Bergman Spaces

Peter Duren
Alexander Schuster

American Mathematical Society
Bergman Spaces
Bergman Spaces

Peter Duren
Alexander Schuster
For additional information and updates on this book, visit
www.ams.org/bookpages/surv-100

Library of Congress Cataloging-in-Publication Data
Duren, Peter L., 1935–
Bergman spaces / Peter Duren, Alexander Schuster.
p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 100)
Includes bibliographical references and index.
ISBN 0-8218-0810-9 (alk. paper)
1. Bergman spaces. I. Schuster, Alexander, 1968– II. Title. III. Mathematical surveys and
monographs ; no. 100.
QA331.7.D8 2004
515’.9—dc22 2003063825

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2004 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 09 08 07 06 05 04
Contents

Preface .. ix

Chapter 0. Overview 1

Chapter 1. The Bergman Kernel Function 7
 1.1. Point-evaluation functionals 7
 1.2. Orthonormal bases 9
 1.3. Conformal invariance 12
 1.4. An extremal problem 14
 1.5. Connection with Green’s function 16
 1.6. The biharmonic Green function 18

Chapter 2. Linear Space Properties 25
 2.1. Hardy spaces 25
 2.2. Strict and uniform convexity 28
 2.3. The Bergman projection 30
 2.4. Dual spaces 35
 2.5. The pseudohyperbolic metric 38
 2.6. The Bloch space 43
 2.7. Harmonic conjugates 54
 2.8. Linear isometries 56
 2.9. Function multipliers 59
 2.10. Carleson measures 61
 2.11. Uniformly discrete sequences 67

Chapter 3. Analytic Properties 73
 3.1. More on Hardy spaces 73
 3.2. Growth of functions in Bergman spaces 77
 3.3. Coefficients of functions in Bergman spaces . 81
 3.4. Coefficient multipliers 86
 3.5. Korenblum’s maximum principle 90
Chapter 4. Zero-Sets 93
 4.1. Preliminary remarks 93
 4.2. Density of zero-sets 96
 4.3. Dependence on p 98
 4.4. Unions and subsets of zero-sets 101
 4.5. Blaschke products as generators 106
 4.6. Universal divisors 107
 4.7. Perturbations of zero-sets 114
 4.8. Zeros on a radial line 116

Chapter 5. Contractive Zero-Divisors 119
 5.1. An extremal problem 119
 5.2. Expansive multipliers 127
 5.3. Proof of the integral formula 131
 5.4. Representation by kernel functions 137
 5.5. Analytic continuation 141
 5.6. Contractive divisors 144
 5.7. Invariant subspaces 146

Chapter 6. Sampling and Interpolation 153
 6.1. Definitions and motivations 153
 6.2. Interpolation in Hardy spaces 157
 6.3. A family of sampling and interpolation sequences 159
 6.4. Some explicit examples 168
 6.5. The density theorems 171
 6.6. Direct calculation of densities 176
 6.7. Sharpened forms of Horowitz’ theorems 182
 6.8. Sufficient conditions of the pseudohyperbolic metric 187
 6.9. Duality relations 192

Chapter 7. Proofs of Sampling and Interpolation Theorems 197
 7.1. Perturbation of sampling sequences 197
 7.2. Necessity of the sampling condition 204
 7.3. Sampling in the growth space 207
 7.4. Sufficiency of the sampling condition in A^p 216
 7.5. Sufficiency of the interpolation condition 219
 7.6. Necessity of the interpolation condition 234
 7.7. Weak interpolation 240

Chapter 8. Invariant Subspaces 245
 8.1. Beurling’s theory for Hardy spaces 245
 8.2. Cyclic inner functions in Bergman spaces 247
 8.3. Cyclic elements of Bergman spaces 258
 8.4. The index of an invariant subspace 261
 8.5. Invariant subspaces of higher index 263
 8.6. Generalizations to A^p 265
CONTENTS

Chapter 9. Structure of Invariant Subspaces 271

9.1. Description of generators 271
9.2. Inner and outer functions for Bergman spaces 273
9.3. Generalization of the main theorem 276
9.4. Cyclic subspaces of A^p 282
9.5. Extremal functions as generators 288

References 297

Index 313
Preface

Over the last ten years, the theory of Bergman spaces has undergone a remarkable metamorphosis. In a series of major advances, central problems once considered intractable were solved, and a rich theory has emerged. Although progress continues, the time seems ripe for a full and unified account of the subject, weaving old and new results together.

