space we can assign a countable Boolean algebra with two 
spaces homeomorphic if and only if there exists an algebraic isomorphism between 
the Boolean algebras. Similarly Pontryagin duality, as it is found in [31], allows 
us to completely classify compact abelian metric groups by their countable discrete 
dual groups. 

While it is true that complete invariants are provided this is not to say that 
these dualities are only or even primarily theorems of classification. 

EXAMPLE 0.9. Hom+([0,1]) Let Hom+([0,1]) be the group of all orientation 
preserving (71-(0) = 0, 7r(l) = 1) homeomorphisms of the unit interval. The nat
ural equivalence relation is that of conjugation: Two homeomorphisms, 7TI,7T2 are 
equivalent if a homeomorphic "relabeling" of the underlying space transforms one 
to the other, so that there is some a G Hom+([0,1]) with 

7Ti = a~l O 7T2 O a. 

Parallel to 0.3, the equivalence relation arises by the self-action of Hom+([0,1]) 
through conjugation. 

It is sometimes felt that homeomorphisms of the unit interval are completely 
understood since we may represent each transformation symbolically by indicating 
the maximal regions on which we have either n(x) > x, 7r(x) — x, or 7r(x) < x. This 
can be made more precise by providing a classification of elements of Hom+([0,1]) 
by countable models. We naturally assign to each n G Hom+([0,1]) a countable 
model M(TT) such that for all 7TI,7T2 G Hom+([0,1]) 

3a G Hom+([0,1])0 o m o a" 1 = TT2) ^ Mfa) = M(TT2). 

The model A4(TT) consists of the maximal open intervals on which n displays one of 
the three possible behaviors indicated above. The language of M(TT) encodes the 
linear ordering between these intervals and indicates which of the three possibilities 
hold. We will have an ordering <, and predicates P^, P+, and P=. For I\ = (ai, 61), 
I2 — (^2^2) maximal open intervals on which the behavior of ix is unvarying, we 
have: 

pMM(h) ^yx e h(7r(x) < x); 
p ^ ( / x ) ^ V x G h(ir(x) > x); 

P^n\h) & Vx G /I(TT(X) = x). 
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The outcome is similar for the homeomorphism group of Cantor space - ({0,1})N 

- in the product topology. Since the homeomorphism group of the Cantor space is 
isomorphic to a closed subgroup of the infinite symmetric group it follows from [4] 
(see 2.39 below) that we may classify these homeomorphisms by countable models. 

This is more than enough examples to be impressed by the diversity. But 
despite the variation, there are some common themes. 

In the above we have natural numbers, real numbers, countable sets of com
plex numbers, countable ordinals, countable sets of countable ordinals, and various 
kinds of countable structures considered up to isomorphism being used as com
plete invariants. The connection between these examples is that in every one we 
may take a countable structure as a complete invariant; as in §2.3 below, we may 
code complex numbers, countable sets of complex numbers, countable ordinals, and 
countable sets of countable ordinals by appropriately chosen models. This suggests 
a notion of classification found at the opposing end of the spectrum to that of 0.1 
and which is extreme in its generosity. 

QUESTION 0.10. Let E be an equivalence relation on a space X. When can 
we assign countable models or structures considered up to isomorphism as complete 
invariants? 

Recall that HC is the collection of all hereditarily countable sets, and may 
be defined as the smallest collection of sets containing the natural numbers and 
closed under the operation of taking a countable subset. These therefore include 
all countable subsets of Ki, all countable sets of subsets of N, and - appropriately 
understood - all real numbers, all countable sets of real numbers, and so on. 

In virtue of the Scott analysis of [59] we may equivalently ask: 

QUESTION 0.11. For which equivalence relations can we assign elements of HC 
as complete invariants? 

