Mathematical

Representations of Algebraic Groups
 Second Edition

Jens Carsten Jantzen

Representations of Algebraic Groups

Second Edition

Representations of Algebraic Groups

Second Edition

Jens Carsten Jantzen

EDITORIAL COMMITTEE

Jerry L. Bona
Peter S. Landweber, Chair
Michael P. Loss
Tudor Stefan Ratiu
J. T. Stafford

2000 Mathematics Subject Classification. Primary 20-02, 20G05; Secondary 17B10, 17B45, 17B56, 22E45.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-107

Library of Congress Cataloging-in-Publication Data

Jantzen, Jens Carsten
Representations of algebraic groups / Jens Carsten Jantzen. - 2nd ed.
p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376; v. 107)

Includes bibliographical references and index.
ISBN 0-8218-3527-0 (alk. paper)

1. Representations of groups. 2. Linear algebraic groups. I. Title. II. Mathematical surveys and monographs; no. 107.

QA176.J37 2003
$512^{\prime} .22-\mathrm{dc} 22$
2003058381

AMS softcover ISBN 978-0-8218-4377-2

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2003 by the American Mathematical Society. All rights reserved.

Reprinted by the American Mathematical Society, 2007.
The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Introduction vii
Part I. General Theory

1. Schemes 3
2. Group Schemes and Representations 19
3. Induction and Injective Modules 37
4. Cohomology 49
5. Quotients and Associated Sheaves 65
6. Factor Groups 85
7. Algebras of Distributions 95
8. Representations of Finite Algebraic Groups 111
9. Representations of Frobenius Kernels 125
10. Reduction $\bmod p$ 141
Part II. Representations of Reductive Groups
11. Reductive Groups 153
12. Simple G-Modules 175
13. Irreducible Representations of the Frobenius Kernels 189
14. Kempf's Vanishing Theorem 201
15. The Borel-Bott-Weil Theorem and Weyl's Character Formula 217
16. The Linkage Principle 231
17. The Translation Functors 251
18. Filtrations of Weyl Modules 267
19. Representations of $G_{r} T$ and $G_{r} B$ 291
20. Geometric Reductivity and Other Applications of the Steinberg Modules 315
21. Injective G_{r}-Modules 325
22. Cohomology of the Frobenius Kernels 343
23. Schubert Schemes 353
24. Line Bundles on Schubert Schemes 365
A. Truncated Categories and Schur Algebras 385
B. Results over the Integers 411
C. Lusztig's Conjecture and Some Consequences 419
D. Radical Filtrations and Kazhdan-Lusztig Polynomials 439
E. Tilting Modules 457
F. Frobenius Splitting 479
G. Frobenius Splitting and Good Filtrations 501
H. Representations of Quantum Groups 515
References 531
List of Notations 569
Index 573

Introduction

I This book is meant to give its reader an introduction to the representation theory of such groups as the general linear groups $G L_{n}(k)$, the special linear groups $S L_{n}(k)$, the special orthogonal groups $S O_{n}(k)$, and the symplectic groups $S p_{2 n}(k)$ over an algebraically closed field k. These groups are algebraic groups, and we shall look only at representations $G \rightarrow G L(V)$ that are homomorphisms of algebraic groups. So any G-module (vector space with a representation of G) will be a space over the same ground field k.

Many different techniques have been introduced into the theory, especially during the last thirty years. Therefore, it is necessary (in my opinion) to start with a general introduction to the representation theory of algebraic group schemes. This is the aim of Part I of this book, whereas Part II then deals with the representations of reductive groups.
II The book begins with an introduction to schemes (Chapter I.1) and to (affine) group schemes and their representations (Chapter I.2). We adopt the "functorial" point of view for schemes. For example, the group scheme $S L_{n}$ over \mathbf{Z} is the functor mapping each commutative ring A to the group $S L_{n}(A)$. Almost everything about these matters can also be found in the first two chapters of [DG]. I have tried to enable the reader to understand the basic definitions and constructions independently of [DG]. However, I refer to [DG] for some results that I feel the reader might be inclined to accept without going through the proof. Let me add that the reader (of Part I) is supposed to have a reasonably good knowledge of varieties and algebraic groups. For example, he or she should know [Bo] up to Chapter III, or the first seventeen chapters of [Hu2], or the first six ones of [Sp 2]. (There are additional prerequisites for Part II mentioned below.)

In Chapter I.3, induction functors are defined in the context of group schemes, their elementary properties are proved, and they are used to construct injective modules and injective resolutions. These in turn are applied in Chapter I. 4 to the construction of derived functors, especially to that of the Hochschild cohomology groups and of the derived functors of induction. In contrast to the situation for finite groups, the induction from a subgroup scheme H to the whole group scheme G is (usually) not exact, only left exact. The values of the derived functors of induction can also be interpreted (and are so in Chapter I.5) as cohomology groups of certain associated bundles on the quotient G / H (at least for algebraic schemes over a field). Before doing that, we have to understand the construction of the quotient G / H. The situation gets simpler and has some additional features if H is normal in G. This is discussed in Chapter I.6.

One can associate to any group scheme G an (associative) algebra $\operatorname{Dist}(G)$ of distributions on G (called the hyperalgebra of G by some authors). When working over a field of characteristic 0 , it is just the universal enveloping algebra of the Lie
algebra $\operatorname{Lie}(G)$ of G. In general, it reflects the properties of G much better than $\operatorname{Lie}(G)$ does. This is described in Chapter I.7.

A group scheme G (say over a field) is called finite if the algebra of regular functions on G is finite dimensional. For such G the representation theory is equivalent to that of a certain finite dimensional algebra and has additional features (Chapter I.8). For us, the most important cases of finite group schemes arise as Frobenius kernels (Chapter I.9) of algebraic groups over an algebraically closed field k of characteristic $p \neq 0$. For example, for $G=G L_{n}(k)$ the map $F: G \rightarrow G$ sending any matrix $\left(a_{i j}\right)$ to ($a_{i j}^{p}$) is a Frobenius endomorphism. The kernel of F^{r} (in the sense of group schemes) is the $r^{\text {th }}$ Frobenius kernel G_{r} of G. The representation theory of G_{1} (for any G) is equivalent to that of $\operatorname{Lie}(G)$ regarded as a p-Lie algebra.

In order to apply our rather extensive knowledge of the representation theory of groups like $S L_{n}(\mathbf{C})$ to that of $S L_{n}(k)$, where k is a field of prime characteristic, one uses the group scheme $S L_{n}$ over \mathbf{Z}. One chooses $S L_{n}$-stable lattices in $S L_{n}(\mathbf{C})$-modules and tensors with k in order to get $S L_{n}(k)$-modules. Some general properties of this procedure are proved in Chapter I.10.

From Part I, the contents of Chapters 1 (until 1.6), 2, 3, 4 (until 4.18), 5 (mainly 5.8-5.13), and 6 (until 6.9) are fundamental for everything to follow. The other sections are used less often.

In Part II, the reader is supposed to know the structure theory of reductive algebraic groups (over an algebraically closed field) as to be found in [Bo], [Hu2], [Sp2]. The reader is invited (in Chapter II.1) to believe that there is for each possible root datum a (unique) group scheme over \mathbf{Z} that yields for every field k (by extension of the base ring) a split reductive group defined over k having the prescribed root datum. Furthermore, he or she has to accept that all "standard" constructions (like root subgroups, parabolic subgroups, etc.) can be carried out over Z. (The sceptical reader should turn to [SGA 3] for proof.) I have included a proof (following Takeuchi) of the uniqueness of an algebraic group with a given root datum (over an algebraically closed field) that does not use case-by-case considerations.

III Let me describe a selection of the contents of the remaining chapters in more detail. Assume from now on (in this introduction) that k is an algebraically closed field and that G is a (connected) reductive algebraic group over k with a Borel subgroup $B \subset G$ and a maximal torus $T \subset B$. Let $X(T)$ denote the group of characters of T.

In case $\operatorname{char}(k)=0$ the representation theory of G is well understood. Each G-module is semi-simple. The simple G-modules are classified (as in the case of compact Lie groups or of complex semi-simple Lie algebras) by their highest weights. Furthermore, one has a character formula for these simple modules. In fact, Weyl's formula for the compact groups holds when interpreted in the right way. (For us, the character of a finite dimensional G-module will always be the family of the dimensions of its weight spaces with respect to T. As the semi-simple elements in G are dense in G and as each semi-simple element is conjugate to one in T, the character determines the trace of any $g \in G$ on the G-module.)

The situation in prime characteristic is much worse. Except for the case of a torus, there are non-semi-simple G-modules. Except for a few low rank cases, we do not know a character formula for the simple modules, and Weyl's formula
will certainly not carry over. Only one property survives: The simple modules are still classified by their highest weights, and the possible highest weights are the "dominant" weights in $X(T)$. (The notion of dominant depends on the choice of an ordering of $X(T)$. We shall always work with an ordering for which the weights of T on $\operatorname{Lie}(B)$ are negative.) This classification is due to Chevalley, cf. [SC]. Let $L(\lambda)$ denote the simple module with highest weight λ.

The difference of the situations in zero and prime characteristic can be observed already in the case $G=S L_{2}(k)$. Let $H(n)$ be the $n^{\text {th }}$ symmetric power of the natural representation of G on k^{2}. If $\operatorname{char}(k)=0$, then $H(n)=L(n)$ for all $n \in \mathbf{N}$. (For $S L_{2}$ we identify $X(T) \simeq \mathbf{Z}$ in such a way that the dominant weights correspond to \mathbf{N}.) If $\operatorname{char}(k)=p \neq 0$, then obviously not all $H(n)$ can be simple: For all positive $r, n \in \mathbf{N}$ the image of the map $f \mapsto f^{p^{r}}$ from $H(n)$ to $H\left(p^{r} n\right)$ is a proper submodule of $H\left(p^{r} n\right)$, so $H\left(p^{r} n\right)$ is not simple. It is not too difficult to show for any n that $H(n)$ contains $L(n)$ as its unique simple submodule, and that $H(n)=L(n)$ if and only if $n=a p^{r}-1$ for some $a, r \in \mathbf{N}$ with $0<a \leq p$. So for all other n the module $H(n)$ is not semi-simple.

For arbitrary G one gets $L(\lambda)$ as the unique simple submodule of an induced module $H^{0}(\lambda)$: One extends $\lambda \in X(T)$ to a one dimensional representation of B such that the unipotent radical of B acts trivially. Then $H^{0}(\lambda)$ is the G-module induced by this B-module. It is nonzero if and only if λ is dominant. (In the case $G=S L_{2}(k)$ the $H^{0}(\lambda)$ are just the $H(n)$ from above.) This is the main content of Chapter II.2.

The case $G=S L_{2}(k)$ with $\operatorname{char}(k)=p \neq 0$ can serve to illustrate other general results also. For any vector space V over k let $V^{(r)}$ be the vector space that is equal to V as an additive group and where any $a \in k$ acts as $a^{p^{-r}}$ does on V. Then the map $f \mapsto f^{p^{r}}$ is linear when regarded as a map $H(n)^{(r)} \rightarrow H\left(p^{r} n\right)$, hence a homomorphism of G-modules. It is not difficult to show: If $n=\sum_{i=0}^{r} a_{i} p^{i}$ with $0 \leq a_{i}<p$ for all i, then $f_{0} \otimes f_{1} \otimes \cdots \otimes f_{r} \mapsto \prod_{i=0}^{r} f_{i}^{p^{i}}$ is an isomorphism

$$
H\left(a_{0}\right) \otimes H\left(a_{1}\right)^{(1)} \otimes \cdots \otimes H\left(a_{r}\right)^{(r)} \xrightarrow{\sim} L(n) .
$$

This result was generalised in [Steinberg 2] to all G : A suitable p-adic expansion of the highest weight λ leads to a decomposition of $L(\lambda)$ into a tensor product of the form $L\left(\lambda_{0}\right) \otimes L\left(\lambda_{1}\right)^{(1)} \otimes \cdots \otimes L\left(\lambda_{r}\right)^{(r)}$. This tensor product theorem reduces the problem of calculating the characters of all simple G-modules to a finite problem (for each G). Steinberg's proof relied on a theorem from [Curtis 1] on the representations of $\operatorname{Lie}(G)$. In the special case of $G=S L_{2}(k)$, this theorem says: Each $L(n)$ with $n<p$ remains simple for $\operatorname{Lie}(G)$, and each simple module of $\operatorname{Lie}(G)$ as a p-Lie algebra is isomorphic to exactly one $L(n)$ with $n<p$. More generally, each $L(n)$ with $n<p^{r}$ is simple for the $r^{\text {th }}$ Frobenius kernel of $S L_{2}(k)$, and we get thus each simple module for this infinitesimal group scheme. This result again has an extension to all G and then leads to a rather simple proof of Steinberg's tensor product theorem, discovered by Cline, Parshall, and Scott. (All this is done in Chapter II.3.)

The choice of the notation $H^{0}(\lambda)$ for the induced module has been influenced by the fact that $H^{0}(\lambda)$ is the zeroth cohomology group of a line bundle on G / B associated to λ. Let $H^{i}(\lambda)$ denote the $i^{\text {th }}$ cohomology group (for any $\lambda \in X(T)$, not only for dominant ones). We could have constructed $H^{i}(\lambda)$ also by applying the $i^{\text {th }}$
derived functor of induction from B to G to the one-dimensional B-module defined by λ. Another result from characteristic zero that does not carry over to prime characteristic is the Borel-Bott-Weil theorem. It describes explicitly all $H^{i}(\mu)$ with $i \in \mathbf{N}$ and $\mu \in X(T)$: For each μ there is at most one i with $H^{i}(\mu) \neq 0$, and this $H^{i}(\mu)$ can then be identified with a specific $L(\lambda)$. We observed already that we cannot expect the $H^{i}(\mu)$ to be simple in prime characteristic. But, even worse, there can be more than one i for a given μ with $H^{i}(\mu) \neq 0$, and the character of $H^{i}(\mu)$ will depend on the field. (This was first discovered by Mumford.) It is crucial for the representation theory that one special case of the Borel-Bott-Weil theorem holds over any k : If λ is dominant, then $H^{i}(\lambda)=0$ for all $i>0$. This is Kempf's vanishing theorem from [Kempf 1]. The proof given here in Chapter II. 4 is due to Haboush and Andersen (independently). In Chapter II.5, we give Demazure's proof of the Borel-Bott-Weil theorem in case $\operatorname{char}(k)=0$. Furthermore we prove (following Donkin) that Weyl's character formula yields the alternating sum (over i) of the characters of all $H^{i}(\mu)$.

Assume from now on that $\operatorname{char}(k)=p \neq 0$. Kempf's vanishing theorem implies that one can construct for any k the modules $H^{0}(\lambda)$ with λ dominant by starting with the similar object over \mathbf{C}, taking a suitable lattice stable under a \mathbf{Z}-form of G, and then tensoring with k. To construct representations in this way has the advantage that one can carry out specific computations more easily. Several examples computed especially by Braden then led Verma in the late 1960s to several conjectures (cf. [Verma]) that had a great influence on the further development of the theory. One conjecture is the linkage principle (Chapter II.6): If $L(\mu)$ is a composition factor of $H^{0}(\lambda)$ (or, more generally, if $L(\mu)$ and $L(\lambda)$ are both composition factors of a given indecomposable G-module), then $\mu \in W_{p} \cdot \lambda$. Here W_{p} is the group generated by the Weyl group W and by all translations by $p \alpha$ with α a root. The dot is to indicate a shift in the action by ρ, the half sum of the positive roots (i.e., $w \bullet \lambda=w(\lambda+\rho)-\rho$). For large p this principle was proved in [Humphreys 1]. The result was then extended by several people to almost all cases, but a general proof appeared only in 1980 (in [Andersen 4]). It relies on an analysis of the failure of Demazure's proof (of the Borel-Bott-Weil theorem) in prime characteristic.

Another conjecture of Verma was a special case of the translation principle (Chapter II.7): If two dominant weights λ, μ belong to the same "facet" with respect to the affine Weyl group W_{p}, then the multiplicity of any $L(w \cdot \lambda)$ with $w \in W_{p}$ as a composition factor of $H^{0}(\lambda)$ should be equal to that of $L(w \cdot \mu)$ in $H^{0}(\mu)$. This was proved (modulo the linkage principle) in [Jantzen 2].

The approach to the $H^{0}(\lambda)$ via representations over \mathbf{Z} also has the advantage that it allows the construction of a certain filtration (Chapter II.8) of $H^{0}(\lambda)$. One can compute the sum of the characters of the terms in the filtration ([Jantzen 3] for large p, [Andersen 12] in general) and use this "sum formula" to get information about composition factors. For example, it leads to a computation of the characters of all simple modules for $G=S L_{4}(k)$ or for G of type G_{2}.

If λ and $\lambda+p \nu$ are weights that are "small" with respect to p^{2} and that are "sufficiently dominant" (see II.9.17/18 for a more precise condition), then one gets the composition factors of $H^{0}(\lambda+p \nu)$ from those of $H^{0}(\lambda)$ by adding $p \nu$ to the highest weights. This was proved first in [Jantzen 4] using involved computations. Later on it was realised that it follows rather easily if one develops the representation theory of the group scheme $G_{r} T$. For λ as above experimental evidence (cf.
[Humphreys 10]) indicated that the $H^{i}(w \cdot \lambda)$ with $w \in W$ satisfy a weak version of the Borel-Bott-Weil theorem $\left(H^{i}(w \bullet \lambda) \neq 0\right.$ for at most one $\left.i\right)$. This was then proved in [Cline, Parshall, and Scott 10] using the representation theory of the group scheme $G_{r} B$. All this is described in Chapter II.9.

Let us assume that G is semi-simple and simply connected. There is for each positive integer r a unique simple G-module that is simple and injective for G_{r}. It is called the $r^{\text {th }}$ Steinberg module and was first discovered by Steinberg within the representation theory of finite Chevalley groups. We do not look at its great importance there, but discuss some applications to the representation theory of G (Chapter II.10). It plays a crucial role in Haboush's proof that G is geometrically reductive. One may wonder whether any injective G_{r}-module can be extended to a G-module. For large p this was proved by Ballard. We discuss this (with some applications to the representation theory of G) in Chapter II.11.

One can write down the character of a simple G-module $L(\lambda)$ if one knows all extension groups $\operatorname{Ext}_{G}^{n}\left(L(\lambda), H^{0}(\mu)\right)$, see II.6.21. Unfortunately, rather little is known about these groups. There has been a considerable amount of work (especially by Cline, Parshall, and Scott) to understand better the Hochschild cohomology groups $H^{n}(G, M) \simeq \operatorname{Ext}_{G}^{n}(k, M)$. One has $H^{n}(G, M) \simeq \lim H^{n}\left(G_{r}, M\right)$ if $\operatorname{dim} M<\infty$. So one may hope to get information on G-cohomology from information on G_{r}-cohomology. Here the most remarkable result is due to Friedlander and Parshall: For large p the cohomology ring $H^{\bullet}\left(G_{1}, k\right)$ is isomorphic to the ring of regular functions on the nilpotent cone in $\operatorname{Lie}(G)$. This can be found in Chapter II.12.

The orbits of B on G / B are isomorphic to affine spaces. They are called Bruhat cells, while their closures are called Schubert varieties. For example, G / B itself is a Schubert variety. One can extend Kempf's vanishing theorem to any Schubert variety $Y \subset G / B$: If one restricts to Y the line bundle on G / B corresponding to a dominant weight λ, then all higher cohomology groups vanish. As an application one can prove the normality of Y and a character formula for the space of global sections. These results were proved by Mehta, Ramanathan, Seshadri, Ramanan, and Andersen. One can find this in Chapter II.14, whereas Chapter II. 13 provides the necessary background on Schubert varieties.

