Braid and Knot Theory in Dimension Four

Seiichi Kamada

Titles in This Series

95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002
92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001
85 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, 2001
84 László Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001
83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000
81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000
74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000
73 John Locker, Spectral theory of non-self-adjoint two-point differential operators, 2000
72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

Braid and Knot Theory in Dimension Four

Seiichi Kamada

Editorial Board

Peter Landweber
Tudor Ratiu
Michael Loss, Chair
J. T. Stafford

2000 Mathematics Subject Classification. Primary 57Q45; Secondary 20F36, 57M05, 57M12, 57M25, 57Q35.

Abstract. Braid theory and knot theory are related to each other via two famous results due to Alexander and Markov. Alexander's theorem states that any knot or link can be put into braid form. Markov's theorem gives necessary and sufficient conditions to conclude that two braids represent the same knot or link. Thus one can use braid theory to study knot theory, and vice versa. In this book we generalize braid theory to dimension four. We develop the theory of surface braids and apply it to study surface links. Especially, the generalized Alexander and Markov theorems in dimension four are given. This book is the first place that contains a complete proof of the generalized Markov theorem.

Surface links are also studied via the motion picture method, and some important techniques of this method are studied. For surface braids, various methods to describe them are introduced and developed: the motion picture method, the chart description, the braid monodromy, and the braid system. These tools are fundamental to understanding and computing invariants of surface braids and surface links.

A table of knotted surfaces is included with a computation of Alexander polynomials. The braid techniques are extended to represent link homotopy classes.

Library of Congress Cataloging-in-Publication Data

Kamada, Seiichi, 1964-
Braid and knot theory in dimension four / Seiichi Kamada. p. cm. - (Mathematical surveys and monographs ; v. 95)

Includes bibliographical references and index.
ISBN 0-8218-2969-6 (alk. paper)

1. Braid theory. 2. Knot theory. I. Title. II. Mathematical surveys and monographs ; no. 95 .

QA612.23.K36 2002
514'.224-dc21
2002018274

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, P. O. Box 6248 , Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2002 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
©
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

Contents

Preface xi
Chapter 0. Basic Notions and Notation 1
0.1. Properness and Local Flatness 1
0.2. Isotopy 2
0.3. Ambient Isotopy 3
0.4 . Notation 3
Part 1. Classical Braids and Links 5
Chapter 1. Braids 7
1.1. Geometric Braids and the Braid Group 7
1.2. Configuration Space 8
1.3. Pure Braids and Braid Permutation 10
1.4. Brick Regular Neighborhood 11
1.5. Braid Isotopy Extension Theorem 12
1.6. Polygonal Braids 13
1.7. Braid Diagrams 14
1.8. Presentation of the Braid Group 15
Chapter 2. Braid Automorphisms 19
2.1. The Isotopies Associated with a Braid 19
2.2. Mapping Class Group 20
2.3. Hurwitz Arc System 21
2.4. Hurwitz Arc System of a Braid 22
2.5. Injectivity of Φ 23
2.6. Artin's Braid Automorphism 23
2.7. Slide Action of the Braid Group 25
Chapter 3. Classical Links 27
3.1. Knots and Links 27
3.2. Basic Symmetries 28
3.3. The Regular Neighborhood of a Link 28
3.4. Trivial Links 29
3.5. Split Union and Connected Sum 30
3.6. Combinatorial Equivalence 30
3.7. Regular Projections 31
3.8. Link Diagrams 32
3.9. Reidemeister Moves 33
3.10. The Group of a Link 35
3.11. A Note on Knots as Embeddings 38

Chapter 4. Braid Presentation of Links 41
4.1. Presenting Links by Braids 41
4.2. The Braiding Process 42
4.3. Markov's Theorem 43

Chapter 5. Deformation Chain and Markov's Theorem 47
5.1. \mathcal{E} Operation 47
5.2. Deformation Chains 48
5.3. Deformation Chains at the Triangulation Level 49
5.4. Height Reduction and Markov's Theorem 50
5.5. Notes 50

Part 2. Surface Knots and Links 51
Chapter 6. Surface Links 53
6.1. Surface Links 53
6.2. Trivial Surface Links 53
6.3. Combinatorial Equivalence 55

Chapter 7. Surface Link Diagrams 57
7.1. Generic Maps 57
7.2. Surface Link Diagrams 58
7.3. Elementary Moves to Diagrams 59

Chapter 8. Motion Pictures 63
8.1. Motion Pictures 63
8.2. Motion Pictures of Surface Links 63
8.3. The Motion Picture of a Non-locally Flat Surface 65
8.4. Elementary Critical Bands 66
8.5. Trivial Disk Systems 67
8.6. Proof of Lemma 8.7 69

Chapter 9. Normal Forms of Surface Links 71
9.1. Link Transformation Sequence 71
9.2. The Realizing Surface 72
9.3. Technical Lemmas on Realizing Surfaces 72
9.4. Closed Realizing Surface 75
9.5. The Normal Form 75

Chapter 10. Examples (Spinning) 79
10.1. Spinning Construction 79
10.2. Twist-Spinning Construction 80
10.3. Deform-Spinning Construction 82
10.4. Deformations 83
10.5. Deform-Spun Projective Planes 84

Chapter 11. Ribbon Surface Links 87
11.1. \quad 1-Handle and 2-Handle Surgery 87
11.2. Ribbon Surface Links 88
11.3. Slice versus Ribbon 89
Chapter 12. Presentations of Surface Link Groups 91
12.1. The Presentation from a Diagram 91
12.2. The Presentation from a Motion Picture 92
12.3. The Elementary Ideals 94
Part 3. Surface Braids 97
Chapter 13. Branched Coverings 99
13.1. Branched Coverings 99
13.2. Types of Branch Points 100
13.3. Riemann-Hurwitz Formula 101
13.4. Monodromy 102
13.5. Simple Branched Coverings 103
Chapter 14. Surface Braids 105
14.1. Surface Braids 105
14.2. Motion Pictures 105
14.3. Trivial Surface Braids 107
14.4. Simple Surface Braids 108
14.5. Equivalence Relations 109
Chapter 15. Products of Surface Braids 113
15.1. Products of Motion Pictures 113
15.2. Products of Surface Braids 114
15.3. The Surface Braid Monoid 114
Chapter 16. Braided Surfaces 117
16.1. Braided Surfaces 117
16.2. The Motion Picture of a Braided Surface 117
16.3. Equivalence Relations on Braided Surfaces 117
16.4. Braided Surfaces without Branch Points 119
16.5. The Set A_{m} and Multiple Cones 119
16.6. Braided Surfaces with One Branch Point 120
Chapter 17. Braid Monodromy 123
17.1. Braid Monodromy 123
17.2. Braid System 124
17.3. A Characterization of Braid Systems 125
17.4. Braid Monodromy Principal, I 126
17.5. G-Monodromy and G-System 127
17.6. Braid Monodromy Principal, II 128
Chapter 18. Chart Descriptions 129
18.1. Introduction 129
18.2. BWTS Charts 129
18.3. Enlarged BWTS Charts 132
18.4. Surface Braid Charts 135
18.5. From Charts to Surface Braids, I 135
18.6. From Surface Braids to Charts 136
18.7. From Charts to Surface Braids, II 138
18.8. A Chart as the Singularity of a Projection 139
18.9. From Charts to Braid Monodromies: Intersection Braid Word 140
18.10. From Charts to Braid Systems 141
18.11. Chart Moves 142
18.12. Further Examples of Chart Moves 146
Chapter 19. Non-simple Surface Braids 149
19.1. Singular Points in a Motion Picture 149
19.2. Reduction of the Singular Index 149
19.3. Fission/Fusion of Branch Points 151
19.4. Stable Non-simple Surface Braids 152
Chapter 20. 1-Handle Surgery on Surface Braids 155
20.1. Nice 1-Handles 155
20.2. Free Edges and Oval Nests 156
Part 4. Braid Presentation of Surface Links 157
Chapter 21. The Normal Braid Presentation 159
21.1. Simple Bands 159
21.2. The Normal Braid Form of a Surface Link 160
21.3. The Normal Braid Form Theorem 161
21.4. The 2-Twist Spun Trefoil 164
21.5. Strategy for Braiding 168
Chapter 22. Braiding Ribbon Surface Links 173
22.1. The Braid Form of a Ribbon Surface Link 173
22.2. The Spun Trefoil 175
Chapter 23. Alexander's Theorem in Dimension Four 179
23.1. Closed Surface Braids in $D^{2} \times S^{2}$ 179
23.2. Closed Surface Braids in \mathbb{R}^{4} 180
23.3. Alexander's Theorem in Dimension Four 181
23.4. The Chart Description of a Surface Link 181
23.5. The Braid Index of a Surface Link 182
23.6. Another Kind of Braid Presentation 182
23.7. Notes 182
Chapter 24. Split Union and Connected Sum 183
24.1. Natural Injection 183
24.2. Piling 183
24.3. Connected Sum 184
24.4. Charts of Piling and Connected Sum 185
Chapter 25. Markov's Theorem in Dimension Four 187
25.1. 2-Dimensional Conjugation 187
25.2. 2-Dimensional Stabilization 188
25.3. Stabilization for Closed Surface Braids 189
25.4. Markov's Theorem in Dimension Four 190
Chapter 26. Proof of Markov's Theorem in Dimension Four 191
26.1. Introduction 191
26.2. Division of a Surface 191
26.3. General Position with Respect to ℓ 193
26.4. \mathcal{E} Operation 193
26.5. Deformation Chains 194
26.6. Operations at the Division Level 195
26.7. An Interpretation of Markov's Theorem in Dimension Four 196
26.8. Proofs of Theorems 26.15 and 26.16 198
26.9. Notation 198
26.10. Existence of a Sawtooth, I 199
26.11. Proof of the Sawtooth Lemma 202
26.12. Mesh Division 202
26.13. Existence of a Sawtooth, II 203
26.14. Replacement of a Sawtooth 204
26.15. Height Reduction, I 206
26.16. Height Reduction, II 211
26.17. Height Reduction, III 213
26.18. Height Reduction, IV 216
26.19. Height Reduction, V 219
26.20. Proof of the Height Reduction Lemma II 221
26.21. Proof of the Height Reduction Lemma I 222
Part 5. Surface Braids and Surface Links 223
Chapter 27. Knot Groups 225
27.1. Classical Knot Groups 225
27.2. Knot Groups of Surface Braids 226
27.3. Knot Groups of Surface Links 229
Chapter 28. Unknotted Surface Braids and Surface Links 233
28.1. Unknotted Surface Braids 233
28.2. Surface Braids of Degree 2 233
28.3. Chart Descriptions of Unknotted Surfaces 234
28.4. The Braid Index of an Unknotted Surface 235
28.5. The Braid System of an Unknotted Braid 235
Chapter 29. Ribbon Surface Braids and Surface Links 237
29.1. Ribbon Surface Braids 237
29.2. Chart Descriptions of Ribbon Surfaces 238
29.3. The Braid System of a Ribbon Braid 239
29.4. Example 239
29.5. Reduced Ribbon Braid Form 239
29.6. Mirror Image of Reduced Ribbon Braid Form 243
Chapter 30. 3-Braid 2-Knots 245
30.1. Surface Braids of Degree 3 Are Ribbon 245
30.2. 3-Braid 2-Knots 246
30.3. The Alexander Polynomial of a 3 -Braid 2 -Knot 247
30.4. Table of 3-Braid 2-Knots 251
Chapter 31. Unknotting Surface Braids and Surface Links 257
31.1. Unknotting Surface Braids 257
31.2. Wandering Nomads 258
31.3. Unknotting Number 259
31.4. Peiffer Transformations 259
31.5. Extended Configuration Space 261
Chapter 32. Seifert Algorithm for Surface Braids 265
32.1. Seifert Algorithm for Classical Braids 265
32.2. Seifert Algorithm for Surface Braids 265
Chapter 33. Basic Symmetries in Chart Descriptions 269
33.1. Symmetry Theorem 269
Chapter 34. Singular Surface Braids and Surface Links 271
34.1. Singular Surface Links 271
34.2. Unknotted Singular Surface Links 271
34.3. Singular Surface Braids 272
34.4. Braid Monodromy and Charts 272
34.5. The Braid Description of a Singular Surface Link 274
Bibliography 277
Index 309

Preface

Knot theory is currently one of the most active research fields in topology. In the classical sense it is the study of circles (closed 1-manifold) in Euclidean 3 -space or a 3 -sphere S^{3}. This is generalized to higher dimensional knot theory and furthermore to the study of manifold pairs or topological space pairs up to homeomorphism (in the topological, PL, or smooth category). Since topology is the study of topological spaces up to homeomorphism, knot theory in this global sense is a quite wide area of topology. Two-dimensional knot theory or knot theory in dimension four deals with surfaces in 4 -space. We will refer to them as "surface links" in this book. This is one branch of knot theory in the global sense. However it is very mysterious. Classical knots have been studied for a long time. Since they are objects in 3 -space, one can watch them directly and handle them without difficulty. One can apply 3 -manifold theory, which has also been studied for a long time, to knot theory and vice versa. Of course this does not mean that classical knot theory is easy. Since surface links are objects in 4 -space, we cannot see and handle them directly. One method to compute with surface links is to use motion pictures which were introduced in 1962 in Fox's famous article "A quick trip through knot theory" [168]. Another method is to use projection images in 3 -space called surface link diagrams. This method is quite convenient when we describe a local configuration of a surface link or try to generalize some notion in classical knot theory to 2dimensional knot theory, because a lot of important notions for classical knots are defined or interpreted by use of classical knot diagrams. In this book we will mainly discuss motion pictures. One reason is that there is already a good book on surface link diagrams by Carter and Saito [89]. Another reason is that there are important techniques in the motion picture method that are not so familiar. One of the main goals of this book is to introduce 2-dimensional knot theory and the technique of the motion picture method.

Braid theory also has been studied for a long time. Pioneering and systematic studies of braids were introduced in Artin's "Theorie der Zopfe" [15] in 1925 and "Theory of braids" $[\mathbf{1 7}]$ in 1947. Braid theory and knot theory are related by two famous results due to Alexander [5] in 1923 and Markov [567] in 1935. Alexander's theorem states that any knot or link can be presented as a closed braid and Markov's theorem states that such a braid form is uniquely determined up to "braid isotopy", "conjugation" and "stabilization". Therefore one can use braid theory to study knot theory and vice versa. Birman's book "Braids, links, and mapping class groups" [42] in 1974 contains a lot of results that relate knots and braids. This book is also famous for a proof of Markov's theorem. A remarkable application of braids in knot theory is the polynomial invariant discovered by Jones [298, 299] in 1985. This is one of the most powerful tools in knot theory.

There are various generalizations of classical braids: Brieskorn and Saito [62] generalized Artin's braid group from a group theoretical point of view. Another generalization is the fundamental group of a certain space. For such a space, Dahm [124] and Goldsmith [201, 202] considered a space of n-links, and Manin and Schechtman [566] a space of hyperplane arrangements. Another generalization is a braided surface defined by Rudolph [778, 783]. This gave a lot of interesting applications to knot theory; especially, Seifert ribbons for closed braids, ribbon surfaces in the 4 -disk and quasi-positive braids $[\mathbf{7 7 8}, 779,781,782,783,790$, 791, 792]. Viro [928] (cf. [316]) introduced the notion of a 2-dimensional braid and established generalized Alexander theorem in dimension four: Any surface link can be described in a braid form (Theorem 23.6). In this book, 2-dimensional braids are referred to as surface braids. They are similar to the braided surfaces of Rudolph. In fact they are regarded as braided surfaces with trivial boundary. As an application, a characterization of 2 -knot groups and surface link groups is obtained [316]. González-Acuña [206] defined another braid form for surface links and gave another characterization of surface link groups. In this book, we study surface braids.

This book is divided into five parts. I. The first part is introductory material in classical braid and knot theory. This part covers the material necessary for later use. One can read this part easily. II. The second part is an introduction to 2dimensional knot theory (knot theory in dimension four). It is written mainly from the view point of the motion picture method. The first two parts are written at an elementary level and are almost self-contained so that beginners and undergraduates can easily read and understand. (Some parts of the second part are technical. The reader who has difficulty may skip through such parts.) III. The third part is the main introduction to surface braid theory (braid theory in dimension four). The goal of this part is to understand two important notions, "braid monodromy" and "chart description". These notions can be generalized and used not only for surface braids but also other materials related to braids. IV. The fourth part is devoted to establishing a relationship between surface braids and surface links. Generalized Alexander and Markov theorems are given in this part. The generalized Alexander theorem was proved by Viro [928] and the author [316]. The generalized Markov theorem was announced in [317]. This book is the first place that contains a complete proof of the generalized Markov theorem. The proof is based on a manuscript [315] and prepared here for specialists. The reader who wants to learn the basics is encouraged to skip over the proof part.) V. In the final part, surface links are studied from the view point of surface braid theory.

This book is written for a wide target audience from beginners (including graduates) to specialists. It can be used as a graduate textbook and also as a handbook for researchers.

I would like to thank J. Scott Carter for reading a draft, a lot of conversations and encouragement. I thank Daniel Silver, Susan Williams and John Dean for fruitful discussions, and Stephen Brick for his help with computers. I thank the Department of Mathematics and Statistics, University of South Alabama, for their hospitality. Part of this book was written while I was visiting the department. I also thank Akio Kawauchi for his advice and encouragement and Taizo Kanenobu
for his help. I would like to express my personal thanks to Naoko, my wife, for her constant encouragement.