[4] allows one more reworking of the question: 

QUESTION 0.12. Let E be an equivalence relation on a space X. When can we 
find a Polish space Y on which the infinite symmetric group 5 ^ a c l s continuously 
and a reasonable function 6 : X —• Y so that for all x\,x2 G X 

xxEx2 & 3g e S^g • 0{Xl) = 6{x2))l 

Of course we clearly need to have an assumption that the function 6 or the 
assignments of models or HC sets be reasonable. On the whole I will take reasonable 
to mean Borel in an appropriate Borel structure, the technicalities of which are 
addressed in §2.1, §2.2, §2.3, and §3.1.1 But I should stress that relatively little 
change occurs if we extend to much broader classes of functions and far more 
generous methods of reduction. A point made in the course of §6.2 and §9.1-2 is 
that if there is any remotely definable assignment of countable models or HC sets in 
the context of Polish group actions, then we may find a reduction that is at worst 
only slightly more complicated than Borel. 

This monograph can be viewed as part of a broad project to understand effective 
cardinalities in the sense raised by Luzin in [62], in the sense which reappears 

1 ln the context of Borel reduction, 0.10 and 0.12 are known to be equivalent problems from 
2.7.3 of [4]. Provided we are willing to countenance reductions somewhat more complicated than 
Borel the Scott analysis of [59] shows both equivalent to 0.11. §6.1 and §9.1 return to these points. 
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briefly in the opening parts of [11], but which finds its most forthright statement in 
modern works of descriptive set theory such as [60] and [50]. Here the concept is to 
calculate cardinalities using only functions that lay some claim on being reasonable 
or definable. Formally R and R/Q both have cardinality 2H°; a well ordering of R 
will enable us to find a bijection. Effectively R is smaller than R/Q, since we may 
find reasonable injections of R into R/Q (2.59, 2.63 below), but not the converse 
(3.8). 

Papers such as [14], [63], and [25] have previously addressed the question of 
which naturally occuring objects have effective cardinality no greater than that of 
R. In a great many specific instances the answer has been determined, and one 
finds in [30] and [14] a kind of theory, recounted in §3.1 and §7.1, regarding when 
a reduction exists and why in certain cases it cannot. In turn this monograph 
tries to understand which objects have effective cardinality below HC and develop 
a parallel theory of why some do not. 

We will only be concerned with the case that E arises from a Polish group ac
tion. Admittedly this may seem very restrictive, and it would certainly be desirable 
to have an analysis for all Borel or even Y>\ equivalence relations. On the other 
hand most naturally occurring examples can be subsumed under an appropriately 
chosen Polish group action, and the impression left by chapter 8 is that the excep
tions are somehow pathological. This is the point of question 10.9 near the end of 
the book, and even if that conjecture should fail it seems plausible that a similar 
outlook is justified. 

§3 isolates a dynamical property for analyzing which Polish group actions allow 
reduction to countable models: 

DEFINITION 0.13. Let G be a topological group acting on a space X. The 
action is said to be turbulent if: 

(i) every orbit is dense; 
(ii) every orbit is meager; 
(iii) for all x,y G X, U C X, V C G open with x G [/, 1 G V, there exists 

Vo G [y]c =df G-y and (gi)ten C V, (x,)2GN c U with 

x0 = x, 

•Ei-\-l 9i ' ^ii 

and for some subsequence (xn^)ie^ C ( X ^ G N 

Turbulence is a sufficient condition for the orbit equivalence relation of a Polish 
group to refuse classification by countable structures; further: for a turbulent orbit 
equivalence relation any function assigning countable models up to isomorphism as 
invariants must be constant on a comeager set. (3.18, 3.19) 

A transfinite analysis shows turbulence to be necessary for non-classification: 

THEOREM 0.14. Let G be a Polish group acting continuously on a Polish space 
X. Exactly one of the following holds: 

1. the orbit equivalence relation EQ is reasonably reducible to isomorphism on 
countable models; 

2. there is a turbulent Polish G-space Y and a continuous G-embedding from 
Y to X. 
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FIGURE 0.1. Turbulence 

Here the notion of reduction is somewhat more complicated than Borel. In 
special cases, such as for G abelian or invariantly metrizable, one can obtain a 
reduction in 1. that is not only Borel but admits a Borel inverse up to orbit 
equivalence (6.40 and 6.30). The proof that 2. implies the negation of 1. is given in 
§3.2; the converse requires a long argument, finally concluding in chapter 9, and uses 
an elaboration on the Scott analysis presented in §6.2 that may have independent 
interest. 

