Fourier Analysis in Convex Geometry

Alexander Koldobsky
For additional information and updates on this book, visit www.ams.org/bookpages/surv-116

Library of Congress Cataloging-in-Publication Data
Koldobsky, Alexander, 1955–
Fourier analysis in convex geometry / Alexander Koldobsky.
p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 116)
Includes bibliographical references and index.
QA640.K65 2005
516'.08—dc22 2005041147

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2005 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.
∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 10 09 08 07 06 05
To my teachers, Evgeniy Alekseevich Gorin and Aleksandr Isaakovich Plotkin

Contents

Chapter 1. Introduction... 1

Chapter 2. Basic Concepts.. 13
 2.1. Star bodies.. 13
 2.2. Convex bodies.. 16
 2.3. Radon transforms.. 27
 2.4. The Gamma-function... 30
 2.5. The Fourier transform of distributions................................. 33
 2.6. Fractional derivatives... 39
 2.7. Positive definite distributions.. 40
 2.8. Stable random variables and the function γ_q.................. 44

Chapter 3. Volume and the Fourier Transform................................. 49
 3.1. The first examples: hyperplane sections of ℓ_q-balls.............. 49
 3.2. A general formula for the volume of hyperplane sections........... 53
 3.3. The parallel section function and the Fourier transform............. 55
 3.4. Parseval’s formula on the sphere.. 62
 3.5. Remarks and further results.. 69

Chapter 4. Intersection Bodies... 71
 4.1. A Fourier analytic characterization....................................... 71
 4.2. k-intersection bodies.. 75
 4.3. L_p-balls as k-intersection bodies..................................... 80
 4.4. The second derivative test.. 85
 4.5. Remarks and further results.. 91

Chapter 5. The Busemann-Petty Problem.. 95
 5.1. A Fourier analytic solution... 95
 5.2. How can one make the answer affirmative?............................... 98
 5.3. The affirmative part via spherical harmonics........................... 100
 5.4. Zvavitch’s generalization to arbitrary measures....................... 105
 5.5. Remarks and further results.. 110

Chapter 6. Intersection Bodies and L_p-Spaces.............................. 115
 6.1. L_p-spaces and positive definite functions............................. 115
 6.2. Schoenberg’s problems on positive definite functions................. 121
 6.3. Intersection bodies and embeddings in L_p, $p < 0$.................. 126
 6.4. Remarks and further results.. 139

Chapter 7. Extremal Sections of ℓ_q-Balls.................................... 143
 7.1. The case of the cube, K. Ball’s theorem................................ 143
Contents

7.2. The case $0 < q \leq 2$ 147
7.3. Remarks and further results 149

Chapter 8. Projections and the Fourier Transform 151
8.1. A formula for the volume of hyperplane projections 151
8.2. Extremal hyperplane projections of ℓ_q-balls 152
8.3. Projection bodies 155
8.4. The Shephard problem 157
8.5. Remarks and further results 161

Bibliography 163

Index 169
BIBLIOGRAPHY

[H1] D. Hensley, Slicing the cube in R^n and probability (bounds for the measure of a central cube slice by probability methods), Proc. Amer. Math. Soc. 73 (1979), 95–100.

BIBLIOGRAPHY

[Mi] E. Milman, private communication.

