The Classification of Quasithin Groups

I. Structure of Strongly Quasithin \mathcal{K}-groups

Michael Aschbacher
Stephen D. Smith

American Mathematical Society
The Classification of Quasithin Groups

I. Structure of Strongly Quasithin \mathcal{K}-groups
The Classification of Quasithin Groups

I. Structure of Strongly Quasithin \mathcal{K}-groups

Michael Aschbacher
Stephen D. Smith

American Mathematical Society
Library of Congress Cataloging-in-Publication Data
Aschbacher, Michael, 1944–
The classification of quasithin groups / Michael Aschbacher, Stephen D. Smith.
p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 111–112)
of simple QTKE-groups.
Includes bibliographical references and index.
1. Finite simple groups—Classification. I. Smith, Stephen D., 1948– II. Title. III. Mathematical surveys and monographs ; 111–112.
QA177.A8 2004 512.2—dc22 2004054548

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.
Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.
© 2004 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 09 08 07 06 05 04
To Pam and Judy
Contents

Preface xi

Volume I: Structure of strongly quasithin \mathcal{K}-groups 1

Introduction to Volume I 3
 0.1. Statement of Main Results 3
 0.2. An overview of Volume I 5
 0.3. Basic results on finite groups 7
 0.4. Semisimple quasithin and strongly quasithin \mathcal{K}-groups 7
 0.5. The structure of SQTK-groups 7
 0.6. Thompson factorization and related notions 8
 0.7. Minimal parabolics 10
 0.8. Pushing up 10
 0.9. Weak closure 11
 0.10. The amalgam method 11
 0.11. Properties of \mathcal{K}-groups 12
 0.12. Recognition theorems 13
 0.13. Background References 15

Chapter A. Elementary group theory and the known quasithin groups 19
 A.1. Some standard elementary results 19
 A.2. The list of quasithin \mathcal{K}-groups: Theorems A, B, and C 32
 A.3. A structure theory for Strongly Quasithin \mathcal{K}-groups 41
 A.4. Signalizers for groups with $X = O^2(X)$ 56
 A.5. An ordering on $\mathcal{M}(T)$ 61
 A.6. A group-order estimate 64

Chapter B. Basic results related to Failure of Factorization 67
 B.1. Representations and FF-modules 67
 B.2. Basic Failure of Factorization 74
 B.3. The permutation module for A_n and its FF*-offenders 83
 B.4. F_2-representations with small values of q or \hat{q} 85
 B.5. FF-modules for SQTK-groups 98
 B.6. Minimal parabolics 112
 B.7. Chapter appendix: Some details from the literature 118

Chapter C. Pushing-up in SQTK-groups 121
 C.1. Blocks and the most basic results on pushing-up 121
 C.2. More general pushing up in SQTK-groups 143
 C.3. Pushing up in nonconstrained 2-locals 148
CONTENTS

C.4. Pushing up in constrained 2 leans 151
C.5. Finding a common normal subgroup 154
C.6. Some further pushing up theorems 164

<table>
<thead>
<tr>
<th>Chapter D. The qrc-lemma and modules with $\hat{q} \leq 2$</th>
<th>171</th>
</tr>
</thead>
</table>
D.1. Stellmacher’s qrc-Lemma | 171 |
D.2. Properties of q and \hat{q}: $R(G, V)$ and $Q(G, V)$ | 177 |
D.3. Modules with $\hat{q} \leq 2$ | 192 |

<table>
<thead>
<tr>
<th>Chapter E. Generation and weak closure</th>
<th>209</th>
</tr>
</thead>
</table>
E.1. \mathcal{E}-generation and the parameter $n(G)$ | 209 |
E.2. Minimal parabolics under the SQTK-hypothesis | 215 |
E.3. Weak Closure | 230 |
E.4. Values of a for F_2-representations of SQTK-groups. | 240 |
E.5. Weak closure and higher Thompson subgroups | 242 |
E.6. Lower bounds on $r(G, V)$ | 244 |

<table>
<thead>
<tr>
<th>Chapter F. Weak BN-pairs and amalgams</th>
<th>259</th>
</tr>
</thead>
</table>
F.1. Weak BN-pairs of rank 2 | 259 |
F.2. Amalgams, equivalences, and automorphisms | 264 |
F.3. Paths in rank-2 amalgams | 269 |
F.4. Controlling completions of Lie amalgams | 273 |
F.5. Identifying $L_4(3)$ via its $U_4(2)$-amalgam | 299 |
F.6. Goldschmidt triples | 304 |
F.7. Coset geometries and amalgam methodology | 310 |
F.8. Coset geometries with $b > 2$ | 315 |
F.9. Coset geometries with $b > 2$ and $m(V_1) = 1$ | 317 |

<table>
<thead>
<tr>
<th>Chapter G. Various representation-theoretic lemmas</th>
<th>327</th>
</tr>
</thead>
</table>
G.1. Characterizing direct sums of natural $SL_n(F_{2^n})$-modules | 327 |
G.2. Almost-special groups | 332 |
G.3. Some groups generated by transvections | 337 |
G.4. Some subgroups of $Sp_4(2^n)$ | 338 |
G.5. F_2-modules for A_6 | 342 |
G.6. Modules with $m(G, V) \leq 2$ | 345 |
G.7. Small-degree representations for some SQTK-groups | 346 |
G.8. An extension of Thompson’s dihedral lemma | 349 |
G.9. Small-degree representations for more general SQTK-groups | 351 |
G.10. Small-degree representations on extraspecial groups | 357 |
G.11. Representations on extraspecial groups for SQTK-groups | 364 |
G.12. Subgroups of $Sp(V)$ containing transvections on hyperplanes | 370 |

