Tools for PDE
Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials

Michael E. Taylor

American Mathematical Society
Selected Titles in This Series

81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000
74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000
72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999
64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998
61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998
59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998
57 Marc Levine, Mixed motives, 1998
56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998
55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998
54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997
53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997
52 V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997
50 Jon Aaronson, An introduction to infinite ergodic theory, 1997

(Continued in the back of this publication)
Tools for PDE

Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials
Tools for PDE
Pseudodifferential Operators,
Paradifferential Operators,
and Layer Potentials

Michael E. Taylor
ABSTRACT. This book develops three related tools that are useful in the analysis of partial differential equations, arising from the classical study of singular integral operators: pseudodifferential operators, paradifferential operators, and layer potentials.

A theme running throughout the work is the treatment of PDE in the presence of relatively little regularity. In the first chapter we study classes of pseudodifferential operators whose symbols have a limited degree of regularity. In the second chapter we show how paradifferential operators yield sharp estimates on various nonlinear operators on function spaces. In Chapter 3 we apply this material to an assortment of results in PDE, including regularity results for elliptic PDE with rough coefficients, planar fluid flows on rough domains, estimates on Riemannian manifolds given weak bounds on the Ricci tensor, div-curl estimates, and results on propagation of singularities for wave equations with rough coefficients. Chapter 4 studies the method of layer potentials on Lipschitz domains, concentrating on applications to boundary problems for elliptic PDE with variable coefficients.

Library of Congress Cataloging-in-Publication Data
Taylor, Michael Eugene, 1946–
Tools for PDE : pseudodifferential operators, paradifferential operators, and layer potentials / Michael E. Taylor.
 p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 81)
 Includes bibliographical references and index.
 ISBN 0-8218-2633-6 (alk. paper)
1. Differential equations, Partial. I. Title. II. Mathematical surveys and monographs ; no. 81.
QA377.T37 2000
515'.353—dc21 00-036248

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2000 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 12 11 10 09 08 07
Contents

Preface ix

Chapter 1. Pseudodifferential Operators with Mildly Regular Symbols 1
 §1. Spaces of continuous functions 3
 §2. Operator estimates on L^p, h^1, and bmo 17
 §3. Symbol classes and symbol smoothing 31
 §4. Operator estimates on Sobolev-like spaces 37
 §5. Operator estimates on spaces $C^{(\lambda)}$ 44
 §6. Products 54
 §7. Commutator estimates 58
 §8. Operators with Sobolev coefficients 61
 §9. Operators with double symbols 63
 §10. The CRW commutator estimate 75
 §11. Operators with vmo coefficients 78
 §12. Estimates on a class of Besov spaces 82
 §13. Operators with coefficients in a function algebra 86
 §14. Some BKM-type estimates 88
 §15. Variations on an estimate of Tumanov 92
 §16. Estimates on Morrey-type spaces 94

Chapter 2. Paradifferential Operators and Nonlinear Estimates 101
 §1. A product estimate 105
 §2. A commutator estimate 106
 §3. Some handy estimates involving maximal functions 108
 §4. A composition estimate 110
 §5. More general composition estimate 112
 §6. Continuity of $u \mapsto f(u)$ on $H^{1,p}$ 113
 §7. Estimates on $F(u) - F(v)$ 116
 §8. A pseudodifferential operator estimate 118
 §9. Paradifferential operators on the spaces $C^{(\lambda)}$ 120
 §A. Paracomposition 125
 §B. Alinhac’s lemma 132

Chapter 3. Applications to PDE 135
 §1. Interior elliptic regularity 137
 §2. Some natural first-order operators 148
 §3. Estimates for the Dirichlet problem 155
 §4. Layer potentials on $C^{1,\omega}$ surfaces 159
§5. Parametrix estimates and trace asymptotics 173
§6. Euler flows on rough planar domains 178
§7. Persistence of solutions to semilinear wave equations 183
§8. Div-curl estimates 186
§9. Harmonic coordinates 194
§10. Riemannian manifolds with bounded Ricci tensor 202
§11. Propagation of singularities 205

Chapter 4. Layer Potentials on Lipschitz Surfaces 217
§1. Cauchy kernels on Lipschitz curves 218
§2. The method of rotations and extensions to higher dimensions 228
§3. The variable-coefficient case 230
§4. Boundary integral operators 235
§5. The Dirichlet problem on Lipschitz domains 241
§A. The Koebe-Bieberbach distortion theorem 246

Bibliography 249

List of Symbols 255

Index 257
Preface

Since the early part of the twentieth century, with the work of Fredholm, Hilbert, Riesz, et al., the use of singular integral operators has developed into a range of tools for the study of partial differential equations. This includes the use of single and double layer potentials on planar curves to treat classical boundary problems for the Laplace operator on a planar region and higher-dimensional extensions. It also includes the construction of parametries for elliptic PDE with variable coefficients. Fourier integral representations of these operators have provided many useful insights, though this method has not entirely supplanted the singular integral representation. When the use of the Fourier integral representation is emphasized, the operators are often referred to as pseudodifferential operators. Paradifferential operators form a singular class of pseudodifferential operators, particularly suited for applications to nonlinear PDE.

