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Preface 

Contemporary research in module theory over commutative rings is heavily 
concentrated on those modules for which either the underlying ring or the modules 
themselves or both are subject to various finiteness restrictions. This is due not 
only to the widespread applications in other areas but also to the techniques avail­
able. However, a considerable amount of work has been done recently on modules 
without assuming any finiteness condition, resulting in a rapid development of the 
subject. This volume deals with the theory of modules over commutative integral 
domains, paying only scant attention to the structure of the underlying domains 
and practically ignoring the noetherian case. 

In the study of modules, a dramatic change occurs when one abandons 
finiteness conditions. Although most pleasant features are undoubtedly lost, some 
nice features still remain. These have served as starting points for new discoveries. 
Substantial generalizations of classical results required totally new methods, and the 
development of powerful techniques breathed new life into the theory. As a result, 
module theory over non-noetherian rings, and, in particular, over non-noetherian 
domains, became a lively branch of algebra. 

We feel that the steppingstone to a study of modules over general domains 
is the module theory of valuation domains—these are perhaps the simplest non-
noetherian domains that are not too close to Dedekind domains—and their global 
versions, the Priifer domains. One could attain substantial understanding of module 
properties by a careful examination of these two special cases. Until recently, not 
much was known about the theory of modules over these domains, but the past 
two decades have seen remarkable developments. It has become increasingly clear 
that they provide a meeting ground for several branches of algebra and supply a 
wealth of challenging problems. However, the discussions here will not be confined 
to modules over these domains: whenever feasible, we pursue our treatment initially 
without assuming any extra condition on the domains; additional conditions will 
be introduced only when necessary. 

In this volume we have tried to present the bulk of the traditional material 
and to incorporate recent discoveries on our subject by pulling together the main 
strands of the theory. However, because of the vastness of the topic, limitations had 
to be imposed on both the choice of the material and the method of presentation. 
The theory is replete with aesthetically pleasing and powerful results, but we could 
not (and we did not even intend to) cover certain basic topics such as a study of 
direct decompositions, endomorphism rings and automorphism groups, K-theory, 
modules over specific types of domains, etc. We could just briefly touch upon 
subjects like generalizations of projectivity and injectivity, and the topological 
aspects of module theory. No attempt has been made to be exhaustive even in 

XI 



xi i PREFACE 

the topics covered; we aimed rather to draw together in a systematic manner the 
different trends of developments, forging them into a more coherent theory. Our 
intent was to concentrate on the backbone of the theory and to focus attention 
on results of theoretical interest. We have deliberately omitted standard material 
covered in textbooks and monographs and skipped details of proofs of results that 
can be found in several textbooks on algebra or, in particular, on ring theory. 

Needless to say, the focus of our presentation is very personal, reflecting our 
own interests and research; we did not include areas which are not too close to our 
research interests. As a result, several important aspects of module theory (even 
within our self-imposed limitation) are bound to be neglected, and one could argue 
that various additional topics should have been included in this volume, especially 
those on which there is no ample survey in the literature. Of course, there is always 
room for argument as to what topics are more relevant or significant. We believe 
that we have presented an attractive—though by no means exhaustive—theory of 
modules over non-noetherian domains which could prepare the groundwork for a 
more penetrating assault on the subject and which will hopefully inspire further 
work in the area. Numerous open problems which the authors thought interesting 
are listed at the end of the chapters. 

• * * 

We mathematicians often endeavor to extend theorems in order to cover a 
wider area or to get a better insight. In this respect, the theory of abelian groups 
has been a constant source of inspiration for our work. It is apparent that our 
treatment owes a great deal to abelian groups: old techniques find new roles, and 
a number of classical results lend themselves to generalizations. 

Additional impetus for our work comes from Dedekind domains. It has 
been observed that if we focus our attention on modules of projective dimension 1, 
then some of the useful features of modules over Dedekind domains can be retained. 
A careful reader will find numerous results in this volume in support of our claim 
that this class of modules deserves special attention. 