<table>
<thead>
<tr>
<th>Chapter H. Parameters for some modules</th>
<th>377</th>
</tr>
</thead>
</table>
H.1. $\Omega_4(2^n)$ on an orthogonal module of dimension $4n$ ($n > 1$) | 378 |
H.2. $SU_3(2^n)$ on a natural $6n$-dimensional module | 378 |
H.3. $Sz(2^n)$ on a natural $4n$-dimensional module | 379 |
H.4. $(S)L_3(2^n)$ on modules of dimension 6 and 9 | 379 |
H.5. 7-dimensional permutation modules for $L_3(2)$ | 385 |
H.6. The 21-dimensional permutation module for $L_3(2)$ | 386 |
H.7. $Sp_4(2^n)$ on natural $4n$ plus the conjugate $4n^t$. | 388 |
0.2. Context and History 483
0.3. An Outline of the Proof of the Main Theorem 487
0.4. An Outline of the Proof of the Even Type Theorem 495

Part 1. Structure of QTKE-Groups and the Main Case Division 497

Chapter 1. Structure and intersection properties of 2-locals 499
1.1. The collection \mathcal{E}^e 499
1.2. The set $\mathcal{L}^*(G, T)$ of nonsolvable uniqueness subgroups 503
1.3. The set $\mathfrak{E}^*(G, T)$ of solvable uniqueness subgroups of G 508
1.4. Properties of some uniqueness subgroups 514

Chapter 2. Classifying the groups with $|\mathcal{M}(T)| = 1$ 517
2.1. Statement of main result 518
2.2. Bender groups 518
2.3. Preliminary analysis of the set Γ_0 521
2.4. The case where Γ_0 is nonempty 527
2.5. Eliminating the shadows with Γ_0 empty 550

Chapter 3. Determining the cases for $L \in \mathcal{L}_f^*(G, T)$ 571
3.1. Common normal subgroups, and the qr-lemma for QTKE-groups 571
3.2. The Fundamental Setup, and the case division for $\mathcal{L}_f^*(G, T)$ 578
3.3. Normalizers of uniqueness groups contain $N_G(T)$ 585

Chapter 4. Pushing up in QTKE-groups 605
4.1. Some general machinery for pushing up 605
4.2. Pushing up in the Fundamental Setup 608
4.3. Pushing up $L_2(2^n)$ 613
4.4. Controlling suitable odd locals 619

Part 2. The treatment of the Generic Case 627

Chapter 5. The Generic Case: $L_2(2^n)$ in \mathcal{L}_f and $n(H) > 1$ 629
5.1. Preliminary analysis of the $L_2(2^n)$ case 630
5.2. Using weak BN-pairs and the Green Book 646
5.3. Identifying rank 2 Lie-type groups 658

Chapter 6. Reducing $L_2(2^n)$ to $n = 2$ and V orthogonal 663
6.1. Reducing $L_2(2^n)$ to $L_2(4)$ 663
6.2. Identifying M_{22} via $L_2(4)$ on the natural module 679

Part 3. Modules which are not FF-modules 693

Chapter 7. Eliminating cases corresponding to no shadow 695
7.1. The cases which must be treated in this part 696
7.2. Parameters for the representations 697
7.3. Bounds on w 698
7.4. Improved lower bounds for r 699
7.5. Eliminating most cases other than shadows 700
7.6. Final elimination of $L_3(2)$ on $3 \oplus 3$ 701
7.7. mini-Appendix: $r > 2$ for $L_3(2).2$ on $3 \oplus 3$ 703
Chapter 8. Eliminating shadows and characterizing the J_4 example 711
 8.1. Eliminating shadows of the Fischer groups 711
 8.2. Determining local subgroups, and identifying J_4 714
 8.3. Eliminating $L_3(2) \wr 2$ on 9 723

Chapter 9. Eliminating $\Omega^+_4(2^n)$ on its orthogonal module 729
 9.1. Preliminaries 729
 9.2. Reducing to $n = 2$ 730
 9.3. Reducing to $n(H) = 1$ 732
 9.4. Eliminating $n(H) = 1$ 735

Part 4. Pairs in the FSU over F_{2^n} for $n > 1$. 739

Chapter 10. The case $L \in \mathcal{L}^*_f(G, T)$ not normal in M. 741
 10.1. Preliminaries 741
 10.2. Weak closure parameters and control of centralizers 742
 10.3. The final contradiction 755

Chapter 11. Elimination of $L_3(2^n)$, $Sp_4(2^n)$, and $G_2(2^n)$ for $n > 1$ 759
 11.1. The subgroups $N_G(V_1)$ for T-invariant subspaces V_1 of V 760
 11.2. Weak-closure parameter values, and $\langle V^{N_G(V_1)} \rangle$ 766
 11.3. Eliminating the shadow of $L_4(q)$ 770
 11.4. Eliminating the remaining shadows 775
 11.5. The final contradiction 778

Part 5. Groups over F_2 785

Chapter 12. Larger groups over F_2 in $\mathcal{L}^*_f(G, T)$ 787
 12.1. A preliminary case: Eliminating $L_n(2)$ on $n \oplus n^*$ 787
 12.2. Groups over F_2, and the case V a TI-set in G 794
 12.3. Eliminating A_7 807
 12.4. Some further reductions 812
 12.5. Eliminating $L_5(2)$ on the 10-dimensional module 816
 12.6. Eliminating A_8 on the permutation module 822
 12.7. The treatment of A_6 on a 6-dimensional module 838
 12.8. General techniques for $L_n(2)$ on the natural module 849
 12.9. The final treatment of $L_n(2)$, $n = 4, 5$, on the natural module 857

Chapter 13. Mid-size groups over F_2 865
 13.1. Eliminating $L \in \mathcal{L}^*_f(G, T)$ with $L/O_2(L)$ not quasisimple 865
 13.2. Some preliminary results on A_5 and A_6 876
 13.3. Starting mid-sized groups over F_2, and eliminating $U_3(3)$ 884
 13.4. The treatment of the 5-dimensional module for A_6 896
 13.5. The treatment of A_5 and A_6 when $\langle V^{G_1} \rangle$ is nonabelian 915
 13.6. Finishing the treatment of A_5 926
 13.7. Finishing the treatment of A_6 when $\langle V^{G_1} \rangle$ is nonabelian 935
 13.8. Finishing the treatment of A_6 946
 13.9. Chapter appendix: Eliminating the A_{10}-configuration 969