The modern subject of Bergman spaces is a blend of complex function theory with functional analysis and operator theory. It comes in contact with harmonic analysis, approximation theory, hyperbolic geometry, potential theory, and partial differential equations. Our aim has been to develop background material and make the subject accessible to a broad segment of the mathematical community. We hope the book will prove useful not only as a reference for research workers, but as a text for graduate students.

In fact, the book evolved from a rough set of notes prepared for graduate students in a two-week course that one of us gave in 1996 at the Norwegian University of Science and Technology in Trondheim, in conjunction with a conference on Bergman spaces supported by the Research Council of Norway. Since that time we have used successive versions of the manuscript in graduate courses we taught at the University of Michigan (1998), Washington University in St. Louis (1999), and San Francisco State University (2001). The last course was supported by the NSF CIRE (Collaborative to Integrate Research and Education) program. The students in all of these courses were enthusiastic, and their perceptive remarks on the manuscript often led to substantial improvements.

In striving for clear presentations of material, we have had the benefit of expert advice from many friends and colleagues. We are most grateful to Kristian Seip for guiding us to a self-contained account of his deep results on interpolation and sampling. Harold Shapiro showed us an elegant way to develop the biharmonic Green function and helped with other constructions. Dmitry Khavinson fielded a steady barrage of technical questions and offered many useful suggestions on the manuscript. Sheldon Axler made a careful reading of several chapters and gave valuable criticism. Mathematical help of various sorts came also from Marcin Bownik, Brent Carswell, Eric Hayashi, Håkan Hedenmalm, Anton Kim, John McCarthy, Maria Nowak, Stefan Richter, Richard Rochberg, Joel Shapiro, Michael Stessin, Carl Sundberg, James Tung, Dror Varolin, Dragan Vukotić, Rachel Weir, and Kehe Zhu. Special thanks go to Joel Shapiro for permission to
base our treatment of cyclic singular inner functions (Section 8.2) on his unpublished notes. Christopher Hammond read large portions of the manuscript with an eagle eye and spotted a number of misprints, minor errors, and obscurities. Anders Björn also made helpful remarks. We want to express our sincere appreciation to all of these people, and others whose names we may have overlooked, for helping to improve this book. Any defects that remain, however, are the authors’ responsibility.

We also had the benefit of the earlier book Theory of Bergman Spaces by Håkan Hedenmalm, Boris Korenblum, and Kehe Zhu (Springer–Verlag, 2000), which served as a useful reference in our approach to several topics. As may be expected, the two books have considerable overlap, but ours develops more of the prerequisite material. It also treats topics not discussed in the earlier book, and treats some of the same topics in different ways. A few results appear here for the first time. On the other hand, the book of Hedenmalm, Korenblum, and Zhu contains extensive discussions of several topics barely touched upon in our book, such as invertible noncyclic functions and logarithmically subharmonic weights.

Our book is essentially self-contained. It should be accessible to advanced graduate students who have studied basic complex function theory, measure theory, and functional analysis. Prior knowledge of Hardy spaces is helpful, since that theory often serves as a model for Bergman spaces, but the main facts about Hardy spaces are reviewed in two “crash courses” early in the book and later as motivation for corresponding topics in Bergman spaces. A few Hardy space results are actually needed for the theoretical development of Bergman spaces, and proofs are given.

Most of the writing was carried out during summers together in Ann Arbor, where the University of Michigan provided excellent facilities for our work. Thanks also go to the Ann Arbor Diamondbacks, who were an extra incentive for the second-named author to return to Michigan every summer.

Over the last decade, the American Mathematical Society held several Special Sessions on Bergman spaces at national and regional meetings, and sponsored a week-long research conference at Mt. Holyoke College in the summer of 1994. That summer conference, in particular, did much to stimulate further research in the field. We were therefore especially pleased when the AMS agreed to publish our book. We are grateful to Sergei Gelfand of the AMS for his initial vision that encouraged us not to settle for a revised set of lecture notes, but to do the extra work needed to produce a full expository account of the subject. He showed remarkable patience with the slow pace of the resulting project, but pushed us to finish when the end was in sight and helped with the technical aspects of production. We hope our book may be judged a worthy successor to the classic book by Stefan Bergman, which appeared in the same AMS series many years ago.

Peter Duren and Alexander Schuster
September 2003
References

Abakumov, E. and Borichev, A.

Abkar, A.

Aharonov, D., Shapiro, H. S., and Shields, A. L.

Aleman, A.

Aleman, A., Hedenmalm, H., Richter, S., and Sundberg, C.

Aleman, A. and Richter, S.

Aleman, A., Richter, S., and Sundberg, C.