The form of 0.14 is intended to make it into a tool that can be easily applied 
in concrete cases. 



APPENDIX A 

Ordinals 

Ordinals arise from the need to keep counting through infinitely many stages. 
For instance, if we define the S j subsets of R to be the open sets and IIJ to be 
the closed, and more generally £^+i to be the countable unions of 11^ and n ^ + 1 

to be the complements of £ ° + i then we obtain an initial segment of the Borel sets 
consisting of those with finite rank. The issue here is that not all Borel sets are in 
these classes. A Borel set of the form 

B= [JBn 
nGN 

with each Bn G E^ may provide a counterexample. 
So we are led to a notation for the infinite rank Borel sets. The first infinite 

ordinal is uo and we can let E°, be the countable unions of finite rank Borel sets, 
11° their complements, E ° + 1 to be the countable unions of 11°, and so on. 

The above provides the motivation. The formal definition is: 

DEFINITION A.l. A set a is an ordinal if 
(i) a is transitive (so for all f3 G a and 7 G (3 we have 7 G a); 
(ii) a is linearly ordered by the G-relation (so for all /?, 7 G a, either (3 G 7, 
or 7 G /3, or 7 = f3). 

a is a successor ordinal if it has a largest element, and otherwise it is a limit. 

EXAMPLE A.2. The first ordinal is the empty set, 0, which we may identify 
with 0. Then 

1 = {0} 

the set whose only member is 0(=df 0)- Then 

2 = {0,1} 

and more generally 

The first infinite ordinal is 

and we keep counting with 

n + l = {0, l ,2 , . . . ,n}. 

a; = {0,1, 2,3,...} 

^ + 1 = { 0 , 1 , 2 , 3 , . . . C J } , 

w + 2 = {0,l,2,3,...a;,a; + l } , 
reaching the next limit at 

u + cu = {0,1,2,3, ...LU,LJ + l,o; + 2,...}. 

181 
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Strictly speaking 0 is a limit ordinal, but it is frequently put in a class by itself. 
In any case, with the exception of this minor point, we can divide the ordinals into 
the classes of successor and limit. 

At once from the definition at A.l we have that any member of an ordinal is 
again an ordinal. 

DEFINITION A.3. A set A is said to be well ordered by a relation < if 
(i) < is well founded, in the sense that every non-empty subset of A has a 
<-least element: 

V£ C A(B ^ 0 =* 3b G B(Va G A(a < b => a £ £))); 
(ii) A is linearly ordered by the <-relation. 

Two immediate consequences of the usual formalizations of mathematical rea
soning are: 

THEOREM A.4. Every ordinal is well ordered by G. 

THEOREM A.5. If < well orders the set A then there is some ordinal a so that 
(A, <) and (a, G) are isomorphic as linear orderings. 

For our purposes we may as well take A.4 and A.5 as axioms. 
A.4 provides the foundation for arguments by transfinite induction. Suppose 

C C a includes 0, and for all f3 G a it includes f3 + 1, and whenever A G a is a 
limit ordinal with A C C we have A G C, then we may conclude that C equals a: 
Otherwise there will be some G-least 7 G (a \ C) by the assumption G provides a 
well ordering on a; but then this least 7 can be neither successor nor limit by the 
assumptions on C. 

DEFINITION A.6. A set is countable if there is an onto map 
7r : N -» A. 

uj\ is the first uncountable ordinal. 

Thus we allow that finite sets are countable. A set is said to have cardinality 
Ko if it is infinite and countable, and we express this with the notation 

\A\ = K0. 
Since there is a bijection between N and N x N, countable unions of countable 

sets are countable. 

LEMMA A.7. 
Borel = ( J n ° 

PROOF. D is clear from the definition of Borel as the smallest superset of open 
forming a a-algebra. 

