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Preface 

This monograph is devoted to the spectral and scattering theory of quan­
tum Hamiltonians describing systems of TV interacting particles in an exter­
nal constant magnetic field. Most of it consists of the results obtained by 
the authors from 1993 to 1999. 

Quantum scattering theory is the subfield of quantum mechanics which 
deals with the large-time asymptotics of the solutions of the Schrodinger 
equation and with the structure of the continuous spectrum of the corre­
sponding Schrodinger operator. One of its main problems is to prove (or 
disprove) asymptotic completeness, which roughly speaking, is a statement 
that all solutions of the Schrodinger equation under consideration must fol­
low asymptotically certain prescribed patterns. (The precise mathematical 
formulation of this will be given in Chapter 6.) There is a vast body of 
literature on this and other aspects of 2-particle scattering, see e.g., [RS] 
or [Ho, vols. II, IV] for an overview. For TV > 3 particles, the problem 
becomes much more complicated. It was only in the last 20 years that the 
TV-body scattering theory underwent a period of rapid development, begin­
ning with the work of Enss [E2], [E3], and culminating in the proof of TV-
body asymptotic completeness by Sigal-Soffer [SSI] and Derezihski [Del], 
with significant contributions by many other authors, see e.g., [Ml], [PSS], 
[FH1], [Gr], [Y]. We refer the reader to [DG1] for a more detailed account 
of that story and for a self-contained presentation of the results obtained in 
the 1980's and 90's. 

Our work was largely inspired by these developments: we set out to 
extend the new results on asymptotic completeness to the case of TV-body 
systems in a constant magnetic field. Such systems are of considerable in­
terest in quantum physics. There is a large body of research on the quantum 
Hall effect; most of it assumes that there are no interactions between the 
particles save for the Pauli exclusion principle, but it is possible that at 
some point the scattering effects will have to be taken into account. In as­
trophysics, there is some evidence that strong magnetic fields exist on the 
surfaces of neutron stars and white dwarfs. "Quantum dots" are a prime 
example of quantum systems which can be significantly affected by magnetic 
fields of strength comparable to what can actually be achieved in existing 
laboratories. Physicists have also been studying highly excited (Rydberg) 
atoms in magnetic fields, which offer an opportunity to study the phenomena 
of "quantum chaos". See e.g., [RWHG] for a survey of some of the recent 
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x PREFACE 

(theoretical and experimental) work on the subject. Furthermore, there is 
a growing interest in magnetic Hamiltonians among mathematicians and 
mathematical physicists. In particular, questions such as the stability of 
matter [Li], [LSS], [Fe], eigenvalue or resonance asymptotics [Ivl], [Iv2], 
[FW1], [FW2], [FW3], and decay of eigenfunctions [Er], [N], [So] were 
recently addressed in the literature. 

The purpose of this book is twofold. Firstly, in Chapter 1 we provide 
a general introduction to the spectral theory of TV-body magnetic Hamil­
tonians, aimed at a wider audience of mathematical physicists. Secondly, 
we present a proof of asymptotic completeness for wide classes of magnetic 
Hamiltonians, namely for generic 3-body systems and for TV-body systems 
whose all proper subsystems have nonzero total electric charge. The proof 
requires much more than simply applying the known methods in a slightly 
different situation; this book focuses on the new methods and techniques 
that are specific to the magnetic case. In particular, this includes an ex­
tension of the Mourre theory to "dispersive" Hamiltonians with a rather 
complicated structure (Chapter 3) and a geometrical analysis of the prop­
agation of charged systems (Chapter 5). Our goal was to give a clear and 
reasonably self-contained presentation of the subject and to provide a solid 
foundation for further research. 

The book is addressed mostly to researchers and graduate students in 
mathematical physics. We do expect the reader to be familiar with quan­
tum mechanics, functional analysis, and modern PDE theory (especially 
with pseudodifferential calculus). A background in TV-body scattering and 
abstract Mourre theory will be useful, but not indispensable. To the readers 
who wish to acquire such background we recommend the monographs [DG1] 
and [ABG]. However, anyone willing to accept without proof the results 
of [DG1] and [ABG] that we will invoke should also be able to follow all 
of our arguments. In fact parts of this book (especially Chapters 1 and 2) 
may serve as an introduction to the TV-body theory. We emphasize that no 
previous exposure to magnetic Schrodinger operators is required. 

Some of the results presented here were first published in [GL1-3]. How­
ever much of the material, including all of our results in the 2—dimensional 
case and a large part of the geometrical analysis of Chapter 5, is published 
here for the first time. The Mourre theory for magnetic Hamiltonians (Chap­
ter 3) has been completely reworked and rewritten, especially in the case we 
call "dispersive". 



Notation 

For the reader's convenience, we collect and explain here the notation 
used throughout this book. 