Seiichi Kamada

Bibliography

[1] C.C. Adams, The knot book, An elementary introduction to the mathematical theory of knots, W. H. Freeman and Company, New York(1994)
[2] I.R. Aitchison and D.S. Silver, On certain fibred ribbon disc pairs, Trans. Amer. Math. Soc. 306(1988) 529-551
[3] S. Akbulut and R. Kirby, An exotic involution of S^{4}, Topology 18(1979) 75-81
[4] S. Akbulut and R. Kirby, Branched covers of surfaces in 4-manifolds, Math. Ann. 252(1980) 111-131
[5] J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9(1923) 93-95
[6] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc 30(1928) 275-306
[7] J. W. Alexander and G.B. Briggs, On types of knotted curves, Ann. of Math. 28(1927) 562-586
[8] J. J. Andrews and M. L. Curtis, Knotted 2-spheres in 4-space, Ann. of Math. 70(1959) 565-571
[9] J. J. Andrews and S.J. Lomonaco, The second homotopy group of spun 2-spheres in 4-space, Bull. Amer. Math. Soc. 75(1969) 169-171
[10] J. J. Andrews and S.J. Lomonaco, The second homotopy group of spun 2-spheres in 4-space, Ann. of Math. 90(1969) 199-204
[11] J. J. Andrews and D.W. Sumners, On higher-dimensional fibered knots, Trans. Amer. Math. Soc. 153(1971) 415-426
[12] D. Armand-Ugon, R. Gambini and P. Mora, Intersecting braids and intersecting knot theory, J. Knot Theory Ramifications 4(1995) 1-12
[13] M. A. Armstrong and E. C. Zeeman, Transversality for piecewise linear manifolds, Topology 6(1967) 433-466
[14] V. I. Arnold, A branched covering of $\mathbb{C} P^{2} \rightarrow S^{4}$, hyperbolicity and projectivity topology, Siberian Math. J. 29(1988) 717-726
[15] E. Artin, Theorie der Zopfe, Hamburg Abh. 4(1925) 47-72
[16] E. Artin, Zur Isotopie zweidimensionalen Flächen im R_{4}, Abh. Math. Sem. Univ. Hamburg 4(1926) 174-177
[17] E. Artin, Theory of braids, Ann. of Math. 48(1947) 101-126
[18] E. Artin, Braids and permutations, Ann. of Math. 48(1947) 643-649
[19] W. A. Arvola, Complexified real arrangements of hyperplanes, Manuscripta math. 71(1991) 295-306
[20] W. A. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31(1992) 757-765
[21] K. Asano, A note on surfaces in 4-spheres, Math Sem. Notes Kobe Univ. 4(1976) 195-198
[22] K. Asano, The embedding of non-orientable surfaces in 4 -space, preprint
[23] K. Asano, Y. Marumoto and T. Yanagawa, Ribbon knots and ribbon disks, Osaka J. Math. 18(1981) 161-174
[24] K. Asano and K. Yoshikawa, On polynomial invariants of fibred 2-knots, Pacific J. Math. 97(1981) 267-269
[25] N. Askitas, Embedding of 2-spheres in 4-manifolds, Manuscripta math. 90(1996) 137-138
[26] M. F. Atiyah, The geometry and physics of knots, Cambridge Univ. Press (1990)
[27] M. F. Atiyah, Representations of braid groups, in "Geometry of low-dimensional manifolds: 2", London Math. Soc. Lect. Note Series 151, Cambridge Univ. Press (1991) 115-122
[28] M. F. Atiyah, N.J. Hitchin and I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. A $\mathbf{3 6 2}$ (1978) 425-461
[29] M. F. Atiyah and I.M. Singer, The index of elliptic operators, III, Ann. of Math. 87(1968) 546-604
[30] T. F. Banchoff, Triple points and singularities of projections of smoothly immersed surfaces, Proc. Amer. Math. Soc. 46(1974) 402-406
[31] T. F. Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46(1974) 407-413
[32] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34(1995) 423-472
[33] D. Bar-Natan, S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125(1996) 103-133
[34] D. Bennequin, Entrelacements et équations de Pfaff, Astérisque 107-108(1983) 87-161
[35] D. Bernardete, Z. Nitecki and M. Gutierrez, Braids and the Nielsen-Thurston classification, J. Knot. Theory Ramifications 4(1995) 549-618
[36] I. Berstein and A. L. Edmonds, On the construction of branched coverings of lowdimensional manifolds, Trans. Amer. Math. Soc. 247 (1979) 87-124
[37] I. Berstein and A. L. Edmonds, On the classification of generic branched coverings of surfaces, Illinois J. Math. Soc. 28(1984) 64-82
[38] J. S. Birman, On braid groups, Commun. Pure Appl. Math. 22(1969) 41-72
[39] J. S. Birman, Mapping class groups, Commun. Pure Appl. Math. 22(1969) 213-238
[40] J. S. Birman, Non-conjugate braids can define isotopic knots, Commun. Pure Appl. Math. 22(1969) 239-242
[41] J. S. Birman, Plat presentations for link groups, Commun. Pure Appl. Math. 26(1973) 673-678
[42] J. S. Birman, Braids, links, and mapping class groups, Ann. Math. Studies 82 (1974) Princeton Univ. Press, Princeton, N.J.
[43] J. S. Birman, On the Jones polynomial of closed 3-braids, Invent. Math. 81(1985) 287-294
[44] J. S. Birman, Mapping class groups of surfaces, in "Braids" (Santa Cruz, CA, 1986), Contemp. Math. 78 (1988) 13-43
[45] J. S. Birman, Recent developments in braid and link theory, Math.Intelligencer 13(1991) 52-60
[46] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. 28(1993) 253-287
[47] J. S. Birman, Studying links via closed braids, Lecture Notes on the Ninth KAIST Mathematical Workshop 1(1994) 1-67
[48] J. S. Birman, T. Kanenobu, Jones' braid-plat formula and a new surgery triple, Proc. Amer. Math. Soc. 102 (1988) 687-695
[49] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariant, Invent. Math. 11(1993) 225-270
[50] J. S. Birman and W. Menasco, Studying links via closed braids IV: Composite links and split links, Invent. Math. $\mathbf{1 0 2}$ (1990) 115-139
[51] J. S. Birman and W. Menasco, Studying links via closed braids II: On a theorem of Bennequin, Topology Appl. 40(1991) 71-82
[52] J. S. Birman and W. Menasco, Studying links via closed braids I : A finiteness theorem, Pacific J. Math. 154(1992) 17-36
[53] J. S. Birman and W. Menasco, Studying links via closed braids V: The unlink, Trans. Amer. Math. Soc. $\mathbf{3 2 9}$ (1992) 585-606
[54] J. S. Birman and W. Menasco, Studying links via closed braids VI: A non-finiteness theorem, Pacific J. Math. 156(1992) 265-285
[55] J. S. Birman and W. Menasco, Studying links via closed braids III: Classifying links which are closed 3-braids, Pacific J. Math. 161(1993) 25-113
[56] S. Bleiler and M. Scharlemann, A projective plane in R^{4} with three critical points is standard. Strongly invertible knots have property P, Topology $\mathbf{2 7}(1988)$ 519-540
[57] F. Bohnenblust, The algebraical braid group, Ann. of Math. 48(1947) 127-136
[58] M. Boileau, B. Zimmermann, The π-orbifold group of a link, Math. Z. 200(1989) 187-208
[59] J. Boyle, Classifying 1-handles attached to knotted surfaces, Trans. Amer. Math. Soc. 306(1988) 475-487
[60] J. Boyle, The turned torus knot in S^{4}, J. Knot Theory Ramifications 2(1993) 239-249
[61] E. Brieskorn, Automorphic sets and braids and singularities, Contemp. Math. 78(1988) 45-115
[62] E. Brieskorn and K. Saito, Artin Gruppen und Coxeter Gruppen, Invent. Math. 17(1972) 245-271
[63] E. H. Brown Jr., Generalizations of the Kervaire invariant, Ann. of Math. 95(1972) 368-383
[64] M. Brown, A proof of the generalized Schönflies theorem, Bull. Amer.Math. Soc. 66(1960) 74-76
[65] A. M. Brunner, E. J. Mayland Jr., and J. Simon, Knot groups in S^{4} with nontrivial homology, Pacific J. Math. 103(1982) 315-324
[66] R. Brussee, Some remarks on the Kronheimer-Mrowka classes of algebraic surfaces, J. Differential Geom. 41(1995) 269-275
[67] S. Bullett, Braid orientations and Stiefel-Whitney classes, Quart. J. Math. Oxford 32(1981) 267-285
[68] G. Burde and H. Zieschang, Knots, Studies in Math. 5, Walter de Gruyter (1985)
[69] S. E. Cappell, J. L. Shaneson, There exist inequivalent knots with the same complement, Ann. of Math. 103(1976) 349-353
[70] S. E. Cappell, J. L. Shaneson, An introduction to embeddings, immersions and singularities in codimension two, Proc. Sympos. Pure Math. 32(1978) 129-149
[71] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, State-sum invariants of knotted curves and surfaces from quandle cohomology, Electron. Res. Announc. Amer. Math. Soc. 5(1999) 146-156
[72] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, preprint (math.GT/9903135)(1998)
[73] J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Computations of quandle cocycle invariants of knotted curves and surfaces, Adv. in Math. 157(2001) 36-94
[74] J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure Appl. Algebra 157 (2001) 135-155
[75] J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Shifting homomorphisms in quandle cohomology and skeins of cocycle knot invariants, J. Knot Theory Ramifications, to appear
[76] J. S. Carter, S. Kamada and M. Saito, Alexander numbering of knotted surface diagrams, Proc. Amer. Math. Soc. 128(2000) 3761-3771
[77] J. S. Carter, S. Kamada and M. Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications 10 (2001) 345-386
[78] J. S. Carter, S. Kamada, M. Saito and S. Satoh, A theorem of Sanderson on link bordisms in dimension 4, Algebraic and Geometric Topology $\mathbf{1}$ (2001) 299-310
[79] J. S. Carter, J. H. Rieger and M. Saito, A combinatorial description of knotted surfaces and their isotopies, Adv. in Math. 127(1997) 1-51
[80] J. S. Carter and M. Saito, A Seifert algorithm for knotted surfaces, preprint (previous version to 1997) (1991)
[81] J. S. Carter and M. Saito, Canceling branch points on the projections of surfaces in 4-space, Proc. Amer. Math. Soc. 116(1992) 229-237
[82] J. S. Carter and M. Saito, Reidemeister moves for surface isotopies and their interpretations as moves to movies, J. Knot Theory Ramifications 2(1993) 251-284
[83] J. S. Carter and M. Saito, A diagrammatic theory of knotted surfaces, in "Quantum Topology", eds. R. A. Baadhio and L. H. Kauffman, Series on knots and everything, vol.3, World Scientific (1993) 91-115
[84] J. S. Carter and M. Saito, Knotted surfaces, braid movies and beyond, in "Knots and Quantum Gravity", Oxford Science Publishing (1994) 191-229
[85] J. S. Carter and M. Saito, Knot diagrams and braid theories in dimension 4, in "Real and complex singularities", Papers from 3rd international workshop held in São Carlos, 1994, Pitman Res. Notes Math. Ser. 333 (1995) 112-147
[86] J. S. Carter and M. Saito, Braids and movies, J. Knot Theory Ramifications 5(1996) 589-608
[87] J. S. Carter and M. Saito, A Seifert algorithm for knotted surfaces, Topology 36(1997) 179-201
[88] J. S. Carter and M. Saito, Normal Euler classes of knotted surfaces and triple points on projections, Proc. Amer. Math. Soc. 125(1997) 617-623
[89] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Surveys and monographs, Amer. Math. Soc. 55(1998)
[90] A. J. Casson, Three lectures on new-infinite constructions in 4-manifolds, in "A la Recherche de la Topologie Perdue", Progress in Math., 62, Birkhäuser, Boston (1986) 201214
[91] A. J. Casson, C. McA. Gordon, On slice knots in dimension three, in "Algebraic and Geometric Topology" (Stanford, 1976), Proc. Sympos. Pure Math. 32-II, Amer. Math. Soc. (1978) 39-53
[92] A. J. Casson, C. McA. Gordon, Cobordism of classical knots, in "A la recherche de la topologie perdue", Progress in Math., 62, Birkhäuser, Boston (1986) 181-199
[93] L. Cervantes and R. A. Fenn, Boundary links are homotopy trivial, Quart. J. Math. Oxford 39 (1988) 151-158
[94] T. A. Chapman, Locally homotopically unknotted embeddings of manifolds in codimension two are locally flat, Topology 18(1979) 339-348
[95] R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292(1992) 671-683
[96] W.-L. Chow, On the algebraic braid group, Ann. of Math. 49(1948) 654-658
[97] T. D. Cochran, Ribbon knots in S^{4}, J. London Math. Soc. 28(1983) 563-576
[98] T. D. Cochran, Slice links in S^{4}, Trans. Amer. Math. Soc. 285(1984) 389-400
[99] T. D. Cochran, On an invariant of link cobordism in dimension four, Topology Appl. 18(1984) 97-108
[100] T. D. Cochran, Geometric invariants of link cobordism, Comment. Math. Helv. 60(1985) 291-311
[101] T. D. Cochran, Link concordance invariants and homotopy theory, Invent. Math. 90(1987) 635-645
[102] T. D. Cochran, Localization and finiteness in link concordance, Topology Appl. 32(1989) 121-133
[103] T. D. Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Memoirs Amer. Math. Soc., 84, No. 427 (1990)
[104] T. D. Cochran, Links with trivial Alexander's module but nonvanishing Massey products, Topology 29(1990) 189-204
[105] T. D. Cochran, k-cobordism for links in S^{3}, Trans. Amer. Math. Soc. 327(1991) 641-654
[106] T. D. Cochran, J. P. Levine, Homology boundary links and the Andrews-Curtis conjecture, Topology 30(1991) 231-239
[107] T. D. Cochran, W. B. R. Lickorish, Unknotting information from 4-manifolds, Trans. Amer. Math. Soc. 297(1986) 125-142
[108] T. D. Cochran, K. E. Orr, Not all links are concordant to boundary links, Bull. Amer. Math. Soc. 23(1990) 99-106
[109] T. D. Cochran, K. E. Orr, Not all links are concordant to boundary links, Ann. of Math. 138(1993) 519-554
[110] T. D. Cochran, K. E. Orr, Homology boundary links and Blanchfield forms: concordance classification and new tangle-theoretic constructions, Topology 33(1994) 397-427
[111] F. R. Cohen, Artin's braid groups and classical homotopy theory, Contemp. Math. 44(1985) 207-220
[112] F. R. Cohen, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math. 78(1988) 167-206
[113] J. H. Conway, An enumeration of knots and links and some of their related properties, in "Computational Problems in Abstract Algebra" (Oxford, 1967), Pergamon Press (1970) 329-358
[114] D. Cooper, D. D. Long, Derivative varieties and the pure braid group, Amer. J. Math. 115(1993) 137-160
[115] R. Craggs, On the algebra of handle operations in 4-manifolds, Topology Appl. 30(1988) 237-252
[116] R. Craggs, Freely reducing group readings for 2-complexes in 4-manifolds, Topology 28(1989) 247-271
[117] P. R. Cromwell, Positive braids are visually prime, Proc. London Math. Soc. 67(1993) 384-424
[118] R. H. Crowell, The group $G^{\prime} / G^{\prime \prime}$ of a knot group G, Duke Math. J. 30(1963) 349-354
[119] R. H. Crowell, On the annihilator of a knot module, Proc. Amer. Math. Soc. 15(1964) 696-700
[120] R. H. Crowell, Torsion in link modules, J. Math. Mech. 14(1965) 289-298
[121] R. H. Crowell, The derived module of a homomorphism, Adv. Math. 6(1971) 210-238
[122] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Graduate Texts in Mathematics, 57, Springer-Verlag, New York-Heidelberg (1977)
[123] M. Culler, C.M. Gordon, J. Luecke and P.B. Shalen, Dehn surgery on knots, Ann. of Math. [Correction (1988), ibid., 127:663] 125(1987) 237-300
[124] D. Dahm, A generalization of braid theory, Princeton Ph.D. thesis (1962)
[125] E. Date, M. Jimbo, K. Miki, T. Miwa, Braid group representations arising from the generalized chiral Potts models, Pacific J. Math. 154(1992) 37-66
[126] T. Deguchi, Braid group representations and link polynomials derived from generalized $S U(n)$ vertex models, J. Phys. Soc. Japan 58(1989) 3441-3444
[127] T. Deguchi, Y. Akutsu, A general formula for colored Z_{n} graded braid matrices and the fusion braid matrices, J. Phys. Soc. Japan. 60(1991) 2559-2570
[128] P. Dehoronoy, From large cardinals to braids via distributive algebra, J. Knot Theory Ramifications 4(1995) 33-79
[129] R. Dijkgraaf, E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129(1990) 393-429
[130] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Diff. Geom. 18(1983) 279-315
[131] S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29(1990) 257-315
[132] M. J. Dunwoody, R. A. Fenn, On the finiteness of higher knot sums, Topology 26(1987) 337-343
[133] B. Eckmann, Aspherical manifolds and higher-dimensional knots, Comment. Math. Helv. 51(1976) 93-98
[134] A. L. Edmonds, R. S. Kulkarni, R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282(1984) 773-790
[135] Y. Eliashberg, Topology of 2-knots in R^{4} and symplectic geometry, in "The Floer Memorial Volume", Progress in Math. 133, Birkhäuser (1995) 335-353
[136] E. A. Elrifai, H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford (2) 45(1994) 479-497
[137] M. Eudave-Muñoz, Primeness and sums of tangles, Trans. Amer. Math. Soc. 306(1988) 773-790
[138] M. Eudave-Muñoz, Prime knots obtained by band sums, Pacific J. Math. 139(1989) 53-57
[139] M. Eudave-Muñoz, Band sums of links which yield composite links. The cabling conjecture for strongly invertible knots, Trans. Amer. Math. Soc. 330(1992) 463-501
[140] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10(1962) 111-118
[141] E. Fadell, J. Van Buskirk, The braid groups of E^{2} and S^{2}, Duke Math. J. 29(1962) 243-258
[142] M. S. Farber, Linking coefficients and two-dimensional knots, Soviet. Math. Doklady 16(1975) 647-650
[143] M. S. Farber, Duality in an infinite cyclic covering and even-dimensional knots, Math. USSR-Izv. 11(1977) 749-781
[144] M. S. Farber, Classification of some knots of codimension two, Soviet Math. Dokl. 19(1978) 555-558
[145] M. S. Farber, Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261(1980) 185-209
[146] M. S. Farber, Stable classification of knots, Soviet. Math. Doklady 23(1981) 685-688
[147] M. S. Farber, An algebraic classification of some even-dimensional spherical knots. I, Trans. Amer. Math. Soc. 281(1984) 507-527
[148] M. S. Farber, An algebraic classification of some even-dimensional spherical knots. II, Trans. Amer. Math. Soc. 281(1984) 529-570
[149] M. S. Farber, Hermitian forms on link modules, Comment. Math. Helv. 66(1991) 189-236
[150] T. Feng, X.-S. Lin and Z. Wang, Burau representation and random walks on string links, Pacific J. Math. 182(1998) 289-302
[151] R. Fenn, On Dehn's lemma in 4 dimensions, Bull. London Math. Soc. 3(1971) 79-89
[152] R. Fenn, G. T. Jin, R. Rimányi, Laces, in "The 3rd Korea-Japan School of knots and links" (Taejon, 1994), Proc. Applied Math. Workshop, 4, KAIST Korea (1994) 21-31
[153] R. Fenn, R. Rimányi, C. Rourke, The braid-permutation group, Topology 36(1997) 123-135
[154] R. Fenn and D. Rolfsen, Spheres may link homotopically in 4-space, J. London Math. Soc. 34(1986) 177-184
[155] R. Fenn, C. Rourke, On Kirby's caluculus of links, Topology 18(1979) 1-15
[156] R. Fenn, C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1(1992) 343-406
[157] R. Fenn, C. Rourke, B. Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3(1995) 321-356
[158] R. Fenn, C. Rourke, B. Sanderson, James bundles and applications, preprint
[159] T. Fiedler, A small state sum for knots, Topology 32(1993) 281-294
[160] S. M. Finashin, M. Kreck, O. Ya Viro, Exotic knottings of surfaces in the 4-sphere, Bull. Amer. Math. Soc. 17(1987) 287-290
[161] S. M. Finashin, M. Kreck, O. Ya Viro, Non-diffeomorphic but homeomorphic knottings of surfaces in the 4 -sphere, in "Topology and geometry-Rohlin seminar", Lecture Notes in Math., 1346, Springer Verlag (1988) 157-198
[162] R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. 57(1953) 547-560
[163] R. H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. 59(1954) 196-210
