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Preface 

In the late 1980s Kevin Compton published papers showing how to apply 
an analysis of the popular partit ion identities to obtain monadic second-
order limit laws, including 0-1 laws, for numerous classes of graphs, posets, 
etc. I was fascinated by this work. When he gave a colloquium talk in 
the early 1990s in Waterloo on his recent work on a limit law for Abelian 
groups, the temptat ion to learn more about this subject was irresistible. 
This engaged a favorite area of my own research, algebraic structures. 

Compton's papers can be somewhat opaque for specialists in combi­
natorics and number theory, as well as for specialists in logic, because of 
the intimate way he has woven these subjects together. After seeing the 
books [29], [30] of John Knopfmacher on abstract analytic number theory, 
it seemed worthwhile to separate Compton's t reatment into two parts, one 
on density in number systems, and the other on the application of number 
theoretic density results to obtain logical limit laws. Each of these parts is 
of interest in its own right. 

The reader will find a leisurely and detailed exposition of Compton's 
investigations, and closely related work of others, including recent con­
tributions of Jason Bell, Edward Bender, Peter Cameron, Pawel Idziak, 
Arnold Knopfmacher, John Knopfmacher, Andrew Odlyzko, Bruce Rich­
mond, Andras Sarkozy, Cameron Stewart, Richard Warlimont, Alan Woods, 
and the author. The presentation is from the perspective of abstract num­
ber systems, in the spirit of John Knopfmacher's work in abstract analytic 
number theory. 

This book has been used as an undergraduate special topics reading 
text at the University of Waterloo. Par t 1, on Additive Number Systems, is 
completely accessible to an advanced undergraduate student. All chapters 
preceding Chapter 6 are devoted to number theoretic density, requiring only 
the usual undergraduate background in analysis, especially in power series, 
and an exposure to abstract mathematics. The well known ratio test plays a 
central role. The section on asymptotics, at the end of Chapter 5, uses basic 
complex analysis, including the Cauchy integral formula. Chapter 6 covers 
the logical aspects for Par t 1. This chapter is self-contained so tha t one 
can work through it without prior exposure to logic. It features one of the 
most delightful tools of logic, the Ehrenfeucht-Fraisse games. (Having had 
a first course in logic, so tha t one is comfortable with first-order languages 
and structures, will no doubt make the chapter more rapid reading.) 

XI 
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Part 2, on Multiplicative Number Systems, offers the challenge and re­
ward of becoming reasonably comfortable with Dirichlet series. The parallels 
with Par t 1 show Dirichlet series as a natural companion of power series. 
Having worked through Par t 1, one will be able to predict many of the re­
sults to be proved—the local density results of Par t 1 seem, as if by magic, 
to reappear as global density results in Par t 2. There is surely some deep 
connection between power series and Dirichlet series tha t we have not yet 
understood. The last chapter introduces the reader to the Feferman-Vaught 
Theorem, a favorite tool to analyze direct products, and Skolem's analysis 
of first-order sentences about Boolean algebras. 

The reader will find all the material needed to thoroughly understand the 
method of Compton for proving logical limit laws. Above all, I think one will 
be delighted to see so many interesting tools from elementary mathematics 
pull together to help answer the question "What is the probability tha t a 
randomly chosen structure has a given property?" 

Thanks go to Pawel Idziak for his contributions to the study of limit laws 
when I was first starting to work in the area, to Andrew Odlyzko for help­
ing me understand what was going on with the Dirichlet series, to Andras 
Sarkozy for helping develop the general multiplicative theory of limit laws 
during a visit to Waterloo, to Cameron Stewart for discussions of the ratio 
test, to Dejan Delic for help with proofreading an early draft of the book, to 
Bruce Richmond for helping me to locate and understand several relevant 
results from asymptotics, to John Knopfmacher for challenging me to take 
a harder look at what was going on with logical limit laws, to Richard War-
limont for a remarkable amount of beautifully handwritten correspondence 
regarding ways to improve the presentation, to Jason Bell for keeping me 
informed of his recent research in this area, and to Karen Yeats, a second 
year mathematics undergraduate at U. Waterloo who eagerly read the entire 
manuscript during the summer of 2000, giving me detailed feedback on how 
the text comes across to an undergraduate. Kevin Compton is, of course, the 
ult imate inspiration for this work, through his publications and his elegant 
lectures over the years. 

Edward Dunne, Christine Thivierge and Elaine Becker of the AMS Book 
Program did everything possible to make the transition from manuscript to 
book a pleasant and trouble-free experience; and Barbara Beeton of the 
AMS Technical Support group was (as always!) able to solve all of my Tex 
related problems with the document. 

Finally, I want to thank the Natural Sciences and Engineering Research 
Council of Canada for their long standing support of my investigations in 
universal algebra, logic, and computation, the support that has made it 
possible to write this book. 

For errata and updates see www.thoralf.uwaterloo.ca. 
Stanley Burris 

Waterloo, 2000 



Overview 

When studying a subject with a bewildering variety of specimens one 
hopes to discover simple structural patterns. This happened in the study of 
finite relational structures with the discovery of 0-1 laws in the mid 1970s. 

A finite relational structure S = (5, i ? i , . . . , Rn) is a set S with a list of 
relations i? i , . . . , Rn on S. The most popular relations R are binary, that is, 
R C S x S. But R C Sk, for any k > 1, is also permitted. For the purpose 
of this overview it suffices to consider relational structures S = (S,R) with 
a single binary relation. One can think of R as a directed edge relation on 
the set of vertices S and draw a picture, for example: 

Qj—~~—~ 
In this picture one sees that aRay aRb, bRc, cRb. Such structures are directed 
graphs. 

As specializations of directed graphs one has several well known classes. 
If the relation R is irreflexive (not aRa1 for any a G S) and symmetric 
(aRb => bRa) one has a graph. If it is reflexive, symmetric and transitive, 
then one has an equivalence relation. And if it is reflexive, antisymmetric 
and transitive, then one has a poset. Finite (directed) graphs exhibit incred­
ible diversity and have provided a rich source of examples and problems, 
from Euler's analysis of the Seven Bridges of Konigsberg problem to the 
modern study of complexity in computer science. Indeed, the interest in 
finite structures has blossomed in tandem with the growth of theoretical 
computer science. 

One of the fundamental questions is 'What can be said about a randomly 
chosen structure?' Consider a property V and a class % of finite structures. 
One can ask 'What is the probability that a finite structure chosen randomly 
from % satisfies W The simplest and most natural definition of this prob­
ability is to let pn be the proportion of structures in % of size n that have 
the property V, and then to let the probability that V holds for a randomly 
chosen structure from % be the limit of pn as n goes to infinity (whenever 
this limit exists). This probability is called the asymptotic density of the 
collection of structures in % that satisfy Lp. 

There is a problem with this definition if there are infinitely many n such 
that % has no structures of size n, for then pn is infinitely often undefined. 

xiii 
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This is handled by considering only those pn that are defined. With this 
understanding it turns out that the general theory is a minor variation of 
the theory where one assumes that the pn are eventually well-defined. So, 
for the purpose of this overview, it will be assumed that the classes X have 
structures of size n for all n greater than some N. 

Glebskij, Logan, Liogonkij and Talanov (1969), and independently Fagin 
(1976), considered properties defined by first-order sentences. For example, 
the sentence \/x3y(xRy) says, in the case of finite graphs, that there are no 
isolated vertices; and the sentence VxVy[(xRy) —> 3z(xRz A zRy)] says one 
can interpolate a vertex between adjacent vertices. For X the class of finite 
directed graphs, or the class of finite graphs, they showed, for any first-order 
sentence (̂ , that the probability of <p holding is either 0 or 1. Hence [directed] 
graphs have a first-order 0-1 law. If the probability of a property holding 
in a class X \s 1 then the property is almost certainly true in X. 

The method used to prove these results does not generalize readily. First 
the result is proved for labeled structures, using the set of vertices { 1 , . . . , n) 
for n-element structures. The following two directed graphs are identified 
when counting up to isomorphism, but are considered distinct when counting 
labeled structures: 

1 2 2 1 

When counting up to isomorphism one is said to be counting unlabeled struc­
tures. 

To prove a 0-1 law for labeled structures, the original method is to 
understand the structures in X well enough to propose a basis $ for the 
almost certainly true sentences. Then one proves that each member of $ is 
indeed almost certainly true. Finally, to take a labeled 0 1 law back to the 
unlabeled case one needs to know that the property of being rigid1 is almost 
certainly true in X. Finding a basis $, and proving that rigidity is almost 
certainly true, are both serious obstacles to extending the applications of 
this method. Compton was able to carry this out for posets, but there are 
precious few other examples. 

In the 1980s an alternate approach to proving 0-1 laws was developed 
by Compton. By considering adequate classes X of finite structures, that 
is, classes closed under disjoint union and components, he was able to show 
that the single condition a(n — l)/a(n) —> 1 is sufficient for a first-order 0-1 
law\ Here a(n) counts the total number of structures of size n in X (counting 
up to isomorphism). This method does not apply to the original examples 
of graphs and directed graphs as these classes grow so rapidly that one has 
a(n — l)/a(n) —• 0. However, it is a beautiful technique that does apply to 
a truly wide range of slowly growing classes such as equivalence relations, 
permutations, linear forests, etc. 

1A structure is rigid if the only automorphism is the identity map. 
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Furthermore, Compton's technique yields a 0-1 law for monadic second-
order logic. This logic extends the well known first-order logic by allowing 
quantification over subsets—it is able to express far more properties than 
first-order logic. For example, in first-order logic one cannot say that a graph 
is connected, but in monadic second-order logic this is expressible by saying 
that 'if the domain is partitioned into two sets then it is always possible to 
find two vertices, one from each partition set, with an edge between them': 

vu\/v 3x(Ux) A 3y(Vy) A \/x(Ux <-> -iVx)\ 

—• 3x3y (Ux A Vy A xRy) 

A considerable portion of the work in Compton's treatment is devoted to 
studying Dirichlet density. (This density is the limiting value of a quotient 
of two generating series.) He also uses the fundamental identity 

£ a ( n K = U(l-x«r{n) 

n>0 n>\ 

that relates a(n) to p(n), where p(n) is the number of components of size 
n (counting up to isomorphism). On the surface, Dirichlet density appears 
to have little to do with the probability that a randomly chosen structure 
has a property, but under a natural hypothesis one can show that if the 
probability exists then so does the Dirichlet density, and they are equal. 
Thus Dirichlet density extends probability (defined as asymptotic density), 
and the main goal is to find theorems for a converse result that guarantees 
that if the Dirichlet density exists then it is the asymptotic density. Such 
converses are called Tauberian Theorems. For the development of the very 
large part of Compton's theory just described in this paragraph, one does 
not need the details of the relations involved in the individual structures, 
but rather just the additive number system associated with X. 

Consider the example of the class % of finite graphs. If one defines 
the sum of two finite graphs to be their disjoint union then, by identifying 
isomorphic graphs, one ends up with an additive number system A. The 
graphs are the 'numbers' in this abstract system. The graph on the empty 
set gives the zero element of A. The only information that is needed for 
the asymptotic work with additive number systems is the addition table for 
the elements and the 'size' (or norm) of a graph (defined as the number of 
vertices). The indecomposable elements, the nonzero elements that cannot 
be written as the sum of two nonzero elements, are precisely the connected 
graphs. Clearly every nonzero element of A can be expressed uniquely as a 
sum of indecomposable elements since every finite graph with a nonempty 
set of vertices is uniquely expressible as a disjoint union of connected graphs. 
The essential features of an additive number system are just the addition 
operation and the size function. The adjective 'additive' is derived from the 
fact that the size function llall is additive, that is, lla + bll = lla II + llbll. 
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To simplify the presentation, additive number systems are interpolated 
between adequate classes of structures and the fundamental identities: 

Adequate Classes 
of Structures 

Additive 
Number Systems 

Fundamental 
Identities 

This interpolation allows one to separate the logical aspects from the number-
theoretic aspects. Every adequate class gives rise to a (unique) additive 
number system, and every additive number system can be derived from 
(many) adequate classes; and each additive number system gives rise to a 
(unique) fundamental identity that essentially defines the number system. 

Given an additive number system A, subsets called partition sets play 
a crucial role in this work. A partition set has the form 71P1 + • • • + 7fcPfc, 
where P i , . . . , P& is a partition of the set P of indecomposable elements of A, 
and where each of the 7̂  is in one of the three forms (>mi), ra^, (<rrii). The 
elements of such a partition set are the members of A which can be written 
as a sum of 71 members of Pi plus . . . plus 7^ members of P&. (Repeats 
are allowed when counting elements.) Thus IP is just P, and (>0)P is the 
entire set of 'numbers' in A. And if Pi, P2, P3 is a partition of the set P of 
indecomposable elements of A then the partition set (<5)Pi + (>4)P2 + 2P3 
is the set of elements which can be expressed as the sum of at most 5 elements 
from Pi plus the sum of at least 4 elements from P2 plus the sum of exactly 
2 elements from P3. 