For the other direction we have that open sets are II2 and so should only be 
concerned with showing [jaeuJl IJa forms a <j-algebra. Suppose that Bn G n ^ n ^ for 
each n G N. Note that since UJ\ is not the countable union of countable sets there 
will be some S < UJI with each a(n) < 5. But then 

(J Bn e E° c ng+1. 
nSN 

• 
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For a thorough treatment see [45] or [68]. 



APPENDIX B 

Notation 

NOTATION B.l. Sets 0 is the empty set, uniquely defined by the description 
that it has no members. 

For A, B both sets, A c B indicates that A is included in B; A C B is not 
taken to mean that A is necessarily unequal to B, so for instance it is true that 

0 C 0 . 

A \ B is the set of all points in A and not in B. A U B is the set of points in 
either A or B and A n B is the set of points in both. AAB indicates the symmetric 
difference of these sets: 

AAB = (A\B)\J(B\A). 
For A some set and Q(-) some property, we use 

{xeA: Q(x)} 

and 
{* E A| Q(z)} 

interchangeably to mean the set of all points in A with the property Q. This allows 
some deviations, for instance if / is a function, then 

{fix) :Q(x)} 
would indicate the set of all images under / of x's which have Q. In the case of 
functions it would look strange to write 

{/ : X - Y : Q( / )} , 

and so we use 
{f:X^Y\ Q(f)} 

to indicate the set of functions from X to Y which have property Q. 
V(A) is the set of all subsets of A. 

NOTATION B.2. Sequences A sequence - that is to say a function from N or 
some finite initial segment of N - is commonly denoted by vector notation, as in x\ 
here the reader should expect that the nth term of this sequence is xn. Alternative 
notations for sequences include (-,-,...) and (•,-,...). For instance the sequence 
(ao,ai, ...,a/e_i) has k elements and its second term is a\. 

For s, t finite sequences, we denote the concatenation by s^t. So for I the length 
of s and i < I we have 

(a~0(0 = *(*). 
whilst for j > I we let 

(s-t)(j) = t(j - I). 
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There is a variant for the case that one of the sequences has length one, where we 
write s^a or a^s instead of s^(a) or (a)^s. Thus for / = length of s, 

(s^a)(i) — s(i), i < /, 
(s^a)(l) — a, 
(a^s)(0) = a, 

(aP s){i + 1) = s(i), i < I. 
We also write (xn)neN to indicate the sequence (xo,xi,...). 
For a set A, we let AN denote the collection of all infinite sequences from A 

and A<N denote the collection of all finite sequences. 
Given the identification of each natural number with its predecessors, we thus 

have that 2n equals the set of functions from {0,1, ...,n — 1} to {0,1}. So in this 
context, 21 does not equal 2, but rather the set {i>o,^i}, where VQ is the sequence 
of length 1 whose only term is 0 and v\ is the sequence whose only term is 1. 

Of course this may seem an insane convention, but it makes for compacting 
expressions which would otherwise be verbose. In context it will never create con
fusion, but the reader should note that 2~n always equals the inverse of 2 to the 
nth power. In particular 2 _ 1 equals 

1 
2' 

and not some exotic attempt to invert the set {v$,v\} from above. 

NOTATION B.3. Functions Given a set A and a function / with domain A 
and a subset B C A, we use f\s to denote the restriction of the function / to B. 
In the special case that 

/ : N - > C 
is a function from N to some set C we use f\n to denote the restriction of / to the set 
{0,1,. . . , n — 1}. Since we understand N = {0,1, 2,...} and each n = {0,1,.. . , n — 1}, 
this is entirely consistent. AB is used to indicate the set of all functions from B to 
A. 

In general f[A] = {/(#) : x e A} whenever the set A is a subset of the domain 
of / , and f~1[B] = {x : f(x) £ B} when B is a subset of the range. 

indicates that / is a function with domain X and range Y. An expression such as 

5 
indicates that / is the function which takes x, divides by 5, adds seven, and spits 
out 

x 

If X is a set and A C X a subset, then we define the characteristic function of 
A on X by 

X ^ : X ^ { 0 , 1 } , 
XA{X) = lifxeA, 
XA{X) =0 i f r r ^ A. 