[164] R. H. Fox, Free differential calculus. III. Subgroups, Ann. of Math. 64(1956) 407-419
[165] R. H. Fox, Congruence classes of knots, Osaka Math. J. 10(1958) 37-41
[166] R. H. Fox, The homology characters of the cyclic coverings of the knots of genus one, Ann. of Math. 71(1960) 187-196
[167] R. H. Fox, Free differential calculus, V. The Alexander matrices re-examined, Ann. of Math. 71(1960) 408-422
[168] R. H. Fox, A quick trip through knot theory, in "Topology of 3-Manifolds and Related Topics" (Georgia, 1961), Prentice-Hall (1962) 120--167
[169] R. H. Fox, Some problems in knot theory, in "Topology of 3-manifolds and related topics" (Georgia, 1961), Prentice-Hall (1962) 168-176
[170] R. H. Fox, Rolling, Bull. Amer. Math. Soc. 72(1966) 162-164
[171] R. H. Fox, Characterization of slices and ribbons, Osaka J. Math. 10(1973) 69-76
[172] R.H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and equivalences of knots, preprint (1957)
[173] R.H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3(1966) 257-267
[174] R. H. Fox and L. Neuwirth, The braid groups, Math. Scand. 10(1962) 119-126
[175] J. Franks, R. H. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303(1987) 97-108
[176] M. H. Freedman, The disk theorem for four-dimensional manifolds, in "Proc. Internat. Congr. Math." (Warsaw, 1983) (1984) 647-663
[177] M. H. Freedman, F. Quinn, The topology of 4-manifolds, Princeton Univ. Press(1990)
[178] C. D. Frohman, A. Nicas, The Alexander polynomial via topological quantum field theory, in "Differential geometry, global analysis, and topology" (Halifax, NS, 1990), CMS Conf. Proc., 12, Amer. Math. Soc., Providence, RI(1991) 27-40
[179] H. Fujii, Geometric indices and Alexander polynomial of a knot, Proc. Amer. Math. Soc. 124(1996) 2923-2933
[180] S. Fukuhara, A note on equivalence classes of plats, Kodai Math. J. 17(1994) 505-510
[181] W. Fulton, R. MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139(1994) 183-225
[182] D. Gabai, Genus is superadditive under band connected sum, Topology 26(1987) 209-210
[183] H. Z. Gao, Normal Euler numbers of embeddings of nonorientable surfaces into fourmanifolds, J. Systems Sci. Math. Sci. 9(1989) 244-250
[184] H. Z. Gao, On normal Euler numbers of embedding surfaces into 4-manifolds, J. Systems Sci. Math. Sci. 3(1990) 166-171
[185] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford (2) 20(1969) 235-254
[186] C. H. Giffen, Link concordance implies link homotopy, Math. Scand. 45(1979) 243-254
[187] C. A. Giller, Towards a classical knot theory for surfaces in R^{4}, Illinois J. Math. 26(1982) 591-631
[188] R. Gillette, J. Van Buskirk, The word problem and consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc. 131(1968) 277-296
[189] P. M. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264(1981) 353-380
[190] P. M. Gilmer, Topological proof of the G-signature theorem for G finite, Pacific J. Math. 97(1981) 105-114
[191] P. M. Gilmer, On the slice genus of knots, Invent. Math. 66(1982) 191-197
[192] P. M. Gilmer, Slice knots in S^{3}, Quart. J. Math. Oxford(2) 34(1983) 305-322
[193] P. M. Gilmer, Ribbon concordance and a partial order on S-equivalence classes, Topology Appl. 18(1984) 313-324
[194] P. M. Gilmer, Real algebraic curves and link cobordism, Pacific J. Math. 153(1992) 31-69
[195] P. M. Gilmer, Classical knot and link concordance, Comment. Math. Helv. 68(1993) 1-19
[196] P. M. Gilmer, Signatures of singular branched covers, Math. Ann. 295(1993) 643-659
[197] P. M. Gilmer, C. Livingston, On embedding 3-manifolds in 4-space, Topology 22(1983) 241-252
[198] P. M. Gilmer, C. Livingston, The Casson-Gordon invariant and link concordance, Topology 31(1992) 475-492
[199] H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104(1962) 308-333
[200] D. L. Goldsmith, Homotopy of braids- In answer to a question of E. Artin, Lecture Notes in Math., Vol. 375, Springer, Berlin (1974) 91-96
[201] D. L. Goldsmith, The theory of motion groups, Michigan Math. J. 28(1981) 3-17
[202] D. L. Goldsmith, Motion of links in the 3-sphere, Math. Scand. 50(1982) 167-205
[203] D. L. Goldsmith, L. H. Kauffman, Twist spinning revisited, Trans. Amer. Math. Soc. 239(1978) 229-251
[204] R. E. Gompf, Smooth concordance of topologically slice knots, Topology 25(1986) 353-373
[205] F. González-Acuña, Homomorphs of knot groups, Ann. of Math. 102(1975) 373-377
[206] F. González-Acuña, A characterization of 2-knot groups, Rev. Mat. Iberoamericana 10(1994) 221-228
[207] F. González-Acuña, J. M. Montesinos, Non-amphicheiral codimension 2 knots, Canad. J. Math. 32(1980) 185-194
[208] C. McA. Gordon, Twist-spun torus knots, Proc. Amer. Math. Soc. 32(1972) 319-322
[209] C. McA. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford 24(1973) 411-422
[210] C. McA. Gordon, On the higher-dimensional Smith conjecture, Proc. London Math. Soc. 29(1974) 98-110
[211] C. McA. Gordon, Knots in the 4-sphere, Comment. Math. Helv. 39(1976) 585-596
[212] C. McA. Gordon, A note on spun knots, Proc. Amer. Math. Soc. 58(1976) 361-362
[213] C. McA. Gordon, Uncountably many stably trivial strings in codimension two, Quart. J. Math. Oxford. 28(1977) 369-379
[214] C. McA. Gordon, Some aspects of classical knot theory, in "Knot theory", Lect. Notes in Math., 685, Springer Verlag (1978) 1-60
[215] C. McA. Gordon, Homology of groups of surfaces in the 4-sphere, Math. Proc. Cambridge Phil. Soc. 89(1981) 113-117
[216] C. McA. Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257(1981) 157-170
[217] C. McA. Gordon, On the G-signature theorem in dimension four, in "A la Recherche de la Topologie Perdue" Progress in Math., 62, Birkhäuser, Boston (1986) 159-180
[218] C. McA. Gordon, R. A. Litherland, On the signature of a link, Invent. Math. 47(1978) 53-69
[219] C. McA. Gordon, R. A. Litherland, K. Murasugi, Signatures of covering links, Canad. J. Math. 33(1981) 381-394
[220] C. McA. Gordon, J. Luecke, Knots are determined by their complements, Bull. Amer. Math. Soc. (N.S.) 20(1989) 83-87
[221] C. McA. Gordon, J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2(1989) 371-415
[222] M. A. Gutiérrez, Homology of knot groups: I. Groups with deficiency one, Bol. Soc. Mat. Mex. 16(1971) 58-63
[223] M. A. Gutiérrez, An exact sequence calculation for the second homotopy of a knot, Proc. Amer. Math. Soc. 32(1972) 571-577
[224] M. A. Gutiérrez, On knot modules, Invent. math. 17(1972) 329-335
[225] M. A. Gutiérrez, Secondary invariants for links, Rev. Columbina Mat. 6(1972) 106-115
[226] M. A. Gutiérrez, Boundary links and an unlinking theorem, Trans. Amer. Math. Soc. 171(1972) 491-499
[227] M. A. Gutiérrez, Unlinking up to cobordism, Bull. Amer. Math. Soc. 79(1973) 1299-1302
[228] M. A. Gutiérrez, An exact sequence calculation for the second homotopy of a knot. II, Proc. Amer. Math. Soc. 40(1973) 327-330
[229] M. A. Gutiérrez, On the Seifert manifold of a 2-knot, Trans. Amer. Math. Soc. 240(1978) 287-294
[230] M. A. Gutiérrez, Homology of knot groups. III. Knots in S^{4}, Proc. London Math. Soc. 39(1979) 469-487
[231] N. Habegger, X. S. Lin, On link concordance and Milnor's invariants, Bull. London Math. Soc. 30 (1998) 419-428
[232] N. Habegger, X. S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3(1990) 389-419
[233] K. Habiro, T. Kanenobu and A. Shima, Finite type invariants of ribbon 2-knots, in "Lowdimensional topology" (Funchal, 1998), Contemp. Math., 233, Amer. Math. Soc. (1999) 187-196
[234] R. Hartley, On the classification of three-braid links, Abh. Math. Sem. Univ. Hamburg 50(1980) 108-117
[235] R. Hartley, Knots and involutions, Math. Z. 171(1980) 175-185
[236] R. Hartley, Invertible amphicheiral knots, Math. Ann. 252(1980) 103-109
[237] R. Hartley, Identifying non-invertible knots, Topology 22 (1983) 137-145
[238] R. Hartley, A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann. 243(1979) 63-70
[239] R. Hartley, K. Murasugi, Covering linkage invariants, Canad. J. Math. 29(1977) 1312-1339
[240] Y. Hashizume, On the uniqueness of the decomposition of a link, Osaka Math. J. 10(1958) 283-300
[241] J. Hempel, 3-manifolds, Ann. of Math. Studies, 86, Princeton Univ. Press (1976)
[242] J. A. Hillman, A non-homology boundary link with zero Alexander polynomial, Bull. Austr. Math. Soc. 16(1977) 229-236
[243] J. A. Hillman, High dimensional knot groups which are not two-knot groups, Bull. Austr. Math. Soc. 16(1977) 449-462
[244] J. A. Hillman, Longitudes of a link and principality of an Alexander ideal, Proc. Amer. Math. Soc. 72 (1978) 370-374
[245] J. A. Hillman, Alexander ideals and Chen groups, Bull. London Math. Soc. 10(1978) 105110
[246] J. A. Hillman, Orientability, asphericity and two-knots, Houston J. Math. 6(1980) 67-76
[247] J. A. Hillman, Spanning links by non-orientable surfaces, Quart. J. Math. Oxford 31(1980) 169-179
[248] J. A. Hillman, Trivializing ribbon links by Kirby moves, Bull. Austr. Math. Soc. 21(1980) 21-28
[249] J. A. Hillman, Alexander ideals of links, Lect. Notes in Math., 895, Springer Verlag (1981)
[250] J. A. Hillman, The Torres conditions are insufficient, Math. Proc. Cambridge Phil. Soc. 89(1981) 19-22
[251] J. A. Hillman, Finite knot modules and the factorization of certain simple knots, Math. Ann. 257(1981) 261-274
[252] J. A. Hillman, A link with Alexander module free which is not a homology boundary link, J. Pure Appl. Algebra 20(1981) 1-5
[253] J. A. Hillman, Aspherical four-manifolds and the centres of two-knot groups, Comment. Math. Helv. 56(1981) 465-473
[254] J. A. Hillman, Alexander polynomials, annihilator ideals, and the Steinitz-Fox-Smythe invariant, Proc. London Mth. Soc. 45 (1982) 31-48
[255] J. A. Hillman, Aspherical four-manifolds and the centres of two-knot groups, Comment. Math. Helv. 58(1983) 166
[256] J. A. Hillman, Factorization of Kojima knots and hyperbolic concordance of Levine pairings, Houston Math. J. 10(1984) 187-194
[257] J. A. Hillman, Seifert fibre spaces and Poincaré duality groups, Math. Z. 190(1985) 365-369
[258] J. A. Hillman, Knot modules and the elementary divisor theorem, J. Pure Appl. Algebra 40(1986) 115-124
[259] J. A. Hillman, Finite simple even dimensional knots, J. London Math. Soc. 34(1986) 369374
[260] J. A. Hillman, On metabelian two-knot groups, Proc. Amer. Math. Soc. 96(1986) 372-375
[261] J. A. Hillman, Two-knot groups with torsion free abelian normal subgroups of rank two, Comment. Math. Helv. 63(1988) 664-671
[262] J. A. Hillman, 2-knots and their groups, Austr. Math. Soc. Lect. Ser., 5, Cambridge Univ. Press (1989)
[263] J. A. Hillman, A homotopy fibration theorem in dimension four, Topology Appl. 33(1989) 151-161
[264] J. A. Hillman, The algebraic characterization of the exteriors of certain 2-knots, Invent. Math. 97(1989) 195-207
[265] J. A. Hillman, A remark on branched cyclic covers, J. Pure Appl. Algebra 87(1993) 237-240
[266] J. A. Hillman, On 3-dimensional Poincaré duality complexes and 2-knot groups, Math. Proc. Cambridge Philos. Soc. 114(1993) 215-218
[267] J. A. Hillman, Free products and 4-dimensional connected sums, Bull. London Math. Soc. 27(1995) 387-391
[268] J. A. Hillman, Embedding homology equivalent 3-manifolds in 4-space, Math. Z. 223(1996) 473-481
[269] J. A. Hillman, Optimal presentations for solvable 2-knot groups, Bull. Austral. Math. Soc. 57(1998) 129-133
[270] J. A. Hillman and A. Kawauchi, Unknotting orientable surfaces in the 4-sphere, J. Knot Theory Ramifications 4(1995) 213-224
[271] S. Hirose, On diffeomorphisms over T^{2}-knots, Proc. Amer. Math. Soc. 119(1993) 10091018
[272] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93(1959) 242-276
[273] L. R. Hitt, D. S. Silver, Ribbon knot families via Stallings' twists, J. Austral. Math. Soc. Ser. A 50(1991) 356-372
[274] M. Horibe, On trivial 2-spheres in 4-space (in Japanese), Master Thesis, Kobe Univ., Kobe (1974)
[275] F. Hosokawa, A concept of cobordism between links, Ann. of Math. 86(1967) 362-373
[276] F. Hosokawa, On trivial 2-spheres in 4-space, Quart. J. Math. Oxford (2) 19 (1968) 249-256
[277] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979) 233-248
[278] F. Hosokawa, A. Kawauchi, Y. Nakanishi, M. Sakuma, Note on critical points of surfaces in 4-spaces, Kobe J. Math. 1(1984) 151-152
[279] F. Hosokawa, T. Maeda, S. Suzuki, Numerical invariants of surfaces in 4-space, Math. Sem. Notes Kobe Univ. 7(1979) 409-420
[280] F. Hosokawa, S. Suzuki, Linking 2-spheres in the 4-sphere, Kobe J. Math. 4(1987) 193-208
[281] F. Hosokawa, S. Suzuki, On singular cut-and-pastes in the 3-space with applications to link theory, Rev. Mat. Univ. Complut. Madrid 8(1995) 155-168
[282] F. Hosokawa, T. Yanagawa, Is every slice knot a ribbon knot?, Osaka J. Math. 2(1965) 373-384
[283] J. Hoste, Y. Nakanishi, K. Taniyama, Unknotting operations involving trivial tangles, Osaka J. Math. 27(1990) 555-566
[284] J. Hoste, J. H. Przytycki, A survey of skein modules of 3-manifolds, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 363-379
[285] J. Howie, On the asphericity of ribbon disk complements, Trans. Amer. Math. Soc. 289(1985) 285-302
[286] J. F. P. Hudson, Piecewise linear topology, Benjamin, N.Y. (1969)
[287] J. F. P. Hudson, On spanning surfaces of links, Bull. Austral. Math. Soc. 48(1993) 337-345
[288] N. V. Ivanov, Permutation representations of braid groups of surfaces, Math. USSR-Sb. 71 (1992) 309-318
[289] Z. Iwase, Good torus fibrations with twin singular fibers, Japan J. Math. 10(1984) 321-352
[290] Z. Iwase, Dehn-surgery along a torus T^{2}-knot, Pacific J. Math. 133(1988) 289-299
[291] Z. Iwase, Dehn surgery along a torus $T^{2}-k n o t ~ I I$, Japan. J. Math. 16(1990) 171-196
[292] W. Jaco, Lectures on three-manifold topology, Conference Board of Math., 43, Amer. Math. Soc. (1980)
[293] F. Jaeger, Circuit partitions and the homfly polynomial of closed braids, Trans. Amer. Math. Soc. 323(1991) 449-463
[294] B. Jiang, A simple proof that the concordance group of algebraic slice knots is infinitely generated, Proc. Amer. Math. J. 83(1981) 181-192
[295] B. Jiang, Fixed points and braids, Invent. math. 75(1984) 69-74
[296] G. T. Jin, On Kojima's η-function of links, in "Differential topology", Lecture Notes in Math., 1350, Springer Verlag (1988) 14-30
[297] G. T. Jin, The Cochran sequences of semi-boundary links, Pacific J. Math. $\mathbf{1 4 9}(1991)$ 293-302
[298] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985) 103-111
[299] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987) 335-388
[300] V. F. R. Jones, Knots, braids and statistical mechanics, in "Advances in differential geometry and topology" World Sci. Publ.(1990) 149-184
[301] V. F. R. Jones, Knots, braids, statistical mechanics and von Neumann algebras, in "New Zealand mathematics colloquium" (Dunedin, 1991), New Zealand J. Math., 21 (1992) 1-16
[302] A. Joyal, Braided tensor categories, Adv. in Math. 102 (1993) 20-78
[303] D. Joyce, A classical invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37-65
[304] O. Kakimizu, Finding disjoint incompressible spanning surfaces for a link, Hiroshima Math. J. 22(1992) 225-236
[305] O. Kakimizu, Incompressible spanning surfaces and maximal fibred submanifolds for a knot, Math. Z. 210(1992) 207-223
[306] N. Kamada and S. Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000) 93-106
[307] S. Kamada, Non-orientable surfaces in 4-space, Osaka J. Math. 26 (1989) 367-385
[308] S. Kamada, Orientable surfaces in the 4-sphere associated with non-orientable knotted surfaces, Math. Proc. Camb. Phil. Soc. 108 (1990) 299-306
[309] S. Kamada, On doubled surfaces of non-orientable surfaces in the 4-sphere, Kobe J. Math. 7 (1990) 19-24
[310] S. Kamada, On deform-spun projective planes in 4-sphere obtained from peripheral inverting deformations, Proc. KAIST Math. Workshop 5 (1990) 197-203
[311] S. Kamada, Projective planes in 4-sphere obtained by deform-spinnings, in "Knots 90", ed. A. Kawauchi (Osaka 1990), Walter de Gruyter (1992) 125-132
[312] S. Kamada, Surfaces in R^{4} of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992) 137-160
[313] S. Kamada, 2-dimensional braids and chart descriptions, in "Topics in Knot Theory", Proceedings of the NATO Advanced Study Institute on Topics in Knot Theory held in Turkey (1992) 277-287
[314] S. Kamada, Seifert circles for surface braids (in Japanese), Suurikaisekikenkyusho Koukyuroku, (Seminar note at RIMS, Kyoto) 813 (1992) 144-154
[315] S. Kamada, Generalized Alexander's and Markov's theorems in dimension four, preprint (1992)
[316] S. Kamada, A characterization of groups of closed orientable surfaces in 4-space, Topology (1994) 33 113-122
[317] S. Kamada, Alexander's and Markov's theorems in dimension four, Bull. Amer. Math. Soc. (1994) $\mathbf{3 1}$ 64-67
[318] S. Kamada, Survey on 2-dimensional braids, Proceedings of the 41st Topology Symposium, held in Ehime, Japan (1994) 162-178
[319] S. Kamada, On 2-dimensional braids and 2-links, in "The 3rd Korea-Japan School of Knots and Links", Proc. Applied Math. Workshop, 4, KAIST (Taejon, 1994) (1994) 33-39
[320] S. Kamada, On braid monodromies of non-simple braided surfaces, Math. Proc. Camb. Phil. Soc. (1996) 120 237-245
[321] S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications (1996) 4 517-529
[322] S. Kamada, Crossing changes for singular 2-dimensional braids without branch points, Kobe J. Math. (1996) 13 177-182
[323] S. Kamada, Surfaces in 4-space: A view of normal forms and braidings, in "Lectures at Knots 96" (ed. S. Suzuki), World Scientific Publishing Co. (1997) 39-71
[324] S. Kamada, Standard forms of 3-braid 2-knots and their Alexander polynomials, Michigan Math. J. 45 (1998) 189-205
[325] S. Kamada, Unknotting immersed surface-links and singular 2-dimensional braids by 1 handle surgeries, Osaka J. Math. 36 (1999) 33-49
[326] S. Kamada, Vanishing of a certain kind of Vassiliev invariants of 2-knots, Proc. Amer. Math. Soc. 127 (1999) 3421-3426
[327] S. Kamada, Arrangement of Markov moves for 2-dimensional braids, in "Low Dimensional Topology" (Madeira, Portugal, 1998), Contemp. Math., 233, Amer. Math. Soc. (1999) 197213
[328] S. Kamada, Wirtinger presentations for higher dimensional manifold knots obtained from diagrams, Fund. Math. 168(2001) 105-112
[329] S. Kamada, On 1-handle surgery and finite type invariants of surface knots, Topology Appl., to appear
[330] S. Kamada, A. Kawauchi, T. Matumoto, Combinatorial moves on ambient isotopic submanifolds in a manifold, J. Math. Soc. Japan 53 (2001) 321--331
[331] S. Kamada and Y. Matsumoto, Certain racks associated with the braid groups, in "Knots in Hellas, 98 ", The Proceedings of the International Conference on Knot Theory (Greece, 1998), 2000 118-130
[332] T. Kanenobu, 2-knot groups with elements of finite order, Math. Sem. Notes Kobe Univ. 8(1980) 557-560