The powerful apparatus built up in the noetherian case could hardly be 
utilized in our general setting. It is unreasonable to expect that the same notions 
would be of comparable relevance in the general case, so suitable substitutes were 
pursued. For instance, the fruitful idea of introducing an operation between the 
studied objects (a la Picard group) led us to the consideration of two groups: the 
archimedean group Arch R for valuation domains R and the group Gp R of 'clones' 
attached to any domain R. Actually, we went a step further and initiated the 
systematic study of several emerging Clifford semigroups: the inclusion of Clifford 
semigroups in our arsenal will allow a more global picture of the subjects. 

We have also borrowed ideas from our previous volume [FS] that grew out 
of our attempt to systematically transplant ideas and methods from abelian group 
theory to the theory of modules. Since its publication (15 years ago) new methods 
have been developed which have not only improved the original results, but in fact 
have extended the theory to a wider class of modules. Whenever it was feasible, 
we adapted methods which provided a little more mileage than the conventional 
approach. As was pointed out earlier, our general intention was to treat the 
problems in full generality and to specialize to individual domains whenever it 
became inevitable. Notable exceptions were the cases when nothing substantial 
was available in the general case or when the problems were uninteresting in a 
more general setup. 
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More or less detailed reviews of the contents are given in the introductions 
to the individual chapters. Notes at the end of the chapters include historical 
remarks as well as various comments on the material of the chapter. We have 
appended a number of exercises at the end of each section. They range from 
routine problems to new material going slightly beyond what is covered in text; in 
addition, they provide a chance for the reader to check his/her understanding of 
the material. The book should be accessible to graduate students who are familiar 
with the rudiments of module theory and homological algebra. 

An expert reader will find several innovations in the proofs and shortcuts in 
the presentations. Some of our arguments yield genuine improvement upon results 
published in the literature. 

The list of references at the end of the book is by no means complete. It 
includes only the books and articles on our subject which we referred to in the text. 

Conventions. All rings are commutative (unless explicitly stated oth­
erwise) and have an identity element, usually denoted by 1. Of course, non-
commutative rings will turn up from time to time as endomorphism rings. 

If not stated otherwise, the symbol R stands for a domain, Q for its field 
of quotients, and P for a maximal ideal of R. 

It is tacitly understood that our theorems are stated in the ZFC axiom sys­
tem of set theory (Zermelo-Fraenkel with the Axiom of Choice). If it happens that 
we cannot resolve a question that interests us in ZFC, then we assume an additional 
axiom. Such an axiom is often GodePs Axiom of Constructibility (abbreviated as 
V = L) or the (Generalized) Continuum Hypothesis (GCH or CH). 

A glossary of notation used in this volume can be found on page xv. 

Cross-references. Theorems, propositions, lemmas, corollaries, and ex­
amples are numbered by pairs (a.b) of positive integers where "a" stands for the 
section number and "b" for the location of the result in the section. Definitions are 
printed in boldface characters; they do not carry reference numbers. 

Cross-references within a chapter are done by indicating the appropriate 
pair, while the chapter numbers (Roman numerals) are also listed when reference 
is made to a different chapter. The exercises at the end of the sections are also 
numbered by pairs of integers; they are referred to as "Exercise a.b". 

* * * 

It is a great pleasure to thank those who read portions of the manuscript 
and suggested improvements in the draft. We are very grateful to Silvana Bazzoni, 
Karl H. Hofmann, K.M. Rangaswamy, Michael Siddoway (who also corrected several 
linguistic inaccuracies), and Paolo Zanardo for their most useful comments. 

We are confident that in the future the investigation of modules over non-
noetherian rings will attract an increasing number of algebraists and sincerely hope 
that they will find this volume useful in their work. 

LASZLO FUCHS and LUIGI SALCE 

New Orleans, Louisiana, USA 
Padova, Italy 
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Appendix on Set Theory 

In this appendix we intend to summarize the pertinent definitions needed 
from Set Theory, and to list a few results which are required in our discussions. 