Amar, E.
Anderson, J. M.

Anderson, J. M., Clunie, J., and Pommerenke, Ch.

Andersson, Mats Erik

Apostol, C., Bercovici, H., Foiaș, C., and Pearcy, C.

Axler, S.

Beller, E.

Beller, E. and Horowitz, C.

Bergman, S.

Bergman, S. and Schiffer, M.

Berman, R., Brown, L., and Cohn, W.

Berndtsson, B. and Ortega-Cerdà, J.

Beurling, A.

Boas, R. P.

Bomash, G.

Borichev, A.

Borichev, A. A. and Hedenmalm, H.

Bourdon, P.

Brown, L. and Korenblum, B.

Brown, L. and Shields, A. L.

Bruna, J. and Pascuas, D.

Buckley, S. M., Koskela, P., and Vukotić, D.

Carleson, L.

Cima, J. A.

Cima, J. A. and Derrick, W. R.

Clarkson, J. A.

Coifman, R. R. and Rochberg, R.

Cowen, C. and MacCluer, B.

Djrbashian, A. E. and Shamoian, F. A.

Duffin, R. J.

Duren, P. L.

Duren, P., Khavinson, D., and Shapiro, H. S.
Duren, P., Khavinson, D., Shapiro, H. S., and Sundberg, C.

Duren, P. L., Romberg, B. W., and Shields, A. L.

Duren, P. and Schuster, A. P.

Duren, P., Schuster, A. P., and Seip, K.

Duren, P., Schuster, A., and Vukotić, D.

Duren, P. L. and Shields, A. L.

Duren, P. L. and Taylor, G. D.

Engliš, M.

Epstein, B.

Fisher, S. D.

Folland, G.B.
Forelli, F.

Forelli, F. and Rudin, W.

Friedman, A.

Garabedian, P. R.

Garnett, J.

Hansbo, J.

Hardy, G. H. and Littlewood, J. E.

Hastings, W. W.

Hayman, W. K.

Hayman, W. K. and Korenblum, B.
Hedenmalm, H.

Hedenmalm, H., Jakobsson, S., and Shimorin, S.

Hedenmalm, H., Korenblum, B., and Zhu, K.

Hedenmalm, H., Richter, S., and Seip, K.

Hedenmalm, H. and Zhu, K.

Hinkkanen, A.

Hörmander, L.

Horowitz, C.

Horowitz, C., Korenblum, B., and Pinchuk, B.

Horowitz, C. and Oberlin, D. M.

Janas, J.

Jevtić, M., Massaneda, X., and Thomas, P. J.

Kabaila, V.

Kato, T.
Khavinson, D. and Shapiro, H. S.

Khavinson, D. and Stessin, M. I.

Kim, A. K.

Kolaski, C. J.

Koosis, P.

Korenblum, B.

Korenblum, B., O’Neil, R., Richards, K., and Zhu, K.

Korenblum, B. and Richards, K.

Köthe, G.

Krosky, M. and Schuster, A. P.

LeBlanc, E.
Lieb, E. H. and Loss, M.

Littlewood, J. E.

Loewner, Ch.

Luecking, D. H.

Lyubarskii, Y. I. and Sodin, M.

MacGregor, T. H. and Stessin, M. I.

MacGregor, T. H. and Zhu, K.

Matero, J.

McCarthy, J. E.

McCullough, S. and Richter, S.

McDonald, G. and Sundberg, C.
McKenna, P. J.

Nakamura, A., Ohya, F., and Watanabe, H.

Nehari, Z.

Neville, C. W.

Nicolau, A.

Nikolskii, N.

Novinger, W. P.

Nowak, M. and Waniurski, P.

Oleinik, V. L.

Ortega-Cerdà, J.

Osipenko, K. Yu. and Stessin, M. I.
Pommerenke, Ch.

Ransford, T.

Reed, M. and Simon, B.

Richter, S.

Riesz, F. and Sz.-Nagy, B.

Roberts, J. W.

Rochberg, R.

Rudin, W.

Saitoh, S.

Schuster, A. P.

REFERENCES

Schuster, A. and Seip, K.

Schuster, A. P. and Varolin, D.

Schwick, W.

Seip, K.

Shapiro, H. S.

REFERENCES

Shapiro, H. S. and Shields, A. L.

Shapiro, H. S. and Tegmark, M.

Shapiro, J. H.

Shields, A.

Shimorin, S. M.

Shvedenko, S. V.

Sundberg, C.

Szegö, G.

Taylor, B. A. and Williams, D. L.

