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A foreword to the English edition 

This is a book that I like. 
The first thing is that it is extremely well written. Even under the disguise of 

a translation—by a gifted translator, as far I can judge from my weak knowledge 
of English—you can feel the shivering flesh of the French original. 

Scientific French, what a beautiful language! Well, I know that beauty is a 
cultural trait, and that there is no linguistic basis to qualify a language as more 
beautiful than others. But can you imagine this book written in another language? 

Well intentioned people have told me that it is quite rude to address a person 
in a language he/she cannot understand. If this were true, the community of 
mathematicians would rate high in the scale of rudeness, considering the number 
of times some of its members spoke to me in English. Listen: I have done my best 
to be understood by my readers, and used for that the only language in which I 
can offer this best; if you feel that you may be interested in what I say, then you 
must take a step towards me, and learn something of my idiom. My hope is that 
the present translation will help you to reach my original words, if you happen to 
be a speaker of English. 

Yes, I believe that the plurality of languages in use for communication in science 
has a value per se, that some effort should be spent to maintain it and even to 
develop it, and that the menial inconvenience that it may generate is a small price 
to pay for the production of well written textbooks. I have no French nationalist 
feelings, nor a nostalgia for the time when French had a more dominant position 
than in our present. I am working concretely for the future, and my writing in 
French is doomed by practical considerations: for instance, I use consciously the 
fact that there is still little room for French in the domain of international scientific 
publishing. 

Naturally, I would have preferred that this second edition be a plain reproduc
tion of the first, but the editor of the AMS Publications that approached me (Sergei 
Gelfand) was firmly opposed to this eventuality. He also made clear from the be
ginning that the beautiful pictures that adorn the original will not be included, 
justifying his brutal decision by a call to American folklore (copyright problems) 
according to which anything is fair provided it follows the law of commercial morals 
(to illustrate the point, Walt Disney produced a film on Notre Dame de Paris with
out mentioning Victor Hugo as a co-author of the scenario, his works being long 
ago in the public domain). 

The second thing is that it is extremely carefully planned. The chapters follow 
each other in a natural order, the proofs of the theorems are adequately devised, 
to the point that, in some cases, they have been extended later to wider contexts 
by other authors. The excellency of its construction has caused a major problem 
concerning the present edition; this book is now obsolete in many places, because 
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xii A F O R E W O R D T O T H E ENGLISH EDITION 

its subject has undergone a drastic evolution in the meantime (to which the book 
itself contributed!). On the other hand, it seems difficult to submit it as a revision, 
because its different pieces are so intimately imbricated that altering one of them 
would shake the whole building. 

Finally, it was decided to reproduce it as it was, with the only addition of this 
foreword and of a postscript where you find a few comments and references that 
actualize the text (but do not claim to account for all the present developments 
of the subject), and correct its ideological orientation; the postcript signals also 
all the alterations of the original that go beyond the mere correction of a misprint 
(there is an incredibly small number of mistakes in the text, for a book of this 
kind). The postcript has its own list of references, given between { }; by contrast, 
the references of the main text are given between []. I hope that, with the help of 
this limited critical apparatus, the book will prove itself not only a mere historical 
document, but also an instrument of work to be efficiently used. 

As you see, my book has been affected by the passing of time. This is why 
I allow myself to express such unconditional praise of my own work, without the 
slightest feeling of immodesty, because I am no more the man who wrote it during 
the years 1986-87. When I read it again thirteen years later, while reviewing the 
translation, it became apparent to me that I have lost the power on the words that 
were mine then, and that I am no longer able to write a text of this intensity. 

This time, I have no picturesque details to tell you, for your enjoyment, con
cerning its publication: I did not renew the experiences of my first book, and I 
simply did not approach any professional, and sold the first copies in a meeting 
in Trento, in July 1987, only three weeks after having completed the typing of the 
manuscript (the original edition was of 400 copies). I only regret that, in the period 
of my maximal literary efficiency, I missed the support of an enlightened scientific 
publisher. 

I am certain that this publisher would have spared me a lot of trouble, not only 
from the burden of the commercial diffusion of the book but would have tamed my 
instinctive taste for gratuitous provocation. This taste is so naturally rooted in me 
that even now, being an old man, I still do not understand the negative reaction 
of people that come unwarned in contact with the book. It contains nothing, after 
all, that you cannot find in your daily newspaper, or on the posters framed at 
your favorite bus stop, and would be easily admitted (if not considered as twaddles 
of the childish variety) for illustration in any work of literary fiction. What is so 
sacred in mathematics (and I consider my scientific activity as just a part of my 
normal life), to attach to my book an essence of scandal and submit it to the general 
reprobation? 

Although the progression of my academic career has made me a kind of mon
ument of sufficiency and respectability, it is not without a touch of jubilation that 
I have joined the restricted club of cursed writers, such as Charles Baudelaire and 
Oscar Wilde, who have been prosecuted on the basis of immorality (I can even 
safely assume that I am the author of the only immoral mathematical textbook of 
all time!). Unfortunately, the punishment of the guilty is no more efficient as it 
was in their time, and I cannot claim a crown of martyrdom for the cause I was 
defending. 

What I have understood of my sins is that they were, in order of increasing 
magnitude: (i) that the book was published by myself, and not by a respectable 
and well-known publisher; (ii) that an inscription in Arabic was reproduced on the 
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cover; (iii) that I have illustrated the book with pictures of nude women; (iv) that 
it was written in French. 

