Absolute CM-Periods

Hiroyuki Yoshida

American Mathematical Society
Absolute CM-Periods
Absolute CM-Periods

Hiroyuki Yoshida
EDoTORIAL COMMITTEE
Jerry L. Bona Michael P. Loss
Peter S. Landweber, Chair Tudor Stefan Ratiu
J. T. Stafford

For additional information and updates on this book, visit www.ams.org/bookpages/surv-106

Library of Congress Cataloging-in-Publication Data
Yoshida, Hiroyuki, 1947--
Absolute CM-periods / Hiroyuki Yoshida.
p. cm. — (Mathematical surveys and monographs; ISSN 0076-5376 ; v. 106)
Includes bibliographical references and index.
ISBN 0-8218-3453-3 (alk. paper)
1. Abelian varieties. 2. Automorphic forms. 3. Functions, Zeta. I. Title. II. Mathematical surveys and monographs ; no. 106.

QA564.Y67 2003
516.3'53—dc22 2003062762

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2003 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 08 07 06 05 04 03
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Notation and Terminology</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter I. MULTIPLE GAMMA FUNCTION AND ITS GENERALIZATIONS</td>
<td></td>
</tr>
<tr>
<td>§1. Basic integral representations</td>
<td>13</td>
</tr>
<tr>
<td>§2. Shintani’s formulas</td>
<td>13</td>
</tr>
<tr>
<td>§3. The second derivative of ζ(s, A, x) at s = 0</td>
<td>24</td>
</tr>
<tr>
<td>§4. An asymptotic expansion of the multiple gamma function</td>
<td>34</td>
</tr>
<tr>
<td>Exercises</td>
<td>41</td>
</tr>
<tr>
<td>Chapter II. THE STARK-SHINTANI CONJECTURE</td>
<td>43</td>
</tr>
<tr>
<td>§1. Stark’s general conjecture</td>
<td>43</td>
</tr>
<tr>
<td>§2. Transition to a more precise conjecture</td>
<td>48</td>
</tr>
<tr>
<td>§3. Shintani’s formulas for the partial zeta function</td>
<td>52</td>
</tr>
<tr>
<td>§4. An example</td>
<td>54</td>
</tr>
<tr>
<td>Exercises</td>
<td>58</td>
</tr>
<tr>
<td>Chapter III. ABSOLUTE CM-PERIODS</td>
<td>61</td>
</tr>
<tr>
<td>§1. Shimura’s period symbol pK</td>
<td>61</td>
</tr>
<tr>
<td>§2. The case of abelian fields</td>
<td>65</td>
</tr>
<tr>
<td>§3. Conjectures on absolute CM-periods</td>
<td>74</td>
</tr>
<tr>
<td>§4. Numerical examples</td>
<td>94</td>
</tr>
<tr>
<td>§5. Further investigations on the invariant X(c)</td>
<td>108</td>
</tr>
<tr>
<td>§6. Numerical examples (continued)</td>
<td>126</td>
</tr>
<tr>
<td>Exercises</td>
<td>133</td>
</tr>
<tr>
<td>Chapter IV. EXPLICIT CONE DECOMPOSITIONS AND APPLICATIONS</td>
<td>135</td>
</tr>
<tr>
<td>§1. A special decomposition of a higher dimensional cube</td>
<td>135</td>
</tr>
<tr>
<td>§2. Topological preparations</td>
<td>139</td>
</tr>
<tr>
<td>§3. A sufficient condition for a cone decomposition</td>
<td>144</td>
</tr>
<tr>
<td>§4. Examples</td>
<td>147</td>
</tr>
<tr>
<td>§5. Explicit cone decompositions for index finite subgroups</td>
<td>149</td>
</tr>
<tr>
<td>§6. Applications</td>
<td>161</td>
</tr>
<tr>
<td>Exercises</td>
<td>166</td>
</tr>
</tbody>
</table>
Chapter V. APPLICATIONS OF A LIMIT FORMULA OF KRON-ECKER’S TYPE 169
 §1. A limit formula of Kronecker’s type 169
 §2. A generalization of the exact Chowla-Selberg formula 179
 §3. L-functions of orders of an algebraic number field 189
 §4. Toward the reciprocity law for the h-function 197
 §5. A connection of automorphic forms with group cohomology 207
 Exercises 213

Appendix I. EISENSTEIN SERIES ON $GL(2)$ 215
 §1. Eisenstein series on $GL(2)$ 215
 §2. Calculations of local integrals 222
 §3. The functional equation of Eisenstein series 234
 §4. Eisenstein series of class 1 243

Appendix II. ON HIGHER DERIVATIVES OF L-FUNCTIONS 249
 §1. A search for new invariants 249
 §2. The case of the second derivatives of L-functions 253

Appendix III. TRANSCENDENTAL PROPERTY OF CM–PERIODS 269
 Exercises 274

References 275

Index 281
The central theme of this book is an invariant attached to an ideal class of a totally real algebraic number field. Using this invariant, we can construct the Stark-Shintani units and the periods of abelian varieties with complex multiplication simultaneously. These periods were studied by Shimura and he crystallized them as the period symbol. The highlight of this book is the construction of the absolute CM-period symbol and the description of the remarkable properties of this symbol.