Chapter 14. $L_3(2)$ in the FSU, and $L_2(2)$ when $\mathcal{L}^*_f(G, T)$ is empty 975
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
</tr>
<tr>
<td>14.2</td>
</tr>
<tr>
<td>14.3</td>
</tr>
<tr>
<td>14.4</td>
</tr>
<tr>
<td>14.5</td>
</tr>
<tr>
<td>14.6</td>
</tr>
<tr>
<td>14.7</td>
</tr>
<tr>
<td>14.8</td>
</tr>
</tbody>
</table>

Part 6. The case $\mathcal{L}_f(G, T)$ empty

Chapter 15. The case $\mathcal{L}_f(G, T) = \emptyset$

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
</tr>
<tr>
<td>15.2</td>
</tr>
<tr>
<td>15.3</td>
</tr>
<tr>
<td>15.4</td>
</tr>
</tbody>
</table>

Part 7. The Even Type Theorem

Chapter 16. Quasithin groups of even type but not even characteristic

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
</tr>
<tr>
<td>16.2</td>
</tr>
<tr>
<td>16.3</td>
</tr>
<tr>
<td>16.4</td>
</tr>
<tr>
<td>16.5</td>
</tr>
</tbody>
</table>

Bibliography and Index

Background References Quoted

| Part 1: also used by GLS |

| Part 2: used by us but not by GLS |

Expository References Mentioned

Index
Preface

Abstract. Around 1980, G. Mason announced the classification of the quasithin finite simple groups of characteristic 2-type in which all proper simple sections are known; but he neither completed nor published his work. We provide a proof of a stronger theorem classifying those groups, which is independent of Mason. In particular we close this gap in the proof of the classification of the finite simple groups. We also prove a corollary classifying quasithin groups of even type: providing a bridge to the program of Gorenstein, Lyons, and Solomon; their program seeks to produce a new, simplified proof of the classification of the finite simple groups.

The classification of the quasithin simple groups of even characteristic can be thought of as roughly one fourth of the classification of the finite simple groups. The two volumes in this series provide the first proof that each group in this class is a known simple group. This result closes a gap in the classification of the finite simple groups which has existed for over twenty years.

In addition the series is part of an ongoing effort to reorganize and simplify the original proof of the classification of the finite simple groups, and to write the proof down carefully in a relatively short number of pages (e.g., less than ten thousand). The effort includes the “GLS” series of Gorenstein, Lyons, and Solomon, which at the moment consists of the five volumes [GLS94]–[GLS02], but it also includes smaller projects such as [Asc94] and [BG94].

A detailed discussion of these matters appears in the introductions to each of the two volumes in our series. Roughly speaking, the first volume consists of fairly general results on finite groups (with emphasis on quasithin groups) which serve as the foundation for the classification of the quasithin groups. The second volume consists of a proof that the groups listed in our Main Theorem are the simple quasithin groups of even characteristic, all of whose proper simple sections are known simple groups.

We would be remiss if we did not acknowledge the assistance of a number of people:

During the many years we have worked on this project, each of us visited and benefited from the hospitality of many universities and faculties, whose assistance we gratefully acknowledge.

In particular, we would like to thank Ulrich Meierfrankenfeld for calling our attention to Stellmacher’s g^r_c-Lemma, and stating it in the form we use heavily as our Theorem D.1.5. Ulrich also read portions of the manuscript and suggested various simplifications.

We thank Robert Guralnick and Gunter Malle, whose work in [GM02] and [GM04] establishes important results on representations of finite simple groups related to failure of factorization, some of which have been unpublished for years. They relieved us of the need to prove those results; we thank them for providing
us with prepublication copies of their work, and also for reading over the parts of our work which apply their work.

Similarly we would like to thank Richard Lyons and Ronald Solomon, who read over and helped improve our final chapter, which proceeds under the hypothesis of the GLS series.

We also thank the University of Florida group theory seminar (including Chat Ho and Peter Sin) for reading other parts of the manuscript, correcting various errors, and suggesting simplifications.

Most importantly, we would like to thank John Thompson for reading large portions of the two volumes and suggesting numerous improvements and simplifications. The authors, and indeed the finite group theory community, owe him a great debt of gratitude for his selfless work benefiting us all.

Aschbacher was supported in part by NSF DMS 9101237 and subsequent grants. Smith was supported in part by NSA MDA 904-97-1-0063 and subsequent grants.
Bibliography and Index
Background References Quoted
(Part 1: also used by GLS)

Background References Quoted
(Part 2: used by us but not by GLS)