The last seven chapters mentioned above can be divided into three groups (II.8, II.9-12, II.13-14), which are independent of each other. Also, the logical interdependence of Chapters II.10-12 is rather weak.

IV So far this introduction has been copied (with minor modifications) from the introduction of the first edition. For this new edition I have added a few chapters that I shall discuss in a moment.

As far as the old chapters are concerned, I have tried to correct mistakes and misprints. I have added several remarks and in a few cases rearranged things. In doing so, I have tried to avoid renumbering subsections and equations so that references to the first edition would also work with the second one. However, in a few cases (in particular in Chapter II.9) this turned out to be impossible. In these cases I have summed up the changes at the end of the introductions to the chapters (see II.7-9, 11, 12).
V The new chapters were added to Part II. They are not identified by numbers, but by capital letters so to indicate the break between the old and the new.

Keep the general assumptions from above (III). Let π be a finite set of dominant weights that is "saturated". This means that for each $\mu \in \pi$ also all dominant weights $\nu<\mu$ belong to π. Then it makes sense to consider the "truncated" category of all G-modules having only composition factors with a highest weight in π. Such categories are studied in Chapter II.A. Each of them is equivalent to the category of all modules over a suitable finite dimensional algebra. This allows the application of techniques from the representation theory of finite dimensional algebras to the theory of G-modules.

The categories of homogeneous polynomial $G L_{n}$-modules are special cases of truncated categories for $G=G L_{n}$. They connect the representation theory of $G L_{n}$ with that of Schur algebras and of symmetric groups as well as with the theory of polynomial functors.

In Chapter II.B several cohomological results for G-modules are generalised from the case of a ground field to the case where one works over a principal ideal domain. For some of these proofs we have to use results from Chapter II.A.

In Chapters II.C and II.D we describe some consequences of Lusztig's conjecture leading to the calculation of Ext groups and to information about submodule structures, e.g., on the layers in the radical filtration of "baby Verma modules" (induced modules for G_{1}). One gets also that some of these consequences in turn imply Lusztig's conjecture.

Tilting modules (discussed in Chapter II.E) are G-modules that have a filtration with factors of the form $H^{0}(\lambda)$ as well as a filtration with factors of the form $H^{0}(\mu)^{*}$. The indecomposable tilting modules are classified by the dominant weights (like the simple G-modules) and as for the simple G-modules the computation of the characters of indecomposable tilting modules is a major open problem. In the case of $G=G L_{n}$ these tilting modules lead to yet another connection between the representation theory of $G L_{n}$ and that of the symmetric groups.

The technique of "Frobenius splitting" is a powerful method to prove vanishing results for varieties in prime characteristics. We describe this in Chapter II.F and then use it to give alternative approaches to results from Chapter II.14. In Chapter II.G we use then Frobenius splitting techniques to prove the main properties of modules with a good filtration (announced in Chapter II.4).

The final chapter II.H surveys certain parts of the representation theory of quantum groups. Using these groups one can construct a representation theory in characteristic 0 that is similar to that of G in prime characteristic. However, one can prove stronger results on the quantum groups side, e.g., on characters of simple modules or of indecomposable tilting modules. This has then applications to the characteristic p theory.

VI Suppose that \mathbf{F}_{q} is a finite field and that k is an algebraically closed extension of \mathbf{F}_{q}. The representation theory of groups like $G L_{n}(k)$ or $S p_{2 n}(k)$ has been developed in close interaction with that of groups like $G L_{n}\left(\mathbf{F}_{q}\right)$ or $S p_{2 n}\left(\mathbf{F}_{q}\right)$. It would therefore have been desirable to have a third part of the book dealing with representations of finite Chevalley groups (mainly over fields of the same characteristic as that over which the groups are defined). In fact, I promised to write such a part in a preliminary foreword to a preprint version of Part I. However, I hope to be forgiven for breaking this promise, as otherwise the book would have grown to an unreasonable size. Furthermore, I suspect that people most interested in these
finite groups would prefer another book where they would not have to devour at first all of Parts I and II. Now (2003) a book on this topic is under preparation by Jim Humphreys.

VII In the summer of 1984, I gave a series of lectures on some topics discussed in this book at the East China Normal University in Shanghai. I had been asked in advance to provide the audience with some notes. When doing so, I was still undecided about the precise contents of my lectures. I therefore included more material than I could possibly cover in my lectures. The first edition of this book has grown out of those notes.

I should like to use this opportunity to thank the mathematicians I met in Shanghai, especially Professor Cao Xihua, for their hospitality during my stay and for the patience with which they listened to my lectures.

Thanks are also due to Henning Haahr Andersen, Rolf Farnsteiner, Burkhard Haastert, Jim Humphreys, Niels Lauritzen, Zongzhu Lin, and Jesper Funch Thomsen for useful comments on my manuscript and for providing lists of misprints, before and after the publication of the first edition and during the preparation of the second edition.

References

The following list of references consists of two parts. Part A contains textbooks and long articles of a similar nature whereas Part B contains ordinary papers published in journals or proceedings volumes. At the end of Part A we have listed some conference proceedings and similar collections containing more than one paper from Part B in order to give the full bibliographical data only once. We refer to an item in Part A by a code like [B1] or [Bo], to an item in Part B by giving the full name of the author(s) together with a number (if necessary).

Part A

[A] S. Anantharaman: Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull. Soc. math. France, Mémoire 33 (1973), 5-79
[Bo] A. Borel: Linear Algebraic Groups, 2nd ed. (Graduate Texts in Math. 126), New York etc. 1991 (Springer)
[BoT] A. Borel, J. Tits: Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55-151
[B1] N. Bourbaki: Algèbre, Paris 1958 (ch. I), 1962 (ch. II), 1971 (ch. III, 2nd ed.), 1959 (ch. IV/V), 1964 (ch. VI/VII, 2nd ed.), 1958 (ch. VIII), 1959 (ch. IX), 1980 (ch. X) (Hermann: ch. I-IX, Masson: ch. X)
[B2] N. Bourbaki: Algèbre commutative, Paris 1961 (ch. I/II), 1962 (ch. III/IV), 1964 (ch. V/VI), 1965 (ch. VII) (Hermann)
[B3] N. Bourbaki: Groupes et algèbres de Lie, Paris 1971 (ch. I), 1972 (ch. II/III), 1968 (ch. IV-VI), 1975 (ch. VII/VIII) (Hermann)
[BrT$]$ F. Bruhat, J. Tits: Groupes réductifs sur un corps local II: Schémas en groupes, Existence d'une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197-376
[Ca1] R. W. Carter: Simple Groups of Lie Type (Pure and Applied Math. 28), London etc. 1972 (Wiley)
[Ca2] R. W. Carter: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Chichester etc. 1985 (Wiley)
[Ch] C. Chevalley: Théorie des groupes de Lie, tome II: Groupes algébriques (Actualités Sci. Ind. 1152), Paris 1951 (Hermann)
[CR] C. W. Curtis, I. Reiner: Representation Theory of Finite Groups and Associative Algebras (Pure and Applied Math. 11), New York etc. 1962 (Interscience)
[D] M. Demazure: Schémas en groupes réductifs, Bull. Soc. math. France 93 (1965), 369-413
[DG] M. Demazure, P. Gabriel: Groupes algébriques, tome I, Paris / Amsterdam 1970 (Masson / North-Holland)
[DG^{\prime}] M. Demazure, P. Gabriel: Introduction to Algebraic Geometry and Algebraic Groups (North-Holland Math. Studies 39), Amsterdam etc. 1980 (NorthHolland)
[SGA3] M. Demazure, A. Grothendieck (dirig.): Schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3) (Lecture Notes in Math. 151-153), Berlin etc. 1970 (Springer)
[Dic] L. E. Dickson: History of the Theory of Numbers, vol. III: Quadratic and Higher Forms, Washington 1923 (Carnegie Institution)
[Dix] J. Dixmier: Algèbres enveloppantes, Paris etc. 1974 (Gauthier-Villars)
[Do] S. Donkin: The q-Schur Algebra (London Math. Soc. Lecture Note 253), Cambridge 1998 (Cambridge Univ.)
[EGA] A. Grothendieck: Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 1-361
[F] J. Fogarty: Invariant Theory, New York etc. 1969 (Benjamin)
[G] R. Godement: Topologie algébrique et théorie des faisceaux (Actualités Sci. Ind. 1252), Paris 1958 (Hermann)
[Ha] R. Hartshorne: Algebraic Geometry (Graduate Texts in Math. 52), New York etc. 1977 (Springer)
[HS] P. J. Hilton, U. Stammbach: A Course in Homological Algebra (Graduate Texts in Math. 4), New York etc. 1971 (Springer)
[Ho1] G. Hochschild: Introduction to Affine Algebraic Groups, San Francisco etc. 1971 (Holden-Day)
[Ho2] G. Hochschild: Basic Theory of Algebraic Groups and Lie Algebras (Graduate Texts in Math. 75), New York etc. 1981 (Springer)
[Hu1] J. Humphreys: Introduction to Lie Algebras and Representation Theory (Graduate Texts in Math. 9), New York etc. 1972 (Springer)
[Hu2] J. Humphreys: Linear Algebraic Groups (Graduate Texts in Math. 21), New York etc. 1975 (Springer)
[Hu3] J. Humphreys: Reflection Groups and Coxeter Groups (Cambridge Studies in Advanced Math. 29), Cambridge etc. 1990 (Cambridge Univ.)
[JK] G. James, A. Kerber: The Representation Theory of the Symmetric Group (Encyclopedia of Math. and its Appl. 16), Reading, Mass. etc. 1981 (AddisonWesley)
[J1] J. C. Jantzen: Moduln mit einem höchsten Gewicht (Lecture Notes in Math. 750), Berlin etc. 1979 (Springer)
[J2] J. C. Jantzen: Lectures on Quantum Groups (Graduate Studies in Math. 6), Providence, R. I. 1996 (Amer. Math. Soc.)
[K] V. G. Kac: Infinite Dimensional Lie Algebras (Progress in Math. 44), Boston 1983 (Birkhäuser)
[Mac] S. Mac Lane: Homology (Grundlehren der mathematischen Wissenschaften 114), Berlin etc. 1963 (Springer)
[M1] D. Mumford: Abelian Varieties (Tata Studies in Math. 5), London etc. 1970 (Oxford Univ.)
[M2] D. Mumford: Introduction to Algebraic Geometry (preliminary version of first 3 chapters), Cambridge, Mass. (Harvard Univ.)
[MF] D. Mumford, J. Fogarty: Geometric Invariant Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete 34, 2nd ed.) Berlin etc. 1982 (Springer)
[N] D. G. Northcott: Affine Sets and Affine Groups (London Math. Soc. Lecture Note 39), Cambridge etc. 1980 (Cambridge Univ.)
[Ra] M. Raynaud: Faisceaux amples sur les schémas en groupes et les espaces homogènes (Lecture Notes in Math. 119), Berlin etc. 1970 (Springer)
[Ro] J. J. Rotman: An Introduction to Homological Algebra (Pure and Applied Math. 85), New York etc. 1979 (Academic Press)
[Ru] D. E. Rutherford: Modular Invariants, London 1932 (Cambridge Univ.)
[Sa] I. Satake: Classification Theory of Semi-Simple Algebraic Groups, Chicago 1967 (Univ. of Illinois, Chicago Circle)
[Se] G. Seligman: Algebraic Groups, New Haven, Conn. 1964 (Yale Univ.)
[SC] Séminaire C. Chevalley, 1956-1958: Classification des groupes de Lie algébriques, Paris 1958 (Secr. math.)
[SHS] Séminaire Heidelberg-Strasbourg 1965-66: Groupes algébriques linéaires, Strasbourg 1958 (Inst. Rech. Math. Avanc.)
[Sp1] T. A. Springer: Invariant Theory (Lecture Notes in Math. 585), Berlin etc. 1977 (Springer)
[Sp2] T. A. Springer: Linear Algebraic Groups (Progress in Math. 9), 2nd ed., Boston etc. 1998 (Birkhäuser)
[St1] R. Steinberg: Lectures on Chevalley Groups, New Haven, Conn. 1968 (Yale Univ.)
[St2] R. Steinberg: Conjugacy Classes in Algebraic Groups (Lecture Notes in Math. 366), Berlin etc. 1974 (Springer)
[Sw] M. Sweedler: Hopf Algebras, New York 1969 (Benjamin)
[Ta] M. Takeuchi: Tangent coalgebras and hyperalgebras I, Japan. J. Math. 42 (1974), 1-143
[Ti] J. Tits: Lectures on Algebraic Groups, 1st Part, New Haven, Conn. 1968 (Yale Univ.)
[Wa] W. C. Waterhouse: Introduction to Affine Group Schemes (Graduate Texts in Math. 66), New York etc. 1979 (Springer)
[We] H. Weyl: The Classical Groups, Their Invariants and Representations (Princeton Math. Series 1), Princeton 1946 (Princeton Univ.)
[Y] H. Yanagihara: Theory of Hopf Algebras Attached to Group Schemes (Lecture Notes in Math. 614), Berlin etc. 1977 (Springer)
[P1] A. Borel et al.: Seminar on Algebraic Groups and Related Finite Groups (Lecture Notes in Math. 131), Berlin etc. 1970 (Springer)
[P2] M. Collins (ed.), Finite Simple Groups II, Proc. Durham 1978, London etc. 1980 (Academic Press)
[P3] B. Cooperstein, G. Mason (eds.), The Santa Cruz Conference on Finite Groups, Proc. 1979 (Proc. Symp. Pure Math. 37), Providence, R. I. 1980 (Amer. Math. Soc.)
[P4] O. Lehto (ed.), Proceedings of the International Congress of Mathematicians. Proc. Helsinki 1978, Helsinki 1980 (Acad. Sci. Fennica)
[P5] W. R. Gross, F. Gross (eds.), Proceedings of the Conference on Finite Groups, Proc. Park City, Utah 1975, New York etc. 1976 (Academic Press)
[P6] Tableaux de Young et Foncteurs de Schur en Algèbre et Géométrie, Proc. Toruń 1980 (Astérisque 87-88), Paris 1981 (Soc. Math. France)
[P7] Tuan Hsio-Fu (ed.), Group Theory, Beijing 1984, Proc. (Lecture Notes in Math. 1185), Berlin etc. 1986 (Springer)
[P8] P. Fong (ed.), The Arcata Conference on Representations of Finite Groups, Part 1, Proc. 1986 (Proc. Symp. Pure Math. 47:1), Providence, R. I. 1987 (Amer. Math. Soc.)
[P9] P. Fong (ed.), The Arcata Conference on Representations of Finite Groups, Part 2, Proc. 1986 (Proc. Symp. Pure Math. 47:2), Providence, R. I. 1987 (Amer. Math. Soc.)
[P10] R. Fossum et al. (eds.), Invariant Theory, Proc. Denton, Tex. 1986 (Contemp. Math. 88), Providence, R. I. 1989 (Amer. Math. Soc.)
[P11] A. J. Hahn et al. (eds.), Classical Groups and Related Topics, Proc. Beijing 1987 (Contemp. Math. 82), Providence, R. I. 1989 (Amer. Math. Soc.)
[P12] S. Ramanan et al. (eds.), Proceedings of the Hyderabad Conference on Algebraic Groups, Proc. 1989, Madras 1991 (Manoj Prakashan)
[P13] W. F. Haboush, B. J. Parshall (eds.), Algebraic Groups and their Generalizations: Classical Methods, Proc. University Park, Penn. 1991 (Proc. Sympos. Pure Math. 56:1), Providence, R. I. 1994 (Amer. Math. Soc.)
[P14] W. F. Haboush, B. J. Parshall (eds.), Algebraic Groups and their Generalizations: Quantum and Infinite-dimensional Methods, Proc. University Park, Penn. 1991 (Proc. Sympos. Pure Math. 56:2), Providence, R. I. 1994 (Amer. Math. Soc.)
[P15] A. Joseph, S. Shnider (eds.), Quantum Deformations of Algebras and Their Representations, Proc. Ramat-Gan and Rehovot 1991/1992 (Israel Math. Conf. Proc. 7), Ramat Gan 1993 (Bar-Ilan Univ.)
[P16] V. Dlab, L. L. Scott (eds.), Finite-Dimensional Algebras and Related Topics, Proc. Ottawa 1992 (NATO Adv. Sci. Inst. C 424), Dordrecht etc. 1994 (Kluwer)
[P17] B. Allison, G. Cliff (eds.), Representations of Groups, Proc. Banff 1994 (CMS Conf. Proc. 16), Providence, R. I. 1995 (Amer. Math. Soc.)
[P18] S. D. Chatterji (ed.), Proceedings of the International Congress of Mathematicians, Vol. 2, Proc. Zürich 1994, Basel 1995 (Birkhäuser)
[P19] G. Lehrer et al. (eds.), Algebraic Groups and Lie Groups, a volume in honour of R. W. Richardson (Austral. Math. Soc. Lecture Ser. 9), Cambridge 1997 (Cambridge Univ.)
[P20] A. Adem et al. (eds.), Group Representations: Cohomology, Group Actions and Topology, Proc. Seattle 1996 (Proc. Sympos. Pure Math. 63), Providence, R. I. 1998 (Amer. Math. Soc.)
[P21] R. W. Carter, J. Saxl (eds.), Algebraic Groups and their Representations, Proc. Cambridge 1997 (NATO Adv. Sci. Inst. C 517), Dordrecht etc. 1998 (Kluwer)
[P22] M. J. Collins et al. (eds.), Modular Representation Theory of Finite Groups, Proc. Charlottesville 1998, Berlin 2001 (de Gruyter)
[P23] J. Wang, Z. Lin (eds.), Representations and Quantizations, Proc. Shanghai 1998, Beijing 2000 (China High. Educ. Press)

Part B

A. M. Adamovich

1) Analogues of spaces of primitive forms over a field of positive characteristic, Moscow Univ. Math. Bull. 39:1 (1984), 53-56, translated from: Аналог пространства примитивных форм над полем положительной характеристики, Вестн. Моск. Ун-та. (Матем. Механ.) 1984:1, 64-66
2) The submodule lattice for Weyl modules of symplectic groups with fundamental highest weights, Moscow Univ. Math. Bull. 41:2 (1986), 6-9, translated from: Структура подмодулей модулей Вейля симплектических групп с фундаментальными старшими весами, Вестн. Моск. Ун-та. (Матем. Механ.) 1986:2, 7-10
3) Structure of cohomology modules of linear bundles over G / B, Math. Notes 62 (1997), 8-14, translated from: Матем. Заметки 62 (1997), 10-17
4) Structure of cohomology modules of linear bundles over G / B, and weak ordering on the Weyl group, Math. Notes 62 (1997), 135-140, translated from: Матем. Заметки 62 (1997), 163-168
A. M. Adamovich, G. L. Rybnikov

Tilting modules for classical groups and Howe duality in positive characteristic, Transform. Groups 1 (1996), 1-34
K. Akin, D. Buchsbaum

1) Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), 149-200
2) Representations, resolutions and intertwining numbers, pp. 1-19 in M. Hochster et al. (eds.): Commutative Algebra, Proc. Berkeley 1987 (Math. Sci. Res. Inst. Publ. 15), New York 1989 (Springer)
3) Characteristic-free representation theory of the general linear group II: Homological considerations, Adv. in Math. 72 (1988), 171-210
K. Akin, D. Buchsbaum, J. Weyman

Schur functors and Schur complexes, Adv. in Math. 44 (1982), 207-278
J. L. Alperin

Projective modules for $S L\left(2,2^{n}\right)$, J. Pure Appl. Algebra 15 (1979), 219-234
J. L. Alperin, L. G. Kovacs

Periodicity of Weyl modules for $S L(2, q)$, J. Algebra 74 (1982), 52-54
H. H. Andersen

