# Polynomial Identities and Asymptotic Methods

### About this Title

**Antonio Giambruno**, *Universitá di Palermo, Palermo, Italy* and **Mikhail Zaicev**, *Moscow State University, Moscow, Russia*

Publication: Mathematical Surveys and Monographs

Publication Year
2005: Volume 122

ISBNs: 978-0-8218-3829-7 (print); 978-1-4704-1349-1 (online)

DOI: http://dx.doi.org/10.1090/surv/122

MathSciNet review: MR2176105

MSC: Primary 16R10; Secondary 16P90, 20C30

### Table of Contents

**Front/Back Matter**

**Chapters**

- 1. Polynomial identities and PI-algebras
- 2. $S_n$-representations
- 3. Group gradings and group actions
- 4. Codimension and colength growth
- 5. Matrix invariants and central polynomials
- 6. The PI-exponent of an algebra
- 7. Polynomial growth and low PI-exponent
- 8. Classifying minimal varieties
- 9. Computing the exponent of a polynomial
- 10. $G$-identities and $G \wr S_n$-action
- 11. Super algebras, *-algebras and codimension growth
- 12. Lie algebras and non-associative algebras