Now, if % is an adequate class of structures and A the corresponding 
additive number system, then the members of % that satisfy a given monadic 
second-order sentence can be described, when viewed in A, as a disjoint 
union of finitely many partition sets. Thus, if one can show that every 
partition set of A has density 0 or 1 then % has a monadic second-order 0-1 
law. 

The method of Compton, to establish a 0-1 law for 3C, is indeed to show 
that all partition sets of A have asymptotic density 0 or 1. The necessary 
and sufficient condition for this to hold is that a(n— l)/a(n) —> 1. To obtain 
interesting conditions that guarantee a(n — l)/a(n) —> 1, one turns to the 
fundamental identity. This ties in with the established work in asymptotic 
additive number theory, a subject often described by referring to the fa­
mous results of Hardy and Ramanujan on the number of partitions of an 
integer. The applications presented in Chapter 4 are based on an analysis 
of Bateman and Erdos of additive number systems which have at most one 
indecomposable of each size. 

In a subsequent paper Compton turned to more general limit laws for 
logic, where one only requires that each sentence <p have a probability of 
holding (the probability need not be 0 or 1). Again, additive number sys­
tems are used to shift to the study of conditions that guarantee that every 
partition set has an asymptotic density. A rather delicate analysis is needed 
to establish the main result of Compton. One of the striking corollaries 
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is that if a(n) is asymptotic to C/3n then X has a limit law. Further ap­
plications come from the asymptotics of Knopfmacher, Knopfmacher, and 
Warlimont. By applying the Cauchy integral formula 

aln) = -— / —-rdz 
v ; 2m Jc zn+l 

to A(z) = ^a(k)zk, they are able to find asymptotics for a(n) when 
p(n) = Cf3n + 0(77™), where 0 < 77 < j3. This gives numerous applications of 
Compton's theorem, for example, to two-colored linear forests. 

In the late 1980s Compton was considering the application of his ideas 
to the study of randomly chosen members of classes X of finite algebraic 
structures—the class of finite Abelian groups is an excellent example. Here 
the key operation is direct product, not disjoint union. The analog of a 
component (of a relational structure) is, in this setting, a {directly) inde­
composable structure—that is, a structure which has at least two elements 
and is not isomorphic to a direct product of smaller structures. The inde­
composable finite Abelian groups are precisely the Zpn, where Zpn is the 
group of integers modulo pn, for p a prime number. As is well known, every 
nontrivial finite Abelian group can be uniquely expressed as a product of 
indecomposable Abelian groups. This is the unique factorization property 
for finite Abelian groups. However, unique factorization does not hold for 
many important classes of algebraic structures, for example, semigroups. 

In the context of finite algebraic structures let us say that X is adequate 
if it is closed under direct product, direct factors, and it has the unique 
factorization property. Let a(n) count the number of structures in X of size 
n, and let p(n) count the number of indecomposables in X of size n. (All 
counting is done up to isomorphism.) From the fact that X is adequate one 
has the fundamental identity 

J>(n)n-5 = Y[{l-n-syp(n\ 
n>l n>2 

What is the probability that a randomly chosen structure from X satis­
fies a given property VI If one defines pn as before, namely the proportion 
of structures in X of size n that have the property P , then very little can be 
said. However, if one uses the global count, that is, let Pn be the proportion 
of structures in X of size at most n that have the property P , and if one 
lets the probability be the limit of Pn as n goes to infinity (provided this 
exists), then the results for relational structures have remarkable parallels 
in the algebraic setting. 

In Part 2 multiplicative number systems are interpolated between ade­
quate classes and fundamental identities, giving an exact analog of the use 
of additive number systems in Part 1. This is used, as in Part 1, to give a 
separation of the number theoretic and logical aspects. 
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Adequate Classes 
of Structures 

Multiplicative 
Number Systems 

Fundamental 
Identities 

In the case of Abelian groups one obtains the associated number system 
by letting the 'numbers' be the finite groups G, and letting multiplication be 
direct product. These number systems are said to be multiplicative because 
the size function is multiplicative, that is, ||a • b|| = ||a|| • ||b||. 

The multiplicative number system analog of Compton's theorem (on 
general limit laws for relational structures) has, as a corollary, the fact that 
if A(x) is asymptotic to cxa, where A(x) = Yln<x a(n)> then X has a first-
order limit law. This applies to the example of ALelian groups, and one can 
show, for example, that the probability of a finite Abelian group having an 
element of order 2 is 1 - n n > i i1 ~ 2 _ n ) ~ ° - 7 L 

Many of the interesting examples, like Abelian groups, have limit laws, 
but not 0-1 laws. Further examples are again found by turning to complex 
analysis, using Perron's integral formula, to generalize Oppenheim's asymp-
totics for the number of ways to factor the numbers less than or equal to n. 
From this analysis one concludes that if p(n) = Cna + 0(n@) with C > 0, 
a > 0, and /3 < a, then X has a first-order limit law. Thus the class of finite 
lattices that decompose into a product of chains has a first-order limit law. 

Chapter 6, the last chapter of Part 1, covers the logic results for adequate 
classes (with respect to disjoint union) of purely relational structures; and 
Chapter 12, the last chapter of Part 2, covers the logic results for adequate 
classes (with respect to direct product) of structures. 

These two chapters can be briefly summarized as follows. Given an 
adequate class X and a sentence y>, let X^ be the class of members of X 
that satisfy <p. The goal is to prove that X^ is a disjoint union of finitely 
many partition classes. Then the number theoretic results on asymptotic 
density of partition sets can be used. 

Three tools are needed to prove these logic results: the Ehrenfeucht-
Fraisse games in the additive case; and the Feferman-Vaught Theorem, with 
Skolem's analysis of sentences about finite Boolean algebras, in the multi­
plicative case. These tools are fully developed in Chapters 6 and 12. 



Notation Guide 

The most basic convention used in this text is that power series and Dirich-
let series are designated by upper case boldface letters, with the corresponding 
lower case italic letters used for the coefficients, and the corresponding upper case 
italic leters used for the partial sums of the coefficients. 

Power series (Part 1) 

A(x) = Zna(n)xn 

S(x) = Ens(n)x" 

Dirichlet series (Part 2) Sums of coefficients 

S(x) = En<xs(n) 

For work with abstract number systems the following notational conventions 
are used: 

A,B,... number systems 

A = (A, P ,+ ,0 , || ||) an additive number system 
.4 = (A, P, •, 1, || ||) a multiplicative number system 

a, b, . . . , p, . . . elements of the number system 

A 

P 
set of elements of the number system 
set of indecomposable elements 

B, C, subsets of A 

b(n) 
B(x) = J2 b(n) 

local count function for B 
global count function for B 

B(x) = ^2nb(n)xn generating series for B (additive case) 
B(x) = E n Kn)n~x generating series for B (multiplicative case) 

(continued) 
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p radius of convergence of A(x) (Part 1) 
a~ abscissa of convergence of A(x) (Part 2) 
a abscissa of absolute convergence of A(x) 

(Part 2) 

5(B) = lim b(n)/a(n) local asymptotic density of B 
a(n)^0 

A(B) = lim B(n)/A(n) global asymptotic density of B 

d(B) = lim B(:r)/A(x) Dirichlet density of B (additive case) 
x—>p 

d(B) = lim ~B(x) / A(x) Dirichlet density of B (multiplicative case) 

f(x)£ VSC f(x) has a power series expansion that con­
verges absolutely at c 

f(x) G VSC f(x) has a Dirichlet series expansion that 
converges absolutely at c 

supp f(n) = {n : f(n) > 0} support of f(n) 

S\m(x) — /_[/ s(k)%k mth truncation of the power series S(x) 
k<m 

S|m(x) = V^ s(k)k~x mth truncation of the Dirichlet series S(x) 
k<m 

OB = {0} (for additive systems: Part 1) 
B° = {1} (for multiplicative systems: Part 2) 

raB = {ai + • • • + am : â  G B} (for additive systems: Part 1) 
Bm = {ai • • • am : a; G B} (for multiplicative systems: Part 2) 

(<m)B = OB U • • • U mB (for additive systems: Part 1) 
B<m = B° U • • • U Bm (for multiplicative systems: Part 2) 

(>m)B = ( J n > m n B (for additive systems: P a r t i ) 
B ~ m = Un>m B n ( for multiplicative systems: Part 2) 

for Q C P 
AQ = UJQ = Un>onQ (for additive systems: P a r t i ) 
AQ = Q^ = (Jn>o Qn (f°r mmtiplicative systems: Part 2) 

hQ](x) 
9 Q ( 7 Q ) = lim ———— relativized Dirichlet density, additive case 

x^p A Q ( X ) 
[Q7l(x) 

$ Q ( Q 7 ) = lim ———— relativized Dirichlet density, multiplicative 
x->a A n UC 

wv ; case 



APPENDIX A 

Formal Power Series 

A detailed and elementary treatment of the foundations of formal power 
series is given. To motivate the development, first the basic theory of func­
tions is reviewed. 

Real functions 

A function is defined to be what is commonly called the graph of a 
function, that is, a function is to be considered as a collection of ordered 
pairs of real numbers.1 This set theoretic approach may seem unnecessarily 
cumbersome at first, but it leads to the possibility of presenting simply, 
precisely formulated results. A number of key concepts are collected together 
in the following. 

Definition A . l . 
• A real function f is a subset of R x R, the set of ordered pairs of real 

numbers, with the single valued property: 

(o,c)G/ J ^ 
• £F is the set of all real functions. 
• For / G ? the domain of / , Dom(/), and the range of / , Rg(/) , are 

given by 

Dom(/) = { a e R : (3&GR)((a,6) e f)} 
Rg(f) = { & G R : ( 3 a € R ) ( ( a , 6 ) e / ) } . 

Dom(/) is also called the domain of definition of / . 
• For a G Dom(/), let f(a) denote the unique b G R such that (a, b) G / . 

f(a) is the value of f at a. 
• Given c G R, c is the function on R whose value is always c. 
• x denotes the identity function on R. 
• 0 denotes the empty function, the function with no ordered pairs in 

it. 

For / G ? , one has the trivial observation 

/ = { ( a , / ( a ) ) : a € D o m ( / ) } . 
lrThe focus here is on real valued functions with their domain in the reals. This dis­

cussion can be applied to other situations, for example, complex valued functions defined 
on a subset of the complex numbers. 

233 
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In calculus courses a function is described by an expression, like yfx. The 
convention is to give the function the largest domain for which the expression 
is defined, so Dom(v

/5) = [0,oo). In the more precise notation 

y/ = {(a, b) : a , 6 > 0, a = b2}. 

Since functions are sets of order pairs, the usual notation / C g is used to 
signify that every pair in / is also in g. 

Definition A.2. If / C g then / is a restriction of g and g is an exten­
sion of / . 

For example the function defined by the power series Y2n
 xU *s a restric­

tion of the function (defined by) (1 — x)~l. 

Definition A.3. Suppose / G ? and S C R . Then f\s, the restriction 
of f to S, is given by 

/Is = / n ( S x R ) , 

that is, f\s = {(a,b) ef:a&S}. 

Clearly f\s C / , so the restriction of / to S is indeed a restriction of / . 
Furthermore 

Dom(/ | s) = D o m ( / ) n S , 

that is, a is in the domain of f\s iff it is in the domain of / as well as in S. 
Thus the function defined by the power series J2n

 xU ls 0- ~ x)~l\(-\ \y 
and not the function (1 — x)~l with the larger domain of definition E \ {1}. 