If X x Y is a product of two spaces and / : I x 7 - > 5 i s a function whose 
domain is the product, we prefer the informal f(x,y) to denote the value of / applied 
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to the pair (x,y) G X x Y", rather than the fussier but more correct f((x,y)). Given 
x E X we let 

f(xr):Y^B 
y^ f{x,y). 

If A is a set, then (xa)aeA indicates the function with domain A which assumes 
the value xa for any a £ A. So in particular in the case that A — N this leads to 
one of the usual notations, (xn)neN> for a sequence. 

NOTATION B.4. Topological notions We customarily identify a topological 
space with its underlying set. 

If X is a topological space and A d , then A denotes its closure, A° denotes 
its interior (that is the largest open set included in A), and 

dA = A n X\A 

indicates the boundary. 
In the case that X is a metric space and d is the metric, we let 

d(B)= sup {d(bub2):b1,b2eB}. 

For be X 
d{b,B) = inf{d(Mi) :6i e B}. 

NOTATION B.5. Logical quantifiers 3x(P(x)) is used to indicate that there 
exists some x with P(x), while Vx(P(x)) indicates that every x has P(x). These 
"quantifiers" are embellished in a number of ways. For instance 

3°°x{P(x)) 

indicates that there are infinitely many different x's with P , while 

\/°°x(P{x)) 

is used when all but finitely many x's have P - that is to say, V00x(P(x)) is equiv
alent to 

-3°°-nx(P(x)). 
Alternatively 

3x e X(P(x)) 
is used to assert that there is some element x of the set X with P(x) whilst 

Vx G X(P{x)) 

asserts that no element of X fails to have P . 
The categoricity quantifiers 3* and V* are defined at 2.45. 

NOTATION B.6. Unions of sets If A is a set of sets we let 

be the union of all sets contained in A. If 
X l ^ -^J-X 

is an assignment of sets to elements of a space X, then for any Y C X 

\JAX 
xeY 

indicates the union of the set of sets {Ax : x € Y.}. 
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Of course one could iterate the union operation, and we have 

(JIM 
as the union of all sets contained in (JT4, and so on. The end result of iterating 
this process infinitely often and taking all sets arising this way is denoted TC(A). 
Thus TC(A), the transitive closure of A, is the collection of all sets appearing as 
an element somewhere in the hierarchy 

A, 

LI* 
(JIM 

UUIK 

Alternatively one may define the transitive closure of A to be the smallest transitive 
set including A. 

Thus if we have A — {{1, {2,4}}, 6, {1,3,4}}, the set whose members are ex
actly {1, {2,4}}, 6, {1,3,4}, then TC(A) would be 

{0,1,2,3,4, 5,6, {2,4}, {1,3,4}, {1, {2,4}}}. 

The hereditarily countable sets, HC, are all sets A for which TC(v4) is countable. 
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CLI (admitting a complete left invariant 
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Moo(R), §6.3 
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Soo (and its closed subgroups), 2.37, 2.39, 

2.41, §6.1 
solvable, 7.19, 7.27, 7.53 
summable ideal, 3.26, 3.33 
Q, 3.8, 7.22 
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Uoo, §5, 10.7 
Z<N , 7.9 
Z z , 7.27 

analytic set, see T,\ 
atomic models, 7.21(h) 

Be(x)t 4.2 
B2l 2.22 
Boo, 8.6 
B+, 7.32 
£*, 7.32 
Baer's theorem on rank one TFA groups, 

3.10f, §3.4.1 
Baire measurable function, 2.48 
Baire property, the, 2.45 
Becker-Kechris theorem 

on changing topologies, 7.38 
on classification by countable models, 2.39, 

6.19 
on reducing Eo, 7.7 

Becker's theorem on CLI groups, §7.5 
Birkhoff-Kakutani, 7.2 
Borel equivalence relation, 2.21 
Borel function, 2.1 
Borel G-space, 2.5 
Borel group, 2.7 
Borel reduction, 2.21 
Borel set, 2.1 
Burgess' theorem on existence of orbit in

verses, 2.27 

co, 2.6, 3.23 
coo, 8.3 
=c (equivalence relation of homeomorphism 

on compact metric spaces) 
definition, 4.19 
reducible to a group action, §4.4 

= l (equivalence relation of isometry on com
pact metric spaces) 

definition, 4.19 
smoothness, §4.4 

characteristic function, B.3 
CLI groups, 7.47, §7.5 
classification by countable models, see clas

sification by countable structures 
classification by countable structures, 2.38 
comeager, 2.45 
compatible metric, 2.1 
coset equivalence relation, 2.12 
countable, A.6 