[333] T. Kanenobu, Groups of higher-dimensional satellite knots, J. Pure Appl. Algebra 28(1983) 179-188
[334] T. Kanenobu, Fox's 2-spheres are twist spun knots, Math. Fac. Sci. Kyushu Univ., Ser. A. 37(1983) 81-86
[335] T. Kanenobu, Higher dimensional cable knots and their finite cyclic covering spaces, Topology Appl. 19(1985) 123-127
[336] T. Kanenobu, Deforming twist spun 2-bridge knots of genus one, Proc. Japan Acad. Ser. A 64(1988) 98-101
[337] T. Kanenobu, Unions of knots as cross sections of 2-knots, Kobe J. Math. 4 (1988) 147-162
[338] T. Kanenobu, Untwisted deform-spun knots: examples of symmetry spun 2-knots, in "Transformation groups" (Osaka, 1987), Lecture Notes in Math., 1375, Springer Verlag (1989) 145-167
[339] T. Kanenobu, Weak unknotting number of a composite 2-knot, J. Knot Theory Ramifications 5 (1996) 161-166
[340] T. Kanenobu and K. Kazama, The peripheral subgroup and the second homology of the group of a knotted torus in S^{4}, Osaka J. Math. 31(1994) 907-921
[341] T. Kanenobu and Y. Marumoto, Unknotting and fusion numbers of ribbon 2-knots, Osaka J. Math. 34 (1997) 525-540
[342] S. J. Kaplan, Constructing 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254(1979) 237-263
[343] S. J. Kaplan, Twisting to algebraically slice knots, Pacific J. Math. 102(1982) 55-59
[344] M. M. Kapranov, V. A. Voevodskiŭ, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra 92(1994) 241-267
[345] A. Katanaga, O. Saeki, M. Teragaito and Y. Yamada, Gluck surgery along a 2-sphere in a 4 -manifold is realized by surgery along a projective plane, Michigan Math. J. 46 (1999) 555-571
[346] M. Kato, Higher-dimensional PL knots and knot manifolds, J. Math. Soc. Japan 21(1969) 458-480
[347] L. H. Kauffman, Signature of branched fibrations, in "Knot theory" (Proc. Sem., Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer, Berlin (1978) 203-217
[348] L. H. Kauffman, On knots, Ann. of Math. Studies, 115, Princeton Univ. Press (1987)
[349] L. H. Kauffman, State models and the Jones polynomial, Topology 26(1987) 395-407
[350] L. H. Kauffman, Knots and physics, Series on Knots and Everything, 1, World Scientific Publ.(1991)
[351] L. H. Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras, Rev. Math. Phys. 5(1993) 735-773
[352] L. H. Kauffman, L. R. Taylor, Signature of links, Trans. Amer. Math. Soc. 216(1976) 351-365
[353] R. K. Kaul, Chern-Simons theory, coloured-oriented braids and link invariants, Comm. Math. Phys. 162(1994) 289-319
[354] A. Kawauchi, A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math 26(1975) 437-458
[355] A. Kawauchi, On the Alexander polynomials of cobordant links, Osaka J. Math. 15(1978) 151-159
[356] A. Kawauchi, The invertibility problem on amphicheiral excellent knots, Proc. Japan Acad., Ser. A, Math. Sci. 55(1979) 399-402
[357] A. Kawauchi, On links not cobordant to split links, Topology 19(1980) 321-334
[358] A. Kawauchi, On the Robertello invariants of proper links, Osaka J. Math. 21(1984) 81-90
[359] A. Kawauchi, Rochlin invariant and α-invariant, in "Four-Manifold Theory" (Durham, 1982), Contemp. Math., 35, Amer. Math. Soc. (1984) 315-326
[360] A. Kawauchi, The signature invariants of infinite cyclic coverings of closed odd dimensional manifolds, in "Algebraic and topological theories-to the memory of Dr. T. Miyata", Kinokuniya Co. Ltd.(1985) 52-85
[361] A. Kawauchi, On the signature invariants of infinite cyclic coverings of even dimensional manifolds, in "Homotopy theory and related topics" (Kyoto, 1984), Adv. Stud. Pure Math., 9, North-Holland (1986) 177-188
[362] A. Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23(1986) 633-651
[363] A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987) 31-41
[364] A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25(1988) 171-183
[365] A. Kawauchi, Knots in the stable 4-space; an overview, in "A fête of topology", Academic Press (1988) 453-470
[366] A. Kawauchi, The first Alexander modules of surfaces in 4-sphere, in "Algebra and topology" (Taejon, 1990), Proc. KAIST Math. Workshop, 5, KAIST, Taejon, Korea (1990) 81-89
[367] A. Kawauchi, Knots 90, (Osaka, 1990), Walter de Gruyter (1992)
[368] A. Kawauchi, Splitting a 4-manifold with infinite cyclic fundamental group, Osaka J. Math. 31(1994) 489-495
[369] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel•Boston•Berlin (1996)
[370] A. Kawauchi, T. Matumoto, An estimate of infinite cyclic coverings and knot theory, Pacific J. Math. 90(1980) 99-103
[371] A. Kawauchi, H. Murakami, K. Sugishita, On the T-genus of knot cobordism, Proc. Japan Acad. Sci., Ser. A Math. Sci. 59(1983) 91-93
[372] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I. Normal forms, Math. Sem. Notes Kobe Univ. 10 (1982) 75-125
[373] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, II. Singularities and cross-sectional links, Math. Sem. Notes Kobe Univ. 11 (1983) 31-69
[374] C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Math. Soc. 79(1973) 962-955
[375] C. Kearton, Noninvertible knots of codimension 2, Proc. Amer. Math. Soc. 40(1973) 274276
[376] C. Kearton, Presentations of n-knots, Trans. Amer. Math. Soc. 202(1975) 123-140
[377] C. Kearton, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202(1975) 141-160
[378] C. Kearton, Simple knots which are doubly-null cobordant, Proc. Amer. Math. Soc. 52(1975) 471-472
[379] C. Kearton, Cobordism of knots and Blanchfield duality, J. London Math. Soc. 10(1975) 406-408
[380] C. Kearton, Attempting to classify knot modules and their hermitean pairings, in "Knot theory", Lect. Notes in Math., 685, Springer Verlag (1978) 227-242
[381] C. Kearton, Signatures of knots and the free differential calculus, Quart. J. Math. Oxford 30(1979) 157-182
[382] C. Kearton, Factorization is not unique for 3-knots, Indiana Univ. Math. J. 28(1979) 451-452
[383] C. Kearton, A remarkable 3-knot, Bull. London Math. Soc. 14(1982) 387-398
[384] C. Kearton, Spinning, factorization of knots, and cyclic group actions on spheres, Archiv Math. 40(1983) 361-363
[385] C. Kearton, Some non-fibred 3-knots, Bull. London Math. Soc. 15(1983) 365-367
[386] C. Kearton, An algebraic classification of certain simple even-dimensional knots, Trans. Amer. Math. Soc. 276(1983) 1-53
[387] C. Kearton, Simple spun knots, Topology 23(1984) 91-95
[388] C. Kearton, Integer invariants of certain even-dimensional knots, Proc. Amer. Math. Soc. 93(1985) 747-750
[389] C. Kearton, Knots, groups, and spinning, Glasgow Math. J. 33(1991) 99-100
[390] C. Kearton and S. M. J.Wilson, Spinning and branched cyclic covers of knots, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2235-2244
[391] M. A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965) 225-271
[392] M. A. Kervaire, On higher dimensional knots, in "Differential and combinatorial topology", Princeton Math. Ser., 27, Princeton Univ. Press. (1965) 105-119
[393] M. A. Kervaire, Knot cobordism in codimension 2, in "Manifolds" (Amsterdam 1970), Lect. Notes in Math., 197, Springer Verlag (1971) 83-105
[394] M. A. Kervaire, J. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. USA 47(1961) 1651-1657
[395] M. A. Kervaire, C. Weber, A survey of multidimensional knots, in "Knot theory", Lect. Notes in Math., 685, Springer Verlag (1978) 61-138
[396] M. E. Kidwell, Relations between the Alexander polynomial and summit power of a closed braid, Math. Sem. Notes Kobe Univ. 10(1982) 387-409
[397] S. Kinoshita, On Wendt's theorem of knots, Osaka Math. J. 9 (1957) 61-66
[398] S. Kinoshita, On Went's theorem of knots II, Osaka Math. J. 10 (1958) 259-261
[399] S. Kinoshita, Alexander polynomials as isotopy invariants I, Osaka Math. J. 10(1958) 263-271
[400] S. Kinoshita, Alexander polynomials as isotopy invariants II, Osaka Math. J. 11(1959) 91-94
[401] S. Kinoshita, On diffeomorphic approximations of polyhedral surfaces in 4-space, Osaka J. Math. 12(1960) 191-194
[402] S. Kinoshita, On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math. 74(1961) 518-531
[403] S. Kinoshita, On elementary ideals of θ-curves in the 3-sphere and 2-links in the 4-sphere, Pacific J. Math. 49(1973) 127-134
[404] S. Kinoshita, On elementary ideals of projective planes in the 4-sphere and oriented θ-curves in the 3-sphere, Pacific J. Math. $\mathbf{5 7}$ (1975) 217-221
[405] S. Kinoshita, On the distribution of Alexander polynomials of alternating knots and links, Proc. Amer. Math. Soc. 79(1980) 664-648
[406] S. Kinoshita, Branched coverings of knots and links, Lecture Notes, Kwansei Gakuin Univ. (1980)
[407] S. Kinoshita, On the branch points in the branched coverings of links, Canad. Math. Bull. 28 (1985) 165-173
[408] S. Kinoshita, Elementary ideals in knot theory, Kwansei Gakuin Annual Studies 35 (1986) 183-208
[409] S. Kinoshita and H. Terasaka, On unions of knots, Osaka Math. J. 9 (1957) 131-153
[410] R. Kirby, A calculus for framed links in S^{3}, Invent. Math. 45(1978) 35-56
[411] R. Kirby, Problems in low-dimensional manifold theory, Proc. Symp. Pure Math. 32 (1978) 273-312
[412] R. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, 1374, Springer Verlag (1989)
[413] R. Kirby, W. B. R. Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86(1979) 437-441
[414] R. Kirby, P. Melvin, Slice knots and property R, Invent. Math. 45(1978) 57-59
[415] P. Kirk, Link maps in the four sphere, in "Differential Topology" Lect. Notes Math., 1350, Springer Verlag (1988) 31-43
[416] P. Kirk, U. Koschorke, Generalized Seifert surfaces and linking numbers, Topology Appl. 42(1991) 247-262
[417] K. H. Ko, Seifert matrices and boundary link cobordisms, Trans. Amer. Math. Soc. $\mathbf{2 9 9}$ (1987) 657-681
[418] K. H. Ko, A survey on link concordance, in "The 3rd Korea-Japan School of knots and links" (Taejon, 1994), Proc. Applied Math. Workshop, 4, KAIST, Taejon Korea (1994) 53-68
[419] K. H. Ko and J. S. Carter, Triple points of immersed surfaces in three dimensional manifolds, Topology Appl. 32(1989) 149-159
[420] K. H. Ko and L. Smolinsky, The framed braid group and 3-manifolds, Proc. Amer. Math. Soc. 115(1992) 541-551
[421] K. H. Ko and L. Smolinsky, The framed braid group and representations, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 289-297
[422] K. Kobayashi, On a homotopy version of 4 -dimensional Whitney's lemma, Math. Sem. Notes, Kobe Univ. 5(1977) 109-116
[423] M. Kobayashi, T. Kobayashi, On canonical genus and free genus of knot, J. Knot Theory Ramifications 5 (1996) 77-85
[424] T. Kobayashi, Uniqueness of minimal genus Seifert surfaces for links, Topology Appl. 33(1989) 265-279
[425] T. Kobayashi, Fibered links which are band connected sum of two links, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 9-23
[426] T. Kobayashi, Minimal genus Seifert surfaces for a knot which is a non-trivial band sum, in "The 3rd Korea-Japan School of knots and links" (Taejon, 1994), Proc. Applied Math. Workshop, 4, KAIST, Korea (1994) 79-89
[427] T. Kobayashi, H. Nishi, A necessary and sufficient condition for a 3-manifold to have genus g Heegaard splitting (a proof of Hass-Thompson conjecture), Osaka J. Math. 31(1994) 109136
[428] K. Kodama, M. Sakuma, Symmetry groups of prime knots up to 10 crossings, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 323-340
[429] T. Kohno, Monodromy representations of braid groups (in Japanese), Sugaku 41(1989) 305-319
[430] T. Kohno, New developments in the theory of knots, Advanced Series in Mathematical Physics, 11, World Scientific Publ. (1990)
[431] S. Kojima, Classification of simple knots by Levine pairings, Comment. Math. Helv. $\mathbf{5 4}(1979)$ 356-367 [Erratum, ibid., 55(1980), 652-653]
[432] U. Koschorke, Higher order homotopy invariants for higher-dimensional link maps, in "Algebraic topology" (Gottingen, 1984), Lecture Notes in Math., 1172, Springer Verlag (1985) 116-129
[433] U. Koschorke, Multiple point invariants of link maps, in "Differential topology" (Siegen, 1987), Lecture Notes in Math., 1350, Springer Verlag (1988) 44-86
[434] U. Koschorke, On link maps and their homotopy classification, Math. Ann. 286(1990) 753-782
[435] U. Koschorke, Link homotopy with many components, Topology $\mathbf{3 0}$ (1991) 267-281
[436] U. Koschorke, D. Rolfsen, Higher dimensional link operations and stable homotopy, Pacific J. Math. 139 (1989) 87-106
[437] M. Kranjc, Embedding 2-complexes in $\mathbf{R}^{\mathbf{4}}$, Pacific J. Math. 133(1988) 301-313
[438] M. Kreck, On the homeomorphism classification of smooth knotted surfaces in the 4-sphere, in "Geometry of low-dimensional manifolds 1" (Durham, 1989), London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press (1990) 63-72
[439] P. B. Kronheimer, Embedded surfaces in 4-manifolds, in "Proc. ICM" (Kyoto, 1990), Math. Soc. Japan (1991) 529-539
[440] P. B. Kronheimer, The genus-minimaizing property of algebraic curves, Bull. Amer. Math. Soc. 29(1993) 63-69
[441] P. B. Kronheimer, T. S. Mrowka, Gauge theory for embedded surfaces I, Topology 32(1993) 773-826
[442] P. B. Kronheimer, T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1(1994) 797-808
[443] S. Kwasik, On invariant knots, Math. Proc. Cambridge Philos. Soc. 94(1984) 473-475
[444] S. Kwasik, Low-dimensional concordances, Whitney towers and isotopies, Math. Proc. Cambridge Philos. Soc. 102(1987) 103-119
[445] S. Kwasik, R. Schultz, Pseudofree group actions on S^{4}, Amer. J. Math. 112(1990) 47-70
[446] S. Kwasik, R. Schultz, Vanishing of Whitehead torsion in dimension four, Topology 31(1992) 735-756
[447] R. H. Kyle, Branched covering spaces and the quadratic forms of links, Ann. of Math. 59(1954) 539-548
[448] R. H. Kyle, Branched covering spaces and the quadratic forms of links II, Ann. of Math. 69(1959) 686-699
[449] H. Lambert, Mapping cubes with holes onto cubes with handles, Illinois. J. Math. 13(1969) 606-615
[450] H. Lambert, A 1-linked link whose longitudes lie in the second commutator subgroup, Trans. Amer. Math. Soc. 147(1970) 261-269
[451] S. Lambropoulou, Knot theory related to generalized and cyclotomic Hecke algebra of type B, J. Knot Theory Ramifications 8(1999) 621-658
[452] S. Lambropoulou and C. P. Rourke, Markov's theorem in 3-manifolds, Topology Appl. 78 (1997) 95-122
[453] T. Lawson, Splitting S^{4} on $\mathbf{R P}^{2}$ via the branched cover of $\mathbf{C P}^{2}$ over S^{4}, Proc. Amer. Math. Soc. 86 (1982) 328-330
[454] T. Lawson, Detecting the standard embedding of $\mathbf{R P}^{2}$ in S^{4}, Math. Ann. 267 (1984) 439448
[455] T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J. 34 (1987) 85-91
[456] T. Lawson, h-cobordisms between simply connected 4-manifolds, Topology Appl. 28 (1988) 75-82
[457] T. Lawson, Compactness results for orbifold instantons, Math. Z. 200 (1988) 123-140
[458] T. Lawson, Smooth embeddings of 2-spheres in 4-manifolds, Exposition. Math. 10 (1992) 289-309
[459] T. Q. T. Le, H. Murakami, J. Murakami, T. Ohtsuki, A three-manifold invariant via the Kontsevich integral, Osaka J. Math. 36 (1999) 365-395
[460] R. Lee and D. M. Wilczyński, Locally flat 2-spheres in simply connected 4-manifolds, Comment. Math. Helv. 65(1990) 388-412
[461] R. Lee and D. M. Wilczyński, Locally flat 2-spheres in simply connected 4-manifolds, Comment. Math. Helv. 67(1992) 334-335
[462] Y. W. Lee, Contractibly embedded 2-spheres in $S^{2} \times S^{2}$, Proc. Amer. Math. Soc. 85(1982) 280-282
[463] G. I. Lehrer, A survey of Hecke algebras and the Artin braid groups, Amer. Math. Soc. Contemp. Math. 78(1988) 365-385
[464] J. Levine, A characterization of knot polynomials, Topology 4(1965) 135-141
[465] J. Levine, A classification of differentiable knots, Ann. of Math. 82(1965) 15-51
[466] J. Levine, Unknotting spheres in codimension two, Topology 4(1965) 9-16
[467] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. 84(1966) 537-554
[468] J. Levine, A method for generating link polynomials, Amer. J. Math. 89(1967) 69-84
[469] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44(1969) 229-224
[470] J. Levine, Invariants of knot cobordism, Invent. Math. 8(1969) 98-110
[471] J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45(1970) 185-198
[472] J. Levine, The role of the Seifert matrix in knot theory, in "Acta Congr. Intern. Math., 2" (Paris, 1970), Gauthier-Villars (1971) 95-98
[473] J. Levine, Knot modules, in "Knots, groups and 3-manifolds", Ann. Math. Studies, 84, Princeton Univ. Press (1975) 25-34
[474] J. Levine, Knot modules I, Trans. Amer. Math. Soc. 229 (1977) 1-50
[475] J. Levine, Some results on higher dimensional knot groups, in "Knot Theory" (Switzerland, 1977), Lect. Notes in Math., 685, Springer Verlag (1978) 243-269
[476] J. Levine, Algebraic structure of knot modules, Lect. Notes in Math. 772, Springer Verlag (1980)
[477] J. Levine, The module of a 2-component link, Comment. Math. Helv. 57(1982) 377-399
[478] J. Levine, Doubly slice knots and doubled disk knots, Michigan J. Math. 30(1983) 249-256
[479] J. Levine, Localization of link modules, Amer. Math. Soc. Contemp. Math. 20(1983) 213229
[480] J. Levine, Links with Alexander polynomial zero, Indiana Univ. Math. J. 36(1987) 91-108
[481] J. Levine, Surgery on links and the $\bar{\mu}$-invariants, Topology $\mathbf{2 6}(1987) 45-61$
[482] J. Levine, An approach to homotopy classification of links, Trans. Amer. Math. Soc. 306(1988) 361-387
[483] J. Levine, Symmetric presentation of link modules, Topology Appl. 30(1988) 183-198
[484] J. Levine, The $\bar{\mu}$-invariants of based links, in "Differential topology" (Siegen, 1987), Lecture Notes in Math., 1350, Springer Verlag (1988) 87-103
[485] J. Levine, Link concordance and algebraic closure of groups, Comment. Math. Helv. 64(1989) 236-255
[486] J. Levine, Link concordance and algebraic closure of groups II, Invent Math. 96(1989) 571-592
[487] J. Levine, Signature invariants of homology bordism with application to links, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 395-406
[488] J. Levine, Link invariants via the eta invariant, Comment. Math. Helv. 69(1994) 82-119
[489] J. P. Levine, W. Mio, K. E. Orr, Links with vanishing homotopy invariant, Comm. Pure Appl. Math. 46(1993) 213-220
[490] H. Levinson, Decomposable braids and linkages, Trans. Amer. Math. Soc. 178 (1973) 111126
[491] H. Levinson, Decomposable braids as subgroups of braid groups, Trans. Amer. Math. Soc. 202(1975) 51-55
[492] B. H. Li, Embeddings of surfaces in 4-manifolds I, Chinese Sci. Bull. 36(1991) 2025-2029
[493] B. H. Li, Embeddings of surfaces in 4-manifolds II, Chinese Sci. Bull. 36(1991) 2030-2033
[494] G.-S. Li, An invariant of link homotopy in dimension four, Topology 36(1997) 881-897
[495] Y. Q. Li , Representations of a braid group with transpose symmetry and the related link invariants, J. Phys. A 25(1992) 6713-6721