465

Expository References Mentioned

Index

$\mathcal{M}(U)$, 499
$\mathcal{N}(T)$, 113
A_7-block, exceptional, 129
A_n-block, 124
$\text{Aut}(\alpha)$ (for an amalgam α), 260
$C(G, S)$, 122
$C_1(S)$ (for pushing up), 126
$C_2(S)$ (for pushing up), 126
$C_1(X, V)$ (for higher weak closure), 233
D^g_8 (extraspecial group), 228
D^g_8 (extraspecial group), 228
$E_i(G, \Omega, T)$, 210
$F^*(G)$ (Fitting subgroup), 20
$F^*_r(G)$ (generalized Fitting subgroup), 19
Frob_{21} (Frobenius group of order 21), 255
$G(\alpha, \beta)$ (setwise stabilizer), 445
$G_2(2)$-block, 135
$G_2(3)$-type, 417
G_A (pointwise stabilizer of A), 311
$G^{(n)}$, 311
$H^1(G, V)$ (for module extensions), 408
$I(X)$ (involutions), 431
$Irr(X, V)$ (irreducible submodules), 31
$Irr_1(X, V)$ (irreducible modulo trivial), 31
$Irr_2(X, V, Y)$, 31
$J(G, V)$ (generated by offensives), 68
$J(M)$ (radical of a module), 343
$J(X)$ (Thompson subgroup), 74
$J^i(M)$ (iterated radical of a module), 343
$J_J(X)$ (higher Thompson subgroup), 74
$J_P(H)$, 70
L-balance, 414
$L_2(2^n)$-block, 124
$L_n(2)$-block, 135
$L_{2'}(H)$ (2-layer), 414
$M(\lambda)$ (basic irreducible for Lie type group), 386
$O_{2,4}(U)$, 491
$O_{2,4}(U)$, 491
$O_{2,4}(U)$, 491
$PG(V)$ (projective space of V), 327
$Q^m_8 D^g_8$ (extraspecial group), 228
Q^m_8 (extraspecial group), 228
$R_2(G)$ (maximal 2-reduced), 78
$S(\gamma_1, \gamma)$, 324
$SL_3(2^n)$-block, 135
$Sp_6(4)$-block, 135
TI-set, 21
$U(L)$ (internal module in a block), 123
$U(3)-$block, 123
$V(H)$ (for use with \sim in final chapter), 61
$V(Y)$, 59
$V(Y, R)$, 59
$W(X)$, 210
$W(X, \Omega)$, 210
$W_1(X, V)$ (higher weak closure), 233
Y-amalgam (amalgam of subgroups), 267
$\Gamma(\gamma)$ (amalgam (amalgam of subgroups), 267
$\Gamma(\gamma)$ (i.e., $\Gamma(\gamma)$), 311
$\Gamma(\gamma)$, 311
$\Gamma^{<1}(\gamma)$, 311
$\Gamma^{\leq 1}(\gamma)$, 311
$\Gamma_{k, p}(H)$, 294
$\Omega^{(2^n)}_m(2^n)$-block, 135
$\Theta(H)$, 350
$\Xi(G, T)$, 508
$\Xi(G, T)$ (solvable uniqueness groups), 509
$\Xi_1(G, T)$, 584
$\Xi_*(G, T)$, 866
$\Xi_1(G, T)$, 584
$\Xi_f(G, T)$, 514
$\Xi_f(G, T)$, 514
$\Xi_p(L)$, 509
$\Xi_{rad}(G, T)$, 509
$\Xi_{rad}(G, T)$, 512
α (module parameter for $(F - 1)$-offenders), 698
β (module parameter for odd action), 698
$\Gamma_{k, p}(H)$ (corank-k generated core), 237
χ (block types for pushing up), 124
χ-block, 124
χ_0 (block types for SQT pushing up), 124
χ_0-block, 124
A_6 (triple cover), 43
A_8-block, 129
A_7 (triple cover), 43
M_{22} (triple cover), 43

471
\[\hat{q}(G, V) \] (cubic module parameter), 85
\[\hat{Q}(G, V) \] (cubic and \(\hat{Q}_*(G, V) \)), 178
\[T^*(G, V) \] (module parameter), 231
\[\lambda_i \] (fundamental max par), 386
\[\{ \ldots \} \] (subspace spanned by), 197
\[\approx \] (ordering on \(H(T) \) and \(M(T) \)), 61
\[\approx \] (ordering on \(F^* \)-offenders), 68
\[\pi(X) \] (primes dividing), 20
Baum(H) (Baumann subgroup), 75
\[\tau(G, T, A) \] (209)
\[\theta(G) \] (for any odd prime), 556
\[\theta(H) \] (generated by elements of order 3), 51
\[a(X, W) \] (module parameter), 232
\[b(T, V) \] (313)
\[c(p) \] (347)
e(G) (maximum 2-local \(p \)-rank), 4, 482
e(S) (set as vector in permutation module), 83
gp(a) (universal completion), 265
\[m(X, W) \] (module parameter), 231
\[m_p(M) \] (2-rank), 4
\[m_{p,p}(G, V) \] (26)
\[n'(X) \] (239)
n(G) (210)
p-rank, 4, 482
\[p^{1+2} \] (extraspecial of exponent \(p \)), 25
\[q(G, V) \] (quadratic module parameter), 67
\[q^{1+2w} \] (special group of this order), 262
\[qrc \text{-lemma}, \text{177} \]
\[r(G, V) \] (weak closure parameter), 231
\[r_{A, V}(G, V) \] (action ratio parameter), 67
\[s(G, V) \] (weak closure parameter), 232
\[w \text{-offender} \] (weak closure), 236
\[w(G, V) \] (236)
\[A(X) \] (maximal rank elementary), 74
\[A_2(G) \] (elementary 2-subgroups), 67
\[A_j(H) \] (corank \(j \) in maximal), 74
\[A_k(X, W) \] (for \(a \)-parameter), 232
\[B_2(G) \] (2-radical subgroups), 121
\[c \text{-component} \] (8, 41)
\[C(G) \] (C-components), 41
\[\mathcal{E_i} \] (210)
\[\mathcal{E}(G, T, A) \] (209)
\[\mathcal{E_i}(G, T, A) \] (210)
\[H(S) \] (126)
\[H \] ("partial" 2-locals), 500
\[H(X) \] (500)
\[H(X, Y) \] (500)
\[H^c \] (499)
\[H^c(X) \] (500)
\[H^c(X, Y) \] (500)
\[H_*(T, M) \] (571)
\[H^G \] (499)
\[H_G(T) \] (61)
\[K \] (known simple groups), 4, 482
\[K \text{-group} \] (4, 482)
\[L(G, T) \] (507)
\[L(H, S) \] (505)
\[L^*(H, S) \] (505)
\[L^f(G, T) \] (507)
\[L^f(T, A) \] (507)
\[M \] (maximal 2-locals), 499
\[M(X) \] (499)
\[P(G, V) \] (FF*-offenders), 68
\[P^*(G, V) \] (68)
\[P_G \] (FF-offenders), 76
\[P_{R,G} \] (77)
\[Q(G, V) \] (\(q \leq 2 \) offenders), 178
\[Q^\circ(G, V) \] (2-reduced subgroups), 77
\[S_2(G) \] (2-subgroups), 121
\[S^2(G) \] (500)
\[U(X) \] (112)
\[X \] (set including \(\mathcal{L} \) and \(\Xi \)), 58
\[X_f \] (59)
\[(CPU) \] pushing up hypothesis, 122
\[(E) \] even characteristic hypothesis, 4, 482
\[(F-1) \text{-module} \] (68)
\[(F-1) \text{-offender} \] (68)
\[(F-2) \text{-module} \] (256)
\[(K) \] inductive “known” hypothesis, 4, 482
\[(PU) \] pushing up hypothesis, 122
\[(QT) \] quasi thin hypothesis, 4, 482
\[(SQT) \] strongly quasithin, 32
\[(SQT) \] strongly quasithin \(K \)-group, 33
\[\mathcal{I}_M(X, 2) \] (invariant 2-subgroups), 56
\[2 \text{-component} \] (414)
\[2 \text{-layer} \] (414)
\[2 \text{-local} \text{-rank} \] (26)
\[2 \text{-radical} \] (121)
\[2 \text{-reduced} \] (77, 491)
\[2 \text{-signalizers} \] (56)
\[2 \text{-stubborn} \] (121)
\[2 \text{-F-modules} \] (10)
\[5 \text{-dimensional module for } A_6 \] (885)