Treatments of pseudodifferential operators most frequently concentrate on operators with smooth coefficients, but there has been a good bit of work on operators with symbols of minimal smoothness, with applications to diverse problems in PDE, from nonlinear problems to problems in nonsmooth domains. In this monograph we discuss a number of facets of the operator calculi that have arisen from the study of pseudodifferential operators, paradifferential operators, and layer potentials, with particular attention to the study of nonsmooth structures.

In Chapter I we study pseudodifferential operators whose symbols have a limited degree of regularity. We consider various cases, including measures of regularity just barely better (or just barely worse) than merely continuous, measures either a little better or a little worse than Lipschitz, and others. Function spaces used to describe the degree of regularity of symbols include

\[C^\omega, \quad C^{(\lambda)}, \quad L^\infty \cap \text{vmo}, \quad B_{p,1}^s. \]

Here \(C^\omega \) consists of functions with modulus of continuity \(\omega \). The space \(C^{(\lambda)} \), with \(\lambda(j) = \omega(2^{-j}) \), is defined in terms of estimates on a Littlewood-Paley decomposition of a function. These spaces coincide for Hölder-Zygmund classes of functions, but they diverge in other cases. The space \(\text{vmo} \) is the space of functions of vanishing mean oscillation, and \(B_{p,1}^s \) are certain Besov spaces. The interplay between some of these function spaces is itself a significant object of study in this chapter.

The class of paradifferential operators, introduced in [Bon], has had a substantial impact on nonlinear analysis. In Chapter II we make use of paradifferential operator calculus to establish various nonlinear estimates, some of which have previously been established from other points of view. My interest in organizing some of this material, particularly in \$\S\$1–5, was stimulated by correspondence with T. Kato.
Other material in Chapter II includes investigations of paradifferential operators on the new function spaces $C^{(\lambda)}$.

Chapter III gives a sample of applications of some of the results of Chapters I–II to topics in PDE. We treat some linear PDE with rough coefficients, including some natural differential operators arising on Riemannian manifolds with non-smooth metric tensors. We consider the method of layer potentials on domains that are not smooth (though not so rough as those considered in Chapter IV). We also treat a couple of topics in nonlinear PDE, including inviscid, incompressible fluid flow on rough planar domains and wave equations with quadratic nonlinearities. We also discuss various div-curl estimates, including a number of estimates of [CLMS]. Some of the work in this section, especially variable-coefficient results, grew out of correspondence with P. Auscher, following up on our work in [AT]. Other topics studied in Chapter III include the construction of harmonic coordinates on Riemannian manifolds with limited smoothness, regularity results for the metric tensor of a Riemannian manifold when one has estimates on the Ricci tensor, and propagation of singularities for PDE whose coefficients are more singular than $C^{1,1}$, but which still have well defined null bicharacteristics by virtue of Osgood's theorem.

Chapter IV deals with the method of layer potentials on Lipschitz domains. We establish the fundamental estimates of Cauchy integrals on Lipschitz curves of [Ca2] and [CMM] (via a method of [CJS]) and extensions to higher dimensions from [CDM]. We then discuss the Dirichlet problem for Laplace equations and variants on Lipschitz domains. We consider operators with variable coefficients, hence Lipschitz domains in Riemannian manifolds. Our treatment of this follows [MT], though here we restrict attention to the simpler case of smooth coefficients, whereas [MT] treats cases arising from C^1 metric tensors. This extends earlier work of [Ve] and others on the flat Laplacian on Lipschitz domains in Euclidean space.

Prerequisites for this work include an acquaintance with basic results on pseudodifferential operators and some methods from harmonic analysis, including the Littlewood-Paley theory. Sufficient material on these prerequisites could be obtained from either [T2] or Chapters 7 and 13 of [T5]. Indeed, this present work can be viewed as a companion to [T2].

Michael Taylor
Bibliography

BIBLIOGRAPHY

BIBLIOGRAPHY

List of Symbols

Various function spaces and other objects occur in this monograph, labeled by the following special symbols. We give the chapter and formula number where each one is introduced.