[496] Y. Q. Li , Multiparameter solutions of Yang-Baxter equation from braid group representations, J. Math. Phys. 34(1993) 768-774
[497] Y. Q. Li and M. L. Ge, Polynomials from nonstandard braid group representations, Phys. Lett. A $152(1991)$ 273-275
[498] Y. Q. Li and M. L. Ge, Link polynomials related to the new braid group representations, J. Phys. A 24(1991) 4241-4247
[499] Y. Q. Li, M. L. Ge, K. Xue, L. Y. Wang, Weight conservation condition and structure of the braid group representation, J. Phys. A 24(1991) 3443-3453
[500] C.-C. Liang, An algebraic classification of some links of codimension two, Proc. Amer. Math. Soc. 67 (1977) 147-151
[501] L. Liao, X. C. Song, Quantum Lie superalgebras and "nonstandard" braid group representations, Modern Phys. Lett. A 6(1991) 959-968
[502] A. Libgober, Levine's formula in knot theory and quadratic reciprocity law, Enseign. Math. 26(1980) 323-331
[503] A. Libgober, Alexander modules of plane algebraic curves, Amer. Math. Soc. Contemp. Math. 20(1983) 231-247
[504] A. Libgober, On divisibility properties of braids associated with algebraic curves, in "Braids" (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 387-398
[505] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76(1962) 531-540
[506] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Phil. Soc. 60(1964) 769-778 [Corrigendum, ibid., 62(1966), 679-681]
[507] W. B. R. Lickorish, Surgery on knots, Proc. Amer. Math. Soc. 60(1977) 296-298
[508] W. B. R. Lickorish, Shake-slice knots, in "Topology of low-dimensional manifolds" (Sussex, 1977), Lect. Notes in Math., 722, Springer Verlag (1979) 67-70
[509] W. B. R. Lickorish, The unknotting number of a classical knot, Contemp. Math. 44(1985) 117-121
[510] W. B. R. Lickorish, Unknotting by adding a twisted band, Bull. London Math. Soc. 18(1986) 613-615
[511] W. B. R. Lickorish, Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290(1991) 657-670
[512] W. B. R. Lickorish, Invariants for 3-manifolds from the combinatorics of the Jones polynomial, Pacific J. Math. 149(1991) 337-347
[513] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26(1987) 107-141
[514] V. T. Liem, G. A. Venema, Characterization of knot complements in the 4-sphere, Topology Appl. 42(1991) 231-245
[515] V. T. Liem, G. A. Venema, On the asphericity of knot complements, Canad J. Math. 45(1993) 340-356
[516] M. Lien, Construction of high dimensional knot groups from classical knot groups, Trans. Amer. Math. Soc. 298(1986) 713-722
[517] V. Ya. Lin, Artin braids and the groups and spaces connected with them, J. Soviet. Math. 18(1979) 736-788
[518] X. S. Lin, A knot invariant via representation spaces, J. Diff. Geom. 35(1992) 337-357
[519] X. S. Lin, Alexander-Artin-Markov theory for 2-links in R^{4}, preprint
[520] D. Lines, On odd-dimensional fibred knots obtained by plumbing and twisting, J. London Math. Soc. 32(1985) 557-571
[521] D. Lines, On even-dimensional fibred knots obtained by plumbing, Math. Proc. Cambridge Philos. Soc. 100(1986) 117-131
[522] S. Lipschutz, On a finite matrix representation of the braid group, Arch. Math. 12(1961) 7-12
[523] P. Lisca, On tori embedded in four-manifolds, J. Diff. Geom. 38(1993) 13-37
[524] P. Lisca, Smoothly embedded 2-spheres and exotic 4-manifolds, Enseign. Math. (2) 39(1993) 225-231
[525] R. A. Litherland, Deforming twist-spun knots, Trans. Amer. math. Soc. 250 (1979) 311-331
[526] R. A. Litherland, Slicing doubles of knots in homology 3-spheres, Invent. Math. 54(1979) 69-74
[527] R. A. Litherland, The second homology of the group of a knotted surface, Quart. J. Math. Oxford 32 (1981) 425-434
[528] R. A. Litherland, Cobordism of satellite knots, in "Four-manifold theory" (Durham, 1982), Contemp. Math., 35, Amer. Math. Soc. (1984) 327-362
[529] R. A. Litherland, Symmetries of twist-spun knots, in "Knot theory and manifolds", Lecture Notes in Math., 1144, Springer Verlag (1985) 97-107
[530] R. A. Litherland, The Alexander module of a knotted theta-curve, Math. Proc. Cambridge Philos. Soc. 106 (1989) 95-106
[531] C. Livingston, Homology cobordisms of 3-manifolds, knot concordance, and prime knots, Pacific J. Math. 94(1981) 193-206
[532] C. Livingston, Knots which are not concordant to their inverses, Quart. J. Math. Oxford 34(1983) 323-328
[533] C. Livingston, Stably irreducible surfaces in S^{4}, Pacific J. Math. 116(1985) 77-84
[534] C. Livingston, Knots with finite weight commutator subgroups, Proc. Amer. Math. Soc. 101(1987) 195-198
[535] C. Livingston, Companionship and knot group representations, Topology Appl. 25(1987) 241-244
[536] C. Livingston, Indecomposable surfaces in the 4-sphere, Pacific J. Math. 132(1988) 371-378
[537] C. Livingston, Links not concordant to boundary links, Proc. Amer. Math. Soc. 110(1990) 1129-1131
[538] C. Livingston, Knot theory, Carus Mathematical Monographs, 24, Mathematical Association of America (1993)
[539] S. J. Lomonaco, The second homotopy group of a spun knot, Topology 8(1969) 95-98
[540] S. J. Lomonaco, The fundamental ideal and π_{2} of higher dimensional knots, Proc. Amer. Math. Soc. 38(1973) 431-433
[541] S. J. Lomonaco, The third homotopy group of some higher dimensional knots, in "Knots, groups and 3-manifolds" Ann. Math. Studies, 84, Princton Univ. Press (1975) 35-45
[542] S. J. Lomonaco, The homotopy groups of knots I, how to compute the algebraic 2-type, Pacific J. Math. 95(1981) 349-390
[543] S. J. Lomonaco, Five dimensional knot theory, Amer. Math. Soc. Contemp. Math. 20(1983) 249-270
[544] D. D. Long, Strongly plus-amphicheiral knots are algebraically slice, Math. Proc. Cambridge Philos. Soc. 95(1984) 309-312
[545] D. D. Long, On the linear representation of braid groups, Trans. Amer. Math. Soc. 311 (1989) 535-560
[546] D. D. Long and M. Paton, The Burau representation is not faithful for $n \geq 6$, Topology 32(1993) 439-447
[547] J. E. Los, Knots, braid index and dynamical type, Topology 33(1994) 257-270
[548] M. T. Lozano, J. H. Przytycki, Incompressible surfaces in the exterior of a closed 3braid I, surfaces with horizontal boundary components, Math. Proc. Cambridge Philos. Soc. 98(1985) 275-299
[549] J. Luecke, Finite covers of 3-manifolds containing essential tori, Trans. Amer. Math. Soc. $\mathbf{3 1 0}$ (1988) 381-391
[550] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, Heidelberg, New York (1977)
[551] Z. Q. Ma and B. H. Zhao, 2^{n}-dimensional representations of braid group and link polynomials, J. Phys. A $22(1989) 49-52$
[552] C. Maclachlan, On representations of Artin's braid group, Michigan Math. J. 25(1978) 235-244
[553] S. MacLane, Homology, Springer Verlag (1963)
[554] T. Maeda, On the groups with Wirtinger presentations, Math. Sem. Notes Kobe Univ. 5(1977) 345-358
[555] T. Maeda, Knotted surface in the 4-sphere with no minimal Seifert manifold, in "Combinatorial and geometric group theory" (Edinburgh 1993), London Math. Soc. Lect. Note Ser., 204, Cambridge Univ. Press (1994) 239-246
[556] T. Maeda, K. Murasugi, Covering linkage invariants and Fox's problem 13, Amer. Math. Soc. Contemp. Math. 20(1983) 271-283
[557] W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109(1934) 617-646
[558] W. Magnus, Braids and Riemann surfaces, Commun. Pure Appl. Math. 25(1972) 151-161
[559] W. Magnus, Braid groups: a survey, in "Proc. 2nd Int. Conf. of Groups" (Canberra, 1973), Lect. Notes in Math., 372, Springer Verlag (1974) 463-487
[560] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley New York(1966)
[561] W. Magnus, A. Peluso, On knot groups, Commun. Pure Appl. Math. 20(1967) 749-770
[562] S. Majid, Braided groups and duals of monoidal categories, in "Category theory 1991" (Montreal, 1991), CMS Conf. Proc., 13, Amer. Math. Soc. (1992) 329-343
[563] G. S. Makanin, Separable closed braids, Math. USSR-Sbornik 60(1988) 521-531
[564] G. S. Makanin, An analogue of the Alexander Markov theorem, Izv. Akad. Nauk SSSR-Ser. Mat. 53(1989) 200-210
[565] R. Mandelbaum, Four-dimensional topology: an introduction, Bull. Amer. Math. Soc. 2(1980) 1-159
[566] Yu. I. Manin and V. V. Schechtman, Arrangements of hyperplanes, higher braid groups and higher Bruhat, Advanced Studies in Pure Mathematics 17 (1986) 289-308
[567] A. A. Markov, Über die freie Aquivalenz der geschlossner Zopfe, Rec. Soc. Math. Moscou 1 (1935) 73-78
[568] Y. Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5(1977) 59-68
[569] Y. Marumoto, A class of higher dimensional knots, J. Fac. Educ. Saga Univ. 31(1984) 177-185
[570] Y. Marumoto, On higher dimensional light bulb theorem, Kobe J. Math. 3(1986) 71-75
[571] Y. Marumoto, Some higher dimensional knots, Osaka J. Math. 24(1987) 759-783
[572] Y. Marumoto, Stable equivalence of ribbon presentations, J. Knot Theory Ramifications 1(1992) 241-251
[573] Y. Marumoto, Infinitely many prime equatorial knots of a ribbon 2-knot, Jour. Osaka Sangyo Univ., Natural Science 94(1993) 21-26
[574] Y. Marumoto and Y. Nakanishi, A note on the Zeeman theorem, Kobe J. Math. 8 (1991) 67-71
[575] Y. Marumoto, Y. Uchida, T. Yasuda, Motions of trivial links and its ribbon knots, Michigan Math. J. 42(1995) 463-477
[576] W. S. Massey, Algebraic topology: an introduction, Harbrace College Math. Ser., Harcourt, Brace \& World, Inc. (1967)
[577] W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31(1969) 143-156
[578] W. S. Massey, The quotient space of the complex projective plane under conjugation is a 4-space, Geom. Dedicata 2(1973) 371-374
[579] W. S. Massey, Imbeddings of projective planes and related manifolds in spheres, Indiana Univ. Math. J. 23(1974) 791-812
[580] W. S. Massey, Singular homology theory, Springer Verlag(1980)
[581] W. S. Massey, Completion of link modules, Duke Math. J. 47(1980) 399-420
[582] W. S. Massey, A basic course in algebraic topology, Springer Verlag(1991)
[583] W. S. Massey, D. Rolfsen, Homotopy classification of higher-dimensional links, Indiana Univ. Math. J. 34(1985) 375-391
[584] W. S. Massey, L. Traldi, Links with free groups are trivial, Proc. Amer. Math. Soc. 82(1981) 155-156
[585] M. Masuda, M. Sakuma, Knotting codimension 2 submanifolds locally, Enseign. Math. 35(1989) 21-40
[586] Y. Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney's trick, in "Algebraic and geometric topology" (Stanford, 1976), Proc. Sympos. Pure Math. 32-II, Amer. Math. Soc. (1978) 99-107
[587] Y. Matsumoto, An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, in "A la recherche de la topologie perdue", Progress in Math., 62, Birkhäuser, Boston (1986) 119-139
[588] Y. Matsumoto, Lefschetz fibrations of genus two -A topological approach-, in "Proc. the 37th Taniguchi Sympo.", ed. by S. Kojima et al., World Sci. Publ. (1996) 123-148
[589] Y. Matsumoto, G. A. Venema, Failure of the Dehn Lemma on contractible 4-manifolds, Invent. Math. 51(1979) 205-218
[590] T. Matsuoka, The Burau representation of the braid group and the Nielsen-Thurston classification, in "Nielsen theory and dynamical systems" (South Hadley, 1992), Contemp. Math., 152, Amer. Math. Soc. (1993) 229-248
[591] T. Matumoto, On a weakly unknotted 2-sphere in a simply-connected 4-manifold, Osaka J. Math. 21(1984) 489-492
[592] S. V. Matveev, Distributive groupoids in knot theory, Math. USSR-Sbornik 47(1982) 73-83
[593] S. V. Matveev, Transformations of special spines and the Zeeman conjecture, Math. USSR Izvestia 31(1988) 423-434
[594] J. P. Mayberry, K. Murasugi, Torsion-groups of abelian coverings of links, Trans. Amer. Math. Soc. 271(1982) 143-173
[595] E. J. Mayland, On residually finite knot groups, Trans. Amer. Math. Soc. 168(1972) 221232
[596] E. J. Mayland, The residual finiteness of the classical knot groups, Candian J. Math. 17(1975) 1092-1099
[597] W. A. McCallum, The higher homotopy groups of the p-spun trefoil knot, Glasgow Math. J. 17(1976) 44-46
[598] D. McCullough, A. Miller and B. Zimmermann, Group actions on handlebodies, Proc. London Math. Soc. (3) 59(1989) 373-416
[599] M. McIntyre and G. Cairns, A new formula for winding number, Geom. Dedicata 46(1993) 149-159
[600] F. A. McRobie and J. M. T. Thompson, Braids and knots in driven oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3(1993) 1343-1361
[601] W. H. Meeks III, P. Scott, Finite group actions on 3-manifolds, Invent. Math. 86(1986) 287-346
[602] W. H. Meeks III, S. -T. Yau, Topology of three dimensional manifolds and the embedding problem in minimal surface theory, Ann. of Math. 112(1980) 441-484
[603] W. H. Meeks III, S. -T. Yau, The topological uniqueness of complete minimal surfaces of finite topological type, Topology 31(1992) 305-316
[604] M. L. Mehta, On a relation between torsion numbers and Alexander matrix of a knot, Bull. Soc. Math. France 108(1980) 81-94
[605] P. Melvin, W. Kazez, 3-dimensional bordism, Michigan Math. J. 36(1989) 251-260
[606] P. Melvin, N. B. Tufillaro, Templates and framed braids, Phys. Rev. A 44(1991) R3419R3422
[607] W. W. Menasco, The Bennequin-Milnor unknotting conjectures, C. R. Acad. Sci. Paris Sér. I Math., 318 (1994) 831-836
[608] W. W. Menasco, A. Thompson, Compressing handlebodies with holes, Topology 28(1989) 485-494
[609] W. W. Menasco, M. B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. (N.S.) 25(1991) 403-412
[610] W. W. Menasco, M. B. Thistlethwaite, The classification of alternating links, Ann. of Math. 138(1993) 113-171
[611] K. C. Millett, Knot theory, Jones' polynomials, invariants of 3-manifolds, and the topological theory of fluid dynamics, in "Topological aspects of the dynamics of fluids and plasmas" (Santa Barbara, 1991), NATO Adv. Sci. Inst. Ser. E Appl. Sci., 218, Kluwer Acad. Publ. (1992) 29-64
[612] J. W. Milnor, Link groups, Ann. of Math. 59(1954) 177-195
[613] J. W. Milnor, Isotopy of links, in "Lefschety symposium" Princeton Math. Ser., 12, Princeton Univ. Press (1957) 280-306
[614] J. W. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76(1962) 137-147
[615] J. W. Milnor, A survey of cobordism theory, Enseign. Math. 8(1962) 16-23
[616] J. W. Milnor, Spin structures on manifolds, Enseign. Math. 9(1963) 198-203
[617] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and spin manifolds, Topology 3(1965) 223-230
[618] J. W. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, 61, Princeton Univ. Press (1968)
[619] J. W. Milnor, Infinite cyclic coverings, in "Conf. topology of manifolds", Prindle, Weber and Schmdit (1968) 115-133
[620] W. Mio, On boundary-link cobordism, Math. Proc. Cambridge Philos. Soc. 101(1987) 259266
[621] K. Miyazaki, On the relationship among unknotting numbers, knotting genus and Alexander invariant for 2-knots, Kobe J. Math. 3(1986) 77-85
[622] K. Miyazaki, Conjugation and the prime decomposition of knots in closed, oriented 3manifolds, Trans. Amer. Math. Soc. 313(1989) 785-804
[623] K. Miyazaki, Ribbon concordance does not imply a degree one map, Proc. Amer. Math. Soc. 108(1990) 1055-1058
[624] K. Miyazaki, Nonsimple, ribbon fibered knots, Trans. Amer. Math. Soc. 341(1994) 1-44
[625] K. Miyazaki, A. Yasuhara, Knots that cannot be obtained from a trivial knot by twisting, Contemp. Math. 164(1994) 139-150
[626] E. E. Moise, Affine structures in 3-manifolds V, the triangulation theorem and Hauptvermutung, Ann. of Math. 56(1952) 96-114
[627] E. E. Moise, Affine structures in 3-manifolds VII, invariance of the knot-types; local tame imbedding, Ann. of Math. 59(1954) 159-170
[628] E. E. Moise, Geometric topology in dimensions 2 and 3, Graduate Text in Math., 47, Springer Verlag(1977)
[629] B. G. Moishezon, Stable branch curves and braid monodromies, in "Algebraic Geometry" Lect. Notes in Math. 862 (1981) 107-192
[630] B. Moishezon, M. Teicher, Braid group technique in complex geometry I, line arrangements in $\mathbf{C P}^{\mathbf{2}}$, Contemp. Math. 78(1988) 425-555
[631] J. M. Montesinos, 4-manifolds, 3-fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245(1978) 453-467
[632] J. M. Montesinos, On twins in the four-sphere I, Quart. J. Math. Oxford (2) 34(1983) 171-199
[633] J. M. Montesinos, On twins in the four-space II, Quart. J. Math. Oxford (2) 35(1984) 73-83
[634] J. M. Montesinos, Lectures on 3-fold simple coverings and 3-manifolds, in "Combinatorial methods in topology and algebraic geometry", Contemp. Math., 44, Amer. Math. Soc. (1985) 157-177
[635] J. M. Montesinos, A note on moves and irregular coverings of S^{4}, in "Combinatorial methods in topology and algebraic geometry", Contemp. Math., 44, Amer. Math. Soc. (1985) 345-349
[636] J. M. Montesinos, A note on twist spun knots, Proc. Amer. Math. Soc. 98(1986) 180-184
[637] J. M. Montesinos, H. R. Morton, Fibred links from closed braids, Proc. London Math. Soc. 62(1991) 167-201
[638] J. M. Montesinos, W. Whitten, Constructions of two-fold branched covering spaces, Pacific J. Math. 125(1984) 415-446
[639] J. A. Moody, The Burau representation of the braid group B_{n} is unfaithful for large n, Bull. Amer. Math. Soc. (N.S.) 25(1991) 379-384
[640] J. A. Moody, The faithfulness question for the Burau representation, Proc. Amer. Math. Soc. 119(1993) 671-679
[641] S. Moran, The mathematical theory of knots and braids, an introduction, North-Holland Math. Studies, 82, North-Holland Publ. Co.(1983)
[642] S. Moran, Some free groups of matrices and the Burau representation of B_{4}, Math. Proc. Cambridge Philos. Soc. 110(1991) 225-228
[643] S. Moran, A wild variation of Artin's braids, in "Topics in knot theory" (Erzurum, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 399, Kluwer Acad. Publ. (1993) 85-106
[644] J. W. Morgan, H. Bass, The Smith conjecture, Academic Press (1984)
[645] Y. Moriah, On the free genus of knots, Proc. Amer. Math. Soc. 99(1987) 373-379
[646] K. Morimoto, On the additivity of the clasp singularities, Kobe J. Math. 3(1987) 179-185
[647] K. Morimoto, M. Sakuma, On unknotting tunnels for knots, Math. Ann. 289(1991) 143-167
[648] J. Morita, A combinatorial proof for Artin's presentation of the braid group B_{n} and some cyclic analogue, Tsukuba J. Math. 16(1992) 439-442
[649] S. Morita, Mapping class groups of surfaces and three-dimensional manifolds, in "Proc. ICM" (Kyoto, 1990), Math. Soc. Japan (1991) 665-674
[650] S. Morita, On the structure of the Torelli group and the Casson invariant, Topology 30(1991) 603-621
[651] T. Morita, Orders of knots in the algebraic knot cobordism group, Osaka J. Math. 25(1988) 859-864
[652] Y. Moriah, On the free genus of knots, Proc. Amer. Math. Soc. 99(1987) 373-379
[653] Y. Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91(1988) 465-481
[654] Y. Moriah, A note on satellites and tunnel number, Kobe J. Math. 8(1991) 73-79
[655] Y. Moriah, Geometric structures and monodromy representations, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 593-618
[656] Y. Moriah, Incompressible surfaces and connected sum of knots, J. Knot Theory Ramifications 7(1998) 955-965