1) Cohomology of line bundles on G / B, Ann. scient. Éc. Norm. Sup. (4) 12 (1979), 85-100
2) The first cohomology group of a line bundle on G / B, Invent. math. 51 (1979), 287-296
3) Vanishing theorems and induced representations, J. Algebra 62 (1980), 86-100
4) The strong linkage principle, J. reine angew. Math. 315 (1980), 53-59
5) The Frobenius morphism on the cohomology of homogeneous vector bundles on G / B, Ann. of Math. (2) 112 (1980), 113-121
6) On the structure of Weyl modules, Math. Z. 170 (1980), 1-14
7) Representations of algebraic groups via cohomology of line bundles, pp. 171175 in: E. Balslev (ed.): 18th Scandinavian Congress of Mathematicians, Proc. Aarhus 1980, Boston etc. 1981 (Birkhäuser)
8) Line bundles on flag manifolds, pp. 21-42 in [P6]
9) On the structure of the cohomology of line bundles on G / B, J. Algebra 71 (1981), 245-258
10) Extensions of modules for algebraic groups, Amer. J. Math. 106 (1984), 489504
11) An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 60 (1986), 125-153
12) Filtrations of cohomology modules for Chevalley groups, Ann. scient. Éc. Norm. Sup. (4) 16 (1983), 495-528
13) Schubert varieties and Demazure's character formula, Invent. math. 79 (1985), 611-618
14) Torsion in the cohomology of line bundles on homogeneous spaces for Chevalley groups, Proc. Amer. Math. Soc. 96 (1986), 537-544
15) On the generic structure of cohomology modules for semisimple algebraic groups, Trans. Amer. Math. Soc. 295 (1986), 397-415
16) Jantzen's filtrations of Weyl modules, Math. Z. 194 (1987), 127-142
17) Extensions of simple modules for finite Chevalley groups, J. Algebra 111 (1987), 388-403
18) A new proof of old character formulas, pp. 193-207 in [P10]
19) Modular representations of algebraic groups, pp. 23-36 in [P8]
20) Finite-dimensional representations of quantum groups, pp. 1-18 in [P14]
21) Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), 149-159
22) Quantum groups, invariants of 3-manifolds and semisimple tensor categories, pp. 1-12 in [P15]
23) Modular representations of algebraic groups and relations to quantum groups, pp. 1-51 in: B. Ørsted, H. Schlichtkrull (eds.), Algebraic and Analytic Methods in Representation Theory, Proc. Sønderborg 1994 (Perspect. Math. 17), San Diego 1997 (Academic)
24) The irreducible characters for semi-simple algebraic groups and for quantum groups, pp. 732-743 in [P18]
25) Quantum groups at roots of ± 1, Commun. Algebra 24 (1996), 3269-3282
26) Filtrations and tilting modules, Ann. scient. Éc. Norm. Sup. (4) 30 (1997), 353-366
27) Tilting modules for algebraic groups, pp. 25-42 in [P21]
28) A sum formula for tilting filtrations, J. Pure Appl. Algebra 152 (2000), 17-40
29) Tilting modules for algebraic and quantum groups, pp. 1-21 in: K. W. Roggenkamp, M. Stefănescu (eds.), Algebra-Representation Theory, Proc. Constanta 2000 (NATO Sci. Ser. II 28), Dordrecht etc. 2001 (Kluwer)
30) p-filtrations and the Steinberg module, J. Algebra 244 (2001), 664-683
H. H. Andersen, J. C. Jantzen

Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487-525
H. H. Andersen, J. C. Jantzen, W. Soergel

Representations of quantum groups at a p th root of unity and of semisimple groups in characteristic p : independence of p, Astérisque 220 (1994), 1-321
H. H. Andersen, J. Jørgensen, P. Landrock

The projective indecomposable modules of SL($2, p^{n}$), Proc. London Math. Soc. (3) 46 (1983), 38-52
H. H. Andersen, M. Kaneda

1) Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. London Math. Soc. (3) 59 (1989), 74-98
2) On the D-affinity of the flag variety in type B_{2}, Manuscripta Math. 103 (2000), 393-399
3) Filtrations on $G_{1} T$-modules, Proc. London Math. Soc. (3) 82 (2001), 614-646
H. H. Andersen, G. Papadopoulo

Liftings of quantum tilting modules, pp. 1-8 in [P23]
H. H. Andersen, J. Paradowski

Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), 563-588
H. H. Andersen, P. Polo, K. Wen

1) Representations of quantum algebras, Invent. math. 104 (1991), 1-59 and 120 (1995), 409-410
2) Injective modules for quantum algebras, Amer. J. Math. 114 (1992), 571-604 H. H. Andersen, K. Wen

Representations of quantum algebras. The mixed case, J. reine angew. Math. 427 (1992), 35-50
J. Archer

Principal indecomposable modules for some three-dimensional special linear groups, Bull. Austral. Math. Soc. 22 (1980), 439-455
G. Avrunin

1) 2-cohomology of some unitary groups, Illinois J. Math. 24 (1980), 317-332
2) Generic cohomology for twisted groups. Trans. Amer. Math. Soc. 268 (1981), 247-253
K. Baclawski, J. Towber

The shape-algebra and standard bases for G_{2}, Amer. J. Math. 106 (1984), 1107-1134
Y. H. Bai, J. P. Wang, K. X. Wen

Translation and cancellation of socle series patterns, Tôhoku Math. J. (2) 40 (1988), 633-643
J. W. Ballard

1) Some generalized characters of finite Chevalley groups, Math. Z. 147 (1976), 163-174
2) Projective modules for finite Chevalley groups, Trans. Amer. Math. Soc. 245 (1978), 221-249
3) Injective modules for restricted enveloping algebras, Math. Z. 163 (1978), 5763
4) Clifford's theorem for algebraic groups and Lie algebras, Pacific J. Math. 106 (1983), 1-15
A. A. Baranov, I. D. Suprunenko

Branching rules for modular fundamental representations of symplectic groups, Bull. London Math. Soc. 32 (2000), 409-420
M. Barnabei

Schur modules, Weyl modules, and Capelli operators, Adv. in Math. 151 (2000), 1-35
M. Barnabei, V. Frontini, F. Sgallari

An algorithm for Weyl module irreducibility, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), 217-232
A. Beilinson, J. Bernstein

A proof of Jantzen conjectures, pp. 1-50 in: S. Gelfand, S. Gindikin (eds.), I. M. Gelfand Seminar (Adv. Soviet Math. 16:1), Providence, R. I. 1993 (Amer. Math. Soc.)
G. Bell

1) On the cohomology of the finite special linear groups. I, II, J. Algebra 54 (1978), 216-238 and 239-259
2) Cohomology of degree 1 and 2 of the Suzuki groups, Pacific J. Math. 75 (1978), 319-329
C. Bendel
3) Projectivity of modules for infinitesimal unipotent group schemes, Proc. Amer. Math. Soc. 129 (2001), 671-676
4) Cohomology and projectivity of modules for finite group schemes, Math. Proc. Cambridge Philos. Soc. 131 (2001), 405-425
C. Bendel, D. Nakano

Complexes and vanishing of cohomology for group schemes, J. Algebra 214 (1999), 668-713
C. Bendel, D. Nakano, C. Pillen

On comparing the cohomology of algebraic groups, finite Chevalley groups and Frobenius kernels, J. Pure Appl. Algebra 163 (2001), 119-146
D. Benson

1) Projective modules for the group of twenty-seven lines on a cubic surface, Commun. Algebra 17 (1989), 1017-1068
2) Some remarks on the decomposition numbers for the symmetric groups, pp. 381-394 in [P8]
B. D. Boe

Geometry of the Jantzen region in Lusztig's conjecture, Math. Comp. 70 (2001), 1265-1280
A. Borel

1) Properties and linear representations of Chevalley groups, pp. 1-55 in [P1]
2) Linear representations of semi-simple algebraic groups, pp. 421-440 in: R. Hartshorne (ed.), Algebraic geometry, Arcata 1974, Proc. (Proc. Sympos. Pure Math. 29), Providence, R. I. 1975 (Amer. Math. Soc.)
B. Braden

Restricted representations of classical Lie algebras of types A_{2} and B_{2}, Bull. Amer. Math. Soc. 73 (1967), 482-486
M. Brion, P. Polo

Generic singularities of certain Schubert varieties, Math. Z. 231 (1999), 301324
J. Brundan

1) Double coset density in reductive algebraic groups, J. Algebra 177 (1995), 755-767
2) Lowering operators for $\mathrm{GL}(n)$ and quantum $\mathrm{GL}(n)$, pp. 95-114 in [P20]
3) Multiplicity-free subgroups of reductive algebraic groups, J. Algebra 188 (1997), 310-330
4) Dense orbits and double cosets, pp. 259-274 in [P21]
5) Double coset density in exceptional algebraic groups, J. London Math. Soc. (2) 58 (1998), 63-83
6) Double coset density in classical algebraic groups, Trans. Amer. Math. Soc. 352 (2000), 1405-1436
J. Brundan, A. Kleshchev
7) Some remarks on branching rules and tensor products for algebraic groups, J. Algebra 217 (1999), 335-351
8) Modular Littlewood-Richardson coefficients, Math. Z. 232 (1999), 287-320
9) Tensor products and restrictions in type A, pp. 67-99 in [P22]
10) On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), 75-106
J. Brundan, A. Kleshchev, I. Suprunenko

Semisimple restrictions from $\mathrm{GL}(n)$ to $\mathrm{GL}(n-1)$, J. reine angew. Math. 500 (1998), 83-112
A. Buch, J. F. Thomsen, N. Lauritzen, V. Mehta

1) Frobenius morphisms modulo p^{2}, C. R. Acad. Sci. Paris (I) 322 (1996), 69-72
2) The Frobenius morphism on a toric variety, Tôhoku Math. J. (2) 49 (1997), 355-366
D. A. Buchsbaum

Aspects of characteristic-free representation theory of GL_{n}, and some applications to intertwining numbers, Acta Appl. Math. 21 (1990), 247-261
D. A. Buchsbaum, D. Flores de Chela

Intertwining numbers: the three-rowed case, J. Algebra 183 (1996), 605-635
D. A. Buchsbaum, R. Sánchez

On lifting maps between Weyl modules: can bad shapes be resolved by better shapes? Adv. in Math. 105 (1994), 59-75
N. Burgoyne

Modular representations of some finite groups, pp. 13-17 in: I. Reiner (ed.), Representation Theory of Finite Groups and Related Topics, Proc. Madison, Wisc., 1970 (Proc. Sympos. Pure Math. 21), Providence, R. I. 1971 (Amer. Math. Soc.)
R. Burkhardt

1) Die Zerlegungsmatrizen der Gruppen $P S L\left(2, p^{f}\right)$, J. Algebra 40 (1976), 75-96
2) Über ein kombinatorisches Problem aus der modularen Darstellungstheorie, J. Combinatorial Theory (A) 21 (1976), 68-79
3) Über die Zerlegungszahlen der Suzukigruppen $S z(q)$, J. Algebra 59 (1979), 421-433
4) Über die Zerlegungszahlen der unitären Gruppen $\operatorname{PSU}\left(3,2^{2 f}\right)$, J. Algebra 61 (1979), 548-581
M. Cabanes

Irreducible modules and Levi supplements, J. Algebra 90 (1984), 84-97
J. F. Carlson

The cohomology of irreducible modules over SL($2, p^{n}$), Proc. London Math. Soc. (3) 47 (1983), 480-492
R. W. Carter

1) The relation between characteristic 0 representations and characteristic p representations of finite groups of Lie type, pp. 301-311 in [P3]
2) Representation theory of the 0-Hecke algebra, J. Algebra 104 (1986), 89-103
3) Raising and lowering operators for $\mathfrak{s l}_{n}$, with applications to orthogonal bases of $\mathfrak{s l}_{n}$-modules, pp. 351-366 in [P9]
R. Carter, E. Cline

The submodule structure of Weyl modules for groups of type A_{1}, pp. 303-311 in [P5]
R. W. Carter, G. Lusztig

1) On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242
2) Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), 347-384
R. W. Carter, M. T. J. Payne

On homomorphisms between Weyl modules and Specht modules, Math. Proc. Camb. Phil. Soc. 87 (1980), 419-425

P. Cartier

Représentations lineaires des groupes algébriques en caractéristique non nulle, exp. 255 in: Séminaire Bourbaki 1962/63 (2e éd.), Paris 1964 (Secr. math.)
L. Chastkofsky

1) Characters of projective indecompsable modules for finite Chevalley groups, pp. 359-362 in [P3]
2) Projective characters for finite Chevalley groups, J. Algebra 69 (1981), 347-357
3) Variations on Hulsurkar's matrix with applications to representations of algebraic Chevalley groups, J. Algebra 82 (1983), 255-274
4) Rationality of certain zeta functions associated with modular representation theory, pp. 41-50 in: J. Mackay (ed.), Finite Groups - Coming of Age, Proc. Montreal 1982 (Contemp. Math. 45), Providence, R. I. 1985 (Amer. Math. Soc.)
5) Generic Cartan invariants for Chevalley groups, J. Algebra 103 (1986), 466478
6) On the Cartan invariants of a Chevalley group over $G F\left(p^{n}\right)$, J. Algebra 150 (1992), 388-401
L. Chastkofsky, W. Feit
7) On the projective characters in characteristic 2 of the groups $\operatorname{Suz}\left(2^{m}\right)$ and $\mathrm{Sp}_{4}\left(2^{n}\right)$, Publ. Math. I. H. E. S. 51 (1980), 9-35
8) On the projective characters in characteristic 2 of the groups $S L_{3}\left(2^{m}\right)$ and $S U_{3}\left(2^{m}\right)$, J. Algebra 63 (1980), 124-142
Y. Cheng
9) On the first Cartan invariants in characteristic 2 of the groups $S L_{3}\left(2^{m}\right)$ and $S U_{3}\left(2^{m}\right)$, J. Algebra 82 (1983), 194-244
10) On the Cartan invariants of $\mathrm{SL}\left(2, p^{m}\right)$. Commun. Algebra 14 (1986), 507-515 C. Chevalley

Certains schémas de groupes semi-simples, exp. 219 in Séminaire Bourbaki 1960/61 (2e éd.), Paris 1961 (Secr. math.)
G. Cliff

A tensor product theorem for quantum linear groups at even roots of unity, J. Algebra 165 (1994), 566-575
E. Cline

1) Ext^{1} for SL_{2}, Commun. Algebra 7 (1979), 107-111
2) A second look at Weyl modules for $S L_{2}$, preprint
3) On injective modules for infinitesimal algebraic groups II, J. Algebra 134 (1990), 271-297
4) Simulating algebraic geometry with algebra III: The Lusztig conjecture as a $T G_{1}$-problem, pp. 149-161 in [P9]
E. Cline, B. Parshall, L. Scott
5) Cohomology of finite groups of Lie type I, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 169-191
6) Cohomology of finite groups of Lie type II, J. Algebra 45 (1977), 182-198
7) Induced modules and affine quotients, Math. Ann. 230 (1977), 1-14
8) Induced modules and extensions of representations, Invent. math. 47 (1978), 41-51
9) Induced modules and extensions of representations II, J. London Math. Soc. (2) 20 (1978), 403-414
10) Cohomology, hyperalgebras, and representations, J. Algebra 63 (1980), 98-123
11) On the tensor product theorem for algebraic groups, J. Algebra 63 (1980), 264-267
12) Detecting rational cohomology of algebraic groups, J. London Math. Soc. (2) 28 (1983), 293-300
13) A Mackey imprimitivity theory for algebraic groups, Math. Z. 182 (1983), 447-471
14) On injective modules for infinitesimal algebraic groups I, J. London Math. Soc. (2) 31 (1985), 277-291
15) Derived categories and Morita theory, J. Algebra 104 (1986), 397-409
16) Algebraic stratification in representation categories, J. Algebra 117 (1988), 504-521
17) Finite-dimensional algebras and highest weight categories, J. reine angew. Math. 391 (1988), 85-99
18) Duality in highest weight categories, pp. 7-22 in [P11]
19) Integral and graded quasi-hereditary algebras I, J. Algebra 131 (1990), 126160
20) Infinitesimal Kazhdan-Lusztig theories, pp. 43-73 in: V. Deodhar (ed.), Kazh-dan-Lusztig Theory and Related Topics, Proc. Chicago 1989 (Contemp. Math. 139), Providence, R. I. 1992 (Amer. Math. Soc.)
21) Abstract Kazhdan-Lusztig theories, Tôhoku Math. J. (2) 45 (1993), 511-534
22) The homological dual of a highest weight category, Proc. London Math. Soc. (3) 68 (1994), 294-316
23) Simulating perverse sheaves in modular representation theory, pp. 63-104 in [P13]
24) Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124:591 (1996), 1-119
25) Graded and non-graded Kazhdan-Lusztig theories, pp. 105-125 in [P19]
26) Endomorphism algebras and representation theory, pp. 131-149 in [P21]
E. Cline, B. Parshall, L. Scott, W. van der Kallen Rational and generic cohomology, Invent. math. 39 (1977), 143-163
D. H. Collingwood, R. S. Irving

A decomposition theorem for certain self-dual modules in the category \mathcal{O}, Duke Math. J. 58 (1989), 89-102
A. Cox

1) Ext ${ }^{1}$ for Weyl modules for q-GL(2,k), Math. Proc. Cambridge Philos. Soc. 124 (1998), 231-251
2) The blocks of the q-Schur algebra, J. Algebra 207 (1998), 306-325
3) On the blocks of the infinitesimal Schur algebras, Quart. J. Math. 51 (2000), 39-56
4) Decomposition numbers for distant Weyl modules, J. Algebra 243 (2001), 448472
A. Cox, K. Erdmann

On Ext ${ }^{2}$ between Weyl modules for quantum GL_{n}, Math. Proc. Cambridge Philos. Soc. 128 (2000), 441-463
C. W. Curtis

1) Representations of Lie algebras of classical type with applications to linear groups, J. Math. Mech. 9 (1960), 307-326
2) On the dimensions of the irreducible modules of the Lie algebras of classical type, Trans. Amer. Math. Soc. 96 (1960), 135-142
3) On projective representations of certain finite groups, Proc. Amer. Math. Soc. 11 (1960), 852-860
4) Irreducible representations of finite groups of Lie type, J. reine angew. Math. 219 (1965), 180-199
5) Modular representations of finite groups with split (B, N)-pairs, pp. 57-95 in [P1]
S. W. Dagger

On the blocks of the Chevalley groups, J. London Math. Soc. (2) 3 (1971), 21-29
C. De Concini

1) Symplectic standard tableaux, Adv. in Math. 34 (1979), 1-27
2) Characteristic free "decomposition" of the coordinate ring of the symplectic group, pp. 121-128 in: A. de Luca (ed.), Noncommutative structures in algebra and geometric combinatorics, Proc. Napoli 1978, Roma 1981 (Cons. Naz. delle Ricerc.)
C. De Concini, D. Eisenbud, C. Procesi
3) Young diagrams and determinantal varieties, Invent. math. 56 (1980), 129-165
4) Hodge algebras (Astérisque 91), Paris 1982 (Soc. Math. France)
C. De Concini, D. Kazhdan

Special bases for S_{N} and GL(n), Israel J. Math. 40 (1981), 275-290
C. De Concini, V. Lakshmibai

Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties, Amer. J. Math. 103 (1981), 835-850
C. De Concini, C. Procesi