Operations on real functions. Next the common operations used 
with real functions are considered. 

negative: For / £ J 

- / = { ( a , - / ( a ) ) : a € D o m ( / ) } 

s o ( - / ) ( a ) = - / ( a ) , for a e Dom(/). 
scalar multiplication: For cGM and / G ? 

cf = {(a,c-f(a)) : a G D o m ( / ) } 

so (cf)(a) — c • / (a ) , for a G Dom(/). 
addition: For / , j G ? 

f + 9 = {(aj(a)+g(a)) : a eDom(f) nDom(g)} 

s o ( / + 3)(a) = / (a) + 5(a), for a G Dom(/) H Dom(^). 
The empty function comes in handy here—if / and g have disjoint 

domains, then / + g is just the empty function. A similar remark 
applies to the next two operations. 
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subtract ion: Reduce this to addition by defining 

f-9 = f + {~9) 
Here is another example of how this notation can be more precise 

than the usual, namely 

V ~ V = °l[0,oo) 
and not ^/ — J — 0. 

mult ipl icat ion: For / , g G ? 

f'9 = { ( a , / ( a ) ^ ( a ) ) : a G D o m ( / ) n D o m f e ) } 

s o ( / - 5 ) ( a ) = / ( a ) ^ ( a ) , f o r a G D o m ( / ) n D o m ( ^ ) . 
compos i t ion: For f,gE$ 

f°9 = {{aJ(g(a))):aeDom(g), g(a)eDom(f)} 

so ( / o p ) (a) - / J s ( a ) ) , for a € Dom(j) n ff-^Doml/)). 
Composition is often thought of as substitution, for example, if 

f(x) = g{x) then / ( s i n x ) = g(sinx) by substitution. But the latter 
can also be written as / o sin — go sin. 

differentiation: Given / e ? , define the derivative / ' to be the func­
tion whose domain is the set of all a G D o m ( / ) for which one can find 
a neighborhood2 Na of a with Na C D o m ( / ) , tha t is, / is defined on 
Na, and the following limit exists: 

ueNa 

If a is in the domain of / ' , then f(a) is this limit. 

R e m a r k A . 4 . The operations + , •, o / and scalar multiplication are al­
ways defined, no matter which functions they are applied to. 

Ident i t ies of real funct ions . Now the basic properties of these opera­
tions on functions are listed. (It took many years during the 19th and early 
20th centuries for mathematicians to explicitly list exactly which rules they 
were using.) 

Propos i t i on A . 5 . For a, b e R and f^g^he 7: 
scalar mult ipl icat ion: 

aO = 0 al = a 

( - 1 ) / = - / « ( - / ) = ( - a ) / = - ( a / ) 
a(bf) = (ab)f (a + b)f = (af) + (bf) 

a(f + 9) = ( a / ) + (ag) a{f • g) = ( a / ) -g = f • (ag) 

A neighborhood of a is jus t an interval (c, d) wi th c < a < d. 
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addition, multiplication, and composition: 

/ + 0 = / / • ! = / 
f + 9 = 9 + f f-9 = 9-f 

(f + 9) + h = f + (g + h) (f-g)-h = f-(g-h) 

f-(9 + h) = (f-g) + (f-h) (f + g)oh = (foh) + (goh) 

(f-g)oh = (foh)-(goh) (fog)oh = f o (g o h) 

differentiation: 

(af)' D af (f + g)' D f' + g' 
(f-9)' => (/'•<?) + ( / •< / ) (fog)' => g'-(f'og) 

(ef)' = f'-ef 

In this list one sees the famous product rule, and the chain rule of dif­
ferential calculus. The last item is just a special case of the chain rule, but 
one that we want to emphasize. 

Polynomials 

If one regards 5(0) + • • • + s(n)xn merely as a formal expression, and not 
as a function, one is dealing with formal polynomials. There is an obvious 
correspondence between such polynomials and their sequences of coefficients 
(5(0),.. . , s(n)). So the sequence of coefficients will be taken as the defi­
nition of a formal polynomial. To make the description of addition and 
multiplication of polynomials simple to express, and to be able to consider 
polynomials as special cases of power series, a polynomial is viewed as having 
an infinite sequence of coefficients (that are eventually 0). 

Throughout this appendix all polynomials are to be thought of as formal 
polynomials. A new notation will be introduced to discuss the functions they 
define. Consequently, from this point on the adjective 'formal' is dropped 
when talking about polynomials, but feel free to insert it everywhere you 
see the word polynomial. 

Definition A.6. A polynomial is an infinite sequence (s(n)) of real 
numbers such that the s(n) are eventually 0. The s(n) are the coefficients 
of the polynomial. 

By tradition the polynomial S = (s(n)) is written in longer form as 
S(x) = s(0) + s(l)x + • • • + s(k)xk, when s(m) — 0 for m > /c, and also as 
S(x) = ^2ns(n)xn. At this point x is merely a symbol, as are + and ]P. 
It is only when real numbers are substituted for x that one is dealing with 
functions. 

Functions defined by polynomials. 

Definition A.7. Given a polynomial S let / s be the real valued func­
tion defined on the reals by /S(G) = ^n

s(n)ari' fs is called a polynomial 
function. 
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Knowing how functions defined by polynomials behave under the stan­
dard operations is crucial to the development. 

f{n) m e a n s the nth derivative of / . 

Proposition A.8. Let S,T be polynomials and let a^c G i . Then one 
has 

(c/s)(a) = Y,cs(n)aU 

n 

(/s + /x)(a) = J > ( n ) + t(n))a" 
n 

(/S-/T)(a) = x;(Es(fc)-*(n-fc))°n 
n k 

(/so/T)(o) = E ( E S ^ E ^ i ) - " * ( 4 ) ) a " 

fs'(a) = Y.n<n)an~l 

s{n) = 4 n ) (0 ) /n ! for n > 0 
/ S = / T ^ S = T. 

PROOF. Only basic facts about finite sums and products are needed. 
For c / s : 

(c/ s)(a) - c/s (a) = c ] T s ( n ) a n - ^ c s ( n ) a n . 
n n 

For fs + IT-

(/s + /T ) (a) = /S(a) + / T (a ) = Y , 8 ^ + E ^ r a ) a " 
n n 

= £(*(n) + *(n))an. 

For / s • / T : 

( / s - / T ) ( a ) = / s ( a ) - / T ( a ) = E s ( n ) a " ' E * ( n ) a " 
n n 

= X>(o-*(j))ai+i = E ( E *(o-*ov+i) 
i+j=n 

= E( E s«-̂ ))a"-
z j n i-\-j=n 

i+j=n 
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For / s o fT: 

( / S O / T ) W = fs(Ma)) = J ] # ) ( j t ( m ) a j f c 

A; m 

= Es(fc)( E ^i)"-*(4)a<1+-+<fc) 
k h,-A>0 

= E s ( f c )E( E *( î)"-*(4)an) 
k n ^ - | \-£k=n 

= EE s K E m---m))an 
k n £x-\ \-£k=n 

= E ( E S ^ ) E t(h)---t(h))an. 
n k £i-\ \-£k=n 

For fs , apply the rules for differentiation of sums and products, along with 
x' — 1, to obtain the usual termwise differentiation formula. This leads to 
the formula for s(n), and to the proof that /g = / T iff S = T. D 

Operations on polynomials. Now use Proposition A.8 to suggest ap­
propriate definitions for the operations on polynomials. 

Definition A.9. Let S, T be polynomials and let c G l . 
coefficients: [xn]S is s(n). 
equality: S = T holds precisely when the corresponding coefficients 

are equal, that is, for all n > 0, [xn]S = [xn]T. 
constant polynomials: 

[*1c = { 
c if n = 0 
0 otherwise. 

scalar multiplication: [xn] (cS) = cs(n). 
addition: [xn](S + T) = s{n) + t(n). 
multiplication: Use the Cauchy product: 

[xn](S*T) - ^s(k)-t{n-k). 
k<n 

composition: 

[x"](SoT) = Es(fc) E *(^)"-*(4)-
k £i-\ \-£k=n 

differentiation: [xn]Sf = (n + l)s(n + l) . 

Since the operations on polynomials have been defined to harmonize 
with Proposition A.8, immediately one has the following. 
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Identities of polynomial functions. 

Proposition A.10. Let S,T be polynomials and let c G R. Then one 
has 

fcS = c/s 
/ S + T = / s + / T 

/ S * T = / s • / i 

/soT = / s ° / ' 

is7 = /s' • 

T 

T 

With this, and the fact that / s = / T ^ S = T, the entire Proposition 
A.5 can be lifted to the setting of polynomials.3 The results on differentia­
tion are improved to equality as the functions defined by polynomials have 
domain R, and they are everywhere differentiate. 

Proposition A.11. For a, 6 G l and polynomials R, S, T the following 
hold: 

scalar multiplication: 

aO = 0 al — a 
( - l ) R = - R a ( -R) = ( -a)R = - (aR) 
a(6R) - (ab)R (a + 6)R - (aR) + (6R) 

a(R + S) = (aR) + (aS) a(R • S) = (aR) • S = R • (aS) 

addition, multiplication, and composition: 

R + 0 = R R 1 = R 
R + S = S + R R S = S R 

(R + S) + T = R + ( S + T) ( R - S ) - T = R • (S • T) 
R - ( S + T) = (R-S) + (R-T) (R + S ) o T = ( R o T ) + (SoT) 

( R - S ) o T = ( R o T ) - ( S o T ) ( R o S ) o T - R o ( S o T ) 

different iat ion: 

(aR/ = aR7 (R + S)' - R ' + S' 
(R-S)7 = (R7 • S) + (R • S;) ( R o S / = S ' - (R'oS) . 

3An algebraist would say that the algebraic structure {Poly, +, *, o/ , (C)CGR, 0, l } , 
where Poly is the set of polynomials over IR, is isomorphic to the corresponding algebraic 
structure of polynomial functions under the mapping S ^ / s . 
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Power series 

As with polynomials, if one regards ^2 an%n merely as a formal expres­
sion, and not as a function, then one is dealing with formal power series. 
Many power series have radius of convergence 0, and one cannot learn much 
from a function that is only defined at 0. However, as formal expressions they 
contain information, namely one can read off the sequence s (0) , s ( l ) , . . . , and 
this sequence may very well be of interest. Of course, if all that is wanted 
is the sequence (s(n)) then the formal power series Y2 s(n)xn would seem a 
rather clumsy way of capturing this information. 

However, it turns out that identities between formal power series can 
capture valuable information about sequences, for example in Appendix C 
the formal identity 

A(x) = e H ^ 

plays a pivotal role. By appropriately defining operations on formal power 
series, this identity holds even when the radius of convergence of A(x) is 0, 
and then one can differentiate and obtain another formal identity 

A'(x) = H'(x)*A(x). 

Thus new information is obtained about the coefficients. This is the signifi­
cance of formal power series for us. 

A precise definition of a formal power series is given by focusing on the 
information contained in the sequence of coefficients. One might say that 
one writes (s(n)) and thinks Y2 s(n)xn. Throughout this appendix all power 
series are to be thought of as formal power series, just as all polynomials are 
formal polynomials. Notation will be introduced to discuss the functions 
that power series define. Consequently, from this point on the adjective 
'formal' is dropped, but feel free to insert it anywhere you see the words 
power series. 

Definition A.12. A power series is a sequence (s(n)) of real numbers. 
The s(n) are the coefficients of the power series. 

By tradition the power series S = (s(n)) is written as S(x) = Y2n s(n)xn. 
Of course it will also be written as S(x) = s(0) + s(l)x + s(2)x2 + • • •. At 
this point x is merely a symbol, as are ]T and +. It is only when a real 
number is substituted for x that one is talking about infinite series. 

Functions defined by power series. 

Definition A.13. The domain of convergenceDom(S) of a power series 
S is the set of reals a such that the series ^2n s(n)an converges. 

Given a power series S let / s be the real valued function defined on 
Dom(S) by /s(a) = Y2n s(n)an- fs is called a power series function. 
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Definition A. 14. Given a power series S the radius of convergence ps 
is given by 

ps = 1/limsup \s(n) i l / n 

(ps is allowed to be oo.) 

The well known result of Cauchy-Hadamard is: 

(-ps,Ps) Q Dom(S) C [-p s ,Ps]-

The following is a modification of Proposition A.8 to give the corre­
sponding facts for power series. 

Proposition A.15. Let S,T be power series and let a,c G R. Then 
one has 

(c/s)(a) = ^2cs(n)an for a G Dom(S) 
n 

( /S + / T ) 0 ) = ^ ( s ( n ) + i(n))an for a € Dom(S) n Dom(T) 
n 

( / S - / T ) ( O ) = 5 ^ ( 5 ^ s ( f c ) - « ( n - A ; ) ) a n for \a\ < mm{ps,pT) 
n k 

(/s°/T)(a) = E ( E S W E ^i)-"*(4))an 

n ife ^ i , . - - , 4>0 

for \a\ < pT and | /x(a) | < ps 

/s ;(a) = ^ns^a71'1 if \a\ < ps 
n > l 

s(n) = /^ } (0) /n! i / p s > 0 
S = T <̂> fs — fT on a neighborhood of 0 (provided ps, PT > 0). 

PROOF. These are standard results about infinite series. In the item 
on addition, note that one can choose any a G Dom(/s) H Dom(/r) , even 
if a is an endpoint of the radius of convergence for one or both functions. 
However, for the multiplication item, the proof involves a consideration of 
the series of absolute values of the terms, and to be sure that this converges 
one is forced inside the interval of convergence. The same comment applies 
to the composition and differentiation of series. • 

Operations on power series. Now Proposition A. 15 is used to suggest 
appropriate definitions for operations on power series. 