[657] Y. Moriah, H. Rubinstein, Heegaard structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5(1997) 375-412
[658] Y. Moriah, J. Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37(1998) 1089-1112
[659] H. R. Morton, Infinitely many fibered knots having the same Alexander polynomial, Topology 17 (1978) 101-104
[660] H. R. Morton, A criterion for an embedded surface in \mathbf{R}^{3} to be unknotted, in "Topology of low-dimensional manifolds" (Sussex, 1977), Lecture Notes in Math., 722, Springer Verlag (1979) 93-95
[661] H. R. Morton, Closed braids which are not prime knots, Math. Proc. Cambridge Philos. Soc. 86(1979) 422-426
[662] H. R. Morton, An irreducible 4-string braid with unknotted closure, Math. Proc. Cambridge Philos Soc. 93(1983) 259-261
[663] H. R. Morton, Fibred knots with a given Alexander polynomial, in "Nœuds, tresses et singularités", Enseign. Math., 31, Univ. Univ. de Genève (1983) 207-222
[664] H. R. Morton, Alexander polynominals of closed 3-braids, Math. Proc. Cambridge Philos. Soc. 96(1984) 295-299
[665] H. R. Morton, Exchangable braid, in "Low-dimensional topology", London Math. Soc. Lecture Note Ser., 95, Cambridge Univ. Press (1985) 86-105
[666] H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986) 107-109
[667] H. R. Morton, Threading knot diagrams, Math. Proc. Cambridge Philos. Soc. 99(1986) 247-260
[668] H. R. Morton, Problems, in "Braids" (Santa Cruz, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 557-574
[669] H. R. Morton, Polynomials from braids, in "Braids" (Santa Cruz, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 575-585
[670] H. R. Morton, H. B. Short, Calculating the 2-variable polynomial for knots presented as closed braids, J. Algorithms 11(1990) 117-131
[671] H. Murakami, On the Conway polynomial of a knot with T-genus one, Kobe J. Math. 2(1985) 117-121
[672] H. Murakami, Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284(1989) 75-89
[673] H. Murakami, K. Sugishita, Triple points and knot cobordism, Kobe J. Math. 1(1984) 1-16
[674] H. Murakami, A. Yasuhara, Crosscap number of a knot, Pacific J. Math. 171 (1995) 261273
[675] H. Murakami, A. Yasuhara, Four-genus and four-dimensional clasp number of a knot, preprint
[676] J. Murakami, On local relations to determine the multi-variable Alexander polynomial of colored links, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 455-464
[677] J. Murakami, A state model for the multivariable Alexander polynomial, Pacific J. Math. 157 (1993) 109-135
[678] K. Murasugi, On the definition of the knot matrix, Proc. Japan Acad. 37 (1961) 220-221
[679] K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965) 387-422
[680] K. Murasugi, On the center of the group of a link, Proc. Amer. Math. Soc. $\mathbf{1 6 (1 9 6 5)}$ 1052-1057 [Errata, ibid, 18(1967), 1142]
[681] K. Murasugi, On the Minkowski unit of slice links, Trans. Amer. Math. Soc. 114(1965) 377-383
[682] K. Murasugi, On Milnor's invariants for links, Trans. Amer. Math. Soc. 124(1966) 94-110
[683] K. Murasugi, The Arf invariant for knot types, Proc. Amer. Math. Soc. 21(1969) 69-72
[684] K. Murasugi, On Milnor's invariant for links II, the Chen group, Trans. Amer. Math. Soc. 148(1970) 41-61
[685] K. Murasugi, On the signature of links, Topology 9 (1970) 283-298
[686] K. Murasugi, On closed 3-braids, Memoirs Amer. Math. Soc. No. 151, Amer. Math. Soc.(1974)
[687] K. Murasugi, On the divisibility of knot groups, Pacific J. Math. 52(1974) 491-503
[688] K. Murasugi, On a group that cannot be the group of a 2 -knot, Proc. Amer. Math. Soc. 64(1977) 154-155
[689] K. Murasugi, Seifert fibre spaces and braid groups, Proc. London Math. Soc. 44(1982) 71-84
[690] K. Murasugi, On the Arf invariant of links, Math. Proc. Cambridge Philos. Soc. 95(1984) 61-69
[691] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26(1987) 187-194
[692] K. Murasugi, Jones polynomials and classical conjectures in knot theory II, Math. Proc. Cambridge Philos. Soc. 102(1987) 317-318
[693] K. Murasugi, Covering linkage invariants in abelian coverings of links, Topology Appl. 25(1987) 25-50
[694] K. Murasugi, On the braid index of alternating links, Trans. Amer. Math. Soc. 326(1991) 237-260
[695] K. Murasugi, R. S. D. Thomas, Isotopic closed nonconjugate braids, Proc. Amer. Math. Soc. 33(1972) 137-138
[696] Y. Nakagawa, On the Alexander polynomials of slice links, Osaka J. Math. 15(1978) 161182
[697] Y. Nakagawa, Y. Nakanishi, Prime links, concordance and Alexander invariants II, Math. Sem. Notes Kobe Univ. 9(1981) 403-440
[698] Y. Nakanishi, Prime links, concordance and Alexander invariants, Math. Sem. Notes Kobe Univ. 8(1980) 561-568
[699] Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings, Math. Sem. Notes Kobe Univ. 11(1983) 257-258
[700] Y. Nakanishi, A remark on critical points of link cobordism, Kobe J. Math. 3(1987) 209-212
[701] Y. Nakanishi, On ribbon knots II, Kobe J. Math. 7(1990) 199-211
[702] Y. Nakanishi and M. Teragaito, 2-knots from a view of moving picture, Kobe J. Math. 8 (1991) 161-172
[703] W. D. Neumann, Signature related invariants of manifolds I, monodromy and γ-invariants, Topology 18(1979) 147-172
[704] W. D. Neumann, Complex algebraic plane curves via their links at infinity, Invent. Math. 98(1989) 445-489
[705] W. Neumann, L. Rudolph, Unfoldings in knot theory, Math. Ann. 278(1987) 409-439
[706] W. Neumann, L. Rudolph, Unfoldings in knot theory, Math. Ann. 282(1988) 349-351
[707] W. D. Neumann, J. Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65(1990) 58-78
[708] L. Neuwirth, Knot Groups, Ann. Math. Studies, 56, Princeton Univ. Press(1965)
[709] H. Noguchi, On regular neighborhoods of 2-manifolds in 4-Euclidean space I, Osaka Math. J. 8(1956) 225-242
[710] H. Noguchi, A classification of orientable surfaces in 4-space, Proc. Japan Acad. 39(1963) 422-423
[711] H. Noguchi, Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5(1966) 203-213
[712] R. A. Norman, Dehn's Lemma for certain 4-manifolds, Invent. Math. 7(1969) 143-147
[713] J. O'Hara, Energy of a knot, Topology 30(1991) 241-247.
[714] J. O'Hara, Energy functionals of knots II, Topology Appl. 56(1994) 45-61.
[715] Y. Ohyama, On the minimal crossing number and the braid index of links, Canad. J. Math. 45(1993) 117-131.
[716] M. Okada, Delta-unknotting operation and the second coefficient of the Conway polynomial, J. Math. Soc. Japan 42 (1990) 713-717
[717] A. Omae, Note on ribbon 2-knots, Proc. Japan Acad. 47(1971) 850-853
[718] P. Orlik, Seifert manifolds, Lect. Notes in Math., 291, Springer Verlag (1972)
[719] P. Orlik, L. Solomon, Braids and discriminants, in "Braids" (Santa Cruz, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 605-613
[720] K. E. Orr, New link invariants and applications, Comment. Math. Helv. 62(1987) 542-560
[721] K. E. Orr, Homotopy invariants of links, Invent. Math. 95(1989) 379-394
[722] K. E. Orr, Link concordance invariants and Massey products, Topology 30(1991) 699-710
[723] P. Pao, Non-linear circle actions on the 4-sphere and twisting spun knots, Topology 17(1978) 291-296
[724] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66(1957) 1-26
[725] R. Penrose, Twistors, particles, strings and links, in "The interface of mathematics and particle physics" (Oxford, 1988), Inst. Math. Appl. Conf. Ser. New Ser., 24, Oxford Univ. Press (1990) 49-58
[726] R. Piergallini, Covering moves, Trans. Amer. Math. Soc. 325(1991) 903-920
[727] R. Piergallini, Covering homotopy 3-spheres, Comment. Math. Helv. 67(1992) 287-292
[728] U. Pinkall, Regular homotopy classes of immersed surfaces, Topology 24(1985) 421-434
[729] A. Pizer, Matrices over group rings which are Alexander matices, Osaka J. Math. 21(1984) 461-472
[730] A. Pizer, Non reversible knots exist, Kobe J. Math. 1(1984) 23-29
[731] A. Pizer, Hermitian character and the first problem of R. H. Fox, Math. Proc. Cambridge Philos. Soc. 98(1985) 447-458
[732] A. Pizer, Hermitian character and the first problem of R. H. Fox for links, Math. Proc. Cambridge Philos. Soc. 102(1987) 77-86
[733] A. Pizer, Matrices which are knot module matrices, Kobe J. Math. 5(1988) 21-28
[734] S. Plotnick, Infinitely many disk knots with the same exterior, Math. Proc. Cambridge Phil. Soc. 98(1983) 67-72
[735] S. Plotnick, The homotopy type of four dimensional knot complements, Math. Z. 183(1983) 447-471
[736] S. Plotnick, Fibered knots in S^{4}-twisting, spinning, rolling, surgery and branching, in "Four manifold theory", Contemp. Math., 35, Amer. Math. Soc. (1984) 437-459
[737] S. Plotnick, Equivariant intersection forms, knots in S^{4}, and rotations in 2-spheres, Trans. Amer. Math. Soc. 296(1986) 543-575
[738] S. P. Plotnick, A. I. Suciu, k-invariants of knotted 2-spheres, Comment. Math. Helv. 60(1985) 54-84
[739] V. Poénaru, A note on the generators for the fundamental group of the complement of a submanifold of codimension 2, Topology 10(1971) 47-52
[740] T. M. Price, Homeomorphisms of quaternion space and projective planes in four space, J. Austral. Math. Soc. 23(1977) 112-128
[741] T. M. Price and D. M. Roseman, Embeddings of the projective plane in four space, preprint
[742] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39(1991) 91-100
[743] F. Quinn, Topological transversality holds in all dimensions, Bull. Amer. Math. Soc. (N.S.) 18(1988) 145-148
[744] M. Rampichini, Exchangeable fibred links, preprint
[745] E. S. Rapaport, On the commutator subgroup of a knot group, Ann. of Math. 71(1960) 157-162
[746] E. S. Rapaport, Knot-like groups, in "Knots, groups and 3-manifolds", Ann. Math. Studies, 84, Princeton Univ. Press (1975) 119-133
[747] K. Reidemeister, Knoten und Gruppen, Abh. Math. Sem. Univ. Hamburg 5(1926) 7-23
[748] K. Reidemeister, Knotentheorie, Ergebn. Math. Grenzgeb., 1, Springer Verlag (1932)
[749] K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9(1933) 189-194
[750] N. Yu. Reshetikhin, V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103(1991) 547-597
[751] P. M. Rice, Equivalence of Alexander matrices, Math. Ann. 193(1971) 65-75
[752] W. Richter, High-dimensional knots with $\pi_{1} \cong \mathbf{Z}$ are determined by their complements in one more dimension than Farber's range, Proc. Amer. Math. Soc. 120(1994) 285-294
[753] R. Riley, Homomorphisms of knot groups on finite groups, Math. Comput. 25(1971) 603619
[754] R. Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc. 334(1992) 389-409
[755] R. A. Robertello, An invariant of knot cobordism, Commun. Pure Appl. Math. 18(1965) 543-555
[756] V. A. Rokhlin, Two-dimensional submanifolds of four-dimensional manifolds, Func. Anal. App. 5(1971) 39-48
[757] D. Rolfsen, Isotopy of links in codimension two, J. Indian Math. Soc. 36(1972) 263-278
[758] D. Rolfsen, Some counterexamples in link theory, Canad. J. Math. 26(1974) 978-984
[759] D. Rolfsen, A surgical view of Alexander's polynomial, in "Proc. Geometric Topology Conf." (Park City, 1974), Lect. Notes in Math., 438, Springer Verlag (1975) 415-423
[760] D. Rolfsen, Localized Alexander invariants and isotopy of links, Ann. of Math. 101(1975) 1-19
[761] D. Rolfsen, Knots and links, Publish or Perish, Inc. (1976)
[762] D. Rolfsen, Piecewise linear I-equivalence of links, in "Low dimensional topology", London Math. Soc. Lecture Note Ser., 95, Cambridge Univ. Press (1985) 161-178
[763] D. Rolfsen, PL link isotopy, essential knotting and quotients of polynomials, Canad. Math. Bull. 34(1991) 536-541
[764] D. Rolfsen, The quest for a knot with trivial Jones polynomial: diagram surgery and the Temperly-Lieb algebra, in "Topics in knot theory" (Erzurum, 1992), NATO ASI Ser. C, 399, Kluwer Academic Publ. (1993) 195-210
[765] D. Roseman, Woven knots are spun knots, Osaka J. Math. 11(1974) 307-312
[766] D. Roseman, Projections of knots, Fund. Math. 89(1975) 99-110
[767] D. Roseman, The spun square knot is the spun granny knot, Bol. Soc. Mat. Mexicana (2) 20(1975) 49-55
[768] D. Roseman, Spinning knots about submanifolds; spinning knots about projections of knots, Topology Appl. 31(1989) 225-241
[769] D. Roseman, Motions of flexible objects, in "Modern geometric computing for visualization" (Tokyo, 1992), Springer, Tokyo (1992) 91-120
[770] D. Roseman, Reidemeister-type moves for surfaces in four-dimensional space, in "Knot theory" (Warsaw, 1995), Banach Center Publ., 42, Polish Acad. Sci., Warsaw (1998) 347380
[771] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag (1972)
[772] D. Ruberman, Doubly slice knots and the Casson-Gordon invariants, Trans. Amer. Math. Soc. 279(1983) 569-588
[773] D. Ruberman, Invariant knots of free involutions of S^{4}, Topology Appl. 18(1984) 217-224
[774] D. Ruberman, Concordance of links in S^{4}, in "Four-manifold theory" (Durham, 1982), Contemp. Math., 35, Amer. Math. Soc. (1984) 481-483
[775] D. Ruberman, The Casson-Gordon invariants in high dimensional knot theory, Trans. Amer. Math. Soc. 306(1988) 579-595
[776] D. Ruberman, Seifert surfaces of knots in S^{4}, Pacific J. Math. 145(1990) 97-116
[777] L. Rudolph, Non-trivial positive braids have positive signature, Topology 21(1982) 325-327
[778] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58(1983) 1-37
[779] L. Rudolph, Algebraic functions and closed braids, Topology 22 (1983) 191-202
[780] L. Rudolph, Construction of quasipositive knots and links I, in "Knots, braids and singularities" (Plans-sur Bex, 1982), Enseign. Math., 31 (1983) 233-245
[781] L. Rudolph, Constructions of quasipositive knots and links II, in "Four manifold theory" (Durham, 1982), Contemp. Math., 35, Amer. Math. Soc. (1984) 481-483
[782] L. Rudolph, Some topologically locally-flat surfaces in the complex projective plane, Comment. Math. Helv. 59(1984) 592-599
[783] L. Rudolph, Special positions for surfaces bounded by closed braids, Rev. Mat. Iberoamericana 1(1985) 93-133
[784] L. Rudolph, Isolated critical points of mappings from \mathbf{R}^{4} to $\mathbf{R}^{\mathbf{2}}$ and a natural splitting of the Milnor number of a classical fibered link I, basic theory; examples, Comment. Math. Helv. 62(1987) 630-645
[785] L. Rudolph, Isolated critical points of mappings from $\mathbf{R}^{\mathbf{4}}$ to $\mathbf{R}^{\mathbf{2}}$ and a natural splitting of the Milnor number of a cassical fibered link II, in "Geometry and topology" (Athens/Ga., 1985), Lect. Notes in Pure and Appl. Math., 105, Marcel Dekker (1987) 251-263
[786] L. Rudolph, Mutually braided open books and new invariants of fibered links, in "Braids" (Santa Cruz, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 657-673
[787] L. Rudolph, Quasipositivity and new knot invariants, Rev. Mat. Univ. Complut. Madrid 2(1989) 85-109
[788] L. Rudolph, A congruence between link polynomials, Math. Proc. Cambridge Philos. Soc. 107(1990) 319-327
[789] L. Rudolph, Quasipositive annuli (Constructions of quasipositive knots and links IV), J. Knot Theory Ramifications 1(1991) 451-466
[790] L. Rudolph, Totally tangential links of intersection of complex plane curves with round spheres, in "Topology '90" (Ohio, 1990), Walter de Gruyter (1992) 343-349
[791] L. Rudolph, A characterization of quasipositive Seifert surfaces (Constructions of quasipositive knots and links, III), Topology 31(1992) 231-237
[792] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29(1993) 51-59
[793] O. Saeki, K. Sakuma, Immersed n-manifolds in $R^{2 n}$ and the double points of their generic projections into $R^{2 n-1}$, Trans. Amer. Math. Soc. 348 (1996) 2585-2606
[794] M. Saito, Minimal number of saddle points of properly embedded surfaces in the 4-ball, Math. Sem. Notes Kobe Univ. 11(1983) 345-348
[795] M. Saito, A note on cobordism of surface links in S^{4}, Proc. Amer. Math. Soc. 111(1991) 883-887
[796] T. Sakai, A remark on the Alexander polynomials of knots, Math. Sem. Notes Kobe Univ. 5(1977) 451-456
[797] M. Sakuma, The homology groups of abelian coverings of links, Math. Sem. Notes Kobe Univ. 7(1979) 515-530
[798] M. Sakuma, On strongly invertible knots, in "Algebraic and topological theories - to the memory of Dr. T. Miyata", Kinokuniya Co. Ltd. (1985) 176-196
[799] M. Sakuma, Uniqueness of symmetries of knots, Math. Z. 192(1986) 225-242
[800] H. Saleur, The multivariable Alexander polynomial and modern knot theory, in "Topological and quantum group methods in field theory and condensed matter physics", Internat. J. Modern Phys. B, 6 (1992) 1857-1869
[801] B. J. Sanderson, Triple links in codimension 2, in "Topology, theory and applications II" (Pécs, 1989), Colloq. Math. Soc. János Bolyai, 55, North-Holland (1993) 457-471
[802] N. A. Sato, Alexander modules of sublinks and an invariant of classical link concordance, Illinois J. Math. 25(1981) 508-519
[803] N. A. Sato, Free coverings and modules of boundary links, Trans. Amer. Math. Soc. 264(1981) 499-505
[804] N. A. Sato, Algebraic invariants of boundary links, Trans. Amer. Math. Soc. 265(1981) 359-375
[805] N. A. Sato, Cobordisms of semi-boundary links, Topology Appl. 18(1984) 225-234
[806] Y. Sato, The reflexivity of 2-knots in $S^{2} \times S^{2}$, J. Knot Theory Ramifications 1(1992) 21-29
[807] M. Scharlemann, Smooth spheres in $\mathbf{R}^{\mathbf{4}}$ with four critical points are standard, Invent. Math. 79(1985) 125-141
[808] M. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82(1985) 37-55
[809] M. Scharlemann, Handlebody complements in the 3-sphere: a remark on a theorem of Fox, Proc. Amer. Math. Soc. 115(1992) 1115-1117
[810] M. Scharlemann, Unlinking via simultaneous crossing changes, Trans. Amer. Math. Soc. 336(1993) 855-868
[811] M. Scharlemann, A. Thompson, Unknotting number, genus, and companion tori, Math. Ann. 280(1988) 191-205
[812] P. Scott, Braid groups and the group of homomorphism of a surface, Math. Proc. Cambridge Philos Soc. 68(1970) 605-617
[813] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15(1983) 401-487
[814] M. Sekine, Kawauchi's second duality and knotted surfaces in 4-sphere, Hiroshima Math. J. 19(1989) 641-651
[815] M. Sekine, On homology of the double covering over the exterior of a surface in 4 -sphere, Hiroshima Math. J. 21(1991) 419-426
[816] T. Shibuya, On the homotopy of links, Kobe J. Math. 5(1988) 87-95
[817] T. Shibuya, Self Δ-equivalence of ribbon links, Osaka J. Math. $\mathbf{3 3 (1 9 9 6)} 751-760$
[818] A. Shima, An unknotting theorem for tori in S^{4}. II, Kobe J. Math. 13 (1996) 9-25
[819] A. Shima, On simply knotted tori in S^{4}, J. Math. Sci. Univ. Tokyo 4 (1997) 279-339
[820] A. Shima, Immersions from the 2-sphere to the 3 -sphere with only two triple points (Japanese), in "Topology of real singularities and related topics" (Kyoto, 1997), Suurikaisekikenkyusho Koukyuroku 1006 (1997) 146-160
[821] A. Shima, On simply knotted tori in S^{4}. II, in "KNOTS '96" (Tokyo, 1996), World Sci. Publishing (1997) 551-568