1) A characteristic free approach to invariant theory, Adv. in Math. 21 (1976), 330-354
2) Symmetric functions, conjugacy classes, and the flag variety, Invent. math. 64 (1981), 203-219
3) Hodge algebras, a survey, pp. 79-83 in [P6]
4) Complete symmetric varieties, pp. 1-44 in: F. Gherardelli (ed.), Invariant theory, Proc. Montecatini 1982, (Lecture Notes in Math. 996), Berlin etc. 1983 (Springer)
5) Quantum Groups, pp. 31-140 in: L. Boutet de Monvel et al., D-modules, Representation Theory, and Quantum Groups, Proc. Venezia 1992 (Lecture Notes in Mathematics 1565), Berlin etc. 1993 (Springer)
C. De Concini, E. Strickland
6) Traceless tensors and the symmetric group, J. Algebra 61 (1979), 112-128
7) On the variety of complexes, Adv. in Math. 41 (1981), 57-77

M. Demazure

1) Sur la formule des caractères de H. Weyl, Invent. math. 9 (1970) 249-252
2) Invariants symétriques entiers des groupes de Weyl et torsion, Invent. math. 21 (1973), 287-301
3) Désingularisation des variétés de Schubert qénéralisées, Ann. scient. Éc. Norm. Sup. (4) 7 (1974), 53-88
4) Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), 163-172
5) A very simple proof of Bott's theorem, Invent. math. 33 (1976), 271-272
6) A Moebius-like formula in the Schubert calculus, Invent. math. 35 (1976), 317-319
7) Démonstration de la conjecture de Mumford (d'après W. Haboush), exp. 462 in: Séminaire Bourbaki 1974/1975 (Lecture Notes in Math. 514), Berlin etc. 1976 (Springer)
D. I. Deriziotis
8) The Brauer complex of a Chevalley group, J. Algebra 70 (1981), 261-269
9) The submodule structure of Weyl modules for groups of type A_{1}, Commun. Algebra 9 (1981), 247-265
10) A proof of a Carter-Cline theorem on A_{1}-Weyl modules, Bull. Acad. Polon. Sci. (Ser. Sci. Math.) 30 (1982), 485-491
11) The matrix of an A_{1}-Weyl module, Bull. Acad. Polon. Sci. (Ser. Sci. Math.) 32 (1984), 19-22
K. Diethelm-Nüssli

Zur Darstellungstheorie von endlich dimensionalen restringierten Lie-Algebren, Diss. ETH Zürich, Nr. 7431 (1984)
J. Dieudonné

Les algèbres de Lie simples associées aux groupes simple algébriques sur un corps de caractéristique $p>0$, Rend. Circ. Mat. Palermo (2) 6 (1957), 198206
R. Dipper

1) Vertices of irreducible representations of finite Chevalley groups in the describing characteristic, Math. Z. 175 (1980), 143-159
2) On irreducible modules over finite Chevalley groups and parabolic subgroups, Commun. Algebra 10 (1982), 1073-1088
3) On irreducible modules of twisted groups of Lie type, J. Algebra 81 (1983), 370-389
S. Donkin
4) Hopf complements and injective comodules for algebraic groups, Proc. London Math. Soc. (3) 40 (1980), 298-319
5) Rationally injective modules for semisimple algebraic groups as direct limits, Bull. London Math. Soc. 12 (1980), 99-102
6) On a question of Verma, J. London Math. Soc. (2) 21 (1980), 445-455
7) A filtration for rational modules, Math. Z. 177 (1981), 1-8
8) The blocks of a semisimple algebraic group, J. Algebra 67 (1980), 36-53
9) A note on the characters of the projective modules for the infinitesimal subgroups of a semisimple algebraic group, Math. Scand. 51 (1982), 142-150
10) On Ext ${ }^{1}$ for semisimple groups and infinitesimal subgroups, Math. Proc. Camb. Phil. Soc. 92 (1982), 231-238
11) A note on decomposition numbers of reductive algebraic groups, J. Algebra 80 (1983), 226-234
12) Rational Representations of Algebraic Groups (Lecture Notes in Math. 1140), Berlin etc. 1985 (Springer)
13) A note on decomposition numbers for general linear groups and symmetric groups, Math. Proc. Camb. Phil. Soc. 97 (1985), 57-62
14) Finite resolutions of modules for reductive algebraic groups, J. Algebra 101 (1986), 473-488
15) On Schur algebras and related algebras I, J. Algebra 104 (1986), 310-328
16) Skew modules for reductive groups, J. Algebra 113 (1988), 465-479
17) On Schur algebras and related algebras II, J. Algebra 111 (1987), 354-364
18) Good filtrations of rational modules for reductive groups, pp. 69-80 in [P8]
19) Invariants of unipotent radicals, Math. Z. 198 (1988), 117-125
20) On conjugating representations and adjoint representations of semisimple groups, Invent. math. 91 (1988), 137-145
21) The normality of closures of conjugacy classes of matrices, Invent. math. 101 (1990), 717-736
22) Representations of symplectic groups and the symplectic tableaux of R. C. King, Linear and Multilinear Algebra 29 (1991), 113-124
23) Infinitesimal invariants of algebraic groups, J. London Math. Soc. (2) 45 (1992), 481-490
24) Invariants of several matrices, Invent. math. 110 (1992), 389-401
25) Invariant functions on matrices, Math. Proc. Cambridge Philos. Soc. 113 (1993), 23-43
26) On tilting modules for algebraic groups, Math. Z. 212 (1993), 39-60
27) On tilting modules and invariants for algebraic groups, pp. 59-77 in [P16]
28) On Schur algebras and related algebras III: Integral representations, Math. Proc. Cambridge Philos. Soc. 116 (1994), 37-55
29) On Schur algebras and related algebras IV: The blocks of the Schur algebras, J. Algebra 168 (1994), 400-429
30) On projective modules for algebraic groups, J. London Math. Soc. (2) $\mathbf{5 4}$ (1996), 75-88
31) On free modules for finite subgroups of algebraic groups, J. London Math. Soc. (2) 55 (1997), 287-296
32) An introduction to the Lusztig conjecture, pp. 173-187 in: R. W. Carter, M. Geck (eds.): Representations of Reductive Groups (Publ. Newton Inst.), Cambridge 1998 (Cambridge Univ.)
33) On the existence of Auslander-Reiten sequences of group representations I, Algebr. Represent. Theory 1 (1998), 97-127
34) On the existence of Auslander-Reiten sequences of group representations II, Algebr. Represent. Theory 1 (1998), 215-253
35) On the existence of Auslander-Reiten sequences of group representations III, Algebr. Represent. Theory 1 (1998), 399-412
36) Symmetric and exterior powers, linear source modules and representations of Schur superalgebras, Proc. London Math. Soc. (3) 83 (2001), 647-680
S. Donkin, K. Erdmann

Tilting modules, symmetric functions, and the module structure of the free Lie algebra, J. Algebra 203 (1998), 69-90

S. Donkin, I. Reiten

On Schur algebras and related algebras V: Some quasi-hereditary algebras of finite type, J. Pure Appl. Algebra 97 (1994), 117-134
S. Doty

1) The submodule structure of certain Weyl modules for groups of type A_{n}, J. Algebra 95 (1985), 373-383
2) Submodules of symmetric powers of the natural module for GL_{n}, pp. 185-191 in [P10]
3) Composition factors of induced modules for algebraic groups and their Frobenius subgroups, pp. 163-170 in [P9]
4) Character formulas and Frobenius subgroups of algebraic groups, J. Algebra 125 (1989), 331-347
5) The strong linkage principle, Amer. J. Math. 111 (1989), 135-141
6) Filtrations of rational representations of reductive groups of semisimple rank 1, Proc. Amer. Math. Soc. 109 (1990), 9-22
7) The symmetric algebra and representations of general linear groups, pp. 123150 in [P12]
8) Resolutions of B modules, Indag. Math. (N.S.) 5 (1994), 267-283
9) Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Appl. Algebra 123 (1998), 165-199
10) Representation theory of reductive normal algebraic monoids, Trans. Amer. Math. Soc. 351 (1999), 2539-2551
S. Doty, K. Erdmann, S. Martin, D. Nakano Representation type of Schur algebras, Math. Z. 232 (1999), 137-182
S. Doty, D. Nakano
11) Semisimple Schur algebras, Math. Proc. Cambridge Philos. Soc. 124 (1998), 15-20
12) Relating the cohomology of general linear groups and symmetric groups, pp. 175-187 in [P22]
S. Doty, D. Nakano, K. Peters
13) On infinitesimal Schur algebras, Proc. London Math. Soc. (3) 72 (1996), 588612
14) Polynomial representations of Frobenius kernels of GL_{2}, pp. $57-67$ in: S.J. Kang et al. (eds.), Lie Algebras and Their Representations, Proc. Seoul 1995 (Contemp. Math. 194), Providence, R. I. 1996 (Amer. Math. Soc.)
15) Infinitesimal Schur algebras of finite representation type, Quart. J. Math. Oxford (2) 48 (1997), 323-345
S. Doty, J. B. Sullivan
16) The submodule structure of Weyl modules for $S L_{3}$, J. Algebra 96 (1985), 78-93
17) On the structure of the higher cohomology modules of line bundles on G / B, J. Algebra 114 (1988), 286-332
18) On the geometry of extensions of irreducible modules for simple algebraic groups, Pacific J. Math. 130 (1987), 253-273
19) On the intertwinings between higher cohomology modules of line bundles on G/B, J. Algebra 115 (1988), 289-296
20) Filtration patterns for representations of algebraic groups and their Frobenius kernels, Math. Z. 195 (1987), 391-407
S. Doty, G. Walker
21) The composition factors of $\mathbf{F}_{p}\left[x_{1}, x_{2}, x_{3}\right]$ as a $G L(3, p)$-module, J. Algebra 147 (1992), 411-441
22) Modular symmetric functions and irreducible modular representations of general linear groups, J. Pure Appl. Algebra 82 (1992), 1-26
23) Truncated symmetric powers and modular representations of GL_{n}, Math. Proc. Cambridge Philos. Soc. 119 (1996), 231-242

M. Dowd, P. Sin

On representations of algebraic groups in characteristic two, Commun. Algebra 24 (1996), 2597-2686
J. Du

A note on quantized Weyl reciprocity at roots of unity, Algebra Colloq. 2 (1995), 363-372
J. Du, B. Parshall, L. Scott

Quantum Weyl reciprocity and tilting modules. Comm. Math. Phys. 195 (1998), 321-352
J. Du, L. Scott

Lusztig conjectures, old and new I, J. reine angew. Math. 455 (1994), 141-182
K. Erdmann

1) Schur algebras of finite type, Quart. J. Math. Oxford (2) 44 (1993), 17-41
2) Symmetric groups and quasi-hereditary algebras, pp. 123-161 in [P16]
3) Ext ${ }^{1}$ for Weyl modules of $\mathrm{SL}_{2}(K)$, Math. Z. 218 (1995), 447-459
4) Tensor products and dimensions of simple modules for symmetric groups, Manuscripta Math. 88 (1995), 357-386
5) Decomposition numbers for symmetric groups and composition factors of Weyl modules, J. Algebra 180 (1996), 316-320
6) Representations of $\mathrm{GL}_{n}(K)$ and symmetric groups, pp. 67-84 in: R. Solomon (ed.), Representation Theory of Finite Groups, Proc. Columbus, Ohio 1995 (Ohio State Univ. Math. Res. Inst. Publ. 6), Berlin 1997 (de Gruyter)

K. Erdmann, A. Henke

1) On Ringel duality for Schur algebras, Math. Proc. Cambridge Philos. Soc. 132 (2002), 96-115
2) On Schur algebras, Ringel duality and symmetric groups, J. Pure Appl. Algebra 169 (2002), 175-199
K. Erdmann, D. Nakano
3) Representation type of q-Schur algebras, Trans. Amer. Math. Soc. 353 (2001), 4729-4756
4) Representation type of Hecke algebras of type A, Trans. Amer. Math. Soc. 354 (2002), 275-285
R. Farnsteiner, G. Röhrle

Almost split sequences of Verma modules, Math. Ann. 322 (2002), 701-743
R. Farnsteiner, G. Röhrle, D. Voigt

Infinitesimal unipotent group schemes of complexity 1, Colloq. Math. 89 (2001), 179-192
R. Farnsteiner, D. Voigt

1) On cocommutative Hopf algebras of finite representation type, Adv. in Math. 155 (2000), 1-22
2) Modules of solvable infinitesimal groups and the structure of representationfinite cocommutative Hopf algebras, Math. Proc. Cambridge Philos. Soc. 127 (1999), 441-459
3) Schemes of tori and the structure of tame restricted Lie algebras, J. London Math. Soc. (2) 63 (2001), 553-570
4) Representations of infinitesimal groups of characteristic 2, Arch. Math. 78 (2002), 184-188
J. Feldvoss, H. Strade

Restricted Lie algebras with bounded cohomology and related classes of algebras, Manuscripta Math. 74 (1992), 47-67
W. R. Ferrer Santos

Cohomology of comodules, Pacific J. Math. 109 (1983), 179-213
G. Fischer

Darstellungstheorie des ersten Frobeniuskerns der SL 2 , Diss. Bielefed 1982
P. Fleischmann

Periodic simple modules for $S U_{3}\left(q^{2}\right)$ in the describing characteristic $p \neq 2$, Math. Z. 198 (1988), 555-568
E. Formanek, C. Procesi

Mumford's conjecture for the general linear group, Adv. in Math. 19 (1976), 292-305
V. Franjou, E. Friedlander, A. Scorichenko, A. Suslin

General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), 663-728
J. Franklin

Homomorphisms between Verma modules in characteristic p, J. Algebra 112 (1988), 58-85
E. Friedlander

1) A canonical filtration for certain rational modules, Math. Z. 188 (1985), 433438
2) Geometry of infinitesimal group schemes, pp. 55-65 in: Proceedings of the International Congress of Mathematicians, Vol. II, Proc. Berlin 1998, Doc. Math. (Extra Vol. II) 1998
E. Friedlander, B. Parshall
3) On the cohomology of algebraic and related finite groups, Invent. math. 74 (1983), 85-117
4) Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), 235-253
5) Limits of infinitesimal group cohomology, pp. 523-538 in: W. Browder (ed.), Algebraic Topology and Algebraic K-Theory, Proc. Princeton 1983 (Ann. of Math. Studies 113), Princeton 1987 (Princeton Univ.)
6) Cohomology of infinitesimal and discrete groups, Math. Ann. 273 (1986), 353374
7) Geometry of p-unipotent Lie algebras, J. Algebra 109 (1987), 25-45
8) Support varieties for restricted Lie algebras, Invent. math. 86 (1986), 553-562
E. Friedlander, A. Suslin

Cohomology of finite group schemes over a field, Invent. math. 127 (1997), 209-270
O. Gabber, A. Joseph

Towards the Kazhdan-Lusztig conjecture Ann. scient. Éc. Norm. Sup. (4) 14 (1981), 261-302
S. Gelfand, D. Kazhdan

Examples of tensor categories, Invent. math. 109 (1992), 595-617
G. Georgiev, O. Mathieu

1) Catégorie de fusion pour les groupes de Chevalley, C. R. Acad. Sci. Paris (I) 315 (1992), 659-662
2) Fusion rings for modular representations of Chevalley groups, pp. 89-100 in: P. Sally et al. (eds.), Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Proc. South Hadley 1992 (Contemp. Math. 175) Providence, R. I. 1994 (Amer. Math. Soc.)
P. Gilkey, G. Seitz

Some representations of exceptional Lie algebras, Geom. dedicata 25 (1988), 407-416
V. Ginzburg, S. Kumar

Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), 179-198
D. J. Glover

A study of certain modular representations, J. Algebra 51 (1978), 425-475
J. Grabmeier

On the socle of Weyl modules, Arch. Math. 50 (1988), 319-322
J. A. Green

1) Locally finite representations, J. Algebra 41 (1976), 137-171
2) Polynomial representations of GL_{n} (Lecture Notes in Math. 830), Berlin etc. 1980 (Springer)
W. L. Griffith
3) Cohomology of flag varieties in characteristic p, Illinois J. Math. 24 (1980), 452-461
4) The indecomposability of $H^{*}(G / B, L)$, Colloquium Math. 47 (1982), 59-63
5) $H^{*}(G / B, L)$ for G of semisimple rank 2, Fund. Math. 115 (1983), 33-41
F. D. Grosshans

The invariants of unipotent radicals of parabolic subgroups, Invent. math. 73 (1983), 1-9
B. Haastert

Über Differentialoperatoren und D-Moduln in positiver Charakteristik, Manuscripta Math. 58 (1987), 385-415
W. J. Haboush

1) Reductive groups are geometrically reductive: A proof of the Mumford conjecture, Ann. of Math. (2) $\mathbf{1 0 2}$ (1975), 67-83
2) Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1977), 1123-1137
3) Central differential operators on split semi-simple groups over fields of positive characteristic, pp. 35-85 in: M.-P. Malliavin (ed.), Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, Proc. Paris 1979 (Lecture Notes in Math. 795), Berlin etc. 1980 (Springer)
4) A short proof of the Kempf vanishing theorem, Invent. math. 56 (1980), 109112
W. Haboush, N. Lauritzen

Varieties of unseparated flags, pp. 35-57 in: R. S. Elman et al. (eds.), Linear Algebraic Groups and Their Representations, Proc. Los Angeles 1992 (Contemp. Math. 153), Providence, R. I. 1993 (Amer. Math. Soc.)
M. Hall, Jr.