Definition A. 16. Let S, T be power series and let c G l . 
coefficients: [xn]S(x) is s(n). 
equality: S - T holds iff [xn]S = [xn]T, for n > 0. 
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constant power series: 
c if n = 0 
0 otherwise. [s»]c = { 

n scalar multiplication: [xn] (cS) = cs( 
addition: [xn] (S + T) = s(n) + t(n). 
multiplication: Use the Cauchy product: 

[ x n ] (S*T) - ]Ts(fc)-£(n-fc) . 
k<n 

composition: S o T will only be defined when t(0) = 0: 

M ( S O T ) = 5>(AO Yl ^i)---*(4). 
/c<n l\-\-...-\-l^=n 

exponentiation: This is an instance of composition, and is defined 
only for T with t(0) = 0: 

4 

| e T = < 
1 for n = 0 

I, 
Jfe! 

EMi?1* f o r ^ L [s»], 

differentiation: [xn]S ; = (rc +l)s(ra +1) . 

Connection between power series and functions. Operations on 
power series were defined to mimic what happens with power series func­
tions, so one has the following translation of Proposition A. 15. 

Proposition A.17. Let S,T be power series and let a, c G R. Then 
one has 

< Ps 

Truncation of power series. Since the function defined by a power 
series may easily have radius of convergence 0, one cannot proceed as with 
polynomials and simply say that all the identities of functions lift immedi­
ately. The key to lifting the results to power series is the observation that the 
fundamental operations are such that the definition of the nth coefficient in 
an application of an operation depends only on the first n coefficients of the 
given series, with the exception of differentiation which requires the n + 1st 
coefficient. 

/cs(o) 
/ S + T ( O ) = 
/S*T(O) : 

/ S O T ( O ) = 

/s» = 

= cfs(a) 
= /s(a) + / T (a ) 
= fs(o) • h{a) 
= ( / S » / T ) W 
= /s'(a) 

for \a 
for \a 
for \a 
for \a 
for \a 

< Ps 
< min(ps,pT 
< min(ps,PT 
< PT , | / r (a) 
< Ps-

4The restriction t(0) — 0 guarantees that the definition of the nth coefficient of the 
composition S o T involves only finitely many of the coefficients of S and T. [Some 
condition is needed to guarantee that \^ s(k) /_] t{i\) • • • t(£k) converges! 

.,£k>0 
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Definition A. 18. The mth truncation S|m of a power series S is the 
polynomial defined by 

[*»]su = (f} ln-m 
1 J 10 if n>m. 

Thus S|m(x) = s(0) + • • • + s{m)xm. 

Lemma A.19. Given power series S, T, a constant c € R, and n > 0: 

[xn]{cS) = [xn](cS\m) form>n 
[xn](S + T) = [xn](S\m + T\m) form>n 

[xn](S-T) = [xn] (S |m • T |m) form>n 

M ( S o T ) = [ rc n ] (S |moT|m ) form>n 

[xn]S' = [xn](S\m') form>n + l. 

Identities of power series. 

Proposition A.20. For a, b € M. and power series R, S, T the following 
hold: 

scalar multiplication: 

aO = 0 a l = a 
( - l ) R = - R a ( -R) = ( -a)R = - (oR) 
a(6R) = (ab)R (a + b)R = (aR) + (6R) 

a(R + S) = (oR) + (aS) a(R-S) = (aR) • S = R • (aS) 

addition, multiplication, and composition: 

R + 0 = R R 1 = R 
R + S = S + R R S = S R 

(R + S) + T = R + ( S + T) ( R - S ) - T = R - ( S - T ) 
R - ( S + T) = (R-S) + (R-T) (R + S ) o T = ( R o T ) + ( S o T ) 
( R - S ) o T = ( R o T ) - ( S o T ) ( R o S ) o T = R o ( S o T ) 

differentiation: 

(aR)' = aR' (R + S)' = R ' + S' 
(R-S) ' = (R'• S) + (R • S') (RoS) ' = S ' - (R'oS) 

(eR ) ' = R ' - e R 

PROOF. TO verify each identity one only has to show that the corre­
sponding coefficients of the two sides are equal. This is straightforward with 
scalar multiplication and addition. 
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The commutativity of multiplication is easy to see from the definition. 
For the associativity let us employ truncations,5 and use the fact that mul­
tiplication of polynomials is associative: 

[* n ] ( (R*S)*T) = [ x n ] ( ( R | n * S | n ) * T | n ) = [ x n ] ( R | n * ( S | n * T | n ) ) 

= [ x n ] ( R * ( S * T ) ) . 

This technique of reduction to polynomials can be used for all the iden­
tities under the heading of 'addition, multiplication, and composition'. This 
can also be used for differentiation. The differentiation of scalar multipli­
cation and of addition are straightforward. For the product rule first note 
that 

Ql ' _ C'l 
^ | n + l — & \n 

[xn]S' = [xn]S\n+l'. 
Then 

[ z " ] (R*Sy = [x" ] (R*S) | n + i ' 

= [xn] (R |„ + 1 * S | n + i ) ' 
= [xn] (R|n+l' * S|n+l + R|n+1 * S|n+l ') 
= [ z n ] ( R ' | n * S | n + 1 + R | n + 1 * S ' | n ) 

= [ x n ] ( R ' | n * S | n + R | n * S ' | n ) 

= [ x n ] ( R ' * S + R * S ' ) . 

For the chain rule: 

[arn](RoS)' = [ x n ] ( R o S ) | n + i ' 

= [ x n ] ( R | n + 1 o S | n + 1 ) ' 

= [* n ] (S | n + i ' * (R | n + 1 ' oS | n + 1 ) ) 

= [ x n ] ( S ' | n * ( R , | n o S | n + 1 ) ) 

= [ ^ ] ( S ' | n * ( R ' | n o S | n ) ) 

= [ x n ] ( S ' * ( R ' o S ) ) . 

Thus (e R ) ' = R' * eR . D 

An identi ty for number systems 

For any additive number system A, even with p = 0, the alternate form 
of the partition identity, A(x) = eH(% still holds as an identity between 
power series. This will be used later (see Theorems C.3 and C.6). 

5In these arguments using truncations the reader may find that the individual steps 
do not follow immediately from what has been written before, but they are not difficult 
to verify. 
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Proposition A.21. For A an additive number system define H(x) = 
J2h(n)xn, where h(0) = 0 and, for n>l, h(n) = J2ij=nP^)/J- Then 

A(x) = e 1 1 ^ . 

PROOF. Clearly both sides have the same constant term 1. So let m > 1 
be given, and let B = (B, Q, +, 0, || ||) be the subsystem of A generated by 
the set Q of indeeomposables of size at most m. Let Hs(x) — ^h^{n)xn^ 
where /IB(0) = 0 and, for n > 1, / IB(^) = ^ o = n ^ ( i ) / j , q{p) being the 
counting function for Q. 

Let S(x) be the power series ellB^x\ Since B is finitely generated the 
radius of convergence of B(x) is 1, so from §2.5 one has, for x G [0,1), 

7BO) = isO). 
This gives the equality of the power series B(x) and S(x), that is, 

B(x) = e H B ^ . 
Now a ( l ) , . . . , a(ra) are completely determined by Q, and hence must 

agree with the corresponding 6(1),. . . , 6(m), that is, b(j) = a(j), for j < m. 
Since p(j) = q(j), for 1 < j < m, it follows that h&(j) = h(j), for 1 < j < m. 
From this, for the given ra, one has 

a(m) = b(m) = [xm]eUQ^ = [xm]en^^x) 

= [xm]en^^ = [xm]e^x\ 
This proves the proposition. • 

Division of power series 

Proposition A.22. If R(x),S(#) are power series with s(Q) ^ 0 then 
there is a unique power series T(x) such that R(x) = S(x) * T(x). One 
writes R(x)/S(x) for T(x), and ca//«s it t/ie quotient of R(x) by S(x). 

PROOF. Given R(ar) - ^ K n ) ^ n and S(x) = E n s(n)xn with 5(0) 7̂  0, 
the goal is to show that there is a unique T(x) = Yln^n)xn s u c h that 
R(x) = S(x) * T(x). This is equivalent to proving that there is a unique 
solution for t(0), t ( l ) , . . . to the system of equations 

r(n) = 2_\ s(k) - t(n — fc), 
k<n 

or, in more detail, 

r(0) = s(0)i(0) 
r( l) = a(0)t(l) + s(l).*(0) 
r(2) = s(0)t(2) + 5(1) • t(l) + 5(2) • i(0) 

etc. 
Since s(0) 7̂  0 it is clear that indeed one can recursively solve this system 
for the t(n), and there is only one solution. • 
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The composition inverse of a power series 

Inversion (under composition) can be carried out over a wide range of 
power series. 

Proposition A.23. 
(a) If S(x) is such that s(0) = 0 and 5(1) ^ 0 then there is a unique 

H(x) such that (R o S)(x) = x. For this R(x) one has r(0) = 0 and 
r( l ) = 1/5(1). R(x) is the left inverse of S(x) under composition. 

(b) Given S(x) with s(0) = 0 and s(l) 7̂  0 there is a unique power series 
T(x) = En^(n)xn with *(°) = ° SUch that (S ° T)(X) = X' T(X) is 

the right inverse of S(x). 

PROOF, (a) This is equivalent to showing that there is a unique solution 
for the coefficients r(0), r ( l ) , . . . in the infinite system of equations 

M(Ros) = i1 ifn = 1 

I 0 otherwise, 

or, in more detail, 
r(0) - 0 
r ( l ) . * ( l ) = 1 
r (2)-5( l ) 2 + r ( l ) -s (2) = 0 

r ( n ) . 5 ( l ) n + g n ( r ( l ) , . . . , r ( n - l ) , s ( l ) , . . . , 5 ( n ) ) = 0 

for suitable polynomials qn. Since 5(1) 7̂  0, clearly this system is uniquely 
solvable for the r^), starting with r(0) = 0, r ( l ) = 1/5(1). 

(b) Since t(0) = 0 this is equivalent to showing that there is a unique 
solution t( l) , t (2) , . . . to the infinite system of equations 

H(SoT) = I1 lfn = 1 

0 otherwise, 
or, in more detail, 

s(l)-t(l) = 1 
s(l) • t(2) + s(2) • t(l)2 = 0 
s(l) • t(3) + 2s(2) • t(l) • t(2) + s(3) • t(l)3 = 0 

s{l)-t{n) + qn(s(l),...,s(n),t(l),...,t(n-l)) = 0 

for suitable polynomials qn. Since s(l) j^ 0, clearly this system is uniquely 
solvable for the t(n), starting with t(l) = l / s ( l ) . D 



A GROUP UNDER COMPOSITION 247 

A group under composition 

Having established a left inverse R(x) and a right inverse T(x) of any 
power series S(x) satisfying s(0) = 0 and 5(1) ^ 0, now one would like to 
show that these two inverses are the same. The simplest proof is to show 
that the collection of power series S(x) that satisfy 5(0) = 0 and s(l) ^ 0 
forms a group under composition. 

Definition A.24. Let 

S = {S(s) : s(0) = 0, s(l) + 0}. 

Recall that a group is a collection of elements with a binary operation 
that is associative, there is a left and right identity element with respect 
to this operation, and every element has a two-sided (both left and right) 
inverse. 

Proposition A.25. $ is a group under composition. 

PROOF. It is easy to see that S is closed under the binary operation of 
composition. Composition is an associative operation on S, by Proposition 
A.20, and x is a two-sided identity, that is, x o S = S and S o x = S. For 
S G S, the left inverse of S in S exists and is unique, by Proposition A.23 
(a), so let S _ 1 be this left inverse. Now a simple algebraic argument shows 
that S _ 1 is also a right inverse of S, namely: 

S o S " 1 = x o ( S o S - 1 ) 

= ( (s - 1 )" 1 os- 1 )o(sos- 1 ) 
= ( S - 1 ) " 1 o S - 1 o S o S - 1 

= ( S - ^ o s o S - 1 

= X. 

• 
Since the left inverse of a power series in S is a right inverse, and since 

the right inverse is also unique, one simply refers to the inverse of S G S-
Now the goal is to prove6 that if S G S has a positive radius of conver­

gence then so does S _ 1 . 

A special case. First the special case where 5(1) = 1 is considered: 

S(x) = x + 5(2)x2 + 5(3)x3 + • • • 

Lemma A.26. Suppose that S(x) — x + ^] n > 2 s(n)x r i and H(x) = 
^2nr(n)xn is the inverse of S in S- If Ps > 0 then PR > 0. 