[822] A. Shima, An unknotting theorem for tori in S^{4}, Rev. Mat. Complut. 11 (1998) 299-309
[823] Y. Shinohara, On the signature of knots and links, Trans. Amer. Math. Soc. 156(1971) 273-285
[824] T. Shiomi, On imbedding 3-manifolds into 4-manifolds, Osaka J. Math. 28(1991) 649-661
[825] D. S. Silver, Examples of 3-knots with no minimal Seifert manifolds, Math. Proc. Cambridge Philos. Soc. 110(1991) 417-420
[826] D. S. Silver, On knot-like groups and ribbon concordance, J. Pure Appl. Algebra 82(1992) 99-105
[827] D. S. Silver, Augmented group systems and n-knots, Math. Ann. 296(1993) 585-593
[828] D. S. Silver, On the existence of minimal Seifert manifolds, Math. Proc. Cambridge Philos. Soc. 114(1993) 103-109
[829] D. S. Silver, Free group automorphisms and knotted tori in S^{4}, J. Knot Theory Ramifications 6(1997) 95-103
[830] J. Simon, An algebraic classification of knots in S^{3}, Ann. of Math. 97(1973) 1-13
[831] J. Simon, Wirtinger approximations and the knot groups of F^{n} in S^{n+2}, Pacific J. Math. 90(1980) 177-190
[832] R. K. Skora, Splittings of surfaces, Bull. Amer. Math. Soc. 23(1990) 85-90
[833] R. K. Skora, Knot and link projections in 3-manifolds, Math. Z. 206(1991) 345-350
[834] R. K. Skora, Closed braids in 3-manifolds, Math. Z. 211(1992) 173-187
[835] S. Smale, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc. 90(1959) 281-290
[836] S. Smale, The classification of immersions of spheres in euclidean space, Ann. of Math. 69(1959) 327-344
[837] P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. 35(1934) 572-578
[838] L. Smolinsky, Doubly sliced knots which are not the double of a disk, Trans. Amer. Math. Soc. 298(1986) 723-732
[839] L. Smolinsky, A generalization of the Levine-Tristram link invariant, Trans. Amer. Math. Soc. 315(1989) 205-217
[840] L. Smolinsky, Invariants of link cobordism, Topology Appl. 32(1989) 161-168
[841] N. Smythe, Boundary links, in "Topology seminar" (Wisconsin, 1965), Ann. of Math. Studies, 60, Princeton Univ. Press (1966) 69-72
[842] N. Smythe, Isotopic invariants of links and the Alexander matrix, Amer. J. Math. 89(1967) 693-704
[843] N. Smythe, Topological invariants of isotopy of links I, Amer. J. Math. 92(1970) 86-98
[844] N. Smythe, The Burau representation of the braid group is pairwise free, Arch. Math. 32(1979) 309-317
[845] T. Soma, The Gromov invariant of links, Invent. Math. 64(1981) 445-454
[846] A. B. Sosinskii, Multidimensional knots, Soviet Math. Doklady 6(1965) 1119-1122
[847] A. B. Sosinskii, Homotopy of knot complements, Soviet Math. Doklady 8(1967) 1324-1328
[848] A. B. Sosinskii, Decompositions of knots, Math. USSR-Sbornik 10(1970) 139-150
[849] J. Stallings, On topologically unknotted spheres, 'Ann. of Math. 77(1963) 490-503
[850] J. Stallings, Homology and central series of groups, J. of Algebra 2(1965) 170-181
[851] J. Stallings, Lectures on polyhedral topology, Tata Institute of Fundamental Research, Bombay (1968)
[852] J. Stallings, Group theory and three-dimensional manifolds, Yale Math. Monographs, 4, Yale Univ. Press (1971)
[853] J. Stallings, Construction of fibered knots and links, in "Algebraic and geometric topology" (Stanford, 1976), Proc. Symp. Pure Math., 32-II, Amer. Math. Soc. (1978) 55-60
[854] T. Stanford, The functoriality of Vassiliev-type invariants of links, braids, and knotted graphs, J. Knot Theory Ramifications 3(1994) 247-262
[855] T. Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269-276
[856] D. W. J. Stein, Computing Massey product invariants of links, Topology Appl. 32(1989) 169-181
[857] D. W. J. Stein, Massey products in the cohomology of groups with applications to link theory, Trans. Amer. Math. Soc. 318(1990) 301-325
[858] N. Stoltzfus, Algebraic computations of the integral concordance and double null concordance group of knots, in "Knot theory" (Plans-sur-Bex,1977), Lecture Notes in Math., 685, Springer Verlag (1978) 274-290
[859] R. Stong, Uniqueness of connected sum decompositions in dimension 4, Topology Appl. 56(1994) 277-291
[860] P. Strickland, Which finite simple knots are twist-spun?, Proc. London Math. Soc. 56(1988) 114-142
[861] A. I. Suciu, Infinitely many ribbon knots with the same fundamental group, Math. Proc. Cambridge Philos. Soc. 98(1985) 481-492
[862] A. I. Suciu, Iterated spinnig and homology spheres, Trans. Amer. Math. Soc. 321(1990) 145-157
[863] A. I. Suciu, Inequivalent frame-spun knots with the same complement, Comment. Math. Helv. 67(1992) 47-63
[864] D. W. Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46(1971) 240-256
[865] D. W. Sumners, Polynomial invariants and the integral homology of coverings of knots and links, Invent. Math. 15(1972) 78-90
[866] D. W. Sumners, On the homology of finite cyclic coverings of higher-dimensional links, Proc. Amer. Math. Soc. 46(1974) 143-149
[867] D. W. Sumners, J. M. Woods, The monodromy of reducible curves, Invent. Math. 40(1977) 107-141
[868] P. A. Sundheim, Reidemeister's theorem for 3-manifolds, Math. Proc. Cambridge Philos. Soc. 110(1991) 281-292
[869] P. A. Sundheim, The Alexander and Markov theorems via diagrams for links in 3-manifolds, Trans. Amer. Math. Soc. 337 (1993) 591-607
[870] S. Suzuki, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45(1969) 34-38
[871] S. Suzuki, Knotting problems of 2-spheres in the 4-sphere, Math. Sem. Notes Kobe Univ. 4(1976) 241-371
[872] S. Suzuki, Alexander ideals of graphs in the 3-sphere, Tokyo J. Math. 7(1984) 233-247
[873] S. Suzuki, Almost unknotted θ_{n}-curves in the 3-sphere, Kobe J. Math. 1(1984) 19-22
[874] G. A. Swarup, An unknotting criterion, J. Pure Appl. Algebra 6(1975) 291-296
[875] R. Takase, Note on orientable surfaces in 4-space, Proc. Japan Acad. 39(1963) 424
[876] I. Tamura, Unknotted codimension one spheres in smooth manifolds, Topology 23(1984) 127-132
[877] K. Taniyama, Cobordism, homotopy and homology of graphs in $\mathbf{R}^{\mathbf{3}}$, Topology 33(1994) 509-523
[878] K. Taniyama, A. Yasuhara, On C-distance of knots, Kobe J. Math. 11(1994) 117-127
[879] K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type, Trans. Amer. Math. Soc. 339(1993) 537-551
[880] M. Teragaito, Fibered 2-knots and lens spaces, Osaka J. Math. 26(1989) 57-63 and 26(1989) 953
[881] M. Teragaito, Twisting symmetry-spins of 2-bridge knots, Kobe J. Math. 6(1989) 117-126
[882] M. Teragaito, Twisting symmetry-spins of pretzel knots, Proc. Japan Acad. 66(1990) 179183
[883] M. Teragaito, A note on untwisted deform-spun 2-knots, Proc. Japan Acad. 68(1992) 75-78
[884] M. Teragaito, Composite knots trivialized by twisting, J. Knot Theory Ramifications 1(1992) 467-470
[885] M. Teragaito, Symmetry-spun tori in the four-sphere, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 163-171
[886] M. Teragaito, Roll-spun knots, Math. Proc. Camb. Phil. Soc. 113(1993) 91-96 and 116(1994) 191
[887] M. Teragaito, Twist-roll spun knots, Proc. Amer. Math. Soc. 122 (1994) 597-599
[888] H. Terasaka, F. Hosokawa, On the unknotted sphere S^{2} in E^{4}, Osaka J. Math. 13(1961) 265-270
[889] M. B. Thistlethwaite, Kauffman's polynomial and alternating links, Topology 27(1988) 311-318
[890] R. S. D. Thomas, The structure of the fundamental braids, Quart. J. Math. Oxford 26(1975) 283-288
[891] R. S. D. Thomas, Partially closed braids, Canad. Math. Bull. 17(1975) 99-107
[892] A. Thompson, A polynomial invariant of graphs in 3-manifolds, Topology 31(1992) 657-665
[893] W. P. Thurston, Three-dimensional geometry and topology, Edited by Silvio Levy, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ (1997)
[894] W. P. Thurston, Finite state algorithms for the braid groups, preprint
[895] G. Torres, On the Alexander polynomial, Ann. of Math. 57(1953) 57-89
[896] G. Torres, R. H. Fox, Dual presentations of the group of a knot, Ann. of Math. 59(1954) 211-218
[897] B. Trace, On the Reidemeister moves of a classical knot, Proc. Amer. Math. Soc. 89(1983) 722-724
[898] B. Trace, A note concerning Seifert manifolds for 2-knots, Math. Proc. Cambridge Philos. Soc. 100(1986) 113-116
[899] B. Trace, Some comments concerning the Levine approach to slicing classical knots, Topology Appl. 23(1986) 217-235
[900] B. Trace, A note concerning the 3-manifolds which span certain surfaces in the 4-ball, Proc. Amer. Math. Soc. 102(1988) 177-182
[901] P. Traczyk, Nontrivial negative links have positive signature, Manuscripta Math. 61(1988) 279-284
[902] P. Traczyk, A new proof of Markov's braid theorem, in "Knot theory" (Warsaw, 1995), Banach Center Publ., 42, Polish Acad. Sci., Warsaw (1998) 409-419
[903] P. Traczyk, 3-braids with proportional Jones polynomials, Kobe J. Math. 15 (1998) 187-190
[904] P. Traczyk, A criterion for signed unknotting number, in "Low Dimensional Topology" (Madeira, Portugal, 1998), Contemp. Math., 233, Amer. Math. Soc. (1999) 215-220
[905] L. Traldi, The determinantal ideals of link modules I, Pacific J. Math. 101(1982) 215-222
[906] L. Traldi, A generalization of Torres' second relation, Trans. Amer. Math. Soc. 269(1982) 593-610
[907] L. Traldi, Linking numbers and the elementary ideals of links, Trans. Amer. Math. Soc. 275(1983) 309-318
[908] L. Traldi, The determinantal ideals of link modules II, Pacific J. Math. 109(1983) 237-245
[909] L. Traldi, Some properties of the determinantal ideals of link modules, Math. Sem. Notes Kobe Univ. 11(1983) 363-380
[910] L. Traldi, Milnor's invariants and the completions of link modules, Trans. Amer. Math. Soc. 284(1984) 401-429
[911] H. F. Trotter, Periodic automorphism of groups and knots, Duke Math. J 28(1961) 553-557
[912] H. F. Trotter, Non-invertible knots exist, Topology 2(1964) 341-358
[913] H. F. Trotter, On S-equivalence of Seifert matrices, Invent. Math. 20(1973) 173-207
[914] C. M. Tsau, Algebraic meridians of knot groups, Trans. Amer. Math. Soc. 294(1986) 733747
[915] C. M. Tsau, Isomorphisms and peripheral structure of knot groups, Math. Ann. 282(1988) 343-348
[916] V. G. Turaev, Reidemeister torsion in knot theory, Russian Math. Surveys 41-1(1986) 119-182
[917] V. G. Turaev, On Torres-type relations for the Alexander polynomials of links, Enseign. Math. (2) 34(1988) 69-82
[918] V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Math., 18, Walter de Gruyter (1994)
[919] V. G. Turaev, O. Ya. Viro, State sum invariants of 3-manifolds and quantum $6 j$-symbols, Topology 31(1992) 865-902
[920] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc. 122 (1966) 81-97
[921] V. A. Vassiliev, Cohomology of knot space, in "Theory of Singularities and Its Applications", Advances in Soviet Math., vol. 1, Amer. Math. Soc. (1990)
[922] G. A. Venema, A topological disk in a 4-manifold can be approximated by piecewise linear disks, Bull. Amer. Math. Soc. 83 (1977) 386-387
[923] G. A. Venema, Approximating topological surfaces in 4-manifolds, Trans. Amer. Math. Soc. 265 (1981) 35-45
[924] O. Ya. Viro, Linkings, two-sheeted branched coverings and braids, Math. USSR-Sb. 16(1972) 223-236
[925] O. Ya. Viro, Branched coverings of manifolds with boundary, and invariants of links, Math. USSR-Izv. 7(1973) 1239-1356
[926] O. Ya. Viro, Local knotting of submanifolds, Math. USSR-Sb. 19(1973) 166-176
[927] O. Ya. Viro, Two-fold branched coverings of the three-sphere, J. Soviet Math. 8-5(1977) 531-553
[928] O. Ya. Viro, Lecture given at Osaka City University, September, 1990
[929] O. Ya. Viro, Moves of triangulations of a PL-manifold, in "Quantum groups" (Leningrad, 1990), Lecture Notes in Math., 1510, Springer Verlag (1992) 367-372
[930] T. L. Vo, G. A. Venema, Characterization of knot complements in the 4-sphere, Topology Appl. 42(1991) 231-245
[931] T. L. Vo, G. A. Venema, Complements of 2-spheres in 4-manifolds, in "Topology Hawaii" (Honolulu, 1990), World Sci. Publ. (1992) 157-163
[932] T. L. Vo, G. A. Venema, On the asphericity of knot complements, Canad. J. Math. 45(1993) 340-356
[933] V. A. Voevodskii, M. M. Kapranov, Free n-category generated by a cube, oriented matroids, and higher Bruhat orders, Func. Anal. App. 25(1991) 50-52
[934] P. Vogel, Representation of links by braids: A new algorithm, Comment. Math. Helv. 65 (1990) 104-113
[935] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33(1994) 241-256
[936] B. Wajnryb, Markov classes in certain finite symplectic representations of braid groups, Contemp. Math. 78(1988) 687-695
[937] B. Wajnryb, A braidlike presentation of $S p(n, p)$, Israel J. Math. 76(1991) 265-288
[938] M. Wakui, On Dijkgraaf-Witten invariant for 3-manifolds, Osaka J. Math. 29(1992) 675696
[939] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87(1968) 56-88
[940] C. T. C. Wall, Unknotting tori in codimension one and spheres in codimension two, Math. Proc. Cambridge Philos. Soc. 61(1965) 659-664
[941] C. T. C. Wall, Locally flat PL submanifolds with codimension two, Math. Proc. Cambridge Philos. Soc. 63 (1967) 5-7
[942] C. T. C. Wall, Surgery on compact manifolds, Academic Press (1970)
[943] S. C. Wang, 3-manifolds which admit finite group actions, Trans. Amer. Math. Soc. 339(1993) 191-203
[944] C. Weber, Torsion dans les modules d'Alexander, in "Knot theory" (Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer Verlag (1978) 300-308
[945] D. J. A. Welsh, Knots and braids: some algorithmic questions, in "Graph structure theory" (Seattle, 1991), Contemp. Math., 147, Amer. Math. Soc. (1993) 109-123
[946] H. Wenzl, Representations of braid groups and the quantum Yang-Baxter equation, Pacific J. Math. 145(1990) 153-180
[947] H. Wenzl, Unitary braid representations, in "Infinite analysis, Part A, B" (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ. (1992) 985-1006
[948] H. Wenzl, Braids and invariants of 3-manifolds, Invent. Math. 114(1993) 235-275
[949] J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12(1937) 63-71
[950] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. 45(1944) 220-246
[951] W. Whitten, Symmetries of links, Trans. Amer. Math. Soc. 135 (1969) 213-222
[952] W. Whitten, Algebraic and geometric characterizations of knots, Invent. Math. 26(1974) 259-270
[953] W. Whitten, Knot complements and groups, Topology 26(1987) 41-44
[954] R. F. Williams, The braid index of an algebraic link, in "Braids" (Santa Cruz, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 697-703
[955] R. F. Williams, The braid index of generalized cables, Pacific J. Math. 155(1992) 369-375
[956] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121(1989) 351-399
[957] Y. S. Wu, Braid groups, anyons and gauge invariance, in "Physics in (2 +1)-dimension" (Sorak Mountain Resort, 1991), World Sci. Publ. (1992) 108-132
[958] T. Yajima, On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962) 63-71
[959] T. Yajima, On simply knotted spheres in \mathbf{R}^{4}, Osaka J. Math. 1 (1964) 133-152
[960] T. Yajima, On a characterization of knot groups of some spheres in \mathbf{R}^{4}, Osaka J. Math. 6 (1969) 435-446
[961] T. Yajima, Wirtinger presentations of knot groups, Proc. Japan Acad. 46 (1970) 997-1000
[962] T. Yajima and S. Kinoshita, On the graphs of knots, Osaka Math. J. 9 (1957) 155-163
[963] S. Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987) 347-356
[964] S. Yamada, An operator on regular isotopy invariants of link diagrams, Topology 28(1989) 369-377
[965] S. Yamada, An invariant of spatial graphs, J. Graph Theory 13(1989) 537-551
[966] Y. Yamada, An extension of Whitney's congruence, Osaka J. Math. 32(1995) 185-192
[967] Y. Yamada, Decomposition of S^{4} as a twisted double of a certain manifold, Tokyo J. Math. 20 (1997) 23-33
[968] M. Yamamoto, Classification of isolated algebraic singularities by their Alexander polynomial, Topology 23(1984) 277-287
[969] T. Yanagawa, Brunnian systems of 2-spheres in 4-space, Osaka J. Math. 1(1964) 127-132
[970] T. Yanagawa, On ribbon 2-knots I, the 3-manifold bounded by the 2-knots, Osaka J. Math. 6(1969) 447-464
[971] T. Yanagawa, On ribbon 2-knots II, the second homotopy group of the complementary second homotopy group of the complementary domain, Osaka J. Math. 6(1969) 465-474
[972] T. Yanagawa, On ribbon 2-knots III, on the unknotting ribbon 2-knots in S^{4}, Osaka J. Math. 7(1970) 165-172
[973] T. Yanagawa, On cross sections of higher dimensional ribbon knots, Math. Sem. Notes Kobe Univ. 7(1977) 609-628
[974] T. Yanagawa, A note on ribbon n-knots with genus 1, Kobe J. Math. 2(1985) 99-102
[975] T. Yasuda, A presentation and the genus for ribbon n-knots, Kobe J. Math. 6(1989) 71-88
[976] T. Yasuda, Ribbon knots with two ribbon types, J. Knot Theory Ramifications 1(1992) 477-482
[977] T. Yasuda, On ribbon presentations of ribbon knots, J. Knot Theory Ramifications 3(1994) 223-231
[978] A. Yasuhara, On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid 5(1992) 255-276
[979] A. Yasuhara, Link homology in 4-manifolds, Bull. London Math. Soc. 28(1996) 409-412
$[980]$ D. N. Yetter, Markov algebras, in "Braids" (Santa Cruz, 1986), Contemp. Math., 78, Amer. Math. Soc. (1988) 705-730
[981] D. N. Yetter, Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories, in "Deformation theory and quantum groups with applications to mathematical physics" (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc. (1992) 325-349
[982] K. Yoshikawa, On 2-knot groups with the finite commutator subgroup, Math. Sem. Notes Kobe Univ. 8(1980) 321-330
[983] K. Yoshikawa, On a 2-knot with nontrivial center, Bull. Austr. Math. Soc. 25(1982) 321-326
[984] K. Yoshikawa, On 2-knot groups with abelian commutator subgroups, Proc. Amer. Math. Soc. 92(1984) 305-310
[985] K. Yoshikawa, A ribbon knot group which has no free base, Proc. Amer. Math. Soc. 102(1988) 1065-1070
[986] K. Yoshikawa, Certain abelian subgroups of two-knot groups, in "Knots 90" (Osaka, 1990), Walter de Gruyter (1992) 231-240
[987] K. Yoshikawa, An enumeration of surfaces in four-space, Osaka J. Math. 31(1994) 497-522
[988] E. C. Zeeman, Unknotting spheres, Ann. of Math. 72(1960) 350-361
[989] E. C. Zeeman, Linking spheres, Abh. Math. Sem. Univ. Hamburg 24(1960) 149-153
[990] E. C. Zeeman, Isotopies and knots in manifolds, in "Topology of 3-manifolds and related topics" (Georgia,1961), Prentice-Hall (1962) 187-198
[991] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. 78(1963) 501-520
[992] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115(1965) 471-495
[993] R. B. Zhang, Braid group representations arising from quantum supergroups with arbitrary q and link polynomials, J. Math. Phys. 33(1992) 3918-3930
[994] C. J. Zhu and D. M. Tong, Some important representations of the braid groups B_{n}, Acta Sci. Natur. Univ. Jilin. 1991(1991) 51-55
[995] G. M. Ziegler, Higher Bruhat orders and cyclic hyperplane arrangements, Topology 32(1993) 259-279
[996] B. Zimmermann, On groups associated to a knot, Math. Proc. Cambridge Philos. Soc. 109(1991) 79-82