Thomson, J. E.

Vukotić, D.

Watanabe, H.

Weir, R.

Wojtaszczyk, P.

Zaharjuta, V. P. and Judovič, V. I.

Zhu, K.

Zygmund, A.
Index

A^*, 193, 277
$A^{-\beta}$, 207
$A_0^{-\beta}$, 207
$a(\Omega)$, 41
a^p, 54
$A_{2w}(\Omega)$, 10
A^2_w, 137
A^p, 7
$A^p(\Omega)$, 7
A^p_n, 103
A^p_w, 149
$A^p(\phi)$, 285
B, 43
B_0, 44
C, 7
c_0, 217
$C(\overline{\mathbb{D}})$, 47
$C_0(\mathbb{D})$, 47
$C^\infty_0(\mathbb{D})$, 131
\mathbb{D}, 7
d(f, M), 253
$D[[n_j]]$, 254
$D^+(\Gamma)$, 171
$D^-(\Gamma)$, 171
$D(\Gamma, \zeta, r)$, 173
dA, 7
δ_{mn}, 9
$\delta(\Gamma)$, 159
Δ, 16
$\tilde{\Delta}$, 221
Δ^2, 18
$\Delta(z, r)$, 40
$\partial/\partial n$, 16
$<$, 274
$f(z) \simeq g(z)$, 159
ds, 15
\(d\sigma\), 29
\(E(\Gamma, \zeta, r)\), 171
\(E(z)\), 222
\(\varphi_\alpha\), 36
\(g_n\), 203
\(G_\alpha(z)\), 125
\(G(z, \zeta)\), 16
\(\Gamma(z, \zeta)\), 18
\(\tilde{\Gamma}(z, \zeta)\), 283
\(\Gamma(a, b)\), 168
\(\Gamma_j^n(a, b)\), 187
\(\Gamma_j \to \Gamma\), 212
\(\nabla\), 131
\(\mathbb{H}^+\), 168
\(H^\infty\), 26
\(H^p\), 26
\(h^\infty\), 26
\(h^p\), 26
\(\text{ind}(M)\), 261, 265
\(\langle f, g \rangle\), 8
\(\langle f, g \rangle_w\), 10
\(\langle f, g \rangle_\mathbb{D}\), 193
\(\langle a, b \rangle\), 193
\(J(z, \zeta)\), 137
\(K(z, \zeta)\), 9
\(k_z(\zeta)\), 9
\(K_1(\Gamma)\), 154
\(L(\Gamma)\), 208
\(L_0(\Gamma)\), 217
\(\Lambda(a, b)\), 168
\(\Lambda_j^n(a, b)\), 187
\(L^p(\mathbb{D})\), 7
\(\ell^p(\Gamma)\), 155
\(M^\bot\), 261
\(M \ominus N\), 261
\(M \vee N\), 246
\(M(\Gamma)\), 156
\(M_\circ\), 59
\(M_\infty(r, f)\), 25
\(M_p(r, f)\), 25
\(\mu \ast g\), 220
\(N^p\), 106
\(N^p\), 120
\(n(\Gamma, \alpha, r)\), 68
\[\nu_T, 223 \]
\[\|f\|_{-\beta}, 207 \]
\[\|f\|_{H^\infty}, 73 \]
\[\|f\|_{H^p}, 26 \]
\[\|f\|_p, 7, 30 \]
\[\|f\|_{p,\alpha}, 103 \]
\[\|f\|_{2,w}, 137 \]
\[\|f\|_{p,w}, 149 \]
\[\|f\|_B, 43 \]
\[\|f\|_{A^p(\varphi)}, 285 \]
\[\Omega(w, r, s), 160 \]
\[P, 32 \]
\[P^2_w, 138 \]
\[P^p_w, 149 \]
\[\rho(z, \alpha), 38 \]
\[\rho(z, \Gamma), 159 \]
\[\rho(A, B), 225 \]
\[\rho^+(z, \zeta), 168 \]
\[\rho^*(A, B), 198 \]
\[S_\mu, 74 \]
\[S_N, 27 \]
\[[\varphi], 60 \]
\[[F]_v, 289 \]
\[[E], 106 \]
\[[E]_T, 276 \]
\[[A, B], 198 \]
\[T, 21 \]
\[T_\lambda, 86 \]
\[v_r, 224 \]
\[W(\Gamma), 212 \]
\[X^*, 35 \]
\[\chi_r, 224 \]
\[\omega(\delta), 251 \]
\[(A^p, A^q), 86 \]