The reader is assumed to have a basic acquaintance with the rudiments of 
Set Theory, in particular, with the theory of cardinal and ordinal numbers, as well 
as conditions equivalent to the Axiom of Choice (e.g., the well-ordering principle 
and Zorn's lemma). We refer to T. Jech's book 'Set Theory' (Academic Press, 
1978) or K. Kunen's book 'Set Theory' (North Holland, 1980) for more details. 

We emphasize that throughout this volume, we are working in ZFC, i.e., 
in the classical Zermelo-Praenkel set theory with the Axiom of Choice adjoined. 
Occasionally, we will add another axiom to ZFC (always consistent with ZFC) in 
order to be able to prove or to refute a claim which would otherwise be undecidable. 

Cardinals 
There is no harm in considering cardinals as initial ordinals, i.e., ordinals 

whose cardinality exceeds those of all preceding ordinals. Besides the standard 
notation of infinite cardinals: No for countable, Ha for the a th cardinal, ordinals 
and cardinals are denoted by lower case Greek letters. In particular, u stands for 
the first infinite ordinal, and uja for the first ordinal of cardinality NQ. Occasionally, 
we use N_i to mean finiteness. 

The symbol \X\ stands for the cardinality of the set X. 
A cardinal n is called regular, if it is equal to its cofinality, i.e., it is the 

smallest cardinal a such that n contains a subset X with \X\ — a and supX = n 
(sup is short for 'supremum'). Otherwise, it is called a singular cardinal. For a 
cardinal /x, /z+ denotes the smallest cardinal larger than \±. 

The precise definition of a weakly compact cardinal K requires a few 
concepts which are not needed elsewhere in this volume. Therefore we forgo a 
precise definition, and adopt the point of view that the property stated in the 
following lemma serves as a definition. (Stationary sets are defined below.) 

Lemma A . l Let {Sa \ a < K,} be a set of stationary subsets of a weakly 
compact cardinal K. Then there is a stationary set T of regular cardinals < K such 
that Sa fl A is stationary in X, for every A G T and for every a < A. • 

A cardinal K is called measurable if a set X of cardinality K admits a 
countably additive measure /x such that ji assumes only values 0 and 1, and 
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fjL(X) = 1, /x(x) - 0 for all x e X. 

If there exists a measurable cardinal at all, then there is a smallest one among 
them, and all larger cardinals are measurable. It is not known whether or not the 
existence of measurable cardinals can be proved in ZFC. But we do know that many 
of the strongly inaccessible cardinals are non-measurable. 

Also, measurable cardinals are weakly compact, and there are K weakly 
compact cardinals less than a measurable cardinal n. 

Chains 
Let K be a regular cardinal number, viewed as the set of ordinals less than 

K. A subset C C K is closed and unbounded (in short: a cub) in K if 
1) X C C, supX G K, implies supX G C; and 
2) it has no upper bound in K. 

If C is a cub in ft, then there is a monotone bijection / : K —> C, and as a consequence 
we can reindex the ordinals in a cub in K by all ordinals < K. 

A subset of K is called stationary if it intersects every cub in K. Examples 
for stationary subsets include the cubs, and the set of limit ordinals cofinal with UJ. 

A family {Xa}a<K of subsets of a set X of cardinality K indexed by the 
ordinals a < K is called a continuous well-ordered ascending chain if the 
following conditions are satisfied: 

(i) a < (3 < K implies Xa C Xp, 
(ii) XA = Ua<A Xa f° r e a c n limit ordinal A < K. 

The family {Xa}a<K is called a filtration of X if, in addition, 
(hi) \Xa\ <K, 

Wx = ua<Kxa. 
In case of nitrations of modules, condition (iii) is often replaced by genX a < K or, 
for torsion-free modules, by r k X a < K. 