\[\text{AXB Lemma (Thompson), 24} \]
\[\text{almost special (group), 333} \]
\[\text{almost-extraspecial 2-group, 357} \]
\[\text{Alperin, J., 416, 518} \]
\[\text{Alperin-Brauer-Gorenstein Theorem (semidihedral and wreathed Sylow 2-subgroups), 416} \]
\[\text{Alperin-Goldschmidt conjugation family, 518} \]
\[\text{Alperin-Goldschmidt Fusion Theorem, 519} \]
\[\text{amalgam, 14} \]
\[\text{amalgam (rank-2), 260} \]
\[\text{amalgam method, 6, 311} \]
\[\text{amalgam, subgroup, 260} \]
\[\text{Andersen, H., 329} \]
\[\text{apartment (of a rank-2 amalgam), 274} \]
\[\text{Aschbacher block, 123} \]
Aschbacher Local $C(G, T)$-Theorem, 121
Aschbacher, M., 10, 209, 231, 429, 486
automorphism group of an amalgam, 260
axis (of a transvection), 23
b (amalgam parameter), 313
Background References, 3
backtracks, path without, 270
Baer-Suzuki Theorem, 20
balance, 414
base (for uniqueness system), 658
basic irreducible module $M(\lambda_1)$ (Lie type group), 386
Baumann subgroup (Baum(H)), 75
Baumann’s Argument, 7, 9, 80
Baumann’s Lemma, 9, 117
Baumann, B., 9, 80, 117, 176
Baumeister, B., 418
Bender groups (rank-1 Lie type), 487
Bender, H., 415, 429, 484, 518
Bender-Glauberman revision of Feit-Thompson, 15
Bender-Suzuki Theorem (strongly embedded subgroups), 15
Bennett, C., 279
Blackburn, N., 15
block, 10, 123
BN-pair, 283
Borel-Tits Theorem, 414
Brauer trick, 431
Brauer, R., 416, 417
Brauer-Suzuki Theorem, 429, 435
Brauer-Suzuki-Wall Theorem, 415
building, Tits, 283
Burnside’s Fusion Lemma, 30
Burnside’s Lemma, 30

C(G,T)-Theorem, 134
Campbell, N., 10, 126
Cartan subgroup of L_0 or of $H \in \mathcal{H}_s(T, M)$, 740
Carter, R., 48
center (of a transvection), 23
central extension (of a group), 407
CFSG (Classification), 3, 483
characteristic p-type, 484
characteristic 2-type, 4
characteristic of a group (abstract notions of), 3, 481
Classification (of the Finite Simple Groups), 3, 483
Clifford’s Theorem, 31
cocode module (for M_{22}), 395
cocode module (for M_{24}, M_{23}), 395
code module (for M_{22}), 395
code module (for M_{24}, M_{23}), 395
cohomology of small modules for STK-groups, 408
commuting graph, 487
completion (of an amalgam), 14, 261
component, 483
congruation family, 518
Conway, J., 396, 431, 712
Cooperstein, B., 86, 451
CoPrime Action (various results), 24
core (of a permutation module), 83
coset complex, 14, 269
coset geometry, 269
covering (of a group), 407
covering (of a module), 408
covering group, 407
dual covering, dual (of a module), 408
CPU (pushing up hypothesis), 122
critical subgroup, 24
cubic (action on a module), 85
Cyclic Sylow 2-Subgroups (transfer), 31
Dedekind Modular Law, 19
definition over (Lie type group), 38
Delgado, A., 6, 487
Dickson’s Theorem (on subgroups of $L_2(q)$), 20
Dickson, L., 20
disconnected (at the prime 2), 487
doubly singular (line in G_2-geometry), 889
dual covering (of a module), 408
E (even characteristic hypothesis), 4, 482
elevation (of a point-line geometry), 283
equivalence (of completions), 265
even characteristic, 3, 499
even type, 1170
Even Type Theorem, 1203
elementary, 484
A_5, 518, 520
A_6, 1165
A_8, 799, 807, 1078
A_9, 799, 807, 1078
$G_2(2')$, 988, 989, 1042, 1086, 1120, 1165
$G_2(2^m)$, $m \geq 1$, 649, 653, 659, 691, 1078
$G_2(3)$, 1007, 1008, 1012, 1078
HS, 1001, 1005, 1012, 1078
He, 838, 842, 1078
J_2, 982, 986, 1042, 1086, 1120, 1165
J_3, 982, 986, 1042, 1086, 1120, 1165
J_4, 695, 723, 1078
$L_2(2^m)$, 518, 520
$L_2(p)$, p Fermat or Mersenne, 518, 527, 543
$L_3(2)$, 1165
$L_3(2^m)$, $m \geq 1$, 649, 653, 659, 691, 1078
$L_3(3)$, 518, 527, 543
$L_4(2)$, 799, 807, 1078
$L_4(3)$, 918, 922, 926, 1078
$L_5(2)$, 799, 807, 857, 1078
M_{11}, 518, 527, 543
M_{12}, 988, 989, 1042, 1086, 1120, 1165
M_{22}, 686, 688, 691, 1078
INDEX