I planned to write this book in 1997 after getting a substantial part of the results in chapters I, II, III and V. My motivation was twofold: One was to present the results and conjectures in a systematic and precise form convenient for further research. Second was to organize the material to make it accessible to graduate students providing many illustrative examples. I benefitted from lecturing on the subject at several universities during these years, and the experience is incorporated into the presentation of this book. I would like to thank Professors Jacques Tilouine and Michael Harris who arranged my stay in Paris for two months in 1999, during which time I could draft chapters II and III. Finally I would like to thank Professor Goro Shimura for his extremely useful advice and encouragement.

Kyoto, June 2003.

Hiroyuki Yoshida
NOTATION AND TERMINOLOGY

For a set S, $|S|$ denotes the cardinality of S. If S is a disjoint union of a family of sets T_{λ}, $\lambda \in \Lambda$, we express this fact by $S = \sqcup_{\lambda \in \Lambda} T_{\lambda}$. For $x \in \mathbb{R}$, $[x]$ denotes the largest integer which does not exceed x. By \mathbb{R}_+, we denote the set of all positive real numbers. For $a, b \in \mathbb{C}$, we write $a \sim b$ if $b \neq 0$ and a/b is an algebraic number. By \mathfrak{f}, we denote the complex upper half plane. For a subset X of \mathbb{R}^n, we put $\partial X = X \setminus X^\circ$, where X° denotes the set of interior points of X.

We denote by $\zeta(s)$ the Riemann zeta function. Euler’s constant is denoted by γ. For a function $f(x)$ and a nonnegative integer p, $f^{(p)}(x)$ denotes the p-th derivative of $f(x)$ with the convention $f^{(0)}(x) = f(x)$. This notation will be used only in chapter I and appendix II in an obvious context. For a function $f(s)$ which is meromorphic in a neighborhood of $a \in \mathbb{C}$, $\operatorname{Res}_{s=a} f(s)$ denotes the residue of $f(s)$ at a.

For a finite group G, \hat{G} denotes the set of all equivalence classes of irreducible representations of G on vector spaces over \mathbb{C}. For a subgroup H of G and a representation ψ of H, the induced representation from ψ is denoted by $\text{Ind}_H^G \psi$. For an associative ring R with unit, R^\times denotes the group of all invertible elements of R. By $M(m, n, R)$, we denote the set of all $m \times n$-matrices with entries in R. We abbreviate $M(n, n, R)$ to $M(n, R)$ and set $GL(n, R) = M(n, R)^\times$. For two fields F_1 and F_2 contained in a field K, $F_1 \vee F_2$ denotes the composite field of F_1 and F_2.

We fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} in \mathbb{C}. By an algebraic number field, we understand an algebraic extension of \mathbb{Q} of finite degree contained in $\overline{\mathbb{Q}}$. We denote by ρ the complex conjugation.

Let F be a global field, i.e., an algebraic number field or a function field of dimension 1 with a finite field as the field of constants. For a place v of F, F_v denotes the completion of F at v. For $a \in F_v$, $|a|_v$ denotes the absolute value of a, i.e., we have $d(ax) = |a|_v dx$ for a Haar measure dx on F_v. By F_A and F_A^\times, we denote the adele ring and the idele group of F respectively. By F_∞ (resp. F_A^\times), we denote the infinite part of F_A (resp. F_A^\times). By $(F_A)_f$ (resp. $(F_A^\times)_f$), we denote the finite part of F_A (resp. F_A^\times). For an algebraic group G defined over F, G_A denotes the adelization of G and G_∞ denotes the infinite part of G_A. For a place v of F, G_v denotes the group of F_v-rational points of G. By a Hecke character of F_A^\times, we mean a continuous homomorphism of F_A^\times into \mathbb{C}^\times which is trivial on F_∞^\times. For $x \in F_A$ and a place v of F, x_v denotes the v-component of x. The finite part of x is denoted by x_f. For $x \in F_A^\times$, $|x|_A$ denotes the idele norm of x.