Spaces: X, Y, Z,X, Y, Z, often subscripted or superscripted, will be Eu­
clidean spaces (isomorphic to Rm for some m). The coordinates in these 
spaces will be denoted by x, y, z, x, y, z, with appropriate subscripts or 
superscripts. The Roman letters X, Y, Z, will be used to denote the con­
figuration spaces before the center of mass separation, and the italic X, Y, 
Z denote the same spaces after the center of mass separation. (Most of the 
time we will only work with the latter spaces.) A similar convention will be 
used for the coordinates x, x, etc. Since we will actually separate the center 
of mass only in one direction, we will have Y = Y and y = y. 
Dual spaces: The spaces dual to X, Y, Z, X, Y, Z will be denoted by X', Y', 
etc. The duality will be denoted by (-,•). If X is one of the configuration 
spaces as above, T*X := X x Xr will be the cotangent bundle of X. 
Derivatives: The symbol dxf or -7^ will mean the partial derivative of f in 
x if x is a variable in R, and Vxf if x is a vector variable. We will also write 
Dxf = —idxf. We will often omit the subscripts x if the choice of variables 
is clear from context, and abbreviate dXj to <9j, DXj to D^ etc. 
For a — ( a i , . . . , a n ) , we use the standard notation 

For 0 < e < 1, we will denote: 

Ce(R) = {fe C(R) : \f(x + y)- f(y)\ < c(x)\y\e for all x G R, \y\ < 1}, 

Ck+€(R) = {fe Ck(R) : f{k) G Ce(R)}. 

Classes of symbols: For an Euclidean space X (usually equal to one of 
the configuration spaces above), S{X) is the Schwartz class of functions on 
X, and S'(X) is the space of tempered distributions on X. We will also 
work with the following classes of symbols: 

S\X) = {f€ C°°{X)\ \daf{x)\ <ca, xe X, \a\ > 0}, 

and, for e G R, 

Se
cl{X) = {fe C°°(X)\ \Daf(x)\ < cQ(*>£- |a |, xeX, \a\ > 0}. 
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xii NOTATION 

We will use the convention that whenever an estimate is stated for all func­
tions / i , /2, • • • in a specified class of symbols 5, the constants in the estimate 
are understood to depend only on the seminorms of fi in S, and that this 
dependence will be linear for each fi. 

Opera tors : H, H!\ etc., often subscripted or superscripted, will be 
Hilbert spaces, usually equal to I?(X), where X is one of the configuration 
spaces above. The inner product on H will be denoted by (•,•), and will be 
linear in the second variable and antilinear in the first one. 
A, B, iJ, etc. will be linear operators on H. For Hamiltonians of the iV-body 
systems under consideration, we adopt the convention that the Roman H 
and the italic H are, respectively, the Hamiltonians of the system before 
and after the center of mass separation. 
The identity operator on H will be denoted by 1* ,̂ or simply by 1 if it is 
clear from context what H is. 
B(Hi,0,2) is the algebra of bounded linear operators from Hi to H2', we 
will abbreviate B(H,H) =: B(H). 
We will use s— lim and w— lim to denote the limits in the strong and weak 
topology, respectively. 
T>(H) is the domain of H; it will always be either specified explicitly or 
clear from context whether the form domain or the operator domain of H 
is meant. The graph norm on T>(H) is 

\W\\v(H) = IMI + \\Hu\\. 

The symbols cr(i?), crpp(i7), crcont(H) will denote the spectrum of H, the 
point spectrum of i7, and the continuous spectrum of if, respectively. We 
will also use HPP(H), HCOnt(H), W a c(#) ^° denote the pure point, continu­
ous, and absolutely continuous spectral subspaces of H. 
1Q(H) is the spectral projection of the self-adjoint operator if on a set 
tt cK. 
If A is a symmetric quadratic form and B is a symmetric operator on 7Y, 
the phrase UA is bounded on the domain of B" means that 

\A{u,u)\ <C||£7i||2, ueV(B). 
(In particular, it implies the inclusion T>(A) C V(B2) between the form 
domains of A and B2.) 
If A is an operator, the phrase UA preserves the domain of B" means that 
Hue V{B) H V(A), then An e V(B) and 

\\BAu\\ <C(\\u\\ + \\Bu\\). 

A mapping M 3 k —> A(k), where M i s a metric space (usually a subset of 
Rn) and A(k) are self-adjoint operators on 7Y, is said to be continuous in 
the norm resolvent sense if the mapping 

M3k^(A(k) + z)~1 eB(H) 
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is norm continuous in k for any z with I m z ^ 0, and analytic in the norm 
resolvent sense if the above mapping is analytic in k for any z with I m z ^ O . 
We will use UA + h.c." to denote UA + A*; typically, this notation will be 
employed when A is a long expression of the form A — A\ . . . Ak, in which 
case the "h.c." stands for A*k . . . A*. 

We define sdA(H) := [H,iA] and a d ^ ( # ) := [ a d ^ t f ) , A]. 
By "undoing a commutator" we will mean writing [A, B] as AB — BA and 
estimating each term separately. 
If A(t) is a family of operators on H depending on a parameter t, we will 
write A(t) = 0{ta) if A{t) G B(H) for t large enough and ||A(t)| | = 0{ta). 
A similar convention will be used for A(t) = o(ta). 
The notation "A>*B at H — A", used heavily in Chapter 3, is explained 
at the beginning of Section 3.1. 
The classes of operators CS(A)1 where A is a self-adjoint operator on 71, are 
defined in Section 3.2. 
Cut-off functions: 1Q will be the characteristic function of the set ft. 
F(x G £1) is a "smoothed out" characteristic function of Q\ it is a C°° 
function equal to 0 outside O and to 1 in a slightly smaller set. 
Misce l lanous: (x) is a function in C°°(X), greater than 1/2 for all x G X 
and equal to \x\ for \x\ > 1. 
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