I am ready to offer my apologies to any person that my irresponsible behavior 
has offended, hoping that I have caused to them no harm more serious than a 
superficial irritation. I will offer no regrets, and hoping that they will forgive me, 
considering a last thing, that this book has been extremely useful. Not only because 
it contains material found nowhere else (e.g. the axioms for ranked universes in the 
Introduction, that has been reproduced verbatim in Borovik and Nesin's books, the 
identity of "Borovik groups" and "Groups of finite Morley rank", etc.), but also 
because it has been used as a textbook by some young men and young women, 
a couple of them having found their way in the field of research in mathematical 
logic. I hope that this translation meets the same auspicious fate. 

Les Brotteaux, December 2000, 
B. P. 
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Postscript: Thirteen years later 

Introduction 

Don Quixote. I thank Angel Loureiro and Enrique Casanovas for providing this 
quotation of Cervantes in its original spelling. 

Cherlin's Conjecture, which was conjectured also by Zil'ber in [Zil77], is still 
pending, but the problem has changed in the meantime. What I call here Zil'ber's 
Conjecture, which I effectively recorded from Zil'ber during my visit to Kemerovo 
in 1986, has been disproved by Ehud HRUSHOVSKI in {Hru 92}. 

The Nirvana Principle (which is more widely known under the technical name 
of "Zil'ber Trichotomy Conjecture") is definitely false; see {Hru 93}. Nevertheless, 
it is valid in the frame of "Zariski structures", which is much more restricted than 
finite Morley rank, as shown in {HZ 93}; this last fact has dramatic consequences 
for the applications of Model theory to Algebraic geometry (for a painless initiation 
to Hrushovski's works on the subject, see {Goo 97}). 

It is no longer believed that the Cherlin-Zil'ber Conjecture could be derived, if true, 
out of pure model-theoretic nonsense, as suggested in this introduction. There is 
presently more hope in what some call Borovik's program for an inductive clas
sification of the simple groups of finite Morley rank based on the shape of their 
Sylow 2-subgroups: there is a lot of Algebra in it, inspired by the classification 
of finite simple groups from a revisionist perspective. This approach has recently 
produced many solid works, and for a start one could read the textbook by Alexan
dre Vasilievich BOROVIK and Ali Azizog NESIN {BN 94}, where a more lim
ited acception of the phrase "bad field" was introduced, since the too general one 
proposed in this introduction was rendered obsolete by the failure of the Nir
vana principle: a bad field is now a field of finite Morley rank with a proper 
infinite definable multiplicative subgroup. It is not known for certain that such 
fields exist, although some good reasons in favour of their existence are given in 
{Poi xxa}. 

Chapter 1 

1.1. Fields of Morley rank cja.n, for arbitrary a and n, are constructed in 
{Poi 99}. 

Theorem 1.13, step 1. According to a result of Otto Kegel, {Keg 67}, there are 
no infinite uniformly locally finite simple groups. 

1.5. Last paragraph: a stable, nonsuperstable, omega-categorical theory has been 
constructed by Hrushovski; see Wag 94. But the method has failed to produce 
exotic groups: all presently known stable omega-categorical groups are abelian by 
finite. 
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1.6. This old theorem of Thomas, blended with a new one by Wagner {Wag xx}, has 
generated a result which conforms to the ideology of the introduction in {Poi xxb}, 
concerning the definable subgroups of GLn(K), for K any field of finite Morley 
rank. 

Chapter 3 

3.1. As mentioned above, we are no longer chasing aurochs with stone axes. 

Lemma 3.5. This is a very special case of a deep and unexpected theorem of 
Frank Wagner concerning the fields of finite Morley rank, {Wag xx}. 

3.4. It would be more traditional for the definition of the hypocenter and of the 
hypercenter of an infinite group, to expand the central series transfinitely. In the 
present case, it is not that important, according to Corollary 3.15. 

Corollary 3.24. Did you notice that there is a gratuitous affirmation in the 
proof? Why G has finite exponent? But do not worry, the gap has been filled in 
{AFG 91}, and, indeed, there are no infinite groups of finite Morley rank with 
finitely many conjugacy classes! 

Corollary 3.28, Proposition 3.29. In the statement of the two results and the 
proof of the second, the french edition quotes the exact words of Galois. 

Theorem 3.31. A group of this kind has been constructed by Olshanskii and some 
of his students, but none of them are known to have finite Morley rank. 

Chapter 4 

4.1. As observed by Simon Thomas, the conjecture after Corollary 4.2, in the case 
of simple groups, is in fact an equivalent to Cherlin's Conjecture; see {Poi xxb}. 

4.5. End of the section: a group of generic exponent 3 has exponent 3; by contrast 
there exist groups of generic exponent n , but not of exponent n, for every n • 7. 
None of these groups is known to be stable; see {Jab 00}. 

Theorem 4.13. In the proof, the definition of V has been lightened somehow. 

4.7. End of the section: the two fields conjecture was disproved by {Hru 92}. 

Chapter 5 

Corollary 5.2. A final sentence has been added to the proof. 

Lemma 5.16. Groups satisfying the conclusion of the lemma has been called R-
groups by Frank Wagner, who has extended for them many properties of superstable 
groups; see {Wag 97}. 

Chapter 6 

6.2. Berline's Conjecture was disproved in {Poi 99}. 

Chapter 7 

7.3 and the last paragraph of 7.2 have been altered, since while speaking French I 
failed to see how to extend rigidity to the context. 
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