The Theory of Groups, 2nd edn., New York 1976 (Chelsea)
P. W. A. M. van Ham, T. A. Springer, M. van der Wel

On the Cartan invariants of $\mathrm{SL}_{2}\left(\mathbf{F}_{q}\right)$, Commun. Algebra 10 (1982), 1565-1588
H. C. Hansen

On cycles in flag manifolds, Math. Scand. 33 (1973), 269-274
A. Henke

1) Schur subalgebras and an application to the symmetric group, J. Algebra 233 (2000), 342-362
2) The Cartan matrix of the Schur algebra $S(2, r)$, Arch. Math. 76 (2001), 416425
G. $\mathrm{Hi} \beta$

Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. 42 (1984), 408-416
G. Hochschild

1) Cohomology of restricted Lie algebras, Amer. Math. J. 76 (1954), 555-580
2) Cohomology of algebraic linear groups, Illinois J. Math. 5 (1961), 492-519
3) Rationally injective modules for algebraic linear groups, Proc. Amer. Math. Soc. 14 (1963), 880-883
M. Hochster, J. L. Roberts

The purity of the Frobenius and local cohomology, Adv. in Math. 21 (1976), 117-172
G. M. D. Hogeweij

Almost-classical Lie algebras I, II, Indag. Math. 44 (1982), 441-452 and 453460
J. Hu

1) A combinatorial approach to representations of quantum linear groups, Commun. Algebra 26 (1998), 2591-2621
2) Cohomology of quantum general linear groups, J. Algebra 213 (1999), 513-548
S. G. Hulsurkar

Proof of Verma's conjecture on Weyl's dimension polynomial, Invent. math. 27 (1974), 45-52
J. E. Humphreys

1) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19 (1971), 51-79
2) Defect groups for finite groups of Lie type, Math. Z. 119 (1971), 149-152
3) Projective modules for $S L(2, q)$, J. Algebra 25 (1973), 513-518
4) Some computations of Cartan invariants for finite groups of Lie type, Commun. Pure Appl. Math. 26 (1973), 745-755
5) Weyl groups, deformations of linkage classes, and character degrees for Chevalley groups, Commun. Algebra 1 (1974), 475-490
6) Representations of SL(2, p), Amer. Math. Monthly 82 (1975), 21-59
7) Ordinary and modular representations of Chevalley groups (Lecture Notes in Math. 528), Berlin etc. 1976 (Springer)
8) On the hyperalgebra of a semisimple algebraic group, pp. 203-210 in: H. Bass et al. (eds.), Contributions to Algebra, a collection of papers dedicated to Ellis Kolchin, New York etc. 1977 (Academic)
9) Symmetry for finite dimensional Hopf algebras, Proc. Amer. Math. Soc. 68 (1978), 143-146
10) Weyl modules and Bott's theorem in characteristic p, pp. 474-483 in: W. Rossmann (ed.), Lie Theories and Their Applications, Proc. Kingston, Ont. 1977 (Queen's Papers in Pure and Applied Math. 48), Kingston, Ont. 1978 (Queen's Univ.)
11) Modular representations of finite groups of Lie type, pp. 259-290 in [P2]
12) Cartan invariants and decomposition numbers of Chevalley groups, pp. 347351 in [P3]
13) Deligne-Lusztig characters and principal indecomposable modules, J. Algebra 62 (1980), 299-303
14) Ordinary and modular characters of $S L(3, p)$, J. Algebra 72 (1981), 8-16
15) Restricted Lie algebras (and beyond), pp. 91-98 in: S. Amitsur et al. (eds.), Algebraists Homage, Proc. (Conf. in honor of N. Jacobson) New Haven, Conn. 1981 (Contemp. Math. 13), Providence, R. I. 1982 (Amer. Math. Soc.)
16) Cohomology of G / B in characteristic p, Adv. in Math. 59 (1986), 170-183
17) On the structure of Weyl modules, Commun. Algebra 12 (1984), 2665-2677
18) Cartan invariants, Bull. London Math. Soc. 17 (1985), 1-14
19) Nonzero Ext ${ }^{1}$ for Chevalley groups (via algebraic groups), J. London Math. Soc. (2) 31 (1985), 463-467
20) Induced modules for semisimple groups and Lie algebras, pp. 341-349 in: D. J. Britten et al. (eds.), Lie Algebras and Related Topics, Proc. Windsor, Ont. 1984 (Canadian Math. Soc. Conf. Proc. 5), Providence, R. I. 1986 (Amer. Math. Soc.)
21) Cohomology of line bundles on G / B for the exceptional group G_{2}, J. Pure Appl. Algebra 44 (1987), 227-239
22) Projective modules for $S p(4, p)$ in characteristic p, J. Algebra 104 (1986), 8088
23) The Steinberg representation, Bull. Amer. Math. Soc. (N. S.) 16 (1987), 247263
24) Cohomology of line bundles on G / B for the exceptional group G_{2}, J. Pure Appl. Algebra 44 (1987), 227-239
25) Generic Cartan invariants for Frobenius kernels and Chevalley groups, J. Algebra 122 (1989), 345-352
26) Cohomology of line bundles on flag varieties in prime characteristic, pp. 193204 in [P12]
27) Extremal composition factors for groups of Lie type, pp. 303-310 in [P13]
28) Comparing modular representations of semisimple groups and their Lie algebras, pp. 69-80 in: V. Chari, I. B. Penkov (eds.), Modular Interfaces, Proc. Riverside, Cal. 1995 (AMS/IP Stud. Adv. Math. 4), Providence, R. I. / Cambridge, Mass. 1997 (Amer. Math. Soc. / Intl. Press)
J. E. Humphreys, J. C. Jantzen

Blocks and indecomposable modules for semisimple algebraic groups, J. Algebra 54 (1978), 494-503
J. E. Humphreys, D.-n. Verma

Projective modules for finite Chevalley groups, Bull. Amer. Math. Soc. 79 (1973), 467-468
S. P. Inamdar

A note on Frobenius splitting of Schubert varieties and linear syzygies, Amer. J. Math. 116 (1994), 1587-1590
S. P. Inamdar, V. B. Mehta

Frobenius splitting of Schubert varieties and linear syzygies, Amer. J. Math. 116 (1994), 1569-1586
R. S. Irving

1) The structure of certain highest weight modules for $S L_{3}$, J. Algebra 99 (1986), 438-457
2) The socle filtration of a Verma module, Ann. scient. Éc. Norm. Sup. (4) 21 (1988), 47-65
B. Iversen

The geometry of algebraic groups, Adv. in Math. 20 (1976), 57-85
G. D. James

1) The decomposition of tensors over fields of prime characteristic, Math. Z. 172 (1980), 161-178
2) Trivial source modules for symmetric groups, Arch. Math. 41 (1983), 294-300
3) The decomposition matrices of $\mathrm{GL}_{n}(q)$ for $n \leq 10$, Proc. London Math. Soc. (3) 60 (1990), 225-265
4) Symmetric groups and Schur algebras, pp. 91-102 in [P21]
G. D. James, G. E. Murphy

The determinant of the Gram matrix for a Specht module, J. Algebra 59 (1979), 222-235

I. Janiszczak

Irreducible periodic modules over $\operatorname{SL}(m, q)$ in the describing characteristic, Commun. Algebra 15 (1987), 1375-1391
J. C. Jantzen

1) Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonner math. Schr. 67 (1973)
2) Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und LieAlgebren, Math. Z. 140 (1974), 127-149
3) Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. reine angew. Math. 290 (1977), 117-141
4) Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra 49 (1977), 441-469
5) Weyl modules for groups of Lie type, pp. 291-300 in [P2]
6) Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen, Math. Z. 164 (1979), 271-292
7) Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math. 317 (1980), 157-199
8) Zur Reduktion modulo p der Charaktere von Deligne und Lusztig, J. Algebra 70 (1981), 452-474
9) Zur Reduktion modulo p unipotenter Charaktere endlicher Chevalley-Gruppen, Math. Z. 181 (1982), 97-128
10) Filtrierungen der Darstellungen in der Hauptserie endlicher Chevalley-Gruppen, Proc. London Math. Soc. (3) 49 (1984), 445-482
11) Modular representations of reductive groups, pp. 118-154 in [P7]
12) Kohomologie von p-Lie-Algebren und nilpotente Elemente, Abh. Math. Sem. Univ. Hamburg 56 (1986), 191-219
13) Restricted Lie algebra cohomology, pp. 91-108 in: A. M. Cohen et al. (eds.), Algebraic Groups, Utrecht 1986, Proc. (Lecture Notes in Math. 1271), Berlin etc. 1987 (Springer)
14) Support varieties of Weyl modules, Bull. London Math. Soc. 19 (1987), 238244
15) First cohomology groups for classical Lie algebras, pp. 289-315 in: G. O. Michler, C. M. Ringel (eds.), Representation Theory of Finite Groups and FiniteDimensional Algebras, Proc. Bielefeld 1991 (Progress in Math. 95), Basel etc. 1991 (Birkhäuser)
16) Low dimensional representations of reductive groups are semisimple, pp. 255266 in [P19]
J. C. Jantzen, B. Haastert
17) Filtrations of the discrete series of $S L_{2}(q)$ via crystalline cohomology, J. Algebra 132 (1990), 77-103
18) Filtrations of symmetric powers via crystalline cohomology, Geom. dedicata 37 (1991), 45-63
J. C. Jantzen, G. Seitz

On the representation theory of the symmetric groups, Proc. London Math. Soc. (3) 65 (1992), 475-504
A. V. Jeyakumar

1) Principal indecomposable representations for the group $S L(2, p)$, J. Algebra 30 (1974), 444-458
2) Periodic modules for the group SL(2, q), Commun. Algebra 8 (1980), 17211735
W. Jones

An algorithm for generating dominant weights, Commun. Algebra 5 (1977), 759-771
W. Jones, B. Parshall

On the 1-cohomology of finite groups of Lie type, pp. 313-328 in [P5]
V. G. Kac

О неприводимых представлениях алгебр Ли классического типа (Irreducible representations of Lie algebras of classical type), У спехи Мат. Наук 27:5(167) (1972), 237-238
V. G. Kac, B. Weisfeiler

Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic p, Indag. Math. 38 (1976), 136-151
W. L. J. van der Kallen

1) Infinitesimally Central Extensions of Chevalley Groups (Lecture Notes in Math. 356), Berlin etc. 1973 (Springer)
2) Infinitesimally central extensions of Spin_{7} in characteristic 2, J. Pure Appl. Algebra 14 (1979), 39-49
3) Longest weight vectors and excellent filtrations, Math. Z. 201 (1989), 19-31
4) Infinitesimal fixed points in modules with good filtration, Math. Z. 212 (1993), 157-159
5) Lectures on Frobenius splittings and B-modules, Notes by S. P. Inamdar (Tata Institute of Fundamental Research Lectures 84), Berlin 1993 (Springer)
6) Steinberg modules and Donkin pairs, Transform. Groups 6 (2001), 87-98
M. Kaneda
7) A truncation formula for certain principal indecomposable modules of finite Chevalley groups, Commun. Algebra 14 (1986), 911-922
8) On the symmetry of inverse Kazhdan-Lusztig polynomials for affine Weyl groups, pp. 201-205 in [P9]
9) On the alcove identification operator of semisimple algebraic groups, Commun. Algebra 15 (1987), 1157-1171
10) On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups, J. reine angew. Math. 381 (1987), 116-135
11) Extensions of modules for infinitesimal algebraic groups, J. Algebra 122 (1989), 188-210
12) A note on the Grothendieck-Cousin complex on the flag variety in positive characteristic, Nihonkai Math. J. 1 (1990), 229-251
13) On the Frobenius morphism of flag schemes, Pacific J. Math. 163 (1994), 315336
14) On a theorem of O. Mathieu, Nihonkai Math. J. 5 (1994), 149-186
15) The Frobenius morphism of Schubert schemes, J. Algebra 174 (1995), 473-488
16) A survey of H. H. Andersen, J. C. Jantzen and W. Soergel, "Representations of quantum groups at a p th root of unity and of semisimple groups in characteristic p : independence of $p "$, pp. 80-119 in: Lusztig Program, Proc. Kyoto 1996 (Sūrikaisekikenkyūsho Kōkyūroku 954), Kyoto 1996 (Kyoto Univ.)
17) Some generalities on \mathcal{D}-modules in positive characteristic, Pacific J. Math. 183 (1998), 103-141
18) Based modules and good filtrations in algebraic groups, Hiroshima Math. J. 28 (1998), 337-344
19) Cohomology of infinitesimal quantum algebras, J. Algebra 226 (2000), 250-282
M. Kaneda, N. Shimada, M. Tezuka, N. Yagita

Cohomology of infinitesimal algebraic groups, Math. Z. 205 (1990), 61-95
M. Kashiwara, N. Lauritzen

Local cohomology and \mathcal{D}-affinity in positive characteristic, C. R. Acad. Sci. Paris (I) 335 (2002), 993-996
M. Kashiwara, T. Tanisaki

1) Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), 21-62
2) On Kazhdan-Lusztig conjectures, Sugaku Expositions 11 (1998), 177-195
3) Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II. Nonintegral case, Duke Math. J. 84 (1996), 771-813
4) Characters of irreducible modules with non-critical highest weights for affine Lie algebras, pp. 275-296 in [P23]
5) Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), 306-325
S. Kato
6) Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. math. 66 (1982), 461-468
7) On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1982), 103-130
8) Hecke algebras and quantum general linear groups, J. Math. Kyoto Univ. 37 (1997), 241-249
D. Kazhdan, G. Lusztig
9) Representations of Coxeter groups and Hecke algebras, Invent. math. 53 (1979), 165-184
10) Schubert varieties and Poincaré duality, pp. 185-203 in: R. Osserman, A. Weinstein (eds.), Geometry of the Laplace Operator, Proc. Honolulu 1979 (Proc. Symp. Pure Math. 36), Providence, R. I. 1980 (Amer. Math. Soc.)
11) Tensor structures arising from affine Lie algebras I, J. Amer. Math. Soc. 6 (1993), 905-947
12) Tensor structures arising from affine Lie algebras II, J. Amer. Math. Soc. 6 (1993), 949-1011
13) Tensor structures arising from affine Lie algebras III, J. Amer. Math. Soc. 7 (1994), 335-381
14) Tensor structures arising from affine Lie algebras IV, J. Amer. Math. Soc. 7 (1994), 383-453
D. Kazhdan, M. Verbitsky

Cohomology of restricted quantized universal enveloping algebras, pp. 107-115 in [P15]
G. R. Kempf

1) Linear systems on homogeneous spaces, Ann. of Math. (2) $\mathbf{1 0 3}$ (1976), 557-591
2) The geometry of homogeneous space versus induced representations of reductive groups, pp. 1-5 in: J. I. Igusa (ed.), Algebraic Geometry, The Johns Hopkins Centenary Lectures, Proc. 1976, Baltimore, Md., 1977 (Johns Hopkins Univ. Press)
3) The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), 310-396
4) Algebraic representations of reductive groups, pp. 575-577 in [P4]
5) Representations of algebraic groups in prime characteristic, Ann. scient. Éc. Norm. Sup. (4) 14 (1981), 61-76
6) Tensor products of representations of the general linear group, Amer. J. Math. 109 (1987), 395-400
7) Tensor products of representations, Amer. J. Math. 109 (1987), 401-415
8) A decomposition formula for representations, Nagoya Math. J. 107 (1987), 63-68
9) A remark on integral representations of $\mathrm{GL}_{\mathbf{Z}}(n)$, J. Algebra 115 (1988), 340341
G. R. Kempf, A. Ramanathan

Multicones over Schubert varieties, Invent. math. 87 (1987), 353-363
W. J. Kohler

The submodule structure of induced modules for infinitesimal groups of type B_{2}, Ph.D. thesis, Clark Univ. 1986
M. Koppinen

1) On the composition factors of Weyl modules, Math. Scand. 51 (1982), 212-216
2) On the translation functors for a semisimple algebraic group, Math. Scand. 51 (1982), 217-226
3) Good bimodule filtrations for coordinate rings, J. London Math. Soc. (2) $\mathbf{3 0}$ (1984), 244-250
4) Decomposing and lifting hyperalgebras, Ann. Univ. Turku (A.I) 184 (1983)
5) Computation of simple characters of a Chevalley group, BIT 26 (1986), 333338
6) Homomorphisms between neighbouring Weyl modules, J. Algebra 103 (1986), 302-319
7) On stable decomposition patterns of Weyl modules, Commun. Algebra 15 (1987), 1649-1666
8) A note on Cabanes' decompositions for rational modules, J. Algebra 106 (1987), 510-516
M. Koppinen, T. Neuvonen

An imprimitivity theorem for Hopf algebras, Math. Scand. 41 (1977), 193-198
S. Koshitani

The Loewy structure of the projective indecomposable modules for $S L(3,3)$ and its automorphism group in characteristic 3, Commun. Algebra 15 (1987), 1215-1253
B. Kostant

1) Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387
2) Lie group representations on polynomial rings, Amer. Math. J. 85 (1963), 327-404
3) Groups over Z, pp. 90-98 in: A. Borel, G. D. Mostow (eds.), Algebraic Groups and Their Discontinuous Subgroups, Proc. Boulder, Col. 1965 (Proc. Symp. Pure Math. 9), Providence, R. I. 1966 (Amer. Math. Soc.)
F. M. Kouwenhoven
4) Schur and Weyl functors, Adv. in Math. 90 (1991), 77-113
5) Schur and Weyl functors II, Commun. Algebra 18 (1990), 2885-2941
6) Infinitesimal invariants of algebraic groups, B. Krcmar

Irreduzible rationale Darstellungen endlicher Chevalley-Gruppen, Diss. Tübingen 1979
P. Krasoń, N. J. Kuhn

On embedding polynomial functors in symmetric powers, J. Algebra 163 (1994), 281-294
N. J. Kuhn

1) The modular Hecke algebra and Steinberg representations of finite Chevalley groups (with an appendix by P. Landrock), J. Algebra 91 (1984), 125-141
2) Infinitesimal invariants of algebraic groups,
3) Rational cohomology and cohomological stability in generic representation theory, Amer. J. Math. 120 (1998), 1317-1341
4) The generic representation theory of finite fields: a survey of basic structure, pp. 193-212 in: H. Krause, C. M. Ringel (eds.), Infinite Length Modules, Proc. Bielefeld 1998 (Trends Math.), Basel 2000 (Birkhäuser)
5) A stratification of generic representation theory and generalized Schur algebras, K-Theory 26 (2002), 15-49
K. Kühne-Hausmann

Zur Untermodulstruktur der Weylmoduln für Sl_{3}, Bonner math. Schr. 162 (1985)
U. Kulkarni

Skew Weyl modules for GL_{n} and degree reduction for Schur algebras, J. Algebra 224 (2000), 248-262
S. Kumar

1) Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture, Invent. math. 93 (1988), 117-130
2) A refinement of the PRV conjecture, Invent. math. 97 (1989), 305-311
3) The nil Hecke ring and singularity of Schubert varieties, pp. 497-507 in: J.L. Brylinski et al. (eds.), Lie Theory and Geometry, In Honor of Bertram Kostant (Progress in Math. 123), Boston etc. 1994 (Birkhäuser)
4) The nil Hecke ring and singularity of Schubert varieties, Invent. math. 123 (1996), 471-506
S. Kumar, N. Lauritzen, J. F. Thomsen

Frobenius splitting of cotangent bundles of flag varieties, Invent. math. 136 (1999), 603-621
S. Kumar, G. Letzter

Shapovalov determinant for restricted and quantized restricted enveloping algebras, Pacific J. Math. 179 (1997), 123-161
S. Kumar, P. Littelmann

1) Frobenius splitting in characteristic zero and the quantum Frobenius map, J. Pure Appl. Algebra 152 (2000), 201-216
2) Algebraization of Frobenius splitting via quantum groups, Ann. of Math. (2) 155 (2002), 491-551

J. Lahtonen

1) On the submodules and composition factors of certain induced modules for groups of type C_{n}, J. Algebra 140 (1991), 415-425
2) Lower bounds for the multiplicities of simple composition factors of the induced modules, Commun. Algebra 20 (1992), 1873-1895
3) The reduced polynomial algebra as a module for $\mathrm{SO}_{2 n}(k)$, J. Algebra 155 (1993), 344-368
V. Lakshmibai
4) Kempf varieties, J. Indian Math. Soc. (N.S.) 40 (1976), 299-349
5) Standard monomial theory for G_{2}, J. Algebra 98 (1986), 281-318
6) Singular loci of Schubert varieties for classical groups, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 83-90
7) Bases pour les représentations fondamentales des groupes classiques I, C. R. Acad. Sc. Paris (I) 302 (1986), 387-390
8) Bases pour les représentations fondamentales des groupes classiques II, C. R. Acad. Sc. Paris (I) 302 (1986), 419-422
9) Schubert varieties and standard monomial theory, pp. 365-378 in: S. Balcerzyk et al. (eds.), Topics in Algebra, Part 2, Proc. Warsaw 1988 (Banach Center Publ. 26 : 2), Warsaw 1990 (PWN)
V. Lakshmibai, P. Littelmann, P. Magyar
10) Standard monomial theory and applications, pp. 319-364 in: A. Broer (ed.), Representation Theories and Algebraic Geometry, Proc. Montreal 1997 (NATO Adv. Sci. Inst. C 514), Dordrecht etc. 1998 (Kluwer)
11) Standard monomial theory for Bott-Samelson varieties, Compositio Math. 130 (2002), 293-318
V. Lakshmibai, P. Magyar
12) Standard monomial theory for Bott-Samelson varieties, C. R. Acad. Sci. Paris (I) 324 (1997), 1211-1215
13) Standard monomial theory for Bott-Samelson varieties of GL(n), Publ. Res. Inst. Math. Sci. 34 (1998), 229-248
V. Lakshmibai, V. B. Mehta, A. J. Parameswaran Frobenius splittings and blow-ups, J. Algebra 208 (1998), 101-128
V. Lakshmibai, C. Musili, C. S. Seshadri
14) Cohomology of line bundles on G / B, Ann. scient. Éc. Norm. Sup. (4) 7 (1974), 89-137
15) Geometry of G / P III: Standard monomial theory for a quasi-minuscule P, Proc. Indian Acad. Sci. (A) 88 (1979), 93-177
16) Geometry of G / P IV: Standard monomial theory for classical types, Proc. Indian Acad. Sci. (A) 88 (1979), 279-362
17) Geometry of G / P, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 432-435
V. Lakshmibai, K. N. Rajeswari
18) Bases pour les représentations fondamentales des groupes exceptionels \mathbf{E}_{6} and \mathbf{F}_{4}, C. R. Acad. Sc. Paris (I) 302 (1986), 575-577
19) Towards a standard monomial theory for exceptional groups, pp. 449-578 in [P10]
V. Lakshmibai, C. S. Seshadri
20) Geometry of G / P II: The work of De Concini and Procesi and the basic conjectures, Proc. Indian Acad. Sci. (A) 87 (1978), 1-54
21) Singular locus of a Schubert variety. Bull. Amer. Math. Soc. (N.S.) 11 (1984), 363-366
22) Geometry of G / P V, J. Algebra 100 (1986), 462-557
23) Standard monomial theory, pp. 279-322 in [P12]
M. Larsen