We call attention to the important fact that, whenever K is a regular 
cardinal, every subset of X of cardinality < K is contained in some member Xa 

of a filtration of X. This is false for singular cardinals ft, which is one of the 
reasons that filtrations are of real interest only for regular cardinals. 

The following facts are frequently used. 
Lemma A.2 Let n be an uncountable regular cardinal. 
(i) The intersection of two cubs in K is again a cub. 
(ii) If {Xa}a<K and {Ya}a<K are two filtrations of a set X of cardinality 

K, then the set 
C = {a<K\Xa=Ya} 

is likewise a cub in K. 
Proof. (i) If A and B are cubs, then the intersection C — A fl B is 

evidently closed. For any cti G A, there is a f3\ G B with a\ < /3i, and then there is 
an OL2 € A with j3\ < c*2, etc. The chain QL\ < f3\ < a.2 < fa < • • - has a supremum 
7 in C This proves that C is unbounded. 

(ii) This follows immediately from (i) after observing that, in the notation 
of (i), 7 satisfies X1 = Y1. • 
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A stationary subset in K (an uncountable regular cardinal) is said to be 
non-reflecting if for every limit ordinal 7 < n of cofinality > LJ, the set E D 7 is 
not stationary in 7. For instance, if A is a regular cardinal and n = A+, then the 
limit ordinals of cofinality A in K, form a non-reflecting stationary set in K. 

We shall refer to the following result. It is valid only if the axiom of 
constructibility is assumed (for the condition V = L, see below). 

Lemma A.3 Let V = L, and K be a regular cardinal. There exists a non-
reflecting stationary subset of AC consisting of ordinals cofinal with LU if and only if 
K is not weakly compact. m 

Additional Hypotheses 
As mentioned earlier, from time to time we adjoin various axioms to ZFC 

whenever needed. The most well-known of these is the Continuum Hypothesis 
(CH) which states that 2H° = Ni. The Generalized Continuum Hypothesis 
(GCH) says that 2HQ = Ka+i holds for all ordinals a. It is known that GCH is 
consistent with and independent of ZFC. 

A most important example for an additional axiom is Godel's Axiom of 
Constructibility (if we assume it, we write V = L to mean that the model V of set 
theory we are working in is the constructible universe L); this axiom is:—as proved 
by K. Godel—consistent with ZFC. The hypothesis V = L is quite strong, inter alia 
it implies GCH. The constructible universe L is distinguished by the property that 
it is the least transitive model containing all ordinals. 

Another principle that will be used several times is as follows. It is due to 
R.B. Jensen [Ann. Math. Logic 4 (1972), 229-308]. 

Diamond Principle <C> : Let E be a stationary subset of the uncountable 
regular cardinal K, and {Xa \ a < K} a filtration of a set X of cardinality K. Then 
there exists a family {Sa \ a G E} of subsets Sa C Xa such that, for any subset 
Y C X, the set 

E' = {aeE\YnXa = Sa} 
is a stationary subset in K. 

Since Godel's Axiom of Constructibility implies <0>, it follows that 0 is 
consistent with ZFC. 

We derive the following useful version of the diamond principle. 
Lemma A.4 (<0>) Let E be a stationary subset of the uncountable regular 

cardinal K, and {Xa}a<K a filtration of a set X of cardinality K. For any set Y of 
cardinality < K, there is a family {ga \ a G E} of functions ga: Xa - > 7 x Xa such 
that, for any function g: X —> Y x X, the set 

Eg = {aeE I g\Xa = ga} 

is stationary in K. 
Proof. Define X' = X x (Y x X) and X'a = Xa x (Y x Xa)\ now apply 

0 to the filtration {X'a}a<K of X'. There exist subsets Sa C Xa xYx Xa with 
the property specified in <0. Fix a y$ G Y. Define ga : Xa —> Y x Xa to have 
Sa as graph if Sa is the graph of a function, and via ga(x) = {yo,x) otherwise. 
Given a function g: X —> Y x X, let S be its graph. Then (} assures that the set 
E' = {a G E I g\Xa = ga} is stationary in K. • 
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Lemma on Sequence of Functions 
The next lemma produces a transfinite sequence of functions from the set 

of countable ordinals into UJ such that any two of them are almost equal. Here two 
functions / , g with the same domain D are called almost equal if f(x) = g(x) for 
almost all x G D. 