6This proof follows Knopp [34], pp. 184-188, which he says is due to Cauchy. Two 
other proofs can be found in Hille [27], an intermediate level proof on pp. 86-90, where 
one uses successive approximations; and a more advanced level proof on p. 265, where one 
gets an explicit form for the right inverse using an integral in the complex plane. 
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PROOF. R( x) 5 as a left inverse, is specified by the system of equations 

r(0) = 0 
s ( l ) - r ( l ) = 1 
s( l ) 2 - r (2) + s(2)- r ( l ) = 0 
s( l ) 3 - r (3) + 2s( l ) -s(2)-r(2) + s(3)-r( l ) = 0 

s(ir-r(n) + qn(s(l),...,s(n),r(l),... , r ( n - l ) ) = 0 

Let A = 1 + 1/ps- Then, for some K, 

\s(n)\ < KXn, f o r n > 0 . 

Now define the power series U(x) by 

U(s) = x-J2(K\n)xn. 
n>2 

U(x) is clearly in S, so let V(x) = ^2nv(n)xn be its inverse. As a left 
inverse one has 

v(0) = 0 
v(l) = 1 
v(2) - (KX2)v(l) = 0 
v(3) - 2(KX2)v(2) - (KX3)v(l)3 = 0 

so the v(n) are positive, and indeed, v(n) > \r(n)\. Thus 

(A.26.1) pv > 0 =* PR>0. 

There is a compact description of the function f\j(x) since there is a 
geometric series in the definition: 

fu(x) = x-KX2x2( _ \ V for |x| < 1/A. 

A routine calculation shows that f\j'(0) = 1, so f\j(x) is a one-one func­
tion in some neighborhood of 0. There is a simple formula for the inverse 
function, namely 

V = fv{x) => y-Xyx = x-\(\K + l)x2 

=> X(XK + l)x2 - (1 + \y)x + y = 0 
(1 + Ay) ± V ( l + \y)2 - 4A(AK"T% 

X 2A(AK + 1) 
So if 

(1 + Ax) - y/(l + Xx)2 - 4X(XK + l)x 
9{X) ~~ 2X(XK + 1) 



A GROUP UNDER COMPOSITION 249 

then g(0) = 0, g is defined on a neighborhood of 0 since the discriminant is 
a continuous function of x and takes on the value 1 at x — 0, and 

fu{g(x)) = x 
on some neighborhood of 0. 

Let 
go(x) = v

/ ( l + Ax)2-4A(AK + l)x. 

Then go(x) can be written in the form yjl — q(x), where q(x) is a polynomial 
in x with fq(0) — 0. Since y/1 — x has a power series expansion on a neigh­
borhood of 0, by the result on composition of functions defined by power 
series in Proposition A. 17, go(x) = (\/l — x) o q(x) also has a power series 
expansion on a neighborhood of 0. Thus g(x) has a power series expansion 
on some neighborhood of 0. 

Let W(#) = J2nw(n)xn be the power series expansion of g(x). Then 
pw > 0, w(0) = 0, and g{x) — fw(x) on some neighborhood of 0. From 
fu(g(x)) = x on some neighborhood of 0 follows / u ( / w ( ^ ) ) = x on a 
neighborhood of 0, and thus (/u o /w)(#) = x on a neighborhood of 0. 
Now (/u ° fw)(x) — /uow(^) in that neighborhood, so /uow(^) — # i n 

a neighborhood of 0. This implies that (U o W)(x) = x, so W(x) is the 
inverse of U(x). 

But V(#) was defined to be that inverse. Consequently V(x) = W(x), 
and thus pv > 0. From (A.26.1) it follows that PR > 0. • 

Removing the condition 5(1) = 1. Now the goal is to lift these results 
to any power series in S. 

Proposition A.27. Suppose S G 9, that is, s(0) = 0 and s(l) 7̂  0. If 
ps > 0, that is, ifS has positive radius of convergence, then the composition 
inverse of S also has a positive radius of convergence. 

PROOF. Let U(x) = Y^nu(n)xn ^ e ^e P o w e r series defined by 

uW = sWo(-i.,) = x;|^x». 
Then pu = s(l)ps > 0 and u(0) = 0, u(l) = 1. Thus, by Lemma A.26, it 
follows that the inverse \(x) = ^2nv(n)xn of U(x) has a positive radius of 
convergence. Of course v(0) = 0 and v(l) — 1. 

Define T(x) to be the power series ( l / s ( l ) )V(#) , which can be written 
as (x/s(l)) o V(x). Then pT = pw y 0, and 

S(i)oT(x) = S(x)o(^-x)oV(x) 
\s{l) J 

= V(x)oV(x) 
= X. 

This means that T is the inverse of S, and it has a positive radius of con­
vergence. • 
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This result will be used to prove Theorem C.3 of Bell, which implies 
that one is fully justified in avoiding additive number systems with radius of 
convergence zero when searching for systems with all partition sets having 
asymptotic density. 



APPENDIX B 

Refined Counting 

The additive case 

This topic concerns the number of elements in A of norm n that can be 
expressed as a sum of m indecomposables. 

Definition B . l . The refined (local) counting function a(n,m) of A is 
defined on N x N by 

a(n,m) = |{a G rnP : ||a|| = n} | . 

Corresponding to the function a(n1 m) there is the two variable generat­
ing series 

A(x,y) = Yl a(n,rn)xnym. 
m,n>0 

This can also be expressed by 

A(x,y) = E E xMym-
m>0 aGraP 

The two variable fundamental identity of A is 

(B.1.1) Yl ^(riJm)xnym = J ] ( l - xny)-^n\ 
m,n>0 n>l 

The next section shows that this identity describes a method to compute 
the values of a(n, m) from p(n), and the following section gives a proof that 
it holds as an identity between two functions when 0 < x < p and 0 < y < 1. 

Meaning of the two variable fundamental identity. The meaning 
of the two variable fundamental identity (B.1.1), initially, is just that it is a 
shorthand device to remember how to compute a(n,m) from p(ri). To this 
end think of each factor 

{l-xny)-^n) 

in the product part of the fundamental identity as a power series to the 
power p(n), namely 

(l-xny)-PW = (1 + xny + x2ny2 + • • • )p(n) ' . 

251 
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What follows explains why a(n1 m) is the coefficient oixnym in the expansion 
of 

{i + x + x2 + ...yW ••• (i + ** + * V + -")P(*)> 
for any choice of k > n. Actually, it is more transparent to say that a(n, m) 
is the coefficient of xn in the expansion of 

J ] (l + *l|p|l2/ + a 2 | l fV + •••), 
llpll<* 

for any choice of k > n. 
To see that this is true proceed as follows. Let po, P i , . . . be a listing 

of the indecomposable elements of A. As before, one has a natural one-
to-one correspondence between the elements of A and the sequences (rrti) 
of nonnegative integers with only finitely many of the rrii nonzero, namely 
(rrti) corresponds to the element a such that rrii is the coefficient of p̂  in the 
decomposition of a into indecomposables. Thus the sequences (xmi"Pi"ymi) 
of monomials, where almost all monomials are 1, are also naturally in a 
one-to-one correspondence with A. 

Now a(n,m) is the number of sequences (rrii) of nonnegative integers 
such that n — ^mj | |p i | | and m = Ylmi- This is because each element of 
raP with norm n can be expressed as a sum Y2 rriiPi with ]T rrii||Pz|| = n and 
Y^mi — m> a n d distinct sequences (rrii) with J2mi — m &ye T^se to distinct 
elements J2miPi of raP. Note that 

n = ^ m i | | P i | | and m = J2mi iff xnym = J\xmiMymi. 

Thus a(n,m) is the number of sequences (rrii) of nonnegative integers such 
that xnym = Ylxmi^Pi^ymi. Now consider the product 

(B.1.2) ( l + xl|po|li/ + x2| |po|ly2 + - - . ) ••• (l + xlMy + x2My2 + • • • ) , 

where k is sufficiently large to ensure that all indecomposables p with norm 
at most n appear in the list po, . . . , p&. Then each sequence (rrii) with 
xnym _ j-j xml\\pi\\yml corresponds to a choice of one monomial from each of 
the sums l + x''Pi''^ + x2''Pi''y2H above, and thus a(n,m) is the coefficient 
of xnym in the expansion of (B.1.2). 

Validity of the two variable fundamental identity. Let A be an 
additive number system with radius of convergence p. 

Proposition B.2. The two variable fundamental identity 

J2 a(n,m)xnym = f[(l - xny)~p^ 
m,n>0 n>l 

of A holds for 0 < x, y < 1, with convergence if 0 < x < p. 
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PROOF. This follows from the observation that, for x,y > 0, and, for 
any £ > 1, 

J2 a(n,m)xnym < f ] ( $ > V ) P W < E a(n,m)xnym. 
0<m,n<£ l<j<t k>0 m,n>0 

Thus, for 0 < x,y < 1, 

Y^ a(n,m)xnym < J ] (l-xjy)~p^ < J ^ a(n,m)xnym, 
0<m,n<£ 1<J<^ m,n>0 

SO, 

J2 a(n,m)xnym = f | ( l - xny)-^n\ 
m,n>0 n>l 

If 0 < x < p and 0 < y < 1 then 

] P a ( n , r a ) £ n y m < y^a(n ,m)x y i 

= Ea(^n 

n 
= A(x) < oo. 

a 
Alternate version of the two variable fundamental identity. Just 

as with the fundamental identity, there is a useful alternate form involving 
exponentiation. 

Proposition B.3. Let A be an additive number system with radius of 
convergence p > 0. Then the identity 

A(x,y) = exp ( £ P(xm)ym/m) 
m>\ 

holds when 0 < x < p and 0 < y < 1. 

PROOF. For 0 < x < p and 0 < y < 1, 

(l-xny)-p^ = e x p ( l o g ( ( l - x n 2 / ) - ^ n ) ) ) 

= e x p ( - p ( n ) l o g ( l -xny)) 

= exp(p(n)^2xmnym/my 
m>l 

thus, 

J ] {l-xny)-p{n) = I ] e x p ( p ( n ) X > m V 7 ™ ) -
l<n<M Kn<M ra>l 
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So, from Proposition B.2, 

Mx,y) = IIC1-^) 

= Urn J ] exp(j2p(n)xmnym/ 
l<n<M ra>l 

= Alimroexp( Yl YtP^^y"1/™) 
^ ° ° l < n < A f m > l 

= exp[j2T/P(n)xmnym/m 
n>l 771 > 1 

= exp ( £ £ > ( n ) x m V 7 m ) 
ra>lra>l 

= e x p ( ^ P ( x m ) y m / m ) . 
m > l 

D 

The generating series of mP. The generating series of mP can be 
expressed as a polynomial in P ( x ) , . . . ,P(x m ) with nonnegative rational 
coefficients. The case m = 0 is trivial as [0P](x) = 1, so a proof is only 
needed when m > 0. 

Proposition B.4. Given a positive integer m, for any x > 0, 
m 

(B.4.1) [mP](x) = T - V P ( x m i ) - - - P ( x m 0 , 

m j > l 

and the two sides converge iff P(x) converges. 

PROOF. Since 

[mP](x) = y^ja(n,m)xn, 
n>0 

it follows that 

(B.4.2) A(x,y) = ^ [mP](x) j / m , 
ra>0 

so, from Proposition B.3, 

J2lmP}(x)ym = exp ( ] T P(x m )y m /m) 
m > 0 77i > 1 

(B.4.3) = E T K E ^ ™ ) ^ / ™ ) ' -
7 > 0 ^ ' m > l 
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This means tha t one obtains [mP](x) by collecting the terms from (B.4.3) 
that contribute to the coefficient of y m , and this gives equation (B.4.1), at 
least for 0 < x < p. 

To see that (B.4.1) holds when x > 0, with convergence precisely when 
P ( x ) converges, note tha t P ( x ) , . . . , P ( x m ) are power series with nonneg-
ative integer coefficients, so, when x > 0, if they converge at x then they 
converge absolutely. Furthermore, if P ( x ) converges at x > 0 then so do 
each of P ( x 2 ) , . . . , ~P(xm). After noting tha t one of the summands in the 
right side of (B.4.1) is 

ml 
(this comes from j = ra), it follows that , for x > 0, the right side of (B.4.1) 
converges precisely when P ( x ) converges. By Lemma 1.19, there is a power 
series R(x) such that the right side of (B.4.1) equals R(x ) when x > 0, so 

[mP](x) = R(x ) 

on [0,p). Since [raP](x) and R(x ) are both power series, they must be the 
same power series. Thus (B.4.1) holds when x > 0, with the two sides 
converging precisely when P ( x ) converges. • 

Here are two examples to illustrate (B.4.1): 

[2P](x) = i P ( x ) 2 + i P ( x 2 ) 

[3P](x) = i P ( x ) 3 + i p ( x ) - P ( x 2 ) + i P ( x 3 ) . 