On the semisimplicity of low-dimensional representations of semisimple groups in characteristic p, J. Algebra 173 (1995), 219-236

N. Lauritzen

1) Splitting properties of complete homogeneous spaces, J. Algebra 162 (1993), 178-193
2) Schubert cycles, differential forms and \mathcal{D}-modules on varieties of unseparated flags, Compositio Math. 109 (1997), 1-12
N. Lauritzen, V. Mehta

Differential operators and the Frobenius pull back of the tangent bundle on G / P, Manuscripta Math. 98 (1999), 507-510
N. Lauritzen, J. F. Thomsen

Frobenius splitting and hyperplane sections of flag manifolds, Invent. math. 128 (1997), 437-442
P. Littelmann

1) Good filtrations, decomposition rules and standard monomial theory, pp. 89106 in: A. M. Cohen (ed.), Computational Aspects of Lie Group Representations and Related Topics, Proc. Amsterdam 1990 (CWI Tract 84), Amsterdam 1991 (Math. Centrum, Centrum Wisk. Inform.)
2) Good filtrations and decomposition rules for representations with standard monomial theory, J. reine angew. Math. 433 (1992), 161-180
J. Liu, J. Ye

Extensions of simple modules for the algebraic group of type G_{2}, Commun. Algebra 21 (1993), 1909-1946

G. Lusztig

1) Divisibility of projective modules of finite Chevalley groups by the Steinberg module, Bull. London Math. Soc. 8 (1976), 130-134
2) Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math. 37 (1980), 121-164
3) Some problems in the representation theory of finite Chevalley groups, pp. 313317 in [P3]
4) Singularities, character formulas, and a q-analogue of weight multiplicities, pp. 208-229 in: Analyse et topologie sur les espaces singuliers II-III, Proc. Luminy 1981 (Astérisque 101-102), Paris 1983 (Soc. Math. France)
5) Modular representations and quantum groups, pp. 59-77 in [P11]
6) On quantum groups, J. Algebra 131 (1990), 466-475
7) Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257-296
8) Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89-114
9) Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London (A) 445 (1994), 231-246 and 450 (1995), 731-732
A. R. Magid

On the imprimitivity theorem for algebraic groups, Rocky Mountain J. Math. 14 (1984), 655-660
R. Marlin

Cohomologie de de Rham des variétés de drapeaux, Bull. Soc. math. France 105 (1977), 89-96
S. Martin

Schur Algebras and Representation Theory (Cambridge Tracts in Math. 112), Cambridge 1993 (Cambridge Univ.)
R. P. Martineau

On 2-modular representations of the Suzuki groups, Amer. J. Math. 94 (1972), 55-72
O. Mathieu

1) Filtrations of B-modules. Duke Math. J. 59 (1989), 421-442
2) Frobenius action on the B-cohomology, pp. 39-51 in: V. G. Kac (ed.), Infinitedimensional Lie Algebras and Groups, Proc. Luminy-Marseille 1988 (Adv. Ser. Math. Phys. 7), Teaneck, N. J. 1989 (World Scientific)
3) Filtrations of G-modules, Ann. scient. Éc. Norm. Sup. (4) 23 (1990), 625-644
4) On the dimension of some modular irreducible representations of the symmetric group, Lett. Math. Phys. 38 (1996), 23-32
5) Tilting modules and their applications, pp. 145-212 in: T. Kobayashi et al. (eds.), Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Proc. Okayama-Kyoto 1997 (Adv. Stud. Pure Math. 26), Tokyo 2000 (Math. Soc. Japan)
O. Mathieu, G. Papadopoulo
6) A combinatorial character formula for some highest weight modules, Compositio Math. 117 (1999), 153-159
7) A character formula for a family of simple modular representations of GL_{n}, Comment. Math. Helv. 74 (1999), 280-296
G. McNinch
8) Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc. (3) 76 (1998), 95-149
9) Semisimplicity in positive characteristic, pp. 43-52 in [P21]
10) Semisimplicity of exterior powers of semisimple representations of groups, J. Algebra 225 (2000), 646-666
11) Filtrations and positive characteristic Howe duality, Math. Z. 235 (2000), 651685
V. B. Mehta, W. van der Kallen
12) A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices, Compositio Math. 84 (1992), 211-221
13) On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic p, Invent. math. 108 (1992), 11-13
V. B. Mehta, T. R. Ramadas

Frobenius splitting and invariant theory, Transform. Groups 2 (1997), 183-195
V. B. Mehta, A. Ramanathan

1) Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27-40
2) Schubert varieties in $G / B \times G / B$, Compositio Math. 67 (1988), 355-358
V. B. Mehta, V. Srinivas
3) Normality of Schubert varieties. Amer. J. Math. 109 (1987), 987-989
4) A note on Schubert varieties in G / B, Math. Ann. 284 (1989), 1-5
5) A characterization of rational singularities, Asian J. Math. 1 (1997), 249-271 V. B. Mehta, V. Trivedi
6) Variety of complexes and F-splitting, J. Algebra 215 (1999), 352-365
7) The variety of circular complexes and F-splitting. Invent. math. 137 (1999), 449-460
V. B. Mehta, T. N. Venkataramana

A note on Steinberg modules and Frobenius splitting, Invent. math. 123 (1996), 467-469
A. A. Mil'ner

Irreducible representations of modular Lie algebras, Math. USSR Izvestiya 9 (1975), 1169-1187, translated from: Неприводимые представелия модулярных алгебр Ли, Изв. АН СССР (Серия матем.) 39 (1975), 1240-1259
C. Musili,

1) Postulation formula for Schubert varieties, J. Indian Math. Soc. (N.S.) 36 (1972), 143-171
2) Some properties of Schubert varieties, J. Indian Math. Soc. (N.S.) 38 (1974), 131-145
C. Musili, C. S. Seshadri
3) Standard monomial theory, pp. 441-476 in: M.-P. Malliavin (ed.), Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, Proc. Paris 1980 (Lecture Notes in Math. 867), Berlin etc. 1981 (Springer)
4) Schubert varieties and the variety of complexes, pp. 329-359 in: M. Artin, J. Tate (eds.), Arithmetic and Geometry, Papers Dedicated to I. R. Shafarevich, Vol. II : Geometry, (Progress in Math. 36), Boston etc. 1983 (Birkhäuser)
5) Applications of standard monomial theory, pp. 381-406 in [P12]
D. Nakano
6) Varieties for $G_{r} T$-modules, pp. 441-452 in [P20]
7) Some recent developments in the representation theory of general linear and symmetric groups, pp. 357-373 in [P23]
D. Nakano, B. J. Parshall, D. C. Vella

Support varieties for algebraic groups, J. reine angew. Math. 547 (2002), 15-49
T. Neuvonen

1) On the structure of produced and induced indecomposable Lie modules, Ann. Acad. Sci. Fenn. (AI) 1 (1975), 199-206
2) A criterion for complete reducibility of restricted Lie modules, Arch. Math. 28 (1977), 149-156
3) A complete reducibility criterion with an application to representations of semisimple groups, J. Algebra 60 (1979), 282-288
H. Niemi

On the construction of the irreducible representations of the hyperalgebra of a universal Chevalley group, Ann. Acad. Sci. Fenn. (AI) 5 (1980), 17-25
P. N. Norton

0-Hecke algebras, J. Austral. Math. Soc. (A) 27 (1979), 337-357
U. Oberst

Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen, J. Algebra 44 (1977), 504-538
U. Oberst, H.-J. Schneider

Über Untergruppen endlicher algebraischer Gruppen, Manuscripta Math. 8 (1973), 217-241
J. O'Halloran

1) Weyl modules and the cohomology of Chevalley groups, Amer. J. Math. 103 (1981), 399-410
2) Representation theory of an extension of a Chevalley group by a vector group, J. Algebra 72 (1981), 335-341
3) A vanishing theorem for the cohomology of Borel subgroups, Commun. Algebra 11 (1983), 1603-1606
4) One-cohomology of infinitesimal subgroups of a Chevalley group, preprint
5) Cohomology of a Borel subgroup of a Chevalley group, preprint
V. Ostrik
6) Tensor ideals in the category of tilting modules, Transform. Groups 2 (1997), 279-287
7) Support varieties for quantum groups, Funct. Anal. Appl. 32 (1998/99), 237246, translated from: Функц. анализ и его прил. 32:4 (1998), 22-34
8) Dimensions of quantized tilting modules, Mosc. Math. J. 1 (2001), 65-71
9) Cohomology of subregular tilting modules for small quantum groups, Compositio Math. 132 (2002), 283-287
V. V. Panyukov

Representations of Lie algebras in positive characteristic, Moscow Univ. Math. Bull. 38:2 (1983), 64-70, translated from: О представлениях алгебр Ли в положительной характеристике, Вестн. Москов. Ун-та. (Матем. Механ.) 1983:2, 53-58

J. Paradowski

Filtrations of modules over the quantum algebra, pp. 93-108 in [P14]
A. E. Parker

1) The global dimension of Schur algebras for GL_{2} and GL_{3}, J. Algebra 241 (2001), 340-378
2) On the good filtration dimension of Weyl modules for a linear algebraic group, preprint
B. Parshall
3) Modular representations of algebraic groups, pp. 101-134 in: J. Carrell et al., Topics in the Theory of Algebraic Groups (Notre Dame Math. Lectures 10), South Bend, Ind. etc. 1982 (Univ. of Notre Dame)
4) Simulating algebraic geometry with algebra II, Stratifying representation categories, pp. 263-269 in [P9]
5) The Ext algebra of a highest weight category, pp. 213-222 in [P16]
6) Koszul algebras and duality, pp. 277-285 in [P17]
B. Parshall, L. Scott
7) An imprimitivity theorem for algebraic groups, Indag. Math. 42 (1980), 39-47
8) Koszul algebras and the Frobenius automorphism, Quart. J. Math. Oxford (2) 46 (1995), 345-384
B. Parshall, J. P. Wang
9) Quantum linear groups, Mem. Amer. Math. Soc. 89:439 (1991), 1-157
10) Cohomology of infinitesimal quantum groups I, Tôhoku Math. J. (2) 44 (1992), 395-423
11) Cohomology of quantum groups: the quantum dimension, Canad. J. Math. 45 (1993), 1276-1298
W. Pfautsch
12) Die Köcher der Frobeniuskerne in der SL_{2}, Diss. Bielefeld 1983
13) Ein Satz über Blöcke von Frobeniuskernen einer halbeinfachen algebraischen Gruppe, manuscript 1983
14) Ext ${ }^{1}$ for the Frobenius kernels of SL_{2}, Commun. Algebra 13 (1985), 169-179
W. Pfautsch, D. Voigt

The representation-finite algebraic groups of dimension zero, C. R. Acad. Sci. Paris (I) 306 (1988), 685-689
R. Pfetzing

Der Darstellungstyp der Frobeniuskerne in der SL 3 , Diss. Bielefeld 1983
C. Pillen

Tensor products of modules with restricted highest weight, Commun. Algebra 21 (1993), 3647-3661
H. Pollatsek

First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math. 15 (1971), 393-417
P. Polo

1) Un critère d'existence d'une filtration de Schubert, C. R. Acad. Sci. Paris (I) 307 (1988), 791-794
2) Variétés de Schubert et excellentes filtrations, pp. 281-311 in: M. Andler (ed.), Orbites unipotentes et représentations III, Proc. Paris/Luminy 1987 (Astérisque 173-174), Paris 1989 (Soc. Math. France)
3) Modules associés aux variétés de Schubert, C. R. Acad. Sci. Paris (I) 308 (1989), 123-126
4) Modules associés aux variétés de Schubert, pp. 155-171 in: S. Ramanan, A. Beauville (eds.), Proceedings of the Indo-French Conference on Geometry, Proc. Bombay 1989, Delhi 1993 (Hindustan Book Agency)
5) On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar, Indag. Math. (N.S.) 5 (1994), 483-493
6) On Cohen-Macaulay posets, Koszul algebras and certain modules associated to Schubert varieties, Bull. London Math. Soc. 27 (1995), 425-434
A. A. Premet

Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic, Math. USSR Sbornik 61 (1988), 167-183, translated from: Веса инфинитезимально неприводимых представлений групп Шевалле над полем простой характеристики, Матем. Сб. АН СССР (Нов. Сер.) 133/175 (1987), 167-183
A. A. Premet, I. D. Suprunenko

1) The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights, Commun. Algebra 11 (1983), 1309-1342
2) Quadratic modules for Chevalley groups over fields of odd characteristics, Math. Nachr. 110 (1983), 65-96
C. Procesi
3) Les bases de Hodge dans la théorie des invariants, pp. 128-144 in: M.-P. Malliavin (ed.), Séminaire d'Algèbre Paul Dubreil, Proc. Paris 1976-1977 (Lecture Notes in Math. 641), Berlin etc. 1978 (Springer)
4) Young diagrams, standard monomials and invariant theory, pp. 537-542 in [P4] K. N. Raghavan, P. Sankaran

A new approach to standard monomial theory for classical groups, Transform. Groups 3 (1998), 57-73
S. Ramanan, A. Ramanathan

Projective normality of flag varieties and Schubert varieties, Invent. math. 79 (1985), 217-224
A. Ramanathan

1) Schubert varieties are arithmetically Cohen-Macaulay, Invent. math. 80 (1985), 283-294
2) Equations defining Schubert varieties and Frobenius splitting of diagonals, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 61-90
3) Frobenius splitting and Schubert varieties, pp. 497-508 in [P12]
T. E. Rasmussen

Second cell tilting modules, Ph.D. thesis, Aarhus Univ. 2002
R. W. Richardson

The conjugating representation of a semisimple group, Invent. math. 54 (1979), 229-245

F. Richen

1) Modular representations of split $B N$ pairs, Trans. Amer. Math. Soc. 140 (1969) 435-460
2) Blocks of defect zero of split (B, N) pairs, J. Algebra 21 (1972), 275-279
C. M. Ringel

The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), 209-223
M. A. Ronan

Duality for presheaves on chamber systems, and a related chain complex, J. Algebra 121 (1989), 263-274
M. A. Ronan, S. D. Smith

1) Sheaves on buildings and modular representations of Chevalley groups, J. Algebra 96 (1985), 319-346
2) On computation of sheaf homology on finite geometries, preprint 1984
3) Universal presheaves on group geometries and modular representations, J. Algebra 102 (1986), 135-154

J. E. Roos

Locally Noetherian categories and generalized strictly linearly compact rings, Applications, pp. 197-277 in: Category Theory, Homology Theory and their Applications II, Proc. Seattle 1968 (Lecture Notes in Math. 92), Berlin 1969 (Springer)

A. N. Rudakov

1) On representations of classical semisimple Lie algebras of characteristic p, Math. USSR Izvestiya 4 (1970), 741-749, translated from: О представлении классических алгебр Ли в характеристике p, Изв. АН СССР (Серия матем.) 34 (1970), 735-743
2) Dimensions of certain irreducible representations of semisimple Lie algebras of classical type over fields of finite characteristic (russ.), Труды Сем. Петровск. 3 (1978), 147-160
3) A condition for the complete reducibility of representations of a Lie algebra of finite characteristic (russ.), pp. 77-82 in: A. I. Kostrikin (ed.), Algebra, Collection, Moskva 1980 (Izdat. Mosk. Univ.)
4) Reducible p-representations of a simple three-dimensional Lie p-algebra, Moscow Univ. Math. Bull. 37:6 (1982), 51-56, translated from: Приводимые p-представления простой трехмерной p-алгебры Ли, Вестн. Москов. Ун-та. (Матем. Механ.) 1982:6, 45-49
A. N. Rudakov, I. R. Shafarevich

Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic, Math. Notes 2 (1967), 760-767, translated from: Неприводимые представления простой трехмерной алгебры Ли над полем конечной характеристики, Матем. Заметки 2 (1967), 439-454
H. Sawada

1) A characterization of the modular representations of finite groups with split (B, N)-pairs, Math. Z. 155 (1977), 29-41
2) Some infinite-dimensional indecomposable modules of Chevalley groups, Arch. Math. 36 (1981), 414-422
K. D. Schaper

Charakterformeln für Weyl-Moduln und Specht-Moduln in Primcharakteristik, Diplomarbeit, Bonn 1981
M.-Th. Schmidt

Beziehungen zwischen Homologie-Darstellungen und der Hauptserie endlicher Chevalley-Gruppen, Bonner math. Schr. 1711986
L. Scott

1) Representations in characteristic p, pp. 319-331 in [P3]
2) Simulating algebraic geometry with algebra I, The algebraic theory of derived categories, pp. 271-281 in [P9]
3) Derived categories and algebraic groups, pp. 127-142 in [P11]
4) Quasihereditary algebras and Kazhdan-Lusztig theory, pp. 293-308 in [P16]
5) Linear and nonlinear group actions, and the Newton Institute program, pp. 123 in [P21]
J.-P. Serre

Groupes de Grothendieck des schémas en groupes réductifs déployés, Publ. Math. Inst. Hautes Études Sci. 34 (1968), 37-52
C. S. Seshadri

1) Geometric reductivity over arbitrary base, Adv. in Math. 26 (1975), 225-274
2) Geometry of G / P I: Theory of standard monomials for minuscule representations, pp. 207-239 in: K. G. Ramanathan (ed.), C. P. Ramanujam - A Tribute (Tata Inst. Fund. Res. Studies in Math. 8), Berlin etc. 1978 (Springer)
3) Standard monomial theory and the work of Demazure, pp. 355-384 in: S. Iitaka (ed.), Algebraic Varieties and Analytic Varieties, Proc. Tokyo 1981 (Advanced Studies in Pure Math. 1), Tokyo 1983 (North-Holland)
4) Line bundles on Schubert varieties, pp. 499-528 in: M. Atiyah et al., Vector Bundles on Algebraic Varieties (Tata Inst. Fund. Res. Studies in Math. 11), Proc. Bombay 1984, Bombay 1987 (Tata Inst.)
5) Standard monomial theory and geometry of Schubert varieties, Proc. Indian Nat. Sci. Acad. (A) 52 (1986), 435-441
6) The work of P. Littelmann and standard monomial theory, pp. 178-197 in: S. D. Adhikari (ed.), Current Trends in Mathematics and Physics, a tribute to Harish-Chandra, New Delhi 1995 (Narosa)
S. D. Smith
7) Irreducible modules and parabolic subgroups, J. Algebra 75 (1982), 286-289
8) Spin modules in characteristic 2, J. Algebra 77 (1982), 392-401
9) Sheaf homology and complete reducibility, J. Algebra 95 (1985), 72-80
W. Soergel
10) Roots of unity and positive characteristic, pp. 315-338 in [P17]
11) Gradings on representation categories, pp. 800-806 in [P18]
12) Conjectures de Lusztig, pp. 75-85 [exp. 793] in: Séminaire Bourbaki 1994/95 (Astérisque 237), Paris 1996 (Soc. Math. France)
13) Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83-114
14) Character formulas for tilting modules over quantum groups at roots of one, pp. 161-172 in: R. Bott et al. (eds.), Current Developments in Mathematics 1997, Proc. Cambridge, Mass., Boston 1999 (Int. Press)
15) On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), 311-335
T. A. Springer