Lemma A.5 There exists a family 

{aa: a —> uj}a<UJl 

of injective functions such that 
(i) aa\p is almost equal to ap for all p < a <uj\, and 
(ii) uj\Imaa is infinite for all a. 
Proof. We only sketch the proof; for more details, see Kunen's book 

[loc.cit., p.70]. 
The functions aa are defined by transfinite induction. Given aa, pick any 

n G UJ \ ImaCT, and define: aa + i |cr = a0 and aa+i(cr) = n. Let A < uj\ be a 
limit ordinal, and assume aa has been defined for each a < A. Fix an ascending 
countable sequence o~o < o\ < a2 < • •. < o~k < . . . of ordinals with sup o~k = A. 
Set /?o = ctao and inductively define functions /?&: a^ —• UJ to satisfy the following 
conditions for each k: 

(a) pk is injective, 
(b) it is almost equal to aak, and 
(c) fik+lWk = Pk-

Setting f3 = \Jk<u} Pk- A —* a;, the function a\ is defined as follows: aA(crfc) = P(a2k) 
and ct\(o~) — P(a) for a $ {0-1,0-2,... ,0k, • • •}• The functions aa defined in this 
way satisfy the desired conditions. • 

Aronszajn Trees 
Let K be an infinite regular cardinal. A tree T is called a K>Aronszajn 

tree if 
(i) it is of height K, 
(ii) its a th level satisfies \Ta\ < K for each a < K, and 
(iii) T has no branches of length K. 

If every vertex of T is connected to only a finite number of vertices at the next 
level, then Konig's well-known lemma states that T has an infinite branch. This 
amounts to saying that there are no UJ-Aronszajn trees. 

However, we have: 
Lemma A.6 uj\ -Aronszajn trees exist. 
Proof. Let {aa \ a —> UJ}(7<UJ1 be the family of functions defined in A.5. 

Consider the tree T of height uj\, whose <rth level Ta (a < uj\) consists of those 
injective functions a: a —• uj\ which are almost equal to aa. The ordering on T is 
the natural one. Clearly, Ta is countable for every a < uj\. T has no branches of 
length uj\, since such a branch would give rise to an injective function from uj\ into 
UJ. Hence T is an uj\-Aronszajn tree. • 

For uj\-Aronszajn trees, a number of different constructions are available; 
see Jech's book [loc.cit] for more details. 
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Extensions 
Next we discuss a consequence of the Diamond Principle on extensions. We 

shall need the following observation. 
Suppose 0 —> A-^A! —• A'/A —» 0 is an exact sequence of i?-modules, and 

B is an .R-module such that E x t ^ A ' , B) = 0, but Ext^A'/A, B) ^ 0. Then there 
is a homomorphism x: B ® A -^ B ® Af making the following diagram commute: 

0 -* B -> B®A - ^ A -+ 0 

(1) II x[ [a 

0 -> B -^ 5 © i ' -fU A' -+ 0 

such that there is no splitting map r : A! —» B 0 i ' with X<J — r a , where <r 
is a splitting map A —+ B 0 A for p. In fact, the exactness of ~Rom(A',B) —• 
Hom(A,£) —> Ext(A7^4, J5) —> Ext(^4',i?) = 0 implies that the map between the 
two Horns is not epic. If rj: A —• B is a map that does not extend to any Af —> B, 
then define x to map (6, a) G £ 0 A onto (6 -f rja, aa) G 5 0 A!. It is readily seen 
that—due to the choice of rj—there is no splitting map T: A' -^ B ® A'. 

In the proof of the next lemma, it will be convenient to consider an extension 
M of B by A to be a module on the set Ax B. 