Index

1-handle, 87
1-handle surgery, 87
2-dimensional conjugation, 187
2-dimensional destabilization, 188
2-dimensional knot, 53
2-dimensional link, 53
2-dimensional stabilization, 188
2-handle, 87
2-handle surgery, 87
2-knot, 53
2-link, 53
$A_{m}, 120$
$B_{m}, 8$
$b_{S}(\alpha), 140$
$C(\ell), 120$
$C_{m}, 9$
$D_{+}\left(B, K_{0}\right), 82$
$D_{-}\left(B, K_{0}\right), 84$
d-twist-spun 2-knot, 80
$E(L), 28$
$e(b), 108$
$F\left(L_{0} \rightarrow L_{1} \rightarrow \cdots \rightarrow L_{n}\right)_{[a, b]}, 72$
$F^{*}, 82$
$-F, 82$
G-monodromy, 127
G-system, 127
g-symmetry deformation, 83
$h(K), 193$
I-level-preserving homeomorphism, 11
$J(F), 246$
$K G_{n}, 229$
$L^{*}, 28$
$-L, 28$
$M\left(D^{2}, Q_{m}\right), 20$
$n(S), 115$
n-knot, 229
n-knot group, 229
$P^{m}(), 8,25,124$
$P_{m}, 10$
$R[]_{m}, 240$
$R R[]_{m}, 241$
$S(\vec{b}, \mathcal{A}, \ell), 125$
$S A_{m}, 120$
SB ${ }_{m}, 115$
$\mathbf{J}^{\mu}, 94$
\mathcal{A} operation, 50, 195
\mathcal{B} operation, 50, 195
$\mathcal{B}_{m}, 115$
\mathcal{E} operation, 47, 193
\mathcal{E}_{1}^{j} operation, 47, 193
\mathcal{E}_{2}^{j} operation, 47, 193
\mathcal{E}_{2}^{-j} operation, 193
\mathcal{E}_{3}^{j} operation, 193
\mathcal{E}_{i} operation, 47, 193
$\mathcal{F}, 262$
$\mathcal{F}_{g}, 231$
$\mathcal{K}_{g}^{2}, 231$
\mathcal{R} operation, 48, 49, 194
\mathcal{S} operation, 49, 195
$\mathcal{S}_{m}, 10$
\mathcal{T} operation, 49, 195
\mathcal{U} operation, 194
\mathcal{W} operation, 49, 194
\mathcal{Z}^{-1} operation, 49, 195
$\alpha(F), 251$
$\Gamma\left(w=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{p}=w^{\prime}\right), 132$
$\Gamma^{*}, 237$
$-\Gamma, 237$
$\iota_{p}^{q}(b), 183$
$\iota_{p}^{q}(S), 183$
$\iota_{p}^{q}(\Lambda), 183$
$\Lambda_{n}, 234$
$\Lambda_{w}, 129$
$\mu, 243$
$\pi_{2}^{\Sigma_{m}^{(1)}}\left(C_{m}^{(1)}(E), Q_{m}\right), 262$
$\rho, 83$
$\Sigma(S), 105,272$
$\widetilde{\Sigma}_{m}^{(1)}, 262$
$\tau, 83,152,240$
$\tau(A), 47,193$
$\tau(f ; x), 102$
$\tau_{d}(K), 81$
Artin(b), 24
$\mathrm{Aut}^{\mathrm{R}}(G), 24$
$\operatorname{Braid}(F), 182$
C-move, 142
CI-move, 142
CII-move, 142
CIII-move, 142
$\operatorname{deg}(f ; x), 99$
$\operatorname{deg}(S ; x), 105$
$\mathrm{f}(\Gamma), 245$
$\mathrm{h}(L ; \mathcal{B}), 71$
$\mathrm{u}(F), 259$
u(S), 259
$\mathrm{w}(\Gamma), 245$
Alexander matrix, 94
Alexander module, 95
Alexander polynomial, 95, 247
Alexander's theorem in dimension four, 181
ambient isotopic, 3, 27, 53
ambient isotopy, 3
Artin's automorphism, 24
Artin's presentation, 16
associated branched covering, 105
associated branched covering map, 117
attaching arcs, 71
band, 71, 120
band set attaching to $L, 71$
base relator, 36, 91, 92
black vertex, 135
boundary connected sum, 114
braid, 7
braid ambient isotopic, 109
braid ambient isotopic in the strong sense, 118
braid ambient isotopic in the weak sense, 118
braid ambient isotopy, 109, 118
braid automorphism, 24
braid diagram, 15
braid form, 41
braid group, 8
braid index, 182
braid isotopic, 109
braid isotopic in the strong sense, 118
braid isotopic in the weak sense, 118
braid isotopy, 109, 118
braid isotopy extension theorem, 12
braid monodromy, 123
braid monodromy representation, 123
braid movie, 106
braid system, 124
braid word, 129
braid word chart, 130
braid word description, 16
braid word expression, 16
braid word transformation, 130
braid word transformation sequence, 130
braided surface, 117
branch point, 57, 99, 105, 117
branch point fission/fusion, 110
branch point set, 99
branch point of valency $n, 57$
branch type, 100, 101
branch-point type singular point, 272
branched covering map, 99
branching index, 99
brick regular neighborhood, 11
broken surface diagram, 58
BWTS chart, 132
cap off, 75
cellular move, 31,55
cellular move lemma, 55
characteristic polynomial, 94, 95
chart, 132, 135
chart description, 181
chart move, 142
closed braid, 42,43
closed realizing surface, 75
closed surface braid, 179, 180
closing, 75
closure, $75,179,180$
combinatorially equivalent, $13,30,55$
complement, 28
complete fission, 71
complete fusion, 71
completely split, 119
completely splittable, 120
concatenation product, 8
configuration space, 8
conjugation, 43, 187
connected sum, 30, 184-186
critical point, 42,63
critical value, 63
cut, 180
decomposing sphere, 30
deficiency, 230
deform-spun 2-knot, 82
deform-spun projective plane, 84
deformation, 82
deformation chain, 48, 50, 195
deformation group, 82
destabilization, 44, 167, 188
diagram, 15, 32, 58
disk system, 67
division, 11, 191
double point, 57
double-point type singular point, 272
edge, 27
elementary braid word transformations, 130
elementary critical disk, 66
elementary critical points, 64
elementary dividing operation, 191
elementary ideal, 94,95
elementary move, $13,55,193$
elementary move of type I, 30, 55
elementary move of type II, 30,55
elementary move of type III, 55
enlarged braid word transformation, 133
enlarged braid word transformation sequence, 133
enlarged BWTS chart, 133
equivalent, $7,21,27,28,33-35,53,84,87$, $105,109,123,127,179,262,271$
equivalent in the strong sense, 118
equivalent in the weak sense, 118,252
Euler fission, 152
Euler fusion, 152
exceptional value, 152
extended configuration space, 262
exterior, 28
Fenn-Rolfsen 2-link, 274
fiber-preserving homeomorphism, 12, 109
fission of a branch point, 110
fission of a singular point, 110
free derivative, 94
free edge, 156
frontier, 3
fusion of a branch point, 110
general position, $31,42,57,58,136,140,193$
generic braid projection, 15
generic map, 57
generic projection, 58
generic projection of the first order, 15
generic projection of the second order, 15
genus, 54
geometric braid, 7
geometric braid obtained from S by restric-
tion along $\alpha, 140$
good subdivision, 191
group, 35
handlebody, 54
height, 48, 193
height preserving, 63
homeomorphism of D^{2} associated with $b, 19$
hoops of a chart, 135
Horibe and Yanagawa's lemma, 68
horizontal product, 113
Hurwitz arc system, 21
Hurwitz arc system associated with b, 23
Hurwitz generator system, 24
Hurwitz path system, 21
hyperbolic point, 64
hyperbolic transformation, 71
hyperbolic transformation sequence, 71
intersection braid word, 140
inverse of a braid, 8
invertible, 28
inverting deformation, 84
inverting homeomorphism, 84
isomorphic, 109
isomorphic in the strong sense, 118
isomorphic in the weak sense, 118
isomorphism, 109
isotopic, 2, 20, 39
isotopic transformation, 71
isotopy, 2
isotopy of D^{2} associated with $b, 19$
isotopy of $D^{2} \times I$ associated with $b, 19$
isotopy of Q_{m} associated with $b, 19$
join, 191
Kervaire conditions, 229
Kinoshita type, 85
knot, 27
knot equivalent, 38
knot group, 91, 229
length, 195, 246
level preserving, 63
link, 27, 28
link diagram, 32
link group, 35
link module, 95
link transformation sequence, 71
link type, 27
local degree, 99, 105, 117
locally flat, 1
locally flat isotopy, 2
longitude, 29
lower level relator, 92
lower presentation, 36, 92
lower relator, 36, 91
mapping class group, 20
Markov equivalent, 45, 195, 196
Markov move of type I, 43
Markov move of type II, 44
Markov's theorem in dimension four, 190
maximal critical point, 43
maximal disk, 66
maximal height, 195
maximal point, 64
meridian, 28
meridian disk, 28
mesh division, 202, 203
middle edge, 135
minimal critical point, 43
minimal disk, 66
minimal point, 64
mirror image, 28
monodromy, 102
monodromy representation, 102
motion, 9
motion picture, 63, 106
movie, 59
multiple cone, 120
negative, $32,42,43$
negative 1 -simplex, 42
negative 2 -simplex, 193
negative amphicheiral, 28
negative domain, 206
negative singular point, 108
negative stabilization, 44
negatively oriented meridian, 29
nice 1-handle, 155
node, 273
nomad, 257
non-locally flat maximal point, 65
normal braid form, 161
normal form, 76, 77
normal ribbon braid form, 173
oddly principal, 246
orientation-reversed link, 28
oriented 1-handle surgery, 87
oriented branched covering map, 99
oriented connected sum, 30
oriented knot equivalent, 38
oriented link, 27
oriented Reidemeister moves, 34
oriented surface link, 53
oval nest, 156
over crossing, 32
over edge, 32
passing a branch point, 61
Peiffer transformation, 259
pile product, 183, 186
piling, 183
plat form, 41
pointed braided surface, 117
polygonal braid, 13
polygonal link, 27
positive, $32,42,43$
positive 1 -simplex, 42
positive 2 -simplex, 193
positive amphicheiral, 28
positive domain, 206
positive singular point, 108
positive stabilization, 44
positively oriented meridian, 29
pre-simple band, 159
preferred longitude, 29
principal, 246
product, $7,8,114$
proper, 1
pure braid, 10
pure braid group, 10
realization, 63
realizing surface, 72
reduced ribbon braid form, 241
regular point, 57, 63, 99, 117
regular projection, 31
regular value, 63, 151
Reidemeister move, 33
ribbon braid system, 239
ribbon chart, 237
ribbon disk, 89
ribbon knot, 89
ribbon singularity, 89
ribbon surface link, 88
Riemann-Hurwitz formula, 101
rolling deformations, 83
Roseman move, 61
round 1-handle, 266
saddle band, 66
saddle point, 64
sawtooth, 49, 195
sign, 193
simple, 272
simple band, 159
simple braided surface, 117
simple branch point, 103
simple branched covering, 103
simple closed surface braid, 179
simple loops of a chart, 135
simple singular point, 103
simple string recombination, 133
simple surface braid, 108
simple surface braid monoid, 115
simply knotted, 88
singular chart, 273
singular index, 102, 152
singular locus, 262
singular point, 99, 105, 117
singular surface braid, 272
singular surface knot, 271
singular surface link, 271
slice disk, 89
slice knot, 89
slide action, 25
slide equivalent, 25
smooth geometric braid, 14
smooth link, 27
smooth surface link, 53
smoothly equivalent, 14
span, 247
split union, 30
splitting sphere, 30
spun 2-knot, 79
stabilization, 44, 188, 189
standard 2-sphere, 53
standard generator system, 24
standard generators, 16
standard Hurwitz arc system, 22
standard presentation, 16
standard projective planes, 53
standard singular 2-knot, 271
standard torus, 53
starting point set, 21
stereographic projection, 206
string, 10
subdivision, 191
surface braid, 105
surface braid associated with $\Gamma, 136,139$
surface braid chart, 135
surface braid monoid, 115
surface knot, 53
surface link, 53
surface link diagram, 58
surface link type, 53
surgery, 71,87
suspension, 53
symmetric braid word, 144
symmetric group, 10
symmetrically equivalent, 144
symmetry, 83
Symmetry theorem on chart description, 269
Symmetry theorem on twist-spun knots, 82
tame, 28
tetrahedral move, 60
tomography, 58
topological link, 27
topological surface link, 53
trace, 63
trace map, 26
transversal homotopy, 262
trefoil, 36
triple point, 57
trivial, 29, 53, 67, 271, 272
trivial braid, 8
trivial pointed braided surface, 119
trivial surface braid, 107
trivialization, 28
tubular neighborhood, 28
twisting, 83
type $\alpha, 47,193$
type $\beta, 47,193$
type $\gamma, 193$
type-I bubble move, 59
type-I saddle move, 60
type-II bubble move, 59
type-II saddle move, 60
type-III move, 60
type $\mathcal{R}, 162$
unbraiding sequence, 162
under crossing, 32
under edge, 32
unknot, 29
unknotted, 29, 53, 233, 271, 272
unknotted braid system, 235
unknotting conjecture, 55
unknotting number, 259
unknotting theorem, 30
upper level relator, 92
upper presentation, 36, 92
upper relator, 36, 91
vertical product, 113
white vertex, 135
wild, 28
Wirtinger presentation, 230

AMS on the Web
www.ams.org