Weyl's character formula for algebraic groups, Invent. math. 5 (1968), 85-105
B. Srinivasan

On the modular characters of the special linear group $S L\left(2, p^{n}\right)$, Proc. London Math. Soc. (3) 14 (1964), 101-114
R. Steinberg

1) Prime power representations of finite linear groups II, Canad. J. Math. 9 (1957), 347-351
2) Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56
J. B. Sullivan
3) Some representation theory for the modular general linear groups, J. Algebra 45 (1977), 516-535
4) Representations of the hyperalgebra of an algebraic group, Amer. J. Math. 100 (1978), 643-652
5) Relations between the cohomology of an algebraic group and its infinitesimal subgroups, Amer. J. Math. 100 (1978), 995-1014
6) Simply connected groups, the hyperalgebra, and Verma's conjecture, Amer. J. Math. 100 (1978), 1015-1019
7) Lie algebra cohomology at irreducible modules, Illinois J. Math. 23 (1979), 363-373
8) The second Lie algebra cohomology group and Weyl modules, Pacific J. Math. 86 (1980), 321-326
9) Frobenius operations on Hochschild cohomology, Amer. J. Math. 102 (1980), 765-780
10) On the second socle level of induced modules for algebraic groups, J. Algebra 125 (1989), 400-407
11) The Euler character and cancellation theorems for Weyl modules, Pacific J. Math. 135 (1988), 189-208
I. D. Suprunenko
12) Сохранение систем весов неприводимых представлений алгебраической группы и алгебры Ли типа A_{l} с ограниченными старшими весами при редукции по модулю p (Preservation of systems of weights of irreducible representations of an algebraic group and a Lie algebra of type A_{l} with bounded higher weights in reduction modulo p), Весці АН БССР (Сер. фіз.-мат. навук) 1983:2, 18-22
13) Об ограничениях фундаментальных представлений группы $A_{n}(K)$ на связные алгебраические подгруппы (On the restriction of the fundamental representations of the groups $A_{n}(K)$ to connected algebraic subgroups), preprint, Minsk, July 1983
14) Об ограничениях неприводимых представлений группы $S L(m, K)$ на $S O(m, K)$ (Constraints of irreducible representations of the group $\operatorname{SL}(m, K)$ on $\mathrm{SO}(m, K)$), Весці АН БССР (Сер. фіз.-мат. навук) 1985:6, 41-46
15) Условия неприводимости ограничений неприводимых представлений группы $S L(n, K)$ на связные алгебраические подгруппы (Conditions for the irreducibility of the restrictions of irreducible representations of the group
$\mathrm{SL}(n, K)$ to connected algebraic subgroups), Докл. АН БССР 30 (1986), 204-207
16) Restrictions of large irreducible representations of the classical groups to naturally embedded small subgroups cannot be semisimple, Commun. Algebra 29 (2001), 3747-3757
A. Suslin, E. Friedlander, C. Bendel
17) Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), 693-728
18) Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), 729-759
M. Takeuchi

A hyperalgebraic proof of the isomorphism and isogeny theorems for reductive groups, J. Algebra 85 (1983), 179-196
L. Thams

1) Two classical results in the quantum mixed case, J. reine angew. Math. 436 (1993), 129-153
2) The blocks of a quantum algebra, Commun. Algebra 22 (1994), 1617-1628 N. B. Tinberg
3) Some indecomposable modules of groups with split (B, N)-pairs, J. Algebra 61 (1979), 508-526
4) Some indecomposable modules of groups with split (B, N)-pairs, pp. 363-366 in [P3]
5) Modular representations of finite groups with unsaturated split (B, N)-pairs, Canad. J. Math. 32 (1980), 714-733
B. Totaro

Projective resolutions of representations of GL (n), J. reine angew. Math. 482 (1997), 1-13
J. Towber

1) Two new functors from modules to algebras, J. Algebra 47 (1977), 80-104
2) Young symmetry, the flag manifold, and representations of $G L(n)$, J. Algebra 61 (1979), 414-462
B. S. Upadhyaya
3) Composition factors of the principal indecomposable modules for the special linear group SL $(2, q)$, J. London Math. Soc. (2) 17 (1978), 437-445
4) Filtrations with Weyl module quotients of the principal indecomposable modules for the group SL(2,q), Commun. Algebra 7 (1979), 1469-1488
B. Yu. Vejsfejler, V. G. Kats

Irreducible representations of Lie p-algebras, Funct. Anal. Appl. 5 (1971), 111 117, translated from: О неприводимых представлениях p-алгебр Ли, Функц. аналис и его прил. 5:2 (1971), 28-36
F. Veldkamp

1) Representations of algebraic groups of type F_{4} in characteristic 2, J. Algebra 16 (1970), 326-339
2) The center of the universal enveloping algebra of a Lie algebra in characteristic p, Ann. scient. Éc. Norm. Sup. (4) 5 (1972), 217-240
D. C. Vella
3) A cohomological characterization of parabolic subgroups of reductive algebraic groups, J. Algebra 121 (1989), 281-300
4) Another characterization of parabolic subgroups, J. Algebra 137 (1991), 214232
5) A character formula for B-modules, Commun. Algebra 20 (1992), 665-679
D.-n. Verma

Rôle of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, pp. 653-705 in: I. M. Gel'fand (ed.), Lie Groups and Their Representations, Proc. Budapest 1971, London 1975 (A. Hilger)
D. Voigt

1) Endliche Hopfalgebren, Math. Z. 134 (1973), 189-203
2) Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen (Lecture Notes in Math. 592), Berlin etc. 1977 (Springer)
3) The algebraic infinitesimal groups of tame representation type, C. R. Acad. Sci. Paris (I) 311 (1990), 757-760
J. Wang
4) Sheaf cohomology on G / B and tensor products of Weyl modules, J. Algebra 77 (1982), 162-185
5) Coinduced representations and injective modules for hyperalgebra b_{r}, Chin. Ann. of Math. (B) 4 (1983), 357-364
6) Quasi-rational modules and generic cohomology, Northeastern Math. J. 1 (1985), 90-100
7) Inverse limits of affine group schemes, Chin. Ann. of Math. (B) 9 (1988), 418-428
8) On the cyclicity and cocyclicity of G-modules, pp.231-233 in [P11]
9) Notes on some topics in the representation theory of linear algebraic groups, Commun. Algebra 18 (1990), 347-355
P. W. Winter

On the modular representation theory of the two-dimensional special linear group over an algebraically closed field, J. London Math. Soc. (2) 16 (1977), 237-252
W. J. Wong

1) Representations of Chevalley groups in characteristic p, Nagoya Math. J. 45 (1971), 39-78
2) Irreducible modular representations of finite Chevalley groups, J. Algebra 20 (1972), 355-367
3) Very strong linkage for cohomology groups of line bundles on G / B, J. Algebra 113 (1988), 71-80
4) Weyl modules for p-singular weights, J. Algebra 114 (1988), 357-368
5) A filtration of Weyl modules for large weights, J. Austral. Math. Soc. (A) 45 (1988), 187-194
N. Xi

Some irreducible modules of $\mathrm{Sp}(2 n)$, pp. 403-409 in [P23]
B. $\mathrm{Xu}, \mathrm{J} . \mathrm{Ye}$

Irreducible characters for algebraic groups in characteristic two I, Algebra Colloq. 4 (1997), 281-290
J. Ye

1) Filtrations of principal indecomposable modules of Frobenius kernels of reductive groups, Math. Z. 189 (1985), 515-527
2) On the first Cartan invariant of the groups $\mathrm{SL}\left(3, p^{n}\right)$ and $\mathrm{SU}\left(3, p^{n}\right)$, pp. 388400 in [P7]
3) Extensions of simple modules for the group $\operatorname{Sp}(4, K)$, J. Loindon Math. Soc. (2) 41 (1990), 51-62
4) Extensions of simple modules for the group $\operatorname{Sp}(4, K)$ II, Chinese Sci. Bull. 35 (1990), 450-454
5) Some results on irreducible characters for algebraic groups in characteristic two, pp. 411-420 in [P23]
J. Ye, Z. Zhou
6) Irreducible characters for algebraic groups in characteristic two II, Algebra Colloq. 6 (1999), 401-411
7) Irreducible characters for algebraic groups in characteristic two III, Commun. Algebra 28 (2000), 4227-4247
8) Irreducible characters for algebraic groups in characteristic three, Commun. Algebra 29 (2001), 201-223
9) Irreducible characters for algebraic groups in characteristic three II, Commun. Algebra 30 (2002), 273-306
A. E. Zalesskiŭ, I. D. Suprunenko
10) Представления размерности ($p^{n} \mp 1$) $/ 2$ симплектической группы степени $2 n$ над полем характеристики p (Representations of dimension ($p^{n} \pm$ 1)/ 2 of the symplectic group of degree $2 n$ over a field of characteristic p), Весці АН БССР (Сер. фіз.-мат. навук) 1987:6, 9-15
11) Truncated symmetric powers of natural realizations of the groups $S L_{m}(P)$ and $S p_{m}(P)$ and their constraints on subgroups, Siberian Math. J. 31 (1990), 555566, translated from: Срезанные симметрические степени естественных реализаций групп $S L_{m}(P)$ и $S p_{m}(P)$ и их ограничения на подгруппы, Сиб. Мат. Журн. 31:4 (1990), 33-46

List of Notations

Part I	
$\operatorname{Mor}\left(X, X^{\prime}\right)$	set of morphisms between two k--functors X and $X^{\prime}, 1.2$
D_{X}	diagonal subfunctor of $X \times X, 1.2$
\mathbf{A}^{n}	affine n-space, 1.3
$S p_{k} R$	spectrum of the k-algebra $R, 1.3$
$k[X]$	$\operatorname{Mor}\left(X, \mathbf{A}^{1}\right)$ for a k-functor $X, 1.3$
$V(I)$	closed subfunctor defined by $I \subset k[X], 1.4$
$D(I)$	open subfunctor defined by $I \subset k[X], 1.5$
X_{f}	open subfunctor defined by $f \in k[X], 1.5$
\mathbf{P}^{n}	projective n-space, 1.3
$\mathfrak{M o r}(X, Y)$	k-functor of morphisms between two k-functors X and $Y, 1.15$
$\operatorname{Hom}(G, H)$	set of homomorphisms between two k-group functors G and $H, 2.1$
Aut (G)	group of automorphisms of a k-group functor $G, 2.1$
G_{a}	additive group, 2.2
M_{a}	additive group of a k-module $M, 2.2$
G_{m}	multiplicative group, 2.2
$G L(M)$	general linear group of a k-module $M, 2.2$
$G L_{n}$	$=G L\left(k^{n}\right), 2.2$
$S L(M)$	special linear group of a k-module $M, 2.2$
$S L_{n}$	$=S L\left(k^{n}\right), 2.2$
$\mu_{(n)}$	nth roots of unity, 2.2
m_{G}	multiplication morphism $G \times G \rightarrow G,(g, h) \mapsto g h, 2.3$
i_{G}	morphism $G \rightarrow G, g \mapsto g^{-1}, 2.3$
Δ_{G}	comultiplication on $k[G]$, i.e., comorphism of $m_{G}, 2.3$
σ_{G}	antipode on $k[G]$, i.e., comorphism of $i_{G}, 2.3$
ε_{G}	augmentation on $k[G]$, i.e., $k[G] \rightarrow k, f \mapsto f(1), 2.3$
$X(G)$	group of characters of a k-group functor $G, 2.4$
$\operatorname{Diag}(\Lambda)$	diagonalisable group scheme associated to a commutative group $\Lambda, 2.5$
X^{G}	fixed point functor, 2.6
$\operatorname{Stab}_{G}(Y)$	stabiliser of a subfunctor $Y, 2.6$
$N_{G}(Y)$	normaliser of a subgroup functor $Y, 2.6$
$C_{G}(Y)$	centraliser of a subgroup functor $Y, 2.6$
$Z(G)$	centre of $G, 2.6$
$H \rtimes G$	semi-direct product of G and H such that H is normal in $H \rtimes G, 2.6$
k_{λ}	k regarded as a G-nodule via $\lambda \in X(G), 2.7$
$\operatorname{Hom}_{G}\left(M, M^{\prime}\right)$	space of homomorphisms between two G-modules M and $M^{\prime}, 2.7$
ρ_{l}	left regular representation, 2.7
ρ_{r}	right regular representation, 2.7
Δ_{M}	comodule map for a G-module $M, 2.8$

M^{G}	fixed points submodule, 2.10
M_{λ}	weight space of weight $\lambda, 2.10$
$(e(\lambda) \mid \lambda \in \Lambda)$	canonical basis of $\mathbf{Z}[\Lambda], 2.11$
$\operatorname{ch}(M)$	formal character of M, 2.11
$Z_{G}(S)$	centraliser of a subset S of a G-module, 2.12
$\operatorname{Stab}_{G}(N)$	stabiliser of a k-submodule N of a G-module, 2.12
$\operatorname{soc}_{G} M$	socle of a G-module $M, 2.14$
$\left(\operatorname{soc}_{G} M\right)_{E}$	isotypic component of $\operatorname{soc}_{G} M$ of type $E, 2.14$
$\operatorname{rad}_{G} M$	radical of a G-module $M, 2.14$
$[M: E]_{G}$	multiplicity of a simple G-module E as a composition factor of a G-module $M, 2.14$
${ }^{\alpha} M$	the G-module M twisted by $\alpha \in \operatorname{Aut}(G), 2.15$
${ }^{h} M$	the G-module M twisted by $\operatorname{Int}(h), 2.15$
$\mathrm{res}_{H}^{G} M$	the G-module M restricted to $H, 3.1$
$\operatorname{ind}_{H}^{G} M$	the G-module induced by the H-module $M, 3.3$
ε_{M}	canonical map $\operatorname{ind}_{H}^{G} M \rightarrow M, 3.4$
Q_{E}	injective hull of a simple G-module $E, 3.17$
$H^{n}(G, M)$	nth (rational) cohomology group of a G-module $M, 4.2$
$\operatorname{Ext}_{G}^{n}\left(M, M^{\prime}\right)$	nth Ext-group of two G-modules M and $M^{\prime}, 4.2$
$R^{n} \mathrm{ind}_{H}^{G}$	nth derived functor of ind ${ }_{H}^{G}, 4.2$
$C^{n}(G, M)$	nth term of the Hochschild complex of M, 4.14
$f(X)=\operatorname{im}(f)$	image faisceau of a morphism $f: X \rightarrow Y, 5.5$
X / G	quotient faisceau of X by $G, 5.5$
\mathcal{O}_{X}	sheaf of regular functions on $X, 5.8$
$\mathcal{L}_{X / G}(M)$	sheaf associated to a G-module $M, 5.8$
$X \times{ }^{G} Y$	bundle associated to a k-faisceau Y with G-action, 5.14
G / N	fact:r group of G by $N, 6.1$
NH	product subgroup of two subgroup faisceaux with H normalising $N, 6.2$
I_{x}	$\{f \in k[X] \mid f(x)=0\}$ for any $x \in X(k), 7.1$
$T_{x} X$	tangent space to X at $x, 7.1$
Dist (X, x)	module of distributions on X with support in $x, 7.1$
$\mathcal{O}_{X, x}$	local ring of $x, 7.1$
\mathfrak{m}_{x}	maximal ideal of $\mathcal{O}_{X, x}, 7.1$
$(d \varphi)_{x}$	tangent map at x of a morphism $\varphi, 7.2$
δ_{X}	diagonal morphism $X \rightarrow X \times X, 7.4$
Dist(G)	algebra of distributions on G with support in 1, 7.7
Lie(G)	Lie algebra of $G, 7.7$
$d \alpha$	tangent map of a homomorphism of group schemes, 7.9
$U(\mathfrak{g})$	enveloping algebra of a Lie algebra $\mathfrak{g}, 7.10$
$U^{[p]}(\mathfrak{g})$	restricted enveloping algebra of a p-Lie algebra $\mathfrak{g}, 7.10$
Ad	adjoint action of G on $\operatorname{Dist}(G)$ or on $\operatorname{Lie}(G), 7.18$
$M(G)$	algebra of all measures on $G, 8.4$
δ_{G}	modular function on $G, 8.8$
$\operatorname{coind}_{H}^{G} M$	G-module coinduced by an H-module $M, 8.14$
$A^{(m)}$	a k-algebra A twisted m times by the Frobenius endomorphism, 9.2
$X^{(r)}$	a k-functor X twisted r times by the Frobenius endomorphism, 9.2
F_{X}^{r}	the r th Frobenius morphism $X \rightarrow X^{(r)}, 9.2$
G_{r}	the r th Frobenius kernel of $G, 9.4$

$H^{\bullet}(\mathfrak{g}, M) \quad$ Lie algebra cohomology of a \mathfrak{g}-module $M, 9.17$
Part II

$G_{\mathbf{Z}}$	a split and connected reductive \mathbf{Z}-group, 1.1
G	$=\left(G_{\mathbf{Z}}\right)_{k}, 1.1$
$T_{\mathbf{Z}}$	a split maximal torus of $G_{\mathbf{Z}}, 1.1$
T	$=\left(T_{\mathbf{Z}}\right)_{k}, 1.1$
R	root system of G with respect to $T, 1.1$
x_{α}	root homomorphism corresponding to $\alpha, 1.2$
U_{α}	root subgroup corresponding to α, 1.2
$Y(T)$	$=\operatorname{Hom}\left(G_{m}, T\right), 1.3$
α^{\vee}	coroot corresponding to $\alpha, 1.3$
G_{α}	Levi subgroup corresponding to $\alpha, 1.3$
s_{α}	reflection with respect to $\alpha, 1.4$
W	Weyl group of $R, 1.4$
\dot{w}	representative in $N_{G}(T)(k)$ for $w \in W, 1.4$
R^{+}	positive system in $R, 1.5$
S	set of simple roots with respect to $R^{+}, 1.5$
\leq	order relation on $X(T) \otimes_{\mathbf{z}} \mathbf{R}$ determined by $R^{+}, 1.5$
$l(w)$	length of $w \in W$ with respect to the system $\left\{s_{\alpha} \mid \alpha \in S\right\}$ of generators of $W, 1.5$
w_{0}	longest element in $W, 1.5$
ρ	half sum of all positive roots, 1.5
$w \cdot \lambda$	$=w(\lambda+\rho)-\rho, 1.5$
ϖ_{α}	fundamental weight corresponding to $\alpha \in S, 1.6$
$U\left(R^{\prime}\right)$	subgroup generated by all U_{α} with $\alpha \in R^{\prime}, 1.7$
$G\left(R^{\prime}\right)$	subgroup generated by all G_{α} with $\alpha \in R^{\prime}, 1.7$
R_{I}	$=\mathbf{Z} I \cap R$ for $I \subset S, 1.7$
L_{I}	$=G\left(R_{I}\right), 1.7$
W_{I}	$=\left\langle s_{\alpha} \mid \alpha \in I\right\rangle, 1.7$
U^{+}	$=U\left(R^{+}\right), 1.8$
U	$=U\left(-R^{+}\right), 1.8$
B^{+}	$=U^{+} T, 1.8$
B	$=U T, 1.8$
U_{I}^{+}	$=U\left(R^{+} \backslash R_{I}\right), 1.8$
U_{I}	$=U\left(\left(-R^{+}\right) \backslash R_{I}\right), 1.8$
P_{I}^{+}	$=U_{I}^{+} L_{I}, 1.8$
P_{I}	$=U_{I} L_{I}, 1.8$
X_{α}	basis of $\left(\operatorname{Lie} G_{\mathbf{Z}}\right)_{\alpha}, 1.11$
H_{α}	$=\left(d \alpha^{\vee}\right)(1) \in \operatorname{Lie} T_{\mathbf{Z}}, 1.11$
$X_{\alpha, n}$	$=X_{\alpha}^{n} /(n!) \otimes 1 \in \operatorname{Dist}\left(U_{\alpha}\right), 1.12$
$H^{i}(M)$	$=R^{i} \operatorname{ind}_{H}^{G}(M), 2.1$
$H^{i}(\lambda)$	$=H^{i}\left(k_{\lambda}\right)$ for $\lambda \in X(T), 2.1$
$L(\lambda)$	simple G-module with highest weight $\lambda, 2.4$
$X(T)_{+}$	set of dominant weights in $X(T), 2.6$
$V(\lambda)$	Weyl module with highest weight $\lambda, 2.13$
$Z_{r}(\lambda)$	$=\operatorname{coind}_{B_{r}^{+}}^{G_{r}} \lambda, 3.7$
$Z_{r}^{\prime}(\lambda)$	$=\operatorname{ind}_{B_{r}}^{G_{r}} \lambda, 3.7$