Lemma A.7 (<0>) Let A,B be R-modules with gen A — K and \B\ < K, 
where K is an uncountable regular cardinal. If A has a filtration {Aa}a<K such that 

(i) gen Aa < K for every a < /s; 
(ii) each Aa satisfies Ext^(^4a,J5) = 0; 
(hi) the set S — {a < K \ Ext^Aa+i/Aa, B) ^ 0} is stationary in K, 

then Ext^A, B) ^ 0. 
Proof. Let {Ba}a<K be a filtration of B. By <0>, there is a family {ga}aes 

of functions ga: Aa —> Aa x Ba (a G S) such that, for every function g: A —> A x B, 
the set {a G S \ g\Aa = ga} is stationary in K. 

We are going to construct a non-split exact sequence E : 0 —> JB —» 
M - ^ A —» 0 as the direct limit of splitting exact sequences E^ : 0 —> B —> 
Ma-^>^4a —> 0 (a < AC) such that the underlying set for Ma is Aa x B, and 
whenever (3 < a, there is a commutative diagram 

#0:0 -> 5 -+ M/3 - ^ A0 -> 0 

(2) II 1 1 
Ea:0 -> £ -> M a - ^ A a -+ 0 

where the right vertical map is the inclusion map. Let a < K and assume that Ep 
has been defined for all /? < a such that required diagrams are commutative. 

Case 1. If a is a limit ordinal, then we define Ea as the direct limit of the 
exact sequences Ep with (3 < a. This is a splitting sequence, since Aa satisfies (ii). 

Case 2. Let a = 5 +1. If S £ S or if g$ is not a splitting map for p$, then let 
Ea: 0 -* B -+ Ma-^Aa —• 0 be an extension of Es with any choice of Ms —• M a 

such that (2) commutes and the underlying set for Ma is Aa x £?. Then Ea is a 
splitting exact sequence because of condition (ii). 
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Case 3. Let a = <5+l , iGS, and assume the underlying set for Ms is As x B 
and g :̂ As —» A«$ x Bs C A x I? is not a splitting map for ps. From the introductory 
remarks we conclude that there is an extension Ea: 0 —> £ —> Ma-^Aa —> 0 with 
a commutative diagram (2) such that there is no splitting map r : Aa —* M a for 
p a . Again, we may consider Ma as a module defined on the set Aa x B. 

We now define E: 0 —> i? —> M—^A —> 0 as the direct limit of the splitting 
exact sequences i£Q: 0 —> J5 —> M a—>A a —> 0 for a < K where M — Ax B a,s sets. 
By way of contradiction, assume there is a splitting homomorphism g: A —• M for 
7. Note that we must have g(Aa) < Ma for every a < K. By the choice of the ga, 
there is a 6 G 5 (actually, stationarily many of them) such that g\As — gs- This 
means that E$+i has been constructed according to Case 3 above. Since <7|J4«$+I is 
both a splitting map for E$+i and an extension of g\A$, we reach a contradiction 
to the existence of g. Thus Ext^(A, B) ^ 0. • 

Singular Compactness 
We will also need Shelah's Singular Compactness Theorem. A rank version 

is proved in (XVI. 1.9). 
The following axiomatic version is due to Eklof-Mekler [M], which we state 

for modules only. It generalizes W. Hodges' version [Algebra Universalis 12 (1981), 
205-220] which is based on ideas that originated with S. Shelah. 

Assume T is a class of i?-modules such that O G f and for each M G T 
there is given a family B{M) of sets of submodules of M. We say that M is 'free' 
if M G T and <8 is a 'basis' of M if <B G B(M). The submodules B G 03 are called 
'free' factors of M. 

Given an infinite cardinal /x, the following properties (i)-(v) are required 
for every 'free' module M and every 'basis' 05 of M. 