M_{23}, 649, 653, 657, 691, 1078
M_{24}, 799, 807, 838, 843, 844, 857, 1078
Ru, 1077, 1078
S_{p}(2^k), 1165
S_{p}(2^n), n > 1, 649, 653, 659, 691, 1078
S_{p}(2), 896, 905, 946, 1078
S_{2}(2), 518, 520
U_{5}(2^k), 518, 520
U_{5}(2^n), 988, 989, 1042, 1086, 1120, 1165
U_{4}(2), 918, 922, 926, 1078
U_{4}(2^n), n > 1, 649, 653, 659, 691, 1078
U_{4}(3), 918, 921, 946, 1078
U_{5}(4), 649, 653, 659, 691, 1078
2F_{4}(2), 988, 989, 1042, 1086, 1120, 1165
2F_{4}(2^k), n > 1, 649, 653, 659, 691, 1078
3D_{4}(2), 982, 987, 1042, 1086, 1120, 1165
3D_{4}(2^n), n > 1, 649, 653, 659, 691, 1078
example (QTKE-group in Main Theorem),
484
exceptional A_{7}-block, 129
Expository References, 15
extension (of a generalized Lie amalgam),
274
extension of an amalgam, 262
extension, central (of a group), 407
extraspecial p-group p^{1+2} of exponent p, 25
extraspecial 2-group (notation), 228
extremal, 294
extremal (conjugate), 548
F-1-offender, 68
failure of factorization module, 68
failure of Thompson factorization, 78
faithful (completion of an amalgam), 14
faithful completion (of an amalgam), 261
Fan, P., 16, 262, 263, 494
Feit, W., 428
Feit-Thompson Theorem (Odd Order Paper),
15
FF*-offender, 68
strong, 68
FF-module, 8, 68
FF-module, strong, 68
FF-offender, 76
strong, 76
field of definition of Lie type group, 38
First Main Problem, 492
Fitting subgroup F(G), 20
Fong, P., 16, 417
Fong-Seitz Theorem (split BN-pairs of rank
2), 16, 282, 629
Frattini Argument, 19
Frohardt, D., 418
FSU, 579
Fundamental Setup (FSU), 579
Fundamental Weak Closure Inequality (FWCI),
237
fundamental weight \lambda_i (of Lie type group),
386
FWCI (Fundamental Weak Closure Inequality), 237
Gaschütz’s Theorem, 31
generalized m-gon, 270
generalized Fitting subgroup F*(G), 19
generalized Lie amalgam, 273
generalized Lie group, 273
generalized polygon, 270
Generalized Thompson Transfer, 31
Generation by Centralizers of Hyperplanes,
24
Generic Case, 629
geodesic (in a coset geometry), 270
Glauberman’s Argument, 7, 10, 127
Glauberman’s form of Solvable Thompson
Factorization, 79
Glauberman, G., 10, 70, 78, 126, 127, 487
Glauberman-Niles/Campbell Theorem, 10,
16, 126, 487, 1158
GLS (Gorenstein, Lyons, and Solomon), 4
Goldschmidt amalgam, 304
Goldschmidt triple, 304
Goldschmidt’s Fusion Theorem, 518, 519
Goldschmidt, D., 6, 16, 262, 263, 304, 487,
494, 518, 520
Goldschmidt-O’Nan pair, 520
Gomi, K., 487
Gorenstein, D., xiii, 4, 416, 482
Gorenstein-Walter Theorem (dihedral Sylow
2-subgroups), 415
Green Book (Delgado-Goldschmidt-Stellmacher),
259
Grodal, J., 414
Guralnick, R., xiii, 12, 16, 86, 451
Hall subgroups, 19
Hall’s Theorem (on solvable groups), 19
Hall, M., 418
Hall, P., 19
hexad (of Steiner system), 396
higher Thompson subgroup (J_{j}(H)), 9, 74
Higman, G., 327, 418
Ho, C.-Y., xiv
Huppert, B., 15
indecomposable (for discussion of \bar{q}), 187
internal module, 74
intersections, notational convention for, 41
James, G., 16, 348, 393
Janko, Z., 4, 417, 418, 482, 486
Jansen, C., 346
Jones, W., 16, 91, 408
Jorgensen, J., 329
K (inductive “known” hypothesis), 4, 482
INDEX