\[A^{r}_{0} S^{m}_{1,\delta} \quad \text{I (3.34)} \]
\[BMO \quad \text{I (2.83)} \]
\[bmo \quad \text{I (2.84)} \]
\[BS^{m}_{1,1} \quad \text{I (2.72), (3.37)} \]
\[B^{\psi}_{m,1} \quad \text{I (3.36)} \]
\[B^{p}_{s,1} \quad \text{I (0.14)} \]
\[B^{p}_{s,q} \quad \text{I (12.1)} \]
\[C^{(\lambda)} \quad \text{I (0.2), (1.4)} \]
\[C^{(\lambda)} S^{m}_{1,0} \quad \text{I (2.45)} \]
\[C^{(\lambda)} S^{\psi}_{1,1} \quad \text{I (5.75)} \]
\[C^{\omega} \quad \text{I (0.1)} \]
\[C^{[\omega]} \quad \text{I (0.3), (1.61)} \]
\[C^{(\omega)} \quad \text{I (0.4), (1.64)} \]
\[C^{r} \quad \text{I (1.21)} \]
\[C^{r, (\lambda)} \quad \text{I (5.57)} \]
\[C^{r}_{s} S^{m}_{1,0} \quad \text{I (4.40)} \]
\[D_{TF} \quad \text{III (2.1)} \]
\[H^{\alpha,p} \quad \text{I (4.3)} \]
\[H^{s,1} \quad \text{I (4.51)} \]
\[H^{s,\infty} \quad \text{I (4.51)} \]
\[H^{1} (\mathbb{R}^{n}) \quad \text{I (2.60)} \]
\[h^{1} (\mathbb{R}^{n}) \quad \text{I (2.62)} \]
\[(L^{\infty} \cap \text{vmo}) S^{m}_{cl} \quad \text{I (11.5)} \]
\[M^{p}(\mathbb{R}^{n}) \quad \text{I (16.1)} \]
\[M^{p,\omega}(\mathbb{R}^{n}) \quad \text{I (16.3)} \]
\[\Phi^{m} S^{m}_{1,0} \quad \text{I (9.2)} \]
\[R(f, u) \quad \text{I (3.48)} \]
\[S^{m}_{1,0,\delta} \quad \text{I (0.9)} \]
\[T_{f} \quad \text{I (3.46); II (0.18)} \]
\[X S^{m}_{1,0} \quad \text{I (0.8), (2.44)} \]
\[X S^{m}_{1,\kappa} \quad \text{I (2.52)} \]
\[X S^{m}_{1,\kappa} \quad \text{I (3.18)} \]
Index

Beltrami operator, 152
Besov spaces, 16, 82
boundary integral equations, 235
Calderón-Zygmund operators, 223
Cauchy integral, 218
commutator, 58
deformation operator, 148
Dini condition, 89, 160
Dirichlet problem, 155, 168, 217, 241
div-curl lemma, 186
double layer potentials, 233
double symbols, 63
elementary symbol, 18
elliptic, 137
elliptic regularity, 137
Euler equation, 178
exterior derivative, 77, 151
Fourier multiplier, 1
Fredholm, 139, 240
global regularity, 143
Hardy spaces, 24
Hardy-Littlewood maximal function, 64, 104
harmonic coordinates, 194
harmonic measure, 244
Hölder spaces, 5
index, 139, 240
isothermal coordinates, 154
John-Nirenberg space, 27
jump relations, 230
Kadlec’s formula, 179
Koebe-Bieberbach distortion theorem, 219, 246
Laplace operator, 140
layer potentials, 159, 217
Lipschitz domains, 217
Lipschitz surfaces, 217
Littlewood-Paley partition of unity, 4
Littlewood-Paley theory, 17, 104
local regularity, 143
metric tensor, 202
modulus of continuity, 3
Morrey space, 94
Morrey’s imbedding theorem, 94
Neumann boundary problem, 172
Neumann operator, 171
nontangential maximal function, 230
null bicharacteristics, 215
Osgood’s Theorem, 151
paracomposition, 127
paradifferential operator, 101
paradifferential symbol smoothing, 35
parametrix, 138
paraproduct, 35, 104
propagation of singularities, 205
pseudodifferential operators, 2
quasiconformal mappings, 152, 198
Rellich-type identity, 236
Ricci tensor, 202
Riemannian manifold, 140
Riesz transform, 157
sharp Gårding inequality, 208
single layer potential, 232
Sobolev spaces, 2
super-commutator, 77, 186
symbol smoothing, 31
symbols, 2
Triebel-Lizorkin spaces, 16
univalent functions, 246
vorticity equation, 178
Zygmund space, 1
Zygmund spaces, 5

257
Selected Titles in This Series

(Continued from the front of this publication)

49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997
46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996
43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.4 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 4, 1999
40.3 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 3, 1998
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
29 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in H^∞, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This book develops three related tools that are useful in the analysis of partial differential equations (PDEs), arising from the classical study of singular integral operators: pseudodifferential operators, paradifferential operators, and layer potentials.

A theme running throughout the work is the treatment of PDE in the presence of relatively little regularity. The first chapter studies classes of pseudodifferential operators whose symbols have a limited degree of regularity; the second chapter shows how paradifferential operators yield sharp estimates on the action of various nonlinear operators on function spaces. The third chapter applies this material to an assortment of results in PDE, including regularity results for elliptic PDE with rough coefficients, planar fluid flows on rough domains, estimates on Riemannian manifolds given weak bounds on Ricci tensor, div-curl estimates, and results on propagation of singularities for wave equations with rough coefficients. The last chapter studies the method of layer potentials on Lipschitz domains, concentrating on applications to boundary problems for elliptic PDE with variable coefficients.