$L_{r}(\lambda)$	simple G_{r}-module with "highest weight" $\lambda, 3.9$
$X_{r}(T)$	$=\left\{\lambda \in X(T) \mid 0 \leq\left\langle\lambda, \alpha^{\vee}\right\rangle<p^{r}\right.$ for all $\left.\alpha \in S\right\}, 3.15$
$M^{[r]}$	a G-module twisted by the r th power of the Frobenius endomorphism of $G, 3.16$
$S t_{r}$	r th Steinberg module, 3.18
$P(\alpha)$	$=P_{\{\alpha\}}$ for $\alpha \in S, 5.1$
$\bar{C}_{\mathbf{Z}}$	$=\left\{\lambda \in X(T) \mid 0 \leq\left\langle\lambda+\rho, \beta^{\vee}\right\rangle \leq p\right.$ for all $\left.\beta \in R^{+}\right\}$where $p=\infty$ if $\operatorname{char}(k)=0$, and $p=\operatorname{char}(k)$ otherwise, 5.5
$\chi(M)$	$=\sum_{i>0}(-1)^{i} \operatorname{ch} H^{i}(M)$ for a $B-$ module $M, 5.7$
$\chi(\lambda)$	$=\chi\left(k_{\lambda}\right)$ for $\lambda \in X(T), 5.7$
$H_{I}^{i}(\lambda)$	the analogue to $H^{i}(\lambda)$ for $L_{I}, 5.21$
$L_{I}(\lambda)$	the analogue to $L(\lambda)$ for $L_{I}, 5.21$
$s_{\beta, r}$	affine reflection $\lambda \mapsto s_{\beta}(\lambda)+r \beta$ for $r \in \mathbf{Z}, \beta \in R, 6.1$
W_{p}	affine Weyl group generated by all $s_{\beta, r p}, 6.1$
\widehat{F}	upper closure of a facet $F, 6.2$
C	$=\left\{\lambda \in X(T) \otimes_{\mathbf{z}} \mathbf{R} \mid 0<\left\langle\lambda+\rho, \beta^{\vee}\right\rangle<p\right.$ for all $\left.\beta \in R^{+}\right\}, 6.2$
h	Coxeter number of $R, 6.2$
s_{F}	reflection with respect to a wall $F, 6.3$
$\Sigma\left(C^{\prime}\right)$	set of all s_{F} with F a wall of C^{\prime} (for an alcove C^{\prime}), 6.3
$W_{p}^{0}(\lambda)$	stabiliser of $\lambda \in X(T)$ in $W_{p}, 6.3$
$\Sigma^{0}\left(\lambda, C^{\prime}\right)$	$=\left\{s \in \Sigma\left(C^{\prime}\right) \mid s \bullet \lambda=\lambda\right\}, 6.3$
\uparrow	order relation on $X(T)$ or on the set of alcoves, 6.4/5
$W_{p}^{0}(F)$	stabiliser of a facet F in $W_{p}, 6.11$
$\mathcal{B}(H)$	set of blocks of $H, 7.1$
pr_{λ}	projection functor for $\lambda \in X(\underline{T})$, 7.3
T_{λ}^{μ}	translation functor for $\lambda, \mu \in \bar{C}_{\mathbf{Z}}, 7.6$
$V(\lambda)_{A}$	A-form of $V(\lambda), 8.3$
$H_{A}^{i}(M)$	$=R^{i} \operatorname{ind}_{B_{A}}^{G_{A}}(M)$ for a B_{A}-module $M, 8.6$
W_{p}^{+}	if $p>h$ equal to $\left\{w \in W_{p} \mid w \bullet 0 \in X(T)_{+}\right\}, 8.22$
$\widehat{Z}_{r}^{\prime}(\lambda)$	$=\operatorname{ind}_{B}^{G_{r} B} \lambda$ for $\lambda \in X(T), 9.1$
$\widehat{Z}_{r}(\lambda)$	$=\operatorname{coind}_{B^{+}}^{G_{r} B^{+}} \lambda$ for $\lambda \in X(T), 9.1$
$\widehat{L}^{(}(\lambda)$	simple $G_{r} B$-module with highest weight $\lambda, 9.6$
$\widehat{Q}_{r}(\lambda)$	injective hull of $\widehat{L}_{r}(\lambda)$ as a $G_{r} T$-module, 11.3
$Q_{r}(\lambda)$	injective hull of the G_{r}-module $L_{r}(\lambda), 11.3$
w_{I}	longest element in W_{I} for $I \subset S, 13.2$
$X(w)$	Schubert scheme corresponding to $w \in W, 13.3$
\leq	Bruhat(-Chevalley) order on W, 13.7
$X(w)_{P}$	image of $X(w)$ in $G / P, 13.8$
$\mathcal{C}(\pi)$	truncated category associated to $\pi \subset X(T)_{+}$, A. 1
O_{π}	truncation functor to $\mathcal{C}(\pi)$, A. 1
$S_{G}(\pi)$	generalised Schur algebra associated to π, A. 16
$T(\lambda)$	indecomposable tilting module with highest weight λ, E. 4

Index

action, 24
acyclic, 49
additive group $\left(G_{a}\right), 20,22,58,101,105$
adjoint group, 158
adjoint representation, 108, 130, 286
affine scheme, 5,14
affine space (A), 5, 98
affine variety, 4, 9, 125
affine Weyl group, 231-240
alcove, 232-240
algebraic group, 19
algebraic scheme, 9,16
ample 203, 270, 375
antipode, 21, 112
associated bundle, 80, 202
associated faisceau, 68
associated fibration, 78-81
associated graded group, 132
associated sheaf, 74-77, 79-83
on flag varieties and Schubert schemes
201-205, 366-368, 371-374, 376-383
augmentation, 21
augmentation ideal, 22
automorphism, 19
base change
and cohomology, 29, 54, 57
for distributions, 98
for functors, $13,68,70$
and homomorphisms, 142-143
and induction, 40, 54, 57
and injective hulls, 144-145
for modules, 26, 148
for quotients, 71
for Schubert schemes, 377
for Schur algebras, 403
for simple modules, 180, 194
for tilting modules, 458, 474
for Weyl modules, 272
base map, 50, 90, 323
big cell, 160
block, 252, 311, 317
Borel-Bott-Weil theorem, 221, 307
Borel subgroup, 159

Bott-Samelson scheme, 360
Bruhat cell, 353, 356, 361
Bruhat decomposition, 160, 355
Bruhat order, 360
canonical sheaf, 202, 483
canonical splitting, 502-503
central character, 246
centraliser, 24, 32, 105, 107, 109
central subgroup, 20
centre, 25, 158
character group, 22
close, 247
closed set of roots, 159, 353
closed subfunctor, 7, 9, 14-16, 83
closed subgroup, 20
closure, $7,15,83,232,261$
coadjoint representation, 214
coalgebra, 99
cocommutative, 21, 113
coefficient space, 394
cohomology groups, 50-54
for additive groups, 58-64
for finite group schemes, 133-139
for Frobenius kernels, 343-345, 348, 350
and Hochschild complex, 55-58
for reductive groups and parabolic subgroups, 206, 208-209, 230, 411-413
coinduced module, 119-123, 191-193, 292-293
coinverse, 21
commutative group, 20
comodule, 27, 114
comorphism, 6
compatibly split, 489
composition factor, 34
composition series, 34
comultiplication, 21, 112
conjugation map, 23
conjugation representation, 26, 27, 214
constant term, 96
contravariant form, 281, 283, 401
coroot, 156
cotangent bundle, 245
counit, 21, 112
covering group, 168, 181, 297, 462
Coxeter number, 233
Coxeter system, 234
cup product, 58
defined over a subring, 13
dense, 94
derived functors, 49
derived group, 169, 180-181, 462
desingularisation, 360
determinantal variety, 364
diagonal, 5, 24, 99
diagonalisable group, $23,30,34,51,73,89$
differential operator, 108
direct image, 81-82, 366, 369-372, 375-377
direct limit, 57, 321, 340, 391
direct product, $5,6,20,42,462$
direct sum, 26
distributions, $95-110,113,127,129,130$, 146, 162-163, 165-166, 170-171, 191-192, 268-269
divisor, 273
dominant alcove, 236
dominant weight, 178
Donkin pair, 215
dot action, 158, 218, 232
dualising sheaf, 118, 203
dual root, 156
edge map, 88
enveloping algebra, 102
equivariant map, 26
equivariant \mathcal{O}_{X}-module, 484
Euler characteristic, 221
exact subgroup, $52,54,78,120$
extension groups, 50-52
and blocks, 252, 254
for (dual) Weyl modules, 209, 211, 246, 261-262, 412, 415-416, 421
and finite generation, 208, 413
for Frobenius kernels, 298-299, 309-310, 312, 345-348, 431-432
and Frobenius morphisms, 322, 324
and normal subgroups, 88-91
and parabolic subgroups, 206, 229
and polynomial functors, 408
for simple modules, 182-184, 210, 221, $244,246,263,421,428$
and Steinberg modules, 318
and translation functors, 256
and truncated categories, 393, 414
exterior powers, $26,184,245,287$
facet, 232-234
factor group, 85,87
factor module, 28
faisceau, 67
fibre product, $5,6,10,14,20$
filtrations, 283, 303, 427, 475
finite global dimension, 394
finite group scheme, $72,78,111,138,252$
finite representation type, 123
five term exact sequence, 50
fixed point functor, $24,29,87$
fixed point, 29
flat scheme, 16, 28, 74
formal character, 31, 169
fppf-algebra, 67, 79
fppf-open covering, 66
free action, 70
Frobenius kernel, 128-132, 189-200
Frobenius morphism, 125-127, 190, 372, 481
Frobenius reciprocity, 39, 52
Frobenius splitting, 485-504, 508, 512
Frobenius twist, 132
function field, 368
fundamental weights, 158,286
fusion ring, 468
general linear group $(G L), 20,22,58,172$, 184-185, 287, 362-364, 387, 398, 400-402, 465, 470-471
generic cohomology, 323
generic decomposition behaviour, 308
geometrically reductive, 315,319
good filtration, 210-215, 259, 320, 349-351, 390, 392, 397, 415, 458, 461, 504, 508, 512-513
good primes, 214
Grassmann scheme, 13, 72, 363
Grothendieck group, 145, 179
Grothendieck spectral sequence, 49
group functor, 19
groupoid, 66
group homomorphism, 19, 164
group scheme, 19
head, 334
height, 207
highest weight, 177
Hochschild complex, 55-58, 60-62, 88-89, 133
homomorphism of root data, 163
Hopf algebra, 21,112
hyperalgebra, 101
ideal sheaf, 483
idempotent, 44, 143, 400, 469
image faisceau, 70
indecomposable, 34, 44, 45, 144, 252
induced modules, 38-42
for Frobenius kernels, 191-195, 292-308, 312
for reductive groups 176-179, 185-187, 198-200, 204-205, 209-215, 218-230, 240-250, 258-264, 271-272, 275-280, 334-337, 344, 347, 349-351
induction functor, 38
and associated sheaves, 77, 203
and derived functors, 50-54
and finite algebraic groups, 120-122
and injective modules, 43
and normal subgroups, 91-93
inductive limit, 29
infinitesimal group, 111, 129
infinitesimally flat, $98-99,102,106,162$
inflation map, 90
injective hulls, 45-46
for Borel subgroups, 207
for Frobenius kernels, 193, 295, 327-341
and good filtrations, 212
and projective covers, 117, 119
and reduction modulo $p, 144$
and Steinberg modules, 317, 321
and translation functors, 260
and truncated categories, 390
injective modules, 43-45
and exact subgroups, 54
for Frobenius kernels, 325-326, 328
and projective modules, 45-46, 117, 294
and Steinberg modules, 316
integrals, 115
integral scheme, 99
intersection, 4, 7, 10, 14, 20, 29
invariant bilinear form, 281
invariant measure, 115
invariant theory, 320
inverse image, $5,7,10,14,20,80,83$
inverse limit, 131, 208
irreducible representaton. See simple module
irreducible scheme, 107
isogeny, 166
isotypic component, 33
Jordan-Hölder series, 34
Kazhdan-Lusztig polynomial, 288, 351, 420, 431, 454, 464
Kempf's vanishing theorem, 205
k-functor, 4
Kostant's partition function, 322
Koszul resolution, 349
lattice, 143, 268
length, 157
Levi factor $\left(L_{I}\right), 160,181,214,230,281$, 513
Lie algebra, 101, 162
Lie algebra cohomology, 135
linkage principle, 242-244, 302, 305, 310
local functor, $11,15,67$
locally finite module, 33, 104
locally free scheme, 17
locally trivial, 79, 162, 201
Loewy length, 440-441, 444-448

Loewy series, 34, 439-441
Lusztig's conjecture, 288, 419-437, 524-525
Lyndon-Hochschild-Serre spectral sequence, 88
maximal torus, 153
measures, 113
minuscule weights, $185,286,348$
modular function, 115, 130, 191
module, 25, 103, 114, 170, 398, 405
module homomorphism, 26, 27, 106
morphism, 5, 16, 19
multiplicative group (G_{m}), 20, 22, 101, 105
multiplicity, 34
nilpotent elements, 350
noetherian scheme, 99
normal scheme, 368,376
normal subgroup, 20, 85
normaliser, 25, 109
norm forms, 115
open covering, 10, 15
open subfunctor, $8,10,12,74$
orbit faisceau, 72
parabolic subgroup $\left(P_{I}\right), 160,201,205,270$
parity property, 420
partition, 387, 401
p-Lie algebra, 103, 113, 123, 129, 189
polynomial functor, 405
polynomial module, 388, 399
positive system, 157
p^{r}-bounded module, 333, 341
p-regular partition, 401
product subgroup, 85
projection formula, 369
projective cover, 117-119, 193, 295, 328
projectively normal, 382
projective module, $46,116,120,294,316$, 462
projective scheme, 77
projective space (\mathbf{P}), 13, 71
quantum group, 515-529
quotient faisceau, 70
quotient scheme, 65, 71, 73, 320
radical, 34
radical series, 440
rank, 154
rational module, 28
reciprocity, 144
reduced decomposition, 360
reduced group, 19
reduced irreducible components, 490
reduced scheme, 9
reductive group, 153
reflection, 156, 232, 234
regular representation $\left(\rho_{l}, \rho_{r}\right), 26,27,41$,

$$
76,114,117-118,213
$$

representation. See module
restricted enveloping algebra, 103, 113
restriction of scalars, 141
restriction to subgroup, 37
rigid, 449-453
root datum, 163
root homomorphism, 154
root subgroup, 155
root subspace, 154
root system, 154
saturated, 387
scheme, 12, 14
Schubert scheme, 356, 361, 496
Schur algebra, 397, 399, 404
section, 79
semi-direct product, $25,41,43,53$
semi-simple group, 158
semi-simple module, $33,211,221,426$
separate scheme, 25
Serre duality, 121, 203
Shapiro's lemma, 52
sheaf, 74
simple module, 33-34, 148
for Frobenius kernels, 194-198, 295-300
and injective modules, 45-46
and projective covers, 118
and reduction modulo $p, 145$
for reductive groups, 177-181, 221, 228, 261
for Schur algebras, 400
and translation functors, 260, 263-264, 312
simple point, 127
simple reflection, 157
simple root, 157
simply connected, 158
skew module, 404-405
smooth, 107, 109, 146
socle, 33, 44, 94, 197, 228
socle series, 34, 439-441
Specht module, 471
special linear group ($S L$), 20, 173, 184, 284-286, 464
special orthogonal group, 187
spectral sequence, $49,51,133,347$
spectrum, 5
stabiliser, $24,32,72,105,107,109$
standard alcove, 233
standard monomial theory, 383
Steinberg module (St), 198, 315-323, 330, 462-463, 493, 498-499
Steinberg's tensor product theorem, 198
subfunctor, 4
subgroup, 20
submodule, $28,33,106,313$
symmetric group $\left(S_{n}\right), 172,387,400-402$, 470-472
symmetric powers, $26,185-187$
symmetric set of roots, 159
symplectic group, 186
tangent map, 96
tangent sheaf, 202
tangent space, 96
tensor identity, 40, 53, 77
tensor powers $\left(\otimes^{n}\right), 399,402,470-471$
tensor product, 26, 213, 462
tilting module, 458-477, 527
top alcove, 331
torsion submodule, 142,270
transitivity of induction, 39, 52, 77
translation functor, 255-264, 311-312, 331, $458,465,477$
trigonalisable group, 34
trivial module, 29
truncated category, 385
truncation functor, 386-387, 390-393, 396-397, 509-512
twisted representatiori, $35,40,94$
unimodular, 115, 130
union, 7
unipotent group, 34
unipotent radical, 160
unipotent set of roots, 159
upper closure, 232
wall, 234
wall crossing functor $(\Theta), 264,420,441$
weight space, 154, 169
Weyl filtration, 212, 259, 398, 416, 458, 461
Weyl group, 156
Weyl module, 182-183, 224, 272, 280, 283, 416
Weyl's character formula, 223
Yoneda's lemma, 5
zero scheme, 495

Titles in This Series

107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
97 V. A. Vassiliev, Applied Picard-Lefschetz theory, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002
92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001
85 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, 2001
84 László Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001
83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000
81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000
74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000

TITLES IN THIS SERIES

73 John Locker, Spectral theory of non-self-adjoint two-point differential operators, 2000
72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999
64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998
61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C^{*}-algebras, 1998
59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998
58 Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, 1998
57 Marc Levine, Mixed motives, 1998
56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998
55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998
54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997
53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997
52 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997
51 Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, 1997
50 Jon Aaronson, An introduction to infinite ergodic theory, 1997
49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997
48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997
47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997

46 Stephen Lipscomb, Symmetric inverse semigroups, 1996
45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

The present book, which is a revised edition of the author's book published in 1987 by Academic Press, is intended to give the reader an introduction to the theory of algebraic representations of reductive algebraic groups. To develop appropriate techniques, the first part of the book is an introduction to the general theory of representations of algebraic group schemes. Here the author describes, among others, such important basic notions as induction functor, cohomology, quotients, Frobenius kernels, and reduction mod p.
The second part of the book is devoted to the representation theory of reductive algebraic groups. It includes such topics as the description of simple modules, vanishing theorems. the Borel-Bott-Weil theorem and Weyl's character formula, Schubert schemes and line bundles on them. For this revised edition the author added several chapters describing some later developments, among them Schur algebras, Lusztig's conjecture, and KazhdanLusztig polynomials, tilting modules, and representations of quantum groups.

\qquad and updates on this book, visit