adjoint operator, 193, 277
\[A^p \] inner function, 123
\[A^q \] outer function, 274
atomic decomposition, 195
atomic singular inner function, 74
Berezin transform, 40, 71
Bergman kernel, 9
Bergman norm, 7
Bergman projection, 32
Bergman space, 7
Beurling's Theorem, 246
biharmonic, 18
biharmonic Green function, 18
bilaplacian, 18
Blaschke product, 74
Blaschke sequence, 67
Bloch norm, 43
Bloch space, 43
canonical divisor, 120
canonical extremal function, 147
canonical factorization for H^p, 74
Carleson measure for the Bergman space, 61
Carleson measure for the Hardy space, 61
Carleson set, 248
Carleson square, 62
Carleson's Theorem, 248
Cauchy–Green theorem, 17
coefficient multipliers, 86
completeness of A^p, 8
concave operator, 278
conformal invariance of the Bergman kernel, 12
contractive zero-divisor, 119
convexity, 28
Corona Theorem, 252
cyclic function, 246
cyclic subspace, 246
density of polynomials, 11, 30
derivative of an H^p function, 75
derivative of an A^p function, 78
disk automorphism, 36
division of inner functions, 246
domination, 274
ε-net, 188
equidiscrete, 212
expansive multiplier, 127
frame, 154
generator, 246
greatest common divisor of two inner functions, 246
Green's formula, 16
Green's function, 16
growth space, 207
Hardy space, 26
harmonic Bergman space, 54
harmonic Hardy space, 26
harmonic conjugate, 27
Hausdorff distance, 198
heavy arc, 256
Herglotz formula, 27
Herglotz kernel, 27
Herglotz transform, 27
Horowitz product, 102
hyperbolic area, 41
index of an invariant subspace, 261, 265
inner function, 74
inner–outer factorization for A^p, 274
inner–outer factorization for H^p, 74
integral formula, 127
integral means, 25
interpolation constant, 156
interpolation sequence for A^p, 155
interpolation sequence for $A^{-\beta}$, 215
interpolation sequence for H^p, 157
interpolation sequence for a general Hilbert space, 243
invariant convolution, 220
invariant laplacian, 221
invariant subspace, 146
isometry, 56
Jensen’s formula, 95
Korenblum’s maximum principle, 91
lacunary series, 80
Laplacian, 16
least common multiple of two inner functions, 246
light arc, 256
lower uniform density, 171
little Bloch space, 44
modulus of continuity of a measure, 251
multiplier, 59
Nevanlinna class, 75
naturally ordered, 212
nontangential limit, 73
orthonormal bases, 9
outer function for H^p, 74
point evaluation, 7
Poisson kernel, 293
Poisson–Stieltjes integral, 251
positive operator, 277
pseudohyperbolic diameter, 176
pseudohyperbolic disk, 40
pseudohyperbolic distance, 38
pseudohyperbolic Hausdorff distance, 198
Radon measure, 222
rearrangement, 212
Riemann mapping theorem, 13
Riesz’ theorem, 27
sampling constant for A^p, 154
sampling constant for $A^{-\beta}$, 208
sampling inequalities, 153
sampling sequence for A^p, 153
sampling sequence for $A^{-\beta}$, 208
sampling sequence for $A_0^{-\beta}$, 216
separation constant, 159
set of uniqueness, 93
singly generated, 148
singular inner function, 74
smoothly decomposable measure, 255
strict convexity, 28
subharmonic, 222
subset of a zero-set, 93
Szegő kernel, 27
Szegő projection, 26
Szegő transform, 26
T-invariant subspace, 276
triangle inequality for the Bergman space, 7
triangle inequality for the pseudohyperbolic metric, 38
uniform convexity, 28
uniformly discrete, 67
uniformly separated, 67
union of zero-sets, 93
universal divisor, 107
universal interpolation sequence, 108
upper uniform density, 171
weak convergence, 212
weak interpolation property, 243
weak interpolation sequence, 243
weakly harmonic, 132
weakly invertible, 259
weighted Bergman space, 10
Weyl’s lemma, 132
zero-set, 93
zero-sequence, 93
The modern subject of Bergman spaces is a masterful blend of complex function theory with functional analysis and operator theory. It has much in common with Hardy spaces but involves new elements such as hyperbolic geometry, reproducing kernels, and biharmonic Green functions. This book develops background material and provides a self-contained introduction to a broad range of old and new topics in Bergman spaces, including recent advances on interpolation and sampling, contractive zero-divisors, and invariant subspaces. It is accessible to anyone who has studied basic real and complex analysis at the graduate level.