AAB, 2.2, 3.26 
d(V), the diameter of V, B.4 
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d(x ,C) , B.4 
density ideal, 3.26 
dichotomy theorems, §3.4.3, 3.30 

Eg, 2.5 
3, 2.35 
3*, 2.45 
E0i 2.22, 2.29 
£?i, 8.1 
0, A.2 
Effros Borel structure, 2.4 
Effros lemma on G$ orbits, 7.12 
Effros theorem on locally compact group ac
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embedding (G-embedding for a group G), 

6.39 

V, 2.35 
V*, 2.45 
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.F(X), 2.4 
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faithful Borel reduction, 6.38 
Friedman-Stanley theorem on linear orders, 
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7(rr), 6.23 
7*(x), 6.3 
g-A, 2.5 
GSl 2.1 
G6a, 2.1 
G, 4.15 
Gcc, the stabilizer of x, 2.5 
GE group, 6.36 
generically F-ergodic, 3.6 
generically turbulent, 3.20 
Glimm-Effros property, 7.13 (strong), 7.46 
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Gromov-Hausdorff topology, §4.4 

HC, 0.11, 2.41f, 6.5f, B.6 
Harrington-Kechris-Louveau, 3.30 
Hausdorff theorem on open images of Polish 

spaces, 7.5 
Hilbert space, 2.9 
Hom+([0,1]), 4.1 
Hom([0,l]), 4.1 
Hom([0,l]2), 4.1 
Hom(X), 4.1 
homogeneous compact metric space, 7.20 

=*, 2.35 
h, 3.26 
Id, 3.26 
id(X), 2.22 
ideals, 3.26 

interior of a set, B.4 
index (of a subgroup), 2.62 
invariant, 2.5 
invariant metric, 7.1, 7.23 
irreducible (representation), 5.4 

Jankov-von Neumann uniformization, 2.54 

Kuratowski-Ulam, 2.46 
Kuratowski-Mylcielski, 2.58 
Kechris-Louveau theorem on E±, 8.2 

l\ 2.8 
L2 , 2.9 

<a, 6.48 
< B , 2.21 
g B , 2.21 
g c 2.21 
< c 2.21 
<FB-> 6.38 
<L(R),9.17 
C B , 2.21 
C c , 2.21 
C(G,d), 7.28 
L(IR)-cardinality, | • | L ( R ) , 9.10 
left invariant metric, 7.1 
limit ordinal, A.l 
local orbit, 3.15 
logic action, 2.37 

Moo, 2.9 
Moo(M), 6.43 
Martin-Moschovakis-Steel, 9.12 
Mod(£), 2.33 
Mod(£ ,«) , 9.17 
K 2.35 
meager, 2.45 

-i, 2.35 
N = {0,1,2, . . .} , 2.2 
NN, 2.2 
N n , 2.2 
N < N , 2.2 

(D(x,U,V), 3.15 
LJI, A.6 
~A (the closure of A), 2.31(h), B.4 
1, A.2 
ordinal, A.l 

P , 3.26, B.l 
Vx0(A) (the countable subsets of A), 2.32 
JJ° , 2.1, §A 
ipo(x,U,V), 3.15 
<Pa(x, Vn), 6.1 
V?a(x, U,V), 6.21 
<pl, 6.4 
ipX) 6.23 
7TO, 7.31 
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perfect set, 2.57 
Pettis ' lemma, 2.56 
Polish group, 2.5 
Polish space, 2.1 
Polishable group, 2.7 
potential Borel complexity, 2.66, 6.12 
products of locally compact, §7.4 
properly generically ergodic, 3.1 
property of Baire, see Baire property 

reduction 
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