(i) 03 is closed under unions of chains. 
(ii) If B G 03 and a G M, then there is a C G 03 that contains both B and 

a, and is such that \C\ < \B\ + /i. 
(iii) Every B G 03 is 'free' (i.e., 'free' factors are 'free'); and moreover, the 

set {C G 03 I C < B} = 03 \B is a 'basis' for B. 
(iv) If B is a 'free' factor of M, then for every 'basis' 03' of B, there exists 

a basis 03 of M such that 03' = 03|£. 
(v) Suppose Ba (a < K) is a continuous well-ordered ascending chain of 

'free' submodules of M with 'bases' 03a satisfying 03/3|£?a = 03a for all a < (3 < K, 
(in particular, Ba G 03^). Then the union B = \Ja<KBa is a 'free' submodule of 
M such that (Ja<« ®« *s a 'basis' of B. 

Theorem A.8 Suppose that T satisfies conditions (i)-(v), and M is an 
R-module such that genM = A is a singular cardinal > /i. M is 'free' if for every 
cardinal K, < A, there is a family CK of K-generated submodules of M satisfying the 
following conditions: 

(a) CK is a subclass of J7; 
(b) CK is closed under unions of chains of lengths < K,; 
(c) every subset of M of cardinality < K is contained in a submodule that 

belongs to CK. • 
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— (long) projective, 201 

retract, 7 
ring, 1 

— arithmetical, 161 
— artinian, 3 
— Bezout, 112 
— chain, 57 
— elementary divisor, 115 
— exchange, 50 
— FGC-, 189 
— formal power series, 7 
— generalized quotient, 55 
— group, 7 
— henselian, 81 

almost, 85, 179 
— Hermitian, 116 
— of integer-valued polynomials, 
— local, 4 

for a uniserial module, 339 
— local-global, 162 

, almost, 162 
— noetherian, 3 
— P-noetherian, 323 
— polynomial, 6 
— semilocal, 4, 52 
— semiperfect, 53 
— stable, 115, 180 
— valuation, 4, 57, 64 

s 
5-invariant, 392 
5-completion, 285 
5-topology, 285 
Schanuel's lemma, 201 
sequence, 

— balanced-exact, 475, 542 
— /i-exact, 254 
— n-balanced-exact, 546 
— unbalanced, 475 
— pure-exact, 43 
— RD-ex&ct, 39 

singular compactness, 590 
socle, 23 
spectrum, 2 

— maximal, 2 
— prime, 2 

noetherian, 121 
splitting field of a module, 500 
stable range one, 115, 180 
stacked bases property, 161, 223 
stationary subset, 586 

— non-reflecting, 587 
Steinitz property, 165 
subgroup, 

— convex, 61 
— dense, 61 
— discrete, 61 
— isolated, 61 

submodule, 
— balanced, 386, 475, 542 
— basic, 393 
— complement, 335 
— cyclically pure, 48, 412 
— equiheight, 384 
— f-closed, 302 
— K-pure, 457 
— lower threshold, 359 
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— matrix, 436 
— n-balanced, 546 
— nice, 385 
— pre-basic, 392 
— pure, 43 
— pure-essential, 393 
— purification of, 47 
— RD-, 38 
— #i>essential, 425 
— RD^-, 285 
— 5-torsion, 23 
— stable in simple presentation, 470 
— superfluous, 27 
— TEP-, 563 
— tight, 214 
— torsion, 23 
— torsion-free-essential, 459 
— Ulm, 37 
— upper threshold, 359 

submodules, coindependent, 418 
— pure-independent, 393 
— iiD-independent, 427 

submonoid of Rx , 4 
— saturated, 8 

subset, closed, 586 
stationary, 586 
unbounded, 586 

subspaces, equivalent, 499 
substitution property, 180 
support, in direct sum, 320 
symbolic power of prime ideal, 127 
system, fully rigid, 266 

— of equations, 307 
consistent, 307 

— rigid, 504 
— semirigid, 514 
— tight, 214 

T 
tensor product, 32 
topology, 

— annihilator, 340 
— discrete, 273 
— finite, 342 
— functorial, 277 
— linear, 273 
— Priifer, 29 
— R-, 274 