Kantor, W., 339
ker_A(B), 113
Krull-Schmidt Theorem, 23
Ku, C., 686
L-balance, 414
Landrock, P., 329
large (faithful completion of an amalgam), 278
large extraspecial 2-subgroup, 13
layer, 414
Lie amalgam, 263, 273
Lie-type groups, representation theory of, 386
Lie-type groups, structure of, 38
LIST (of Schur multipliers), 38
Local C(G,T)-Theorem, 134
locally isomorphic (amalgams), 262
Lux, K., 346
Lyons, R., xiii, 4, 482
Main Hypothesis., 4, 482
Main Theorem, 4, 482
Malle, G., xiii, 12, 16, 86, 451
Maschke’s Theorem, 31
Mason, G., 86, 231, 242, 257, 451, 486
Mason, G. (preprint on quasithin groups), 3, 481
McClurg, P., 86
McKay, J., 418
McLaughlin, J., 338, 362, 364
Meierfrankenfeld, U., xiii, 6, 9, 171, 311, 630
Meierfrankenfeld-Stellmacher Theorem (rank-2 pushing up), 11, 16, 121, 135
minimal parabolic (abstract), 5, 112
minimal representation dimensions, 348, 356
Mitchell, H., 55
Modular Law, 19
morphism (of amalgams), 260
Moufang condition (for generalized m-gon), 283
Moufang generalized polygon, 14
MS-group (rank 2 pushing up), 135
MS-pair, 135
multipliers of quasithin K-groups, 407
multipliers of SQTK-groups, 407
natural module for S_n, 83
natural module for dihedral group, 424
Niles, R., 10, 126
O’Nan, M., 520
obstructions (to pushing up), 122
octad (of Steiner system), 396
Odd Order Theorem (Feit-Thompson), 15
odd transpositions, 339
offender, 68
(F – 1), 68
w (weak closure), 236
FF, 76

strong, 76
FF*, 68
strong, 68
for \(q \) or \(q' \leq 2, 12 \)
opposite (at maximal distance in building), 446
parabolic isomorphic (amalgams), 262
parabolic, minimal (abstract), 112
parabolics in Lie-type groups, structure of, 38
Parker, R., 346
Parrott, D., 418, 431
Parshall, B., 16, 91, 408
partition (of a vector space), 1072
path (in a coset geometry), 270
path without backtracks, 270
pointwise stabilizer, 311
polar space (for Sp_4(2)), 420
product-disconnected, 429
projective module, 408
PU (pushing up hypothesis), 122
pushing up, 5, 122
rank 2 (Meierfrankenfeld-Stellmacher), 135
qrc-lemma, 177
QT (quasithin hypothesis), 4, 482
QTKE-group, 4, 482
quadratic (action on a module), 67
quasiequivalence (of completions), 266
quasiequivalence of modules (conjugacy in \(Out(G) \)), 111
quasithin, 4, 32
quasithin, strongly, 32
quintet (of Steiner system), 396
radical (\(J(M) \), of a module \(M \)), 343
radical (2-radical) subgroup, 11, 121
rank 2 amalgam, 260
rank-2 pushing up (Meierfrankenfeld-Stellmacher), 135
recognition theorems, 6
reduced (2-reduced), 77
regular (transitive) permutation action, 22
representation (of a group or amalgam, in a category), 265
residually connected (geometry), 419
residue (of a vertex), 419
Ronan, M., 818
root group (in Lie type group), 88
Rudvalis rank 3 group, 445
Rudvalis, A., 431
Schreier property, 46
Schur multiplier, 407
Schur multipliers of quasithin K-groups, 407
Schur multipliers of SQTK-groups, 407
Schur’s Lemma, 31
Scott, L., 17, 197
shadow, 484
A_5 wr Z_2, 1138
A_{10}, 969, 1120, 1135
Aut(G_2(3)), 1008
Aut(HS), 1005
Aut(He), 1120, 1135, 1148, 1151
Aut(L) for L a Bender group, 521
Aut(L_2(2^n)), 1184
Aut(L_4(2)), 1120, 1148
Aut(L_4(2^n)), n > 1, 731
Aut(L_6(3)), 922
Aut(L_6(2)), 1120, 1148, 1151
Aut(L_6(2^n)), n > 1, 731
Aut(L_6(2)), 724, 725
Aut(L_7(2)), 724, 725
Aut(U_4(2)), 922
Aut(U_4(3)), 921, 995
CO_1, 719
CO_2, 721, 723
CO_3, 857
F_3 (Thompson group), 857
F_5 (Harada-Norton group), 495, 1009
F_2^4, 822
G with V not an FF-module, 696
L wr Z_2 for L of rank 2 over F_2, 1120, 1135
L_2(2^n) wr Z_2, 521
L_2(p) wr Z_2, 560
L_3(2) wr Z_2, 1138
L_4(2^n), n > 1, 489, 759, 760, 770, 773–775
McL, 807, 808
O_{10}^+(2), 822
O_{12}^+(2), 817
PSL_2(2^n), 822
PSL_2(p) wr Z_2, 566
S_5 wr Z_2, 1120
S_7, 1184
S_9, 1120, 1138
S_{10}, 1189, 1192
Sp_6(2^n), n > 1, 759, 760, 770, 775, 778
Sp_8(2), 822
Sp_{10}(2), 817
Sz(2^n) wr Z_2, 521
U_6(2), 721, 723
U_6(2^n), n > 1, 716
U_7(2), 720
U_7(2^n), n > 1, 716
Omega(3), 809
Omega(2^n), n > 1, 759, 760
Omega(3), 807
Omega(2), 822, 823, 831
Omega(2), 1010
Omega_1^+(2), 817
Omega_2^+(2), 817
Z_2/L_3(2^n), 529, 532
Z_2/Sp_4(2^n), 529, 532
Z_2/Omega_6^+(2^n), n > 1, 759, 760, 775, 778
Z_3/Omega_6^+(2), 586, 595, 599
Conway groups, 494
extensions of L_4(3), 544, 547, 550, 558, 560, 565
Fischer groups, 494, 711–713
rank 2 groups, certain, 517
shadow (configuration "close" to Main Theorem), 484
short (group), 123
Shpectorov, S., 279
Shult’s Fusion Theorem, 430, 518
Shult, E., 429, 518
Sims, C., 6, 10, 486
Sin, P., xiv
small (faithful completion of an amalgam), 278
small dimensional representations, 348, 356
Smith, F., 486
Smith, S., 13, 818
Solomon, R., xiii, 4, 416, 482
Solvable Thompson Factorization, 70, 79
split BN-pair of rank 2, 283
split BN-pairs of rank 2, 16
SQT, 32
SQT, 33
SQTG, 7, 33
stable (subset of offenders P(G, V)), 70
standard form, 1177
Standard Notation (for G, T), 499
standard subgroup of G, 1177
Steinberg module, 453
Steinberg relations (for Lie-type group), 356
Steiner system (for Mathieu groups), 396
Stellmacher, B., 6, 171, 311, 487
Stellmacher-Meierfrankenfeld qrc-lemma, 177
Stellmacher, B., 9
strong FF* -offender, 68
strong FF-module, 68
strong FF-offender, 76
strongly closed, 518
strongly embedded (subgroup), 428
strongly quasithin, 4, 32
Stroth, G., 87, 311
structure of Lie-type groups, 38
structure of parabolics in Lie-type groups, 38
stubborn (2-stubborn), 121
subgroup amalgam, 14, 260
supercritical subgroup, 24
Supercritical Subgroups Lemma, 24
Suzuki 2-group, 532
Suzuki type a_i, 218
Suzuki type b_i, 218