Let F be an algebraic number field. The ring of integers and the group of units of F are denoted by \mathfrak{O}_F and E_F respectively. We denote by E_F^+ the group of all totally positive units of F. The group of roots of unity contained in F is denoted by \mathcal{W}_F. We put $w_F = |\mathcal{W}_F|$. The regulator, the different, the absolute discriminant and the class number of F are denoted by R_F, ϑ_F, D_F and h_F respectively. We
denote by $I(F)$ the ideal group of F. For an integral ideal \mathfrak{f} of F, $I_1(F)$ denotes the ideal group of F modulo \mathfrak{f}, i.e., the group of all fractional ideals relatively prime to \mathfrak{f}. For $x \in F_{A}^\times$, $\text{div}(x)$ denotes the fractional ideal $\prod_v p_v^{a_v}$, where v extends over all finite places of F, p_v is the prime ideal corresponding to v and $a_v = \text{ord}_v x_v$ with the normalized additive valuation ord_v at v. By $r_1(F)$ and $r_2(F)$, we denote the number of real places and of imaginary places of F respectively. We denote by J_F the set of all isomorphisms of F into \mathbb{C} and by I_F the free abelian group generated by J_F. For $a \in F$, $a > 0$ means that a is totally positive. We denote the maximal abelian extension of F in \overline{Q} by F_{ab}. For $a \in F_{A}^\times$, $[a, F] \in \text{Gal}(F_{ab}/F)$ denotes the image of a under the Artin map. For an abelian extension L of F of finite degree and a fractional ideal \mathfrak{a} of F, which is relatively prime to the conductor of L, $(\frac{L/F}{a})$ denotes the Artin symbol.

Let K be an algebraic number field which is an extension of F of finite degree. By $\text{Res}_{K/F}$, we denote the restriction homomorphism from I_K to I_F. By $\text{Inf}_{K/F}$, we denote the homomorphism from I_F to I_K such that, for $\sigma \in J_F$, $\text{Inf}_{K/F}(\sigma)$ is the sum of all elements of J_K whose restrictions to F coincide with σ. The norm map and the trace map from K to F are denoted by $N_{K/F}$ and by $\text{Tr}_{K/F}$ respectively. The relative discriminant (resp. the relative different) of K over F is denoted by $D(K/F)$ (resp. $\mathfrak{d}_{K/F}$).

By a CM-field, we understand a totally imaginary quadratic extension of a totally real algebraic number field. For a CM-filed K, $\Phi \in I_K$ is called a CM-type of K if $\Phi = \sum_{i=1}^n \sigma_i \in I_K$ with $\sigma_i \in J_K$ and if $\Phi + \Phi$ is the sum of all elements in J_K. We often identify Φ with the set of isomorphisms $\{\sigma_1, \sigma_2, \ldots, \sigma_n\}$ or with the representation of K into $M(n, \mathbb{C})$ sending $a \in K$ to the diagonal matrix with a^{σ_1}, a^{σ_2}, \ldots, a^{σ_n} on the diagonal entries. A point $z = (z_1, z_2, \ldots, z_n) \in \mathcal{H}^n$ is called a CM-point if for a CM-field K, a CM-type $\Phi = \{\sigma_1, \sigma_2, \ldots, \sigma_n\}$ and for $a \in K$, $z_i = a^{\sigma_i}$, $1 \leq i \leq n$ holds.
REFERENCES

[Da2] H. Darmon, Integration on $\mathcal{H}_p \times \mathcal{H}$ and arithmetic applications, Ann. of Math. 154(2001), 589–639.

[Ri] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Werke, No. VII.

[Sh3] G. Shimura, On some arithmetic properties of modular forms of one and several variables, Ann. of Math. 102(1975), 491–515 (=Collected Papers II, [75c]).