Index

\((X \otimes Y)_q \), \(q \) -sum of normed spaces, 89
\(A_K, \xi \), parallel section function, 15
\(B^n, \) unit ball of \(\ell^n_\infty \), 49
\(B^n_q, \) unit ball of \(\ell^n_q \), 2
\(C^k(S^{n-1}) \), 14
\(G(n,m) \), Grassmanian, 28
\(K \)-isotropic measure, 115
\(K + L \), Minkowski sum, 14
\(K + p L \), \(p \)-sum of bodies, 14
\(K^* \), polar body of \(K \), 24
\(L_K \), isotropic constant of \(K \), 21
\(L_{-p} \), 126
\(Q_n \), unit cube in \(\mathbb{R}^n \), 1
\(R \), spherical Radon transform, 27
\(S(K,) \), surface area measure, 24
\(V_2(K,L) \), mixed volume, 23
\(\Delta \), Laplace operator, 59
\(\Gamma \), Gamma-function, 30
\(\Im z \), imaginary part of \(z \), 36
\(\Phi(K) \), 139
\(\Pi K \), projection body of \(K \), 155
\(\Re z \), real part of \(z \), 36
\(\chi \), indicator function of \([-1,1] \), 15
\(\delta \)-sequence, 41
\(\gamma_q, 2, 44 \)
\(\mu_K \), 64
\(\mu_e \), extended measure, 151
\(\rho(K,L) \), radial metric, 14
\(\rho_K \), radial function, 13
\(\text{Vol}_m \), \(m \)-dimensional volume, 1
\(\xi^\perp \), central hyperplane, 2
\(f_K \), curvature function of \(K \), 26
\(h(q) \), fractional derivative of order \(q \), 39
\(h_K \), support function of \(K \), 24
\(k \)-intersection body, 77
\(k \)-intersection body of a star body, 75
\(k \)-smooth body, 14
\(l^q_M \), Orlicz space, 90
\(p \)-sum of bodies, 14
\(q \)-sum of normed spaces, 89
\(E \), expectation, 45
\(F \), Fourier transform, 33
\(\mathcal{R} \), Radon transform, 27
\(S' \), space of distributions, 34
\(S(\mathbb{R}^n) \), space of test functions, 33
analytic family of distributions, 36
Ball’s integral inequality, 145
Banach-Mazur distance, 128
Bernstein’s theorem, 44
Beta-function, 31
Bochner’s theorem, 116
BPGM problem, 106
Brunn’s theorem, 18
Brunn-Minkowski inequality, 16
Busemann’s theorem, 21
Busemann-Petty problem, 95
Cauchy projection formula, 25
characteristic functional, 45
completely monotonic function, 44
cvx body, 16
curvature function, 26
delta-sequence, 41
distribution function, 144
embedding in \(L_{-p} \), 126
Euler integral, 31
expectation, 45
extended measure, 151
first Minkowski inequality, 23
Fourier transform of a distribution, 35
fractional derivative, 39
Funk-Hecke formula, 101
Gamma-function, \(\Gamma \)-function, 30
generalized \(k \)-intersection body, 92
Grassmanian, 28
homogeneous distribution, 35
infinitely smooth body, 14
intersection body, 71
intersection body of a star body, 71
isotropic constant, 21
isotropic position, 21
John’s theorem, 138
joint distribution, 117

Komlos’s theorem, 133

Laplace transform, 44
Levy representation, 117

Minkowski existence theorem, 24
Minkowski functional, 13
Minkowski sum, 14
Minkowski uniqueness theorem, 55
mixed volume, 23
multiplicator, 34

negative distribution, 41

Orlicz function, 90
Orlicz space, 90

parallel section function, 15
Parseval’s formula, 34
Parseval’s formula, spherical, 66
polar body, 24
polar formula for the volume, 15
positive definite distribution, 40
positive definite function, 115
positive distribution, 40
power growth at infinity, 34
probability distribution, 45
projection body, 155

radial function, 13
radial metric, 13
radial sum of bodies, 14
Radon transform, 27
random variable, 45
random variable, Gaussian, 46
random variable, positive q-stable, 46
random variable, symmetric q-stable, 46
regularization, 36

Schoenberg’s problem, 121
Schwartz’s theorem, 40
Shephard’s problem, 157
spherical harmonics, 100
spherical Radon transform, 27, 29
star body, 13
support function, 24
support of a distribution, 34
surface area measure, 24

tempered measure, 40
test function, 33
The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.

One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the \((n - 1)\)-dimensional volume of hyperplane sections of the \(n\)-dimensional unit cube (it is \(\sqrt{2}\) for each \(n \geq 2\)). Another is the Busemann-Petty problem: if \(K\) and \(L\) are two convex origin-symmetric \(n\)-dimensional bodies and the \((n - 1)\)-dimensional volume of each central hyperplane section of \(K\) is less than the \((n - 1)\)-dimensional volume of the corresponding section of \(L\), is it true that the \(n\)-dimensional volume of \(K\) is less than the volume of \(L\)? (The answer is positive for \(n \leq 4\) and negative for \(n > 4\).)

The book is suitable for all mathematicians interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.