INDEX
INDEX

477

Suzuki type c_t, 218
Suzuki type (of suitable involutions), 218
Suzuki, M., 164, 291, 296, 298, 415, 417, 427, 429, 569, 1072, 1180, 1184
symmetry (between γ_1 and γ), 317, 322, 324
symplectic type (p-group), 1016

Tanaka, Y., 487
tetrad (of Steiner system), 396
Theorem A, 33
Theorem B, 33
Theorem C, 33
Theorem D, 1078
Theorem E, 1165
thin (group), 4
Thompson $A \times B$ Lemma, 24
Thompson amalgam strategy, 487
Thompson factorization, 5, 78
Thompson Factorization for Solvable Groups, 79
Thompson Factorization Lemma, 78
Thompson Order Formula, 64
Thompson Replacement Lemma, 68
Thompson strategy, 487
Thompson subgroup, 74
higher ($J(H)$), 74
usual ($J(H)$), 74
Thompson subgroup ($J(X)$), 8
Thompson Transfer (Lemma), 30
Thompson’s Dihedral Lemma, 20
Thompson, J., xiv, 231, 428
Three-Subgroup Lemma, 20
TI-set, 21
tightly embedded (subgroup), 425
Timmesfeld, F., 13, 364, 425, 494, 852
Tits amalgam, 281
Tits building, 283
Tits group $^2F_4(2)'$, 495
Tits system, 283
Tits, J., 16, 273, 274, 419
Tits-Weiss Theorem (Moufang buildings), 14, 16, 275, 282, 629
Todd module (for M_{22}), 395
Todd module (for M_{24}, M_{23}), 395
Todd, J., 396, 712
transvection, 23
triangulable (uniqueness system), 658
trio (of Steiner system), 396
Tutte, W., 6, 486
Tutte-Sims graph methods, 6, 304, 311, 486, 487
type $H(2, \Omega_4^- (2))$, 418
type a_2 of involution, 218
type b_1 of involution, 218
type c_0 of involution, 218
type $G_2(3)$, 417
type HS, 418
type J_1, 418
type J_2, 418
type J_3, 418
type j_k (of involution in linear/unitary group), 1170
type Ru, 431
type $U_3(3)$, 417
type (of a block), 124
uniqueness subgroup, 499
uniqueness system, 657
universal completion, 14
universal completion (of an amalgam), 261, 265
universal covering (of a group), 407
universal covering (of a module), 408
universal covering group, 407
universal dual covering (of a module), 408
w-offender (weak closure), 236
Wales, D., 418, 431
Wall, G. E., 415
Walter, J., 415
weak BN-pair of rank 2, 261
weak closure $W(X, \Omega)$ of Ω in X, 210
weak closure methods, 6
weak closure methods, basics of, 232
weakly closed, 22
weight λ_i, fundamental (of Lie type group), 386
weight (of vector in permutation module), 83, 395
weight theory for Lie-type representations, 386
Weiss, R., 16, 282
Weyl group (of an amalgam), 274
Wilson, R., 346
Wong, S. K., 416, 418
Wong, W., 416, 417
Yoshiara, S., 38
Zassenhaus groups, 415
Zsigmondy prime divisor, 22
Zsigmondy’s Theorem, 22
Zsigmondy, K., 16, 22, 640, 731
Titles in This Series

112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004
111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Laba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second edition, 2004
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001
84 László Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001
83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 Goro Shimura, Arithmetical in the theory of automorphic forms, 2000
81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
TITLES IN THIS SERIES

80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000
74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000
72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999
64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998
61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998
59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998
57 Marc Levine, Mixed motives, 1998
56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998
55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998
54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997
53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997
52 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Around 1980, G. Mason announced the classification of a certain subclass of an important class of finite simple groups known as “quasithin groups”. The classification of the finite simple groups depends upon a proof that there are no unexpected groups in this subclass. Unfortunately Mason neither completed nor published his work. In the Main Theorem of this two-part book (Volumes 111 and 112 of the AMS Mathematical Surveys and Monographs series) the authors provide a proof of a stronger theorem classifying a larger class of groups, which is independent of Mason’s arguments. In particular, this allows the authors to close this last remaining gap in the proof of the classification of all finite simple groups.

An important corollary of the Main Theorem provides a bridge to the program of Gorenstein, Lyons, and Solomon (AMS Mathematical Surveys and Monographs, Volume 40) which seeks to give a new, simplified proof of the classification of the finite simple groups.

Part II of the work (Volume 112) contains the proof of the Main Theorem, and the proof of the corollary classifying quasithin groups of even type.

Part I (the current volume) contains results which are used in the proof of the Main Theorem. Some of the results are known and fairly general, but their proofs are scattered throughout the literature; others are more specialized and are proved here for the first time.