The reader may have noticed tha t the sums of the coefficients in each of 
the two examples is 1. This is no accident. For from (B.4.1) there is a 
polynomial r ( y i , . . . , ym) with rational coefficients such tha t 

[mP](x) = r ( P ( ; r ) , . . . , P ( * m ) ) . 

The sum of the coefficients is r ( l , . . . ,1) . From (B.4.3) 

[mP](x) = M E l f E ^ V / ^ 
j>0 J k>l 

Thus 

j>0J' k>l 

= [ym]^p{Y,yk/k 

= bm] e 

= [ym}Y 

k>l 
-log(l-y) 

s o r ( l , . . . ,1) = 1. 
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The multiplicative case 

This section concerns the number of elements in A of norm n that can 
be expressed as a product of m indecomposables. 

Definition B.5. The refined (local) counting function a{n,m) of A, de­
fined on P x N, is given by 

a(n,m) = |{a G Pm : ||a|| = n } | . 

Corresponding to the function a(n,m) there is the two variable generat­
ing series 

A{x,y) = ^2a(n,m)n-xym. 
m > 0 
n > l 

This can also be expressed by 

A(x>y) = E E \\*\\~xym-
m > 0 a € P m 

The two variable fundamental identity of A is 

(B.5.1) ^ a ( n , m ) n - x y m = Yl(l-n'xy)-p^n\ 
ra>0 n > 2 
n > l 

The next section shows that this identity describes a method to compute 
the values of a(n, m) from p(n), and the following section gives a proof that 
it holds as an identity between two functions when x > a and 0 < y < 1. 

Meaning of the two variable fundamental identity. The meaning 
of the two variable fundamental identity (B.5.1), initially, is just that it is a 
shorthand device to remember how to compute a(n, m) from p(n). (This is a 
'formal' aspect of the identity—in the next section convergence is examined.) 
To this end think of each factor 

(1 - n-xy)-pW 

in the product part of the fundamental identity as a geometric series to the 
power p(n), namely, 

(l-n-xy)-^n) = (l + n-xy + n-2xy2 + .--)p{n). 

What follows explains why a(n, m) is the coefficient of n~xym in the expan­
sion of 

(1 + 2-*y + 2 ~ 2 V • • • )p ( 2 ) • • • (1 + k~xy + k~2xy2 + ••• ) p ( k ) , 
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for any choice of k > n. Actually it is more transparent to say that a(n, m) 
is the coefficient of n~xym in the expansion of 

H (i + iiPirxy+iiPir2v+ •••). 
npii<fc 

for any choice of k > n. 
To see that this is true proceed as follows. Let po, P i , . . . be a listing 

of the indecomposable elements of A. As before, one has a natural one-
to-one correspondence between the elements of A and the sequences (m^) 
of nonnegative integers with only finitely many of the rrii nonzero, namely, 
(rrii) corresponds to the element a such that rrii is the exponent of p̂  in the 
factorization of a into indecomposables. Thus the sequences (||Pi||~miX?/m*) 
of monomials, where almost all monomials are 1, are also naturally in a 
one-to-one correspondence with A. 

Now a(n,m) is the number of sequences (mi) of nonnegative integers 
such that n = Yl l|Pz||m* a n d m = J2mi- This is because each element of P m 

with norm n can be expressed as a product Yl p™* with Yl ||Pz||m* — n a n d 
Ylmi — m> a n d distinct sequences (rrii) with ^2mi = m give rise to distinct 
elements Yl vT o f p m - N o t e t h a t 

™ = I ] j P * i r * a n d rn = Y,mi iff n-a?i/m = U | | p i | r m i a : i / m i . 

Thus a(n,m) is the number of sequences (rrii) of nonnegative integers such 
that n~xym = Y[ \\Pi\\~miXymi• Now consider the product 

(B.5.2) 

(i + iiPoiry+iiPoir2v + ---) ••• (i + iip*irxy+iipfcirv + •••), 
where k is sufficiently large to ensure that all indecomposables p with norm 
at most n appear in the list po,.-- ,P&- Then each sequence (rrii) with 
n-Xym _ j-j | |p i | |_mi : rymi corresponds to a choice of one monomial from 
each of the sums 1 + ||pi||_:ry + ||Pi||~ XV2 + * * * above, and thus a(n,m) is 
the coefficient of n~xym in the expansion of (B.5.2). 

Validity of the two variable fundamental identity. Let A be a 
multiplicative number system with abscissa of convergence a. 

Proposition B.6. The two variable fundamental identity 

J2a(n,m)n-Xym = JJ(1 - n~xy)-p^ 
m>0 n>2 
n>l 

of A holds for x > 0 and 0 < y < 1, with convergence if x > a. 
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PROOF. This follows from the observation that, for x > 0 and 0 < y < 1, 
and for any £ > 1, 

£ a(n,m)n-xym < fj (Efc"'V)P < E a ^ 
0<m<£ 2<k<£ j>0 m>0 
l<n<£ n>\ 

and thus, 

m)n xym, 

x„.m ]T a^m^y™ < ]J (1 - k~xy)-pW < J^ a(n,m)n-xy 
0<m<£ 2<k<£ m>0 
Kn<£ n>l 

SO, 

^2a(n,m)n-xym = JJ(1 - rTxy)-^n\ 
ra>0 n>2 
n>l 

If x > a and 0 < y < 1 then 

£*(• 
m,n 

n, m)n -Xym < 

= 

E a ( n 5 m ) n 

n m 

y^a(n)n~x 

A(x) < oo. 

-x 

m) jn_:r 

a 

Alternate version of the two variable fundamental identity. Just 
as with the fundamental identity, there is a useful alternate form involving 
exponentiation. 

Proposition B.7. Let A be a multiplicative number system with ab­
scissa of convergence a < oo. Then the identity 

A(x,y) = exp ( y ^ P(mx)ym/m 
m>\ 

holds when x > a and 0 < y < 1. 

PROOF. For x > a and 0 < y < 1, 

(l-n-xy)-p^ = exp(log((l-n-^)-^n))) 

= exp(-p(n)log(l -n~xy)) 

(p(n)Yn-™y™/m), — exp 
m>\ 
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thus, 

Yl (l-n-xy)~p{n) = Yl e x p ^ ( n ) ^ n - m ^ m / m ) . 
l<n<M l<n<M ra>l 

So, from Proposition B.6, 

n>2 

= lim "Q exp ( \2 p(n)n~mxym/m 
~*°° 2<n<M m>l 

= lim exp ( y^ yZ P(n)n~mxym/m 

~^°° 2<n<Mm>l 

= exp ( ^ ^ p ( n ) n ~ m V 7 m ) 
n>2m>l 

= e x p ( V J V J p ( n ) n - ^ m / m 
m>ln>2 

= exp f 2_Z P(mx)ym/m 
ra>l 

n 
The generating series of Pm. Now it will be proved that the gen­

erating series of Pm can be expressed as a polynomial in P ( x ) , . . . , ~P{mx) 
with nonnegative rational coefficients. The case m — 0 is trivial as one has 
P°(x) = 1, so a proof is only needed when m > 0. 

Proposition B.8. Given a positive integer m, for any x > 0, 
m 

(B.8.1) P m (x) = £ - £ — P M - P M -

rrii>l 

and t/ie too sides converge iff P(x) converges. 

PROOF. Since P m (x) = Y.n>2a(nim)n~Xi ^ follows that 

(B.8.2) A(x,y) = £ P m ( x ) ^ , 
ra>0 

so, from Proposition B.7, 

^ P m ( x ) ? / m = exp ( Y^ P(mx)ym/m)j 
m>0 m>l 

(B.8.3) = V J ^ V J p ^ ^ / m ) ' . 
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This means that one has Pm(x) by collecting the terms from (B.8.3) that 
contribute to the coefficient of ym, and this gives equation (B.8.1), at least 
for x > a. 

To see that (B.8.1) holds when x > 0, with convergence precisely when 
P(x) converges, note that P ( x ) , . . . ,P(mx) are Dirichlet series with non-
negative integer coefficients, so when x > 0, if they converge at x then they 
converge absolutely. Furthermore, if P(x) converges at x > 0 then so do 
each of P(2x), . . . , P(mx). After noting that one of the summands in the 
right side of (B.8.1) is 

(this comes from j — m), it follows that, for x > 0, the right side of (B.8.1) 
converges precisely when P(x) converges. By Lemma 7.15 there is a Dirichlet 
series H(x) such that the right side of (B.8.1) equals R(x) when x > 0, so 

P m (x) = R(x) 
on (a, oo). Since Pm(x) and R(x) are both Dirichlet series, they must be 
the same Dirichlet series. Thus (B.8.1) holds when x > 0, with the two sides 
converging precisely when P(x) converges. • 

Here are two examples to illustrate (B.8.1): 

P2(x) = \P{x)2 + ^P(2x) 

Ps(x) = lP(xf + iP(a;) .P(2x) + |P(3x) . 

In the additive case one has a polynomial r ( P ( x ) , . . . ,P(x m ) ) to express 
[raP](x), and now one has, with the same polynomial, 

Pm(x) = r(P(x),...,P(mx)), 

since the expression (B.8.1) looks just like the corresponding expression 
(B.4.1) for the additive case. 



APPENDIX C 

Consequences of S(P) = 0 

The major theme in this study of density is to find necessary as well as 
sufficient conditions that all partition sets have asymptotic density. From 
Proposition 3.28, the condition 8(P) = 0 is necessary. Bell [5] and Bell, 
Bender, Cameron and Richmond [7] show that this has strong consequences, 
namely p > 0 and A(p) = oo. 

Note: The Standard Assumption about A is not in effect in this appen­
dix. 

Bell's Positive Radius Theorem: 8(P) = 0 implies p > 0 

Knowledge of compositions of power series can be useful in showing that 
a radius of convergence is positive. 

Lemma C.l . Suppose 
oo oo 

R(x) = J ] V ( n ) x n and T(ar) = ^t{n)xn 

are two power series such that t(l) ^ 0, PT > 0 and PTOR > 0. Then 
P R > 0 . 

PROOF. Since t(l) ^ 0, the inverse T _ 1 (x) of the power series T(x) 
exists. Since px > 0, by Proposition A.27 one has p T - i > 0. Since R — 
T 1 o T o R it follows that p R > 0. • 

Here is the key tool. 

Proposition C.2. Suppose 
oo oo 

S(x) = J2s(n^xn and T^) = ^ ( " K 
n=l n=l 

are two power series, with t(l) 7̂  0, s(n) > 0, for n> 1, and p? > 0, such 
that 

2s{n) < [xn}es^ + t(n). 

Then ps > 0. 

PROOF. Let R(x) = XmLi rin)xTl be the power series that satisfies the 
equation 

(C.2.1) 2R(x) = e R ^ + T(x) - 1, 

261 
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that is, H(x) is defined by the system of equations 
r(0) = 0 

2r(n) - [xn]eRW + t(n) - 1 (n > 1). 
(This system indeed has exactly one solution.) Since 

r( l ) = t(l) ^ 0, 

it follows that R(x) has an inverse power series R _ 1 (x) . Now, substituting 
x = R~1(u) into the equation (C.2.1) gives 

T(R _ 1 (u ) ) = -eu + 2u + l. 
Thus P R - I > 0 by Lemma C.l. Then, by Lemma A.27, PR > 0. 

Now it is proved, by induction on n, that 0 < s(n) < r(n), for n > 1. 
For n = 1, 

2^(1) < [x]e s ^ + t(l) - 5(1) + t(l) , 
so 5(1) < t(l) = r ( l ) . 

Hence the claim is true when n — 1. Suppose it is true for values less 
than n. Then 

2s(n) < [xn}es^+t(n) 
= [^]e^(l)^+^(2)x2 + -+5(n)x- + t(nj 

< \x
n]e

r(1)x + r(2)x2 ^ l-r(n)xn + (s(n)-r(n))xn _^_ ̂ / \ 

since s(fc) < r(fc), for k < n. Thus 

2s(n) < [x n ] re r ( 1 ) x + - ' ' + r ( n ) x n -e ( s ( n ) - r ( n ) ) x n ) + t(n) 

= [ x n ] ( e R ^ • ( l + (s(n) - r(n))xn^ + t(n) 

= [xn]eRW + s(n) - r(n) + t(n) 

= (2r(n) - £(n)) + s(n) - r(n) + i(n) 
= r(n) + s(n). 