Index

\(a, 171 \)
\(a_K, 43 \)
\(a_r, 215 \)
\(a_c, 215 \)
\(B_m(x), 16 \)
\(B(p, q), 63 \)
\(B(x_1, x_2), 222 \)
\(C_i, 52 \)
\(C_i(A), C_{i,j,k}(A), 22 \)
\(e_a(x), 172 \)
\(E(g, f), 218 \)
\(E_k(z, s; \lambda), 171 \)
\(E_X(z, s; a), 175 \)
\(\eta(x), 178 \)
\(\vec{G}, \vec{G}_+, \vec{G}_-, 74 \)
\(G(c), 78, 85 \)
\(g_K(\text{id}, \tau), g_K(\text{id}, \tau; \{C_j\}_{j \in J}, a), 79 \)
\(g_K/F(\text{id}, \tau; \{C_j\}_{j \in J}, a), 89 \)
\(g^{(p)}_K(\text{id}, \tau), 251 \)
\(\gamma_k, 169 \)
\(\gamma_k(c), 170 \)
\(\Gamma_h^{(i)}(x, \omega), 16 \)
\(\Gamma_r(x, \omega) (= \Gamma_r^{[1]}(x, \omega)), 16 \)
\(h, 171 \)
\(h_X(z, a), 176 \)
\(\Lambda_r(a, b, \mathfrak{X}), 27 \)
\(\nu_K(\xi, \eta), 62 \)
\(R(C_j, c), 53 \)
\(R(x, f), 44 \)
\(\rho^r(x, \omega), 15 \)
\(\rho_+(x, \omega) (= \rho^r_+(x, \omega)), 16 \)
\(S(E_v), S(E_A), 294 \)
\(T_w, 222, 242 \)
\(V(c), 79, 85 \)
\(W(c), 79, 85 \)
\(X(c), X(c; \{C_j\}_{j \in J}, a), 79 \)
\(X^{(3)}(c; \{C_j\}_{j \in J}, a), 257 \)
\(\xi(g, h; \alpha, \beta), 172 \)
\(\zeta_F(s, c), 52 \)
\(\zeta_r(s, \omega, x), 13 \)
\(\zeta(s, A, x), 17 \)

analytic class number formula, 43
absolute period symbol, 79
Artin’s unit theorem, 46
asymptotic expansion of the \(r \)-ple gamma function, 35
Bernoulli polynomial, 16
beta function, 63
big cell, 147
big cone, 147
Chowla-Selberg formula, 63, 74
real case, 126
cone decomposition, 52
confluent hypergeometric function, 172
Conjecture A=Conjecture III, 3.2, 75
Conjecture B=Conjecture III, 3.9, 81
Conjecture C=Conjecture III, 3.10, 83

Dedekind \(\eta \)-function, 178
exact Chowla-Selberg formula, 184
generalization of, 183
Eisenstein series, 171, 218
face, 136
Fermat curve, 65
fine sequence, 149
generalized regulator, 44
Hurwitz’s zeta function, 17
\(K \)-Bessel function, 173, 227
Kronecker’s first limit formula, 178
lattice, 179
Liouville’s theorem, 38
limit formula of Kronecker’s type, 177
non-degenerate CM-type, 270
odd representation, 74
open simplex, 135
open simplicial cone, 52
order of an algebraic number field, 189
Poisson summation formula, 236
precise form of Stark’s conjecture, 50
primitive CM-type, 269
proper ideal, 189
rank of a CM-type, 270
reciprocity map, 83
refinement, 84
reflex, 270
\(r \)-ple Riemann zeta function, 13
\(r \)-ple gamma function, 16

Schwartz-Bruhat function, 171, 234
self-dual measure, 236
Shimura’s period symbol, 62
Shimura’s reciprocity law, 205
Shintani’s formula
for \(\zeta(0, A, x), 20 \)
for \(\zeta'(0, A, x), 23 \)
for $\zeta_F'(0,c)$, 54
for $\zeta_F'(0,c)$, 54
special decomposition of I^n, 139
Stark’s general conjecture, 44
Theorem of Thomas-Vasquez, 147
Theorem of Shimura
 on CM-periods, 62
 on critical values of Hecke’s L-function, 65
zeta integral, 235
Titles in This Series

106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Maria D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Laba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001
84 László Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001
83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 Goro Shimura, Arithmetical in the theory of automorphic forms, 2000
81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000
74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000
TITLES IN THIS SERIES

72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999
64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998
61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998
59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998
57 Marc Levine, Mixed motives, 1998
56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998
55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998
54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997
53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997
52 V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997
50 Jon Aaronson, An introduction to infinite ergodic theory, 1997
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997
46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The central theme of this book is an invariant attached to an ideal class of a totally real algebraic number field. This invariant provides us a unified understanding of periods of abelian varieties with complex multiplication and the Stark-Shintani units. This is a new point of view, and the book contains many new results related to it.

To place these in proper perspective and to supply tools to attack unsolved problems, the author gives systematic expositions of fundamental topics. Thus the book treats the multiple gamma function, the Stark conjecture, Shimura's period symbol, the absolute period symbol, Eisenstein series on $GL(2)$, and a limit formula of Kronecker's type. The discussion of each of these topics is enhanced by many illustrative examples. The major part of the text is written assuming, in addition to basic knowledge, some familiarity with algebraic number theory. About thirty problems are included for exercises, some of which are quite challenging.

The book is intended for graduate students and researchers working in number theory and automorphic forms.