Tor, 32 

torsion class, 325 
torsion-completion, 485 
torsion extension property, 563 
torsion-free class, 325 
torsion product, 32 
torsion submodule (part), 23 
torsion theory, 325 

— classical, 325 
— cogenerated, 325 
— hereditary, 325 

torsion-ultracompletion, 487 
total ring of quotients, 5 
totally ordered abelian group, 61 

— discrete, 62 
tree, 354 

— Aronszajn, 354, 588 
type, of a rank 1 module, 490 

— of a uniserial module, 346 

u 
UCS-property, 163 
Ulm, factor, 37 

— length, 295 
— submodule, 37 

Unis R, 373 
units, ^-independent, 173 

— quadratically independent, 173 

v-w 
valuation domain, 4 

— almost maximal, 78 
— archimedean, 71 
— complete by stages, 90 
— discrete, 87 
— discrete rank one, 58 
— equicharacteristic, 67 
— henselian, 81 
— maximal, 77 
— maximally complete, 59 
— strongly discrete, 87 

valuation ring, 4, 57, 64 
valuations, 64 

— equivalent, 65 
value group, 65 
Warfield duality, 520 
weakly flabby inverse system, 351 
Whitehead module, 576 

z 
zero-divisor, 1 



Selected Titles in This Series 
(Continued from the front of this publication) 

52 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in 
domains with point singularities, 1997 

51 Jan Maly and Wil l iam P. Ziemer, Fine regularity of solutions of elliptic partial 
differential equations, 1997 

50 Jon Aaronson, An introduction to infinite ergodic theory, 1997 
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential 

equations, 1997 
48 Paul-Jean Cahen and Jean-Luc Chabert , Integer-valued polynomials, 1997 
47 A. D . Elmendorf, I. Kriz, M. A. Mandell , and J. P. May (with an appendix by 

M. Cole) , Rings, modules, and algebras in stable homotopy theory, 1997 
46 S tephen Lipscomb, Symmetric inverse semigroups, 1996 
45 George M. Bergman and A d a m O. Hausknecht, Cogroups and co-rings in 

categories of associative rings, 1996 
44 J. Amoros , M. Burger, K. Corlette , D . Kotschick, and D . Toledo, Fundamental 

groups of compact Kahler manifolds, 1996 
43 James E. Humphreys , Conjugacy classes in semisimple algebraic groups, 1995 
42 Ralph Freese, Jaroslav Jezek, and J. B. Nat ion , Free lattices, 1995 
41 Hal L. Smith , Monotone dynamical systems: an introduction to the theory of 

competitive and cooperative systems, 1995 
40.4 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the 

finite simple groups, number 4, 1999 
40.3 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the 

finite simple groups, number 3, 1998 
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the 

finite simple groups, number 2, 1995 
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the 

finite simple groups, number 1, 1994 
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994 
38 G u y David and Stephen S e m m e s , Analysis of and on uniformly rectifiable sets, 1993 
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991 
36 John B. Conway, The theory of subnormal operators, 1991 
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990 
34 Victor Isakov, Inverse source problems, 1990 
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean 

fields, 1990 
32 Howard Jacobowitz , An introduction to CR structures, 1990 
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and 

harmonic analysis on semisimple Lie groups, 1989 
30 Thomas W . Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989 
29 Alan L. T. Paterson, Amenability, 1988 
28 Richard Beals , Percy Deift , and Carlos Tomei, Direct and inverse scattering on the 

line, 1988 
27 Na than J. Fine, Basic hypergeometric series and applications, 1988 
26 Hari Bercovici , Operator theory and arithmetic in H°°, 1988 
25 Jack K. Hale, Asymptotic behavior of dissipative systems, 1988 

For a complete list of t i t les in this series, visit t he 
AMS Bookstore a t w w w . a m s . o r g / b o o k s t o r e / . 