Hence 0 < s(n) < r(n), for n > 1. Since PR > 0, it follows that ps > 0. 
This completes the proof. • 

Theorem C.3 (Bell [5]). Let A be an additive number system such that 
8(P) = 0. Then p > 0. 

PROOF. Let A = (A, P,+,0, || ||) be an additive number system with 
counting functions a(n),j3(n), where p(n) = p(n) + 1. Then, since P(x) and 
P(x) have the same radius of convergence, it follows from Corollary 2.25 (b) 
that p = fi. Also, S(P) = 0 since 

P(n) = PJP) + 1 < p{n) + 1 _^ 
o(n) a(n) ~ a(n) 
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So assume, without loss of generality, that A is such that p(n) > 0, for n > 1 
(by replacing A by A). 

Suppose p = 0. Since 5(P) = 0 there exists an integer N > 1 such that 

(C.3.1) 4^T > 3, forn>7V. 
p(n) 

Define the two sets 

(C.3.2) 5i - in > N : ^ > 2 

and 

(C.3.3) S2 = ( n > iV : ^ < 2 1 • 

From /i(n) = Y~, P{i)lh by Mobius inversion one has 
ij=n 

p(n) 2 
Suppose n G 52. By (C.3.1) one has 7 . . < - . Thus 

Ai(n) 3 

(C.3.4) ^ A*0')Mn/j) = p ( n ) < 2Mn)_ 

But 
y ^ fj(j)Hn/j) = y^ njj)h(n/j) 

j\n 3 j\n 3 

> h{n) - £ ^ . 
j\n 3 

Combining this result with (C.3.4) gives 

2/i(rc)/3 > Yl 
j\n 

> Kn) - £ h(n/j) 

SO, 

J In ^ 

/ i (n/ j ) /i(n) 

j |™ J > *̂  
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Choose a divisor j j^ 1 of n such that h(n/j)/j is maximum among the 
values /i(n/2)/2, . . . , h(n/n)/n. Then 

d(n)^± > ^ , 
j 3 

where d(n) counts the number of divisors of n, so 

h(n/j) > h(n)/3 > fc(n) 
j d(n) ~ 3n 

For this choice of j , and since n G 52, 

2h(n) > a{n) = [xn}eu^ 

h(n/jy 
> h(n) + 

J-

(Mn))J 
j ! 

> h(n) + 

> h{n) + 

(3n)Jj! 
h(n)i 

SO 

/i(n) < ( 3 n ) ^ ' - i ) < 9n2. 

Thus, for n G 52, one has /i(n) < 9n2. So, there is a c > 0 such that 
/i(n) < en2, for n G S2 U {1, 2 , . . . , TV}. Thus h(n) < en2 if n 0 Si. Let 

T(a;) = 2 c ] T j V . 

By the Cauchy-Hadamard formula for the radius of convergence, T(x) has 
a radius of convergence equal to 1 if 52 is infinite, and oc if 52 is finite. 

For n & Si, 

[xn}(2H{x)-T(x)) = 2(h(n)-cn2) 
< 0 
< a(n) 

= [xn}e^x\ 

For n G 5i, 

[xn](2H(x)-T{x)) = 2h(n) < a(n) = [x n ] e H ^ . 

Hence, for any n > 1, 

2/i(n) < [x n ] e H ^ + t(n). 

Now t(l) = 2c > 0, so by Proposition C.2, pn > 0. Since p = pn one has a 
contradiction. • 
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Remark C.4. Jason Bell actually proved the stronger result (for re­
duced A): 

pin) 
p = 0 => limsup ———- = 1. 

This was announced in October, 1999. Richard Warlimont, who had also 
been looking at this problem (motivated in part by an earlier draft of this 
book), found a completely different proof in November, and by December 
he could prove the analog for multiplicative number systems [55]. 

Showing A(p) = oo 

Now it is proved that the condition that all partition sets of A have 
asymptotic density leads to A(/?) = oo. The following technical result is 
needed. 

Lemma C.5 (Stam). Let T(x) be a power series with nonnegative co­
efficients, t(0) = 0, and p = px > 0. Let 

If T(p) converges, then 

limsup ^I lM > o, fory>0. 

PROOF. See Theorem 3 of Stam [53]. • 

The following result has stronger hypotheses than needed (see Remark 
C.9 below), but this version is quite sufficient for our purposes. 

Theorem C.6 (Bell, Bender, Cameron and Richmond [7]). Suppose that 
A e RTP and <J(P) = 0. Then A(p) = oo. 

PROOF. By Theorem C.3, p > 0. For the case that p = 1 the result is 
trivial. So assume 0 < p < 1. Since 5(P) — 0 one has p(n)/a(n) —> 0. Then 
from Proposition 3.46 follows 

s(n) 
where 

S(x) - J2s(n)xn = e^x\ 

the power series defined by formal exponentiation. 
Assume A(p) converges. Then P(p) converges, so apply Lemma C.5, 

with T(x) = 2P(x) and y = 1/2, to obtain 

(C.6.1) limsupS!liiZ?) > o. 
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Now 

]Tiqn( l /2)*" = epW = S(x) 

£lqn( l)x" = e2PW = S(x)2 
f * 77. i n! 

so 
- q n ( l / 2 ) - s(n) 
n\ 

1 n 

—qn(l) = V s ( / c ) s ( n - / c ) . 
77 ' ^ — ' n! 

Then, from S'(x) = P'(x) • S(ar) follows 

- q n ( l / 2 ) = 5(n) 
n! 

1 n 

= — y^jkp(k)s(n — k) 
n , 

fc=0 

< ] T n-1 /2s(fe)s(n-fe) 
fc<n1/2 

fe>n!/2 
S[k) 

< o{i)J24k)s(n-k) 
fc=0 

= o ( l ) ^ q n ( l ) , 

contradicting (C.6.1). Thus A(p) diverges. D 

Corollary C.7. Suppose A is such that all partition sets have [global] 
asymptotic density. Then the [global] asymptotic density of a partition set 
B is the Dirichlet density <9(B). 

PROOF. It suffices to prove this when A is reduced. The hypothesis 
forces 6(P) = 0 by Proposition 3.28 (the proof of this proposition does not 
require that one assume p > 0). Then p > 0 follows from Theorem C.3, so 
A G RTp by Corollary 3.30. Thus A(p) = oo by Theorem C.6. This means 
Theorem 3.13 applies. • 

Corollary C.8. Suppose that A G RTp and 5(P) — 0. Then either P is 
a finite set or P(p) = oo. 

PROOF. By Corollary 2.25, 

A(x) < oo iff P(x) < oo, 
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for 0 < x < 1. If p = 1 then P(p) < oc holds iff P is a finite set. If p < 1 
apply Theorem C.6. • 

Remark C.9. Actually Bell, et al [7] prove 
S(P) = 0 =» A(p) - oc, 

without assuming A has any special properties other than being an additive 
number system. 
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On the Monotonicity of a{n) When p(n) < 1 

When A € RTp with p < 1 then it is easy to prove that a(n) is eventually 
strictly increasing. One only has to apply Schur's Tauberian Theorem to 
(1 — x) - A(x) to see that 

a(n + 1) — a(n) ~ (1 — p)a(n). 

When p = 1 it need not be the case that a{n) is eventually strictly increas­
ing. In 1956 Bateman and Erdos [4] investigated this question under the 
hypothesis p(n) < 1, that is, there is at most one indecomposable of each 
size. They found necessary and sufficient conditions on the support of p(ri) 
for a(n) to be monotone. Recall the definition of f~(ri) from Chapter 4. 

Definition D . l . For / : N -> N let 

f-(n) = f(n) - / ( r c - 1 ) for n > 0 
r(o) - /(o). 

/ means ( / " ) " . 

Definition D.2. An additive number system A with counting functions 
a(n),p(n) and with r = ^2p(n) has the property BE1 if: 

(a) r > 2, and 
(b) gcd({||q|| : q G P, q ^ p}) = 1, for any p G P. 

Thus A has BE means that if one deletes any indecomposable from P 
then the subsystem generated by the remaining indecomposables is (still) 
reduced. 

First consider the case of finitely many indecomposables. 

Theorem D.3. Suppose A is an additive number system of finite rank 
r with property BE. Let suppp(n) = {di , . . . , d^} and let p(di) = mi. Then 

Q"(n) ~ ( r - 2 ) i n ^ ' n r " 2 -
Consequently a~ (n) is eventually positive and 

a (n) 
lim _ / / = 0. 

n-+oo a (n) 

1 Bateman and Erdos referred to this property as P±—here the initials BE of Bateman 
and Erdos offer an appropriately mnemonic name. 

269 
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PROOF. By Lemma 4.11 

n>0 
( 1 -

( 1 -

W-

- * ) • 

-x) 

c 
-x)1 

n > 0 
k 

i 1 

^T + 

n)xn 

-xd*y 

E 
j<r-l 
ee=i 

-mi 

{i-6xy 

using the partial fraction decomposition technique from the proof of The­
orem 2.48. The reason for the bound r — 1 on the j ' s is that property BE 
guarantees that a given factor 1 — 6x, 0 ^ 1 , can be a factor in at most r — 2 

k 

of the 1 - xdi appearing in TT(1 - xdl)~m\ 
2 = 1 

Now repeat the proof of Theorem 2.48 to derive the asymptotic expres­
sion for a~{n). The asymptotics show that a~(n) is eventually positive and 

. a ~ ( n — l ) ^ . n - r r . 1 T a ( U ) r* >-, 

that —— > 1 as n goes to infinity. Thus hm —_ = 0 . D 
a (n) n^oc a (n) 

Corollary D.4. Suppose A is an additive number system of finite rank 
r with counting functions a{n)1p{n). Then a(n) is eventually strictly in­
creasing iff BE holds. 

PROOF. If BE holds then appeal to Theorem D.3. 
For the converse, suppose that a(n) is eventually strictly increasing. Let 

suppp(n) = {di , . . . ,dk} and let p(di) = ra2. In the following 6ij is the 
Kronecker delta function, namely Sij = 1 if i = j , otherwise S^ = 0. Then, 
for j e {d i , . . . , 4 } , 

k 

{l-xj)-J2a-{n)xn = (i-x
j)-(l-x)'Y[(l-xdi)-mi 

n>0 i=l 

k 

= (i-^-IL1 xdi\-rrii+6ij 

i=l 
SO 

(l + x + x2 + '" + xj-1)'^2a-{n)xn = J J ( 1 - a ^ ) " ™ ^ * 3 -
n > 0 i=l 

Since a~(n) is eventually positive it follows that in the expansion of the 
left side of the last equation the coefficients are eventually positive. Since 
p(j) > 1 this equation is the partition identity of a finitely generated additive 
number system, the subsystem of A generated by P with one indecomposable 
of norm j removed. It follows from Lemma 2.42 that gcd [{di : mi — Sij > 
0}) = 1. Thus A has the property BE. • 
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Theorem D.5. Suppose A is an additive number system with counting 
functions a(n),p(n) and p(n) < 1. Then a(n) is eventually strictly increas­
ing iff BE holds. 

PROOF. Suppose that a(n) is eventually strictly increasing. The argu­
ment to show that BE holds is a repeat of the argument from the last proof, 
but the product may be infinite. If p(j) = 1 then 

(l-xj)-^2a-(n)xn = (l-x). Y[(l - xn)-p^+s^, 
n>0 n>\ 

SO 

xn}-p(n)+5n 

n>0 n>l 
(l + x + x2 + -.. + ^ - 1 ) . J ] a - ( n ) x n = Y[{l-xnY 

Since a~{n) is eventually positive it follows that in the expansion of the 
left side the coefficients are eventually positive. Since this equation is the 
partition identity of an additive number system it follows by Lemma 2.42 
that gcd ({n : p{n) — Snj > 0}) = 1. Thus A has the property BE. 

Suppose that BE holds. The case that r — ^2np{n) is finite is covered 
by Corollary D.4. So now suppose r is infinite. 

Choose p\ (n) with finite support such that 0 < p\ (n) < p(n) and p\ (n) 
has the property BE. Let p{n) = p\(n) + P2{n). Let a\(ri)1a2{n) be defined 
by the additive partition identities: 

^ai(n)xn = Y[(l - xn)~^n\ for i = 1,2. 
n>0 n>\ 

Then, from Theorem D.3, 

(D.S.1) - f ^ - ~ -
1 + \ax [n)\ 

Let t be a positive integer. By (D.5.1) there exists a positive integer M 
such that 

g-(n) > (-M for all n 
{ ' ' } l + \a~(n)\ " \t+l for n>M. 

Let 

(D.5.3) c= m a x (l + \a7~(n)\). 
V y 0<n<M- l V ' l nJ 

^ -r , a2(n) ^ a\(n — l) ., . _. A2(n — 1) 
From Lemma 4.9 , , N —> 0, as ^, . > 1 implies —, , . > 1. 

