Fundamental Algebraic Geometry
Grothendieck's FGA Explained

Barbara Fantechi
Lothar Göttsche
Luc Illusie
Steven L. Kleiman
Nitin Nitsure
Angelo Vistoli

American Mathematical Society
Contents

Preface vii

Part 1. Grothendieck topologies, fibered categories and descent theory

ANGELO VISTOLI 1

Introduction 3

Chapter 1. Preliminary notions 7
 1.1. Algebraic geometry 7
 1.2. Category theory 10

Chapter 2. Contravariant functors 13
 2.1. Representable functors and the Yoneda Lemma 13
 2.2. Group objects 18
 2.3. Sheaves in Grothendieck topologies 25

Chapter 3. Fibered categories 41
 3.1. Fibered categories 41
 3.2. Examples of fibered categories 48
 3.3. Categories fibered in groupoids 52
 3.4. Functors and categories fibered in sets 53
 3.5. Equivalences of fibered categories 56
 3.6. Objects as fibered categories and the 2-Yoneda Lemma 59
 3.7. The functors of arrows of a fibered category 61
 3.8. Equivariant objects in fibered categories 63

Chapter 4. Stacks 67
 4.1. Descent of objects of fibered categories 67
 4.2. Descent theory for quasi-coherent sheaves 79
 4.3. Descent for morphisms of schemes 88
 4.4. Descent along torsors 99

Part 2. Construction of Hilbert and Quot schemes

NITIN NITSURE 105

Chapter 5. Construction of Hilbert and Quot schemes 107
 Introduction 107
 5.1. The Hilbert and Quot functors 108
 5.2. Castelnuovo–Mumford regularity 114
 5.3. Semi-continuity and base-change 118
5.4. Generic flatness and flattening stratification 122
5.5. Construction of Quot schemes 126
5.6. Some variants and applications 130

Part 3. Local properties and Hilbert schemes of points
Barbara Fantechi and Lothar Göttsche 139

Introduction 141

Chapter 6. Elementary Deformation Theory 143
6.1. Infinitesimal study of schemes 143
6.2. Pro-representable functors 148
6.3. Non-pro-representable functors 150
6.4. Examples of tangent–obstruction theories 152
6.5. More tangent-obstruction theories 157

Chapter 7. Hilbert Schemes of Points 159
Introduction 159
7.1. The symmetric power and the Hilbert–Chow morphism 160
7.2. Irreducibility and nonsingularity 166
7.3. Examples of Hilbert schemes 169
7.4. A stratification of the Hilbert schemes 170
7.5. The Betti numbers of the Hilbert schemes of points 173
7.6. The Heisenberg algebra 175

Part 4. Grothendieck’s existence theorem in formal geometry
with a letter of Jean-Pierre Serre
Luc Illusie 179

Chapter 8. Grothendieck’s existence theorem
in formal geometry 181
Introduction 181
8.1. Locally noetherian formal schemes 181
8.2. The comparison theorem 187
8.3. Cohomological flatness 196
8.4. The existence theorem 204
8.5. Applications to lifting problems 208
8.6. Serre’s examples 228
8.7. A letter of Serre 231

Part 5. The Picard scheme
Steven L. Kleiman 235

Chapter 9. The Picard scheme 237
9.1. Introduction 237
9.2. The several Picard functors 252
9.3. Relative effective divisors 257
9.4. The Picard scheme 262
9.5. The connected component of the identity 275
9.6. The torsion component of the identity 291
Appendix A. Answers to all the exercises 301
Appendix B. Basic intersection theory 313
Bibliography 323
Index 333
Preface

Without question, Alexander Grothendieck’s work revolutionized Algebraic Geometry. He introduced many concepts — arbitrary schemes, representable functors, relative geometry, and so on — which have turned out to be astoundingly powerful and productive.

Grothendieck sketched his new theories in a series of talks at the Séminaire Bourbaki between 1957 and 1962, and collected his write-ups in a volume entitled “Fondements de la géométrie algébrique,” commonly abbreviated FGA. In [FGA], he developed the following themes, which have become absolutely central:

- Descent theory,
- Hilbert schemes and Quot schemes,
- The formal existence theorem,
- The Picard scheme.

(FGA also includes a sketch of Grothendieck’s extension of Serre duality for coherent sheaves; this theme is already elaborated in a fair number of works, and is not elaborated in the present book.)

Much of FGA is now common knowledge. Some of FGA is less well known, and few geometers are familiar with its full scope. Yet, its theories are fundamental ingredients in most of Algebraic Geometry.

Mudumbai S. Narasimhan conceived the idea of a summer school at the International Centre for Theoretical Physics (ICTP) in Trieste, Italy, to teach these theories. But this school was to be different from most ICTP summer schools. Most focus on current research: important new results are explained, but their proofs are sketched or skipped. This school was to teach the techniques: the proofs too had to be developed in sufficient detail.

Narasimhan’s vision was realized July 7–18, 2003, as the “Advanced School in Basic Algebraic Geometry.” Its scientific directors were Lothar Göttsche of the ICTP, Conjeeveram S. Seshadri of the Chennai Mathematical Institute, India, and Angelo Vistoli of the Università di Bologna, Italy. The school offered the following courses:

1. Angelo Vistoli: Grothendieck topologies and descent, 10 hours.
2. Nitin Nitsure: Construction of Hilbert and Quot schemes, 6 hours.
3. Lothar Göttsche: Local properties of Hilbert schemes, and Hilbert schemes of points, 4 hours.
4. Luc Illusie: Grothendieck’s existence theorem in formal geometry, 5 hours.
5. Steven L. Kleiman: The Picard scheme, 6 hours.

The school addressed advanced graduate students primarily and beginning researchers secondarily; both groups participated enthusiastically. The ICTP’s administration was professional. Everyone had a memorable experience.
This book has five parts, which are expanded and corrected versions of notes handed out at the school. The book is not intended to replace [FGA]; indeed, nothing can ever replace a master’s own words, and reading Grothendieck is always enlightening. Rather, this book fills in Grothendieck’s outline. Furthermore, it introduces newer ideas whenever they promote understanding, and it draws connections to subsequent developments. For example, in the book, descent theory is written in the language of Grothendieck topologies, which Grothendieck introduced later. And the finiteness of the Hilbert scheme and of the Picard scheme, which are difficult basic results, are not proved using Chow coordinates, but using Castelnuovo–Mumford regularity, which is now a major tool in Algebraic Geometry and in Commutative Algebra.

This book is not meant to provide a quick and easy introduction. Rather, it contains demanding detailed treatments. Their reward is a far greater understanding of the material. The book’s main prerequisite is a thorough acquaintance with basic scheme theory as developed in the textbook [Har77].

This book’s contents are, in brief, as follows. Lengthier summaries are given in the introductions of the five parts.

Part 1 was written by Vistoli, and gives a fairly complete treatment of descent theory. Part 1 explains both the abstract aspects — fibered categories and stacks — and the most important concrete cases — descent of quasi-coherent sheaves and of schemes. Part 1 comprises Chapters 1–4.

Chapter 1 reviews some basic notions of category theory and of algebraic geometry. Chapter 2 introduces representable functors, Grothendieck topologies, and sheaves; these concepts are well known, and there are already several good treatments available, but the present treatment may be of greater appeal to a beginner, and can also serve as a warm-up to the more advanced theory that follows.

Chapter 3 is devoted to one basic notion, fibered category, which Grothendieck introduced in [SGA1]. The main example is the category of quasi-coherent sheaves over the category of schemes. Fibered categories provide the right abstract set-up for a discussion of descent theory. Although the general theory may be unnecessary for elementary applications, it is necessary for deeper comprehension and advanced applications.

Chapter 4 discusses stacks, fibered categories in which descent theory works. Chapter 4 treats, in full, the various ways of defining descent data, and it proves the main result of Part 1, which asserts that quasi-coherent sheaves form a stack.

Part 2 was written by Nitsure, and covers Grothendieck’s construction of Hilbert schemes and Quot schemes, following his Bourbaki talk [FGA, 221], together with further developments by David Mumford and by Allen Altman and Kleiman. Part 2 comprises Chapter 5.

Specifically, given a scheme X, Grothendieck solved the basic problem of constructing another scheme Hilb$_X$, called the Hilbert scheme of X, which parameterizes, in a suitable universal manner, all possible closed subschemes of X. More generally, given a coherent sheaf E on X, he constructed a scheme Quot$_{E/X}$, called the Quot scheme of E, which parameterizes, again in a suitable universal manner, all possible coherent quotients of E. These constructions are possible, in a relative set-up, where X is projective over a suitable base. The constructions make crucial use of several basic tools, including faithfully flat descent, flattening stratification, the semi-continuity complex, and Castelnuovo–Mumford regularity.
Part 3 was written jointly by Barbara Fantechi and Gött sche. It comprises Chapters 6 and 7.

Chapter 6 introduces the notion of an (infinitesimal) deformation functor, and gives several examples. Chapter 6 also defines a tangent-obstruction theory for such a functor, and explains how the theory yields an estimate on the dimension of the moduli space. The theory is worked out in some cases, and sketched in a few more, which are not needed in Chapter 7.

Chapter 7 studies the Hilbert scheme of points on a smooth quasi-projective variety, which parameterizes the finite subschemes of fixed length. The chapter constructs the Hilbert–Chow morphism, which maps this Hilbert scheme to the symmetric power by sending a subscheme to its support with multiplicities. For a surface, this morphism is a resolution of singularities. Finally, the chapter computes the Betti numbers of the Hilbert scheme, and sketches the action of the Heisenberg algebra on the cohomology.

Part 4 was written by Illusie, and revisits Grothendieck’s Bourbaki talk [FGA, 182], where he presented a fundamental comparison theorem of “GAGA” type between algebraic geometry and formal geometry, and outlined some applications to the theory of the fundamental group and to that of infinitesimal deformations. A detailed account appeared shortly afterward in [EGAIII1], [EGAIII2] and [SGA1]. Part 4 comprises Chapter 8.

After recalling basic facts on locally Noetherian formal schemes, Chapter 8 explains the key points in the proof of the main comparison theorem, and sketches some corollaries, including Zariski’s connectedness theorem and main theorem, and Grothendieck’s criterion for algebraization of a formal scheme. Then Chapter 8 gives Grothendieck’s applications to the fundamental group and to lifting vector bundles and smooth schemes, notably, curves and Abelian varieties. Chapter 8 ends with a discussion of Serre’s celebrated examples of varieties in positive characteristic that do not lift to characteristic zero.

Part 5 was written by Kleiman, and develops in detail most of the theory of the Picard scheme that Grothendieck sketched in the two Bourbaki talks [FGA, 232, 236] and in his commentaries on them [FGA, pp. C-07–C-011]. In addition, Part 5 reviews in brief, in a series of scattered remarks, much of the rest of the theory developed by Grothendieck and by others. Part 5 comprises Chapter 9.

Chapter 9 begins with an extensive historical introduction, which serves to motivate Grothendieck’s work on the Picard scheme by tracing the development of the ideas that led to it. The story is fascinating, and may be of independent interest.

Chapter 9 then discusses the four common relative Picard functors, which are successively more likely to be the functor of points of the Picard scheme. Next, Chapter 9 treats relative effective (Cartier) divisors and linear equivalence, two important preliminary notions. Then, Chapter 9 proves Grothendieck’s main theorem about the Picard scheme: it exists for any projective and flat scheme whose geometric fibers are integral.

Chapter 9 next studies the union of the connected components of the identity elements of the fibers of the Picard scheme. Then, Chapter 9 proves two deeper finiteness theorems: the first concerns the set of points with a multiple in this union; the second concerns the set of points representing invertible sheaves with a given Hilbert polynomial. Chapter 9 closes with two appendices: one contains detailed
answers to all the exercises; the other contains an elementary treatment of basic
divisorial intersection theory — this theory is used freely in the proofs of the two
finiteness theorems.
(Similarly, the isomorphism class of $\varphi^*\mathcal{O}(1)$ on X_C is independent of the choice of the isomorphism $\varphi: X_C \xrightarrow{\sim} \mathbf{P}_C^1$. So λ is independent too. But this fact too is not needed here.)

Finally, we must show λ is not in the image of $\text{Pic}(X/\mathbb{R})_{(zar)}(\mathbb{R})$. By way of contradiction, suppose λ is. Then λ arises from an invertible sheaf \mathcal{L} on X. A priori, the pullback $\mathcal{L}|X_C$ need not be isomorphic to $\varphi^*\mathcal{O}(1)$. Rather, these two invertible sheaves need only become isomorphic after they are pulled back to X_A where A is some étale \mathbb{C}-algebra.

However, cohomology commutes with flat base change. So

$$\dim_{\mathbb{R}}H^0(\mathcal{L}) = \text{rank}_A H^0(\mathcal{L}|X_A) = \dim_C H^0(\varphi^*\mathcal{O}(1)) = 2.$$

Hence, \mathcal{L} has a nonzero section. It defines an exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{L} \to \mathcal{O}_D \to 0.$$

Similarly $H^1(\mathcal{O}_X) = 0$. Hence $\dim_{\mathbb{R}} H^0(\mathcal{O}_D) = 1$. Therefore, D is an \mathbb{R}-point of X. But X has no \mathbb{R}-point. Thus λ is not in the image of $\text{Pic}(X/\mathbb{R})_{(zar)}(\mathbb{R})$. \square

Answer 9.2.6. First of all, we have $\text{Pic}(X/\mathbb{S})_{(fppf)}(k) = \text{Pic}(X_k/k)_{(fppf)}(k)$ essentially by definition, because a map $T' \to T$ of k-schemes is an fppf-covering if and only if it is an fppf-covering when viewed as a map of S-schemes. And a similar analysis applies to the other three functors. Now, $f_k: X_k \to k$ has a section; indeed, f_k is of finite type and k is algebraically closed, and so any closed point of X has residue field k by the Hilbert Nullstellensatz. Hence, by Part 2 of Theorem 9.2.5, the k-points of all four functors are the same. Finally, $\text{Pic}(X/\mathbb{S})(k) = \text{Pic}(X_k)$ because Pic(T) is trivial whenever T has only one closed point.

Whether or not $\mathcal{O}_S \xrightarrow{\sim} f_*\mathcal{O}_X$ holds universally, all four functors have the same geometric points by Exercise 9.2.3; in fact, given an algebraically closed field k, the k-points of these functors are just the elements of $\text{Pic}(X_k)$. \square

Answer 9.3.2. By definition, a section in $H^0(X, \mathcal{L})_{\text{reg}}$ corresponds to an injection $\mathcal{L}^{-1} \hookrightarrow \mathcal{O}_X$. Its image is an ideal \mathcal{I} such that $\mathcal{L}^{-1} \xrightarrow{\sim} \mathcal{I}$. So \mathcal{I} is the ideal of an effective divisor D. Then $\mathcal{O}_X(-D) = \mathcal{I}$. So $\mathcal{L}^{-1} \xrightarrow{\sim} \mathcal{O}_X(-D)$. Taking inverses yields $\mathcal{O}_X(D) \simeq \mathcal{L}$. So $D \in |\mathcal{L}|$. Thus we have a map $H^0(X, \mathcal{L})_{\text{reg}} \to |\mathcal{L}|$.

If the section is multiplied by a unit in $H^0(X, \mathcal{O}_X^*)$, then the injection $\mathcal{L}^{-1} \xrightarrow{\sim} \mathcal{O}_X$ is multiplied by the same unit, so has the same image \mathcal{I}; so then D is unaltered. Conversely, if D arises from a second section, corresponding to a second isomorphism $\mathcal{L}^{-1} \xrightarrow{\sim} \mathcal{I}$, then these two isomorphism differ by an automorphism of \mathcal{L}^{-1}, which is given by multiplication by a unit in $H^0(X, \mathcal{O}_X^*)$; so then the two sections differ by multiplication by this unit. Thus $H^0(X, \mathcal{L})_{\text{reg}}/H^0(X, \mathcal{O}_X^*) \xrightarrow{\sim} |\mathcal{L}|$.

Finally, given $D \in |\mathcal{L}|$, by definition there exist an isomorphism $\mathcal{O}_X(D) \simeq \mathcal{L}$. Since $\mathcal{O}_X(-D)$ is the ideal \mathcal{I} of D, the inclusion $\mathcal{I} \hookrightarrow \mathcal{O}_X$ yields an injection $\mathcal{L}^{-1} \hookrightarrow \mathcal{O}_X$. The latter corresponds to a section in $H^0(X, \mathcal{L})_{\text{reg}}$, which yields D via the procedure of the first paragraph. Thus $H^0(X, \mathcal{L})_{\text{reg}}/H^0(X, \mathcal{O}_X^*) \xrightarrow{\sim} |\mathcal{L}|$. \square

Answer 9.3.5. Let $x \in D + E$. If $x \notin D \cap E$, then $D + E$ is a relative effective divisor at x, as $D + E$ is equal to D or to E on a neighborhood of x. So suppose $x \in D \cap E$. Then Lemma 9.3.4 says X is S-flat at x, and each of D and E is cut out at x by one element that is regular on the fiber X_s through x. Form the product
of the two elements. Plainly, it cuts out $D + E$ at x, and it too is regular on X_x. Hence $D + E$ is a relative effective divisor at x by Lemma 9.3.4 again. \hfill \Box

Answer 9.3.8. Consider a relative effective divisor D on X_T/T. Each fiber D_t is of dimension 0. So its Hilbert polynomial $\chi(O_{D_t}(n))$ is constant. Its value is $\dim H^0(O_{D_t})$, which is just the degree of D_t.

The assertions are local on S; so we may assume X/S is projective. Then $\text{Div}_{X/S}$ is representable by an open subscheme $\text{Div}_{X/S} \subseteq \text{Hilb}_{X/S}$ by Theorem 9.3.7. And $\text{Hilb}_{X/S}$ is the disjoint union of open and closed subschemes of finite type $\text{Hilb}^e_{X/S}$ that parameterize the subschemes with Hilbert polynomial φ. Set

$$\text{Div}_{X/S}^m := \text{Div}_{X/S} \cap \text{Hilb}^m_{X/S}.$$

Then the $\text{Div}_{X/S}^m$ have all the desired properties.

In general, whenever X/S is separated, X represents $\text{Hilb}^1_{X/S}$, and the diagonal subscheme $\Delta \subseteq X \times X$ is the universal subscheme. Indeed, the projection $\Delta \to X$ is an isomorphism, so $\Delta \in \text{Hilb}^1_{X/S}(X)$. Now, given any S-map $g : T \to X$, note $(1 \times g)^{-1}\Delta = \Gamma_g$ where $\Gamma_g \subset X \times T$ is the graph subscheme of g, because the T'-points of both $(1 \times g)^{-1}\Delta$ and Γ_g are just the pairs (gp, p) where $p : T' \to T$. So $\Gamma_g \in \text{Hilb}^1_{X/S}(T)$.

Conversely, let $\Gamma \in \text{Hilb}^1_{X/S}(T)$. So Γ is a closed subscheme of $X \times T$. The projection $\pi : \Gamma \to T$ is proper, and its fibers are finite; hence, it is finite by Chevalley’s Theorem [EGAIII1, 4.4.2]. So $\Gamma = \text{Spec}(\pi_*O_T)$. Moreover, π_*O_T is locally free, being flat and finitely generated over O_T. And forming π_*O_T commutes with passing to the fibers, so its rank is 1. Hence $O_T \xrightarrow{\sim} \pi_*O_T$. Therefore, π is an isomorphism. Hence Γ is the graph of a map $g : T \to X$. So, $(1 \times g)^{-1}\Delta = \Gamma$ by the above; also, g is the only map with this property, since a map is determined by its graph. Thus X represents $\text{Hilb}^1_{X/S}$, and $\Delta \subset X \times X$ is the universal subscheme.

In the case at hand, $\text{Div}_{X/S}^1$ is therefore representable by an open subscheme $U \subset X$ by Theorem 9.3.7. In fact, its proof shows U is formed by the points $x \in X$ where the fiber Δ_x is a divisor on X_x. Now, Δ_x is a k_x-rational point for any $x \in X$; so Δ_x is a divisor if and only if X_x is regular at Δ_x. Since X/S is flat, X_x is regular at Δ_x if and only if $x \in X_0$. Thus $X_0 = \text{Div}_{X/S}^1$.

Finally, set $T := X_0^n$ and let $\Gamma_i \subset X \times T$ be the graph subscheme of the ith projection. By the above analysis, $\Gamma_i \in \text{Div}_{X/S}^1(T)$. Set $\Gamma := \sum \Gamma_i$. Then $\Gamma \in \text{Div}_{X/S}^m(T)$ owing to Exercise 9.3.5 and to the additivity of degree. Plainly Γ represents the desired T-point of $\text{Div}_{X/S}^m$. \hfill \Box

Answer 9.3.11. Let $s \in S$. Let K be the algebraically closure of k_s, and set $A := H^0(X_K, O_{X_K})$. Since f is proper, A is finite dimensional as a K-vector space; so A is an Artin ring. Since X_K is connected, A is not a product of two nonzero rings by [EGAIII2, 7.8.6.1]; so A is an Artin local ring. Since X_K is reduced, A is reduced; so A is a field, which is a finite extension of K. Since K is algebraically closed, therefore $A = K$. Since cohomology commutes with flat base change, consequently $k_s \xrightarrow{\sim} H^0(X, O_{X_s})$.

The isomorphism $k_s \xrightarrow{\sim} H^0(X, O_{X_s})$ factors through $f_*(O_X) \otimes k_s$:

$$k_s \to f_*(O_X) \otimes k_s \to H^0(X_s, O_{X_s}).$$
So the second map is a surjection. Hence this map is an isomorphism by the implication (iv)⇒(iii) of Subsection 9.3.10 with \(F := \mathcal{O}_X \) and \(N := k_s \). Therefore, the first map is an isomorphism too.

It follows that \(\mathcal{O}_S \to f_*\mathcal{O}_X \) is surjective at \(s \). Indeed, denote its cokernel by \(\mathcal{G} \). Since tensor product is right exact and since \(k_s \to f_*(\mathcal{O}_X) \otimes k_s \) is an isomorphism, \(\mathcal{G} \otimes k_s = 0 \). So by Nakayama’s lemma, the stalk \(\mathcal{G}_s \) vanishes, as claimed.

Let \(\mathcal{Q} \) be the \(\mathcal{O}_S \)-module associated to \(F := \mathcal{O}_X \) as in Subsection 9.3.10. Then \(\mathcal{Q} \) is free at \(s \) by the implication (iv)⇒(i) of Subsection 9.3.10. And \(\text{rank} \mathcal{Q}_s = 1 \) owing to the isomorphism in (9.3.10.1) with \(N := k_s \). But, with \(N := \mathcal{O}_S \), the isomorphism becomes \(\text{Hom}(\mathcal{Q}, \mathcal{O}_X) \cong f_*\mathcal{O}_X \). Hence \(f_*\mathcal{O}_X \) too is free of rank 1 at \(s \). Therefore, the surjection \(\mathcal{O}_S \to f_*\mathcal{O}_X \) is an isomorphism at \(s \). Since \(s \) is arbitrary, \(\mathcal{O}_S \cong f_*\mathcal{O}_X \) everywhere.

Finally, let \(T \) be an arbitrary \(S \)-scheme. Then \(f_T : X_T \to T \) too is proper and flat, and its geometric fibers are reduced and connected. Hence, by what we just proved, \(\mathcal{O}_T \cong f_T^*\mathcal{O}_{X_T} \).

Answer 9.3.14. By Theorem 9.3.13, \(L \) represents \(\text{LinSys}_{\mathcal{L}/X/S} \). So by Yoneda’s Lemma [EGAG, (0.1.1.4), p. 20], there exists a \(W \in \text{LinSys}_{\mathcal{L}/X/S}(L) \) with the required universal property. And \(W \) corresponds to the identity map \(p : L \to L \). The proof of Theorem 9.3.13 now shows \(\mathcal{O}_{X_L}(W) = (\mathcal{L}|_X) \otimes f_L^*\mathcal{O}_L(1) \).

Answer 9.4.2. The structure sheaf \(\mathcal{O}_X \) defines a section \(\sigma : S \to \text{Pic}_{X/S} \). Its image is a subscheme, which is closed if \(\text{Pic}_{X/S} \) is separated, by [EGAG, Cors. (5.1.4), p. 275, and (5.2.4), p. 278]. Let \(N \subset T \) be the pullback of this subscheme under the map \(\lambda : T \to \text{Pic}_{X/S} \) defined by \(\mathcal{L} \). Then the third property holds.

Both \(\mathcal{L}_N \) and \(\mathcal{O}_X \) define the same map \(N \to \mathcal{Pic}_{X/S} \). So, since \(\mathcal{O}_S \cong f_*\mathcal{O}_X \) holds universally, the Comparison Theorem, Theorem, Theorem 9.2.5, implies that there exists an invertible sheaf \(N \) on \(N \) such that the first property holds.

Consider the second property. Then \(\mathcal{L}_{T'} \cong f_{T'}^*N' \). So \(\lambda : T' \to \mathcal{Pic}_{X/S} \) is also defined by \(\mathcal{O}_{T'} \); hence, \(\lambda t \) factors through \(\sigma : S \to \mathcal{Pic}_{X/S} \). Therefore, \(t : T' \to T \) factors through \(N \). So, since the first property holds, \(\mathcal{L}_{T'} \cong f_{T'}^*N' \). Hence \(N' \cong t^*N \) by Lemma (9.2.7). Thus the second property holds.

Finally, suppose the pair \((N_1, N_1) \) also possesses the first property. Taking \(t \) to be the inclusion of \(N_1 \) into \(T \), we conclude that \(N_1 \subset N \) and \(N_1 \cong N/N \). Suppose \((N_1, N_1) \) possess the second property too. Then, similarly, \(N \subset N_1 \). Thus \(N = N_1 \) and \(N_1 \cong N \), as desired.

Answer 9.4.3. By Yoneda’s Lemma [EGAG, (0.1.1.4), p. 20], a universal sheaf \(\mathcal{P} \) exists if and only if \(\text{Pic}_{X/S} \) represents \(\text{Pic}_{X/S} \). Set \(P := \text{Pic}_{X/S} \).

Assume \(\mathcal{P} \) exists. Then, for any invertible sheaf \(N \) on \(P \), plainly \(\mathcal{P} \otimes f_P^*N \) is also a universal sheaf. Moreover, if \(\mathcal{P}' \) is also a universal sheaf, then \(\mathcal{P}' \cong \mathcal{P} \otimes f_P^*N \) for some invertible sheaf \(N \) on \(P \) by the definition with \(h := 1_p \).

Assume \(\mathcal{O}_S \cong f_*\mathcal{O}_X \) holds universally. If \(\mathcal{P} \otimes f_P^*N \cong \mathcal{P} \otimes f_P^*N' \) for some invertible sheaves \(N \) and \(N' \) on \(P \), then \(N \cong N' \) by Lemma 9.2.7.

By Part 2 of Theorem 9.2.5, if also \(f \) has a section, then \(\text{Pic}_{X/S} \) does represent \(\text{Pic}_{X/S} \); so then \(\mathcal{P} \) exists. Furthermore, the curve \(X/R \) of Exercise 9.2.4 provides an example where no \(\mathcal{P} \) exists, because \(\text{Pic}(X/R)(et) \) is representable by Theorem 9.4.8, but \(\text{Pic}_{X/R} \) is not since the two functors differ.
Answer 9.4.4. Say \(\text{Pic}_{X/S} \) represents \(\text{Pic}_{(X/S)(\text{\acute{e}t})} \). For any \(S' \)-scheme \(T \),
\[
\text{Pic}_{(X_{S'}/S')(\text{\acute{e}t})}(T) = \text{Pic}_{(X/S)(\text{\acute{e}t})}(T),
\]
which holds essentially by definition, since a map of \(S' \)-schemes is an \(\text{\acute{e}tale} \)-covering if and only if it is an \(\text{\acute{e}tale} \)-covering when viewed as a map of \(S \)-schemes. However,
\[
(\text{Pic}_{X/S} \times_{S'} S')(T) = \text{Pic}_{X/S}(T)
\]
because the structure map \(T \to S' \) is fixed. Since the right-hand sides of the two displayed equations are equal, so are their left-hand sides. Thus \(\text{Pic}_{X/S} \times_{S'} S' \) represents \(\text{Pic}_{(X_{S'}/S')(\text{\acute{e}t})} \). Of course, a similar analysis applies when \(\text{Pic}_{X/S} \) represents one of the other relative Picard functors.

An example is provided by the curve \(X \subset \mathbb{P}^2_{\mathbb{R}} \) of Exercise 9.2.4. Indeed, since the functors \(\text{Pic}_{X/\mathbb{R}} \) and \(\text{Pic}_{(X/\mathbb{R})(\text{\acute{e}t})} \) differ, \(\text{Pic}_{X/\mathbb{R}} \) is not representable. But \(\text{Pic}_{(X/\mathbb{R})(\text{\acute{e}t})} \) is representable by the Main Theorem, 9.4.8. Finally, since \(X_{\mathbb{C}} \) has a \(\mathbb{C} \)-point, all its relative Picard functors are equal by the Comparison Theorem, 9.2.5.

Answer 9.4.5. An \(\mathcal{L} \) on an \(X_k \) defines a map \(\text{Spec}(k) \to \text{Pic}_{X/S} \); assign its image to \(\mathcal{L} \). Then, given any field \(k'' \) containing \(k \), the pullback \(\mathcal{L}|X_{k''} \) is assigned the same scheme point of \(\text{Pic}_{X/S} \).

Consider an \(\mathcal{L}' \) on an \(X_{k'} \). If \(\mathcal{L} \) and \(\mathcal{L}' \) represent the same class, then there is a \(k'' \) containing both \(k \) and \(k' \) such that \(\mathcal{L}|X_{k''} \simeq \mathcal{L}'|X_{k''} \); hence, then both \(\mathcal{L} \) and \(\mathcal{L}' \) are assigned the same scheme point of \(\text{Pic}_{X/S} \). Conversely, if \(\mathcal{L} \) and \(\mathcal{L}' \) are assigned the same point, take \(k'' \) to be any algebraically closed field containing both \(k \) and \(k' \). Then \(\mathcal{L}|X_{k''} \) and \(\mathcal{L}'|X_{k''} \) define the same map \(\text{Spec}(k'') \to \text{Pic}_{X/S} \). Hence \(\mathcal{L}|X_{k''} \simeq \mathcal{L}'|X_{k''} \) by Exercise 9.2.3 or 9.2.6.

Finally, given any scheme point of \(\text{Pic}_{X/S} \), let \(k \) be the algebraic closure of its residue field. Then \(\text{Spec}(k) \to \text{Pic}_{X/S} \) is defined by an \(\mathcal{L} \) on \(X_k \) by Exercise 9.2.3 or 9.2.6. So the given point is assigned to \(\mathcal{L} \). Thus the classes of invertible sheaves on the fibers of \(X/S \) correspond bijectively to the scheme points of \(\text{Pic}_{X/S} \). ■

Answer 9.4.7. An \(S \)-map \(h: T \to \text{Div}_{X/S} \) corresponds to a relative effective divisor \(D \) on \(X_T \). So the composition \(A_{X/S}h: T \to P \) corresponds to the invertible sheaf \(\mathcal{O}_T(D) \). Hence \(\mathcal{O}_T(D) \simeq (1 \times A_{X/S}h)^* \mathcal{P} \otimes f_T^* \mathcal{N} \) for some invertible sheaf \(\mathcal{N} \) on \(T \). Therefore, if \(T \) is viewed as a \(P \)-scheme via \(A_{X/S}h \), then \(D \) defines a \(T \)-point \(\eta \) of \(\text{LinSys}_{P/X \times P/P} \). Plainly, the assignment \(h \mapsto \eta \) is functorial in \(T \). Thus if \(\text{Div}_{X/S} \) is viewed as a \(P \)-scheme via \(A_{X/S} \), then there is a natural map \(\Lambda \) from its functor of points to \(\text{LinSys}_{P/X \times P/P} \).

Furthermore, \(\Lambda \) is an isomorphism. Indeed, let \(T \) be a \(P \)-scheme. A \(T \)-point \(\eta \) of \(\text{LinSys}_{P/X \times P/P} \) is given by a relative effective divisor \(D \) on \(X_T \) such that \(\mathcal{O}_{X_T}(D) \simeq \mathcal{P}_T \otimes f_T^* \mathcal{N} \) for some invertible sheaf \(\mathcal{N} \) on \(T \). Then \(\mathcal{O}_{X_T}(D) \) and \(\mathcal{P}_T \) define the same \(S \)-map \(T \to P \). But \(\mathcal{P}_T \) defines the structure map. And \(\mathcal{O}_{X_T}(D) \) defines the composition \(A_{X/S}h \) where \(h: T \to \text{Div}_{X/S} \) is the map defined by \(D \). Thus \(\eta = \Lambda(h) \), and \(h \) is determined by \(\eta \); hence, \(\Lambda \) is an isomorphism.

In other words, \(\text{Div}_{X/S} \) represents \(\text{LinSys}_{P/X \times P/P} \). But \(P(\mathbb{Q}) \) too represents \(\text{LinSys}_{P/X \times P/P} \) by Theorem 9.3.13. Therefore, \(P(\mathbb{Q}) = \text{Div}_{X/S} \) as \(P \)-schemes. ■
Answer 9.4.10. First, suppose $F \to G$ is a surjection. Given a map of étale sheaves $\varphi: F \to H$ such that the two maps $F \times_G F \to H$ are equal, we must show there is one and only one map $G \to H$ such that $F \to G \to H$ is equal to φ.

Let $\eta \in G(T)$. By hypothesis, there exist an étale covering $T' \to T$ and an element $\zeta' \in F(T')$ such that ζ' and η have the same image in $G(T')$. Set $T'' := T' \times_T T'$. Then the two images of ζ' in $F(T'')$ define an element ζ'' of $(F \times_G F)(T'')$. Since the two maps $F \times_G F \to H$ are equal, the two images of ζ'' in $H(T'')$ are equal. But these two images are equal to those of $\varphi(\zeta') \in H(T')$. Since H is a sheaf, therefore $\varphi(\zeta')$ is the image of a unique element $\theta \in H(T)$.

Note $\theta \in H(T)$ is independent of the choice of T' and $\zeta' \in F(T')$. Indeed, let $\zeta'_1 \in F(T'_1)$ be a second choice. Arguing as above, we find $\varphi(\zeta'_1) \in H(T'_1)$ and $\varphi(\zeta') \in H(T')$ have the same image in $H(T'_1 \times_T T')$. So ζ'_1 also leads to θ.

Define a map $G(T) \to H(T)$ by $\eta \mapsto \theta$. Plainly this map behaves functorially in T. Thus there is a map of sheaves $G \to H$. Plainly, $F \to G \to H$ is equal to $\varphi: F \to H$. Finally, $G \to H$ is the only such map, since the image of η in $H(T)$ is determined by the image of η in $G(T')$, and the latter must map to $\varphi(\zeta') \in H(T')$. Thus G is the coequalizer of $F \times_G F \rightrightarrows F$.

Conversely, suppose G is the coequalizer of $F \times_G F \rightrightarrows F$. Form the étale subsheaf $H \subset G$ associated to the presheaf whose T-points are the images in $G(T)$ of the elements of $F(T)$. Then the map $F \to G$ factors through H. So the two maps $F \times_G F \to H$ are equal. Since G is the coequalizer, there is a map $G \to H$ so that $F \to G \to H$ is equal to $F \to H$. Hence $F \to G \to H \rightrightarrows G$ is equal to $F \to G$. So $G \to H \rightrightarrows G$ is equal to 1_G by uniqueness. Therefore, $H = G$. Thus $F \to G$ is a surjection.

Answer 9.4.11. Theorem 9.4.8 implies each connected component Z' of Z lies in an increasing union of open quasi-projective subschemes of $\text{Pic}_{X/S}$. So Z' lies in one of them since Z' is quasi-compact. So Z' is quasi-projective. But Z has only finitely many components Z'. Therefore, Z is quasi-projective.

Answer 9.4.12. Set $P := \text{Pic}_{X/S}$, which exists by Theorem 9.4.8. If \mathcal{P} exists, then $A_{X/S}$ is, by Exercise 9.4.7, the structure map of the bundle $\mathcal{P}(\mathcal{Q})$ where \mathcal{Q} denotes the coherent sheaf on $\text{Pic}_{X/S}$ associated to \mathcal{P} as in Subsection 9.3.10. In particular, $A_{X/S}$ is projective Zariski locally over S.

In general, forming P commutes with extending S by Exercise 9.4.4. Similarly, forming $A_{X/S}$ does too. But a map is proper if it is after an fppf base extension by [EGAIV2, 2.7.1(vii)].

However, $f: X \to S$ is fppt. Moreover, $f_X: X \times X \to X$ has a section, namely, the diagonal. So use f as a base extension. Then, by Exercises 9.3.11 and 9.4.3, a universal sheaf \mathcal{P} exists. Therefore, $A_{X/S}$ is proper by the first case.

Answer 9.4.13. Let’s use the ideas and notation of Answer 9.4.12. Now, X_0 represents $\text{Div}_{X/S}$ by Exercise 9.3.8. Hence the Abel map $A_{X/S}$ induces a natural map $A: X_0 \to P$, and forming A commutes with extending S. But a map is a closed embedding if it is after an fppf base extension by [EGAIV2, 2.7.1(xii)]. So we may assume $\mathcal{P}(\mathcal{Q}) = \text{Div}_{X/S}$.

The function $\lambda \mapsto \deg \mathcal{P}_\lambda$ is locally constant. Let $W \subset P$ be the open and closed subset where the function’s value is 1. Plainly $\mathcal{P}(\mathcal{Q}_W) = \text{Div}_{X