A2(n) a*(n) K A2{n) 
Thus there is a positive integer N such that 

Yl a2(m) 
(D.5.4) rn=n-M+l < forn > TV. 
v ; A2(n) ~ {M + t + l)c 
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For n > max(M,A0, 
n 

a~(n) = 2_, a r ( n "" m ) ' a2(^^) by Lemma 4.12 
m=0 
n-M n 

— /• â ~(n — ra) • a2(ra) — N^ |ai~(n — 771)| • a2(ra) 
ra=0 ra=n-M+l 

n - M 

> ( t+1)- JZ (1 + l a r _ ( n - m ) | ) '^(m) 

n 

- M • Y^ ( l + | a ^ " ( n - m ) | V a 2 ( m ) by (D.5.2) 
m=n—M+l 

n 

= (t + 1) • ̂  ( l + |ajf"(n-rn)|) • a2(m) 
m = 0 

n 

- (M + t + l) • ] T Tl + | a p ( n - m ) | ) -a2(ra) 
m = n - M + l 

n 

> (<+i) • XI (1 + l a r - ( n ~ m ) l ) - ^ M 
m = 0 

n 

- ( M + t + l)- X ca2(m) by(D.5.3) 
m = n - M + l 

n 

= (* + ! ) • J ] ( l + | a " ( n - m ) | ) -a2(m) 
m = 0 

{M + t + l).c-m=n-M
A

+\ A2(n) 
A2(n) 

> 

> t 

lb 

(t + 1) • ] T ( l + | a " ( n - m)|) • a2(m) 
m = 0 

- A2(n) (D.5.4) 

m = 0 
n 

n — m)\ • a2\rn) 

— t ' X^ a2(m) 
m = 0 

= t-A2(n) . 

a n Thus, for n > max(M, TV), > t, and thus a(n) — a(n — 1) is 
^ 2 (n) 

eventually positive, so a(n) is eventually strictly increasing. D 
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Results of Woods 

Woods was interested in modifying the work of Compton so that it 
would apply to additive number systems that are derived from (partial or 
total) unary functions with k additional unary predicates. The following 
Tauberian theorem of Woods [57] is a modification of a result of Meir and 
Moon [37]. 

Woods' Tauberian Theorem 

Theorem E . l (Woods, 1997). Let S(x),T(x) be two power series such 
that, for some p with 0 < p < 1, T(x) G RTp. Let TL(x) = S(x) *T(x). //, 
for some C > 0 and p < 1, 

(E.l.l) 
(E.1.2) 

s(n) = 0(p-n/n) 
t(n) ~ Cp'71/^ 

and S(p) converges absolutely then lim 
r(n) 
t(n) exists and 

Hm ^ = S(p) = Hm ^ 4 . 
n - 0 0 t(n) K J x-^p T(x) 

PROOF. The case that p < 0 is covered by Theorem 5.1, in view of 
Lemma 5.2, with to{n) — Cn~^. So, for the rest of the proof, assume 

0 < p < 1. 

Assume (by the change of variable x <— px) that p = 1. Then 

r(n) 
S ( l ) -

t(n) 
< 

k<n 
sa)-^;^) + E s w- r in) 

k<n 
t(n) 

11 

and term I goes to 0 as n —• 00. So one only needs to show that term II 
vanishes as n —> 00. For this, 

273 
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Esw- r(n) 

k<n 
t(n) < E |*w-(i-

k<y/n 

t(n - k) 
t{n) 

in 

+ E \<k)\ + E iswi 
y/n<k<r y/n<k<n 

t(n - k) 
t(n) 

IV V 

Term IV goes to 0 as n —> oo since ]Pfc |s(fc)| is convergent. Thus it only 
remains to show that terms III and V also go to 0. 

t(n-k) For term III, let kn be a value of k in [0, \/n} for which 

achieves its maximum value. Then 
1 - t(n) 

£ > ) - ( i - ^ ) | * £!•<*>• (i i ( n _ M 
k<^/n k<^/n 

t(n) 

< (SX^-K'-^) 
fc>0 

t(n) 

Since /cn < y/n it follows that n - fcn ^ oo as n ^ oo. Since t(ri) ~ Cn ^ 
it follows that 

t(n-kn) ~ C-in-kn)-**. 

Now, from lim A:n/n = 0, 
n—>oo 

and thus 

t(n-kn) ~ C n - / i - £(n). 
From this, for any e > 0, for n sufficiently large, 

1 -
t(n - kn) 

tin) 
< 6. 

This shows that term III goes to 0 as n —> oo. 
So now one only needs to show that term V has limit 0 as n —> oo. Let 

cn = E is(fc)i> 
k>y/n 

the tail end of the convergent series ^2k \s(k)\. Next define 

Mn = n\fC~n + yfn. 
Then the following hold: 
(E.1.3) lim Cn = 0 
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(E.1.4) lim Mn = oo 
n—>oo 

(E.1.5) lim ( n - M „ ) = oo 
n—»oo 

y/n < n — Mn for n sufficiently large 
(E.1.6) Mn = o(rc) 
(E.1.7) nCn = o(Mn). 

Break up term V into two sums as follows: 

E w * > i ^ = E w * ) i ^ 
^/n<k<n y/n<k<n—Mn 

v v ' 
VI 

t(n-fc) 
+ E I*(*OI- t(n) 

n-Mn<k<n v y 

S v ' 
VII 

It will be proved that each of the terms VI and VII goes to 0 as n —> oo. 
un _ M 

Define kn to be a k in (y/n,n — Mn] for which — — — has maximum 
t{n) 

value. Then 

E L W I ^ ^ ^ T ^ - E i.wi 
y/n<k<n-Mn y/n<k<n-Mn 

t(n - kn) (E.1.8) < C.- ( ( n ) . 

Clearly n — kn > Mn and (E.1.4) imply 

(E.1.9) lim {n-kn) = oo. 
n—>oo 

From (E.1.2), (E.1.4), and (E.1.9), 

t(n-kn) ~ C-Cn- fc , , ) - " 
(E.1.10) i(Mn) ~ C M / 

and thus 

(E.l.ll) ^(n ~ fc"} ~ (Jh-Y. 
( ' t(Mn) \n-kj 

From kn < n — Mn , one has ^ - < 1, so ( ^—- 1 < 1. Combining this 

with (E.l . l l) leads to 

(E.1.12) t(n-kn) = 0(t(Mn)), 
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and applying (E.1.12) to (E.1.8) gives 

E w * ) i ^ = ° ( < ^ ) 
^/E<k<n-Mn

 v y v y 

= 0(cn . (n/Mny) (E.1.2), (E.1.10) 

= 0 ( ( C n . n / M n f ) (E.1.3), 0 </x < 1, 

and the last line goes to 0 as n —> oc by (E.1.7). Thus term VI goes to 0 as 
n —» oo. 

For term VII, 

E W * > l ^ - E Wn-*)l^. 
n-Mn<k<n v y /c<Mn

 v y 

Now choose kn to be a k < Mn such that \s(n — k)\ is maximal. Then 

£ K n - f c ) | - ^ < K n - f c n ) l £ 

From (E.l.l) and (E.1.5), 

s(n-kn) = Of r 
\n — kn 

and, since fcn = o(n) by (E.1.6), 

1 1 
n — kn n 

Thus 

(E.1.13) s{n-kn) = 0 ( l / n ) . 

For 0 < // < 1, one has an upper bound on k~^ given by 

A_ fk dx 
k^ < A_!^' . , , for x > 0, 
k^ 

and this leads to 

1 f71 

l<fc<n 

n1"' ' 1 
= 1 + 1 — \l 1 — /U 

1 — M 1 — M ' 

n 1 " ^ )u 
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and thus 

(E-i-14) E h = °(n1"")-k» 
l<k<n 

Now, from t{k) ~ /c~M, 

(E.1.15) t(k) = 0(k-fi) 

(E.1.18) - L j = <,(*•). 

Then 

= ° ( ^ E fc~") by (E.1.15), (E.1.16) 
l< fc<M n 

= O^Mjn)1-^ by (E.1.14). 

From (E.1.6), 

lim (M n /n ) 1 _ M = 0, 
n—»oo 

and thus term VII goes to 0 as n —•> oo. This finishes the proof. • 

Woods' Density Theorem 

The following theorem from [57] is used to prove monadic second-order 
limit laws for classes of unary functions with unary predicates. 

Theorem E.2 (Woods, 1997). Suppose A is an additive number system 
with 

(E.2.1) p{n) = 0(/3n /n) 
(E.2.2) a(n) ~ CP>n/n», 

for some C > 0, (3 > \, and \i < 1. Then all partition sets of A have 
asymptotic density which equals the Dirichlet density. 

PROOF. From a(n) ~ Cf3n/n» one has p = 1/0, and A G RTp. If /? = 1 
then Theorem 4.2 applies. So assume 0 > 1. Let B be a partition set. 

Case 1: (9(B) = 0. 
From Corollary 5.7 one has 5(B) = 0. 

Case 2: 9(B) > 0. 
For this case it will be proved that Theorem E.l applies with 

S(x) = [B/A}(x) and T(x) = A(x). 

Note that S(x) is absolutely convergent on [0, p] by Lemma 5.11. 
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Let B = X^=i 7«Pj> let J be the set of indices j in {1, . . . , k} such that 
APj.(p) < oo, and let Q = \JjeJ Pj. Then, for 0 < x < p, since <9(B) > 0 , 

[B/A](x) = B(x)/A(x) 

= (nb,p,](^))/AQ(x) 

= (!ItoPiK*)) • exp ( - £ QOO/™ 
j G J ra>l 

so it follows that 

\s(n)\ = M ((n^-Pii^)) • exp (- E Q(^)M) 

< M((n[7 ,P , ] (^ ) ) -exp(5]Q(^) / 

j ^ x 

< [xn]{AQ(x)-AQ(x)) 

= [ x n ] e x p ( 2 ^ Q ( x m ) / m ) . 
m>l 

Let U(x) = >̂ w(n)a;n be the power series expansion of 2 YJ Q(xm)/m. 
n > 0 m > l 

Then u(n) = 0[p~n/n) follows from: 

u(n) < 2^2p(n/k)/k 
k\n 

= 2Y,{k/n)p{k) 
k\n 

= 2p(n) + 2 Y, (k/nMk) 
k\n 

\<k<n/2 

= 0(p-n/n + J2 (kMp'k/k) 

= 0{p-n/n). 

k\n 
l<k<n/2 
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Now let V(x) = X^n>o v(n)xU be the power series expansion of exp (U(x)). 
Since 

AQ(P) = n A p ; ( p ) < °°' 

U(p) < oo, so V(x) — exp(U(x)), convergent at p. The claim is that 
v(n) G 0(p~n/n). Differentiating V(x) = exp (U(x)) gives 

V'{x) = U'(x)-exp(U(x)) 

= U' (x)-V(x) . 

By equating the coefficients of x n _ 1 , 

nv{n) = y ^ ku(k)v(n — fc) 

n 

fc=i 
n 

= 0(j2p-kv{n-k)^ 
n 

fe=l 

n - 1 

k=0 

so ^(n) = 0[p~n/n) since 
n - l 
5>(fc)P* < V(p) - exp(U(p)) < oo. 
fc=0 

Now, since |s(n)| < v{n), it follows that s(n) = 0 ( p - n / n ) . Thus S(x) 
and T(x) fulfill the hypotheses of Theorem E.l. Since B(x) = S(x) * A(x) 
it follows that B has asymptotic density S(p), which is the Dirichlet density 
of B. Thus the same applies to B. • 
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Perron integral formula, 210 
play of the game, 109 
polynomial function, 236 
polynomially bounded function, 140 
power series, 4 

expansion, 9 
function, 240 

prenex form, 224 
primes of A, 143 
propositional connectives, 104 

quantifier 
elimination, 223 
rank, 107 
symbols, 104 

radius of convergence, 5, 241 
radius of convergence of A, 31 
range of / , 233 
rank 

of A, 20, 143 
of a free commutative monoid, 18 

ratio test, 13 
real function, 233 
reduced 

additive number system, 37 
form of A, 38 

refined counting function, 251, 256 
reflexive law, 22 
regular variation at infinity of index a, 

136 
restriction, 234 
Riemann Hypothesis, 152 
Riemann zeta function, 146 
right inverse, 246 
rigid, xiv, 24 

Sarkozy's Density Theorem, 206 



SUBJECT INDEX 289 

satisfies, 104 
Schur's Tauberian Theorem, 62 
sentence, 104 
set of 

additives of an element, 51 
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subexponential function, 15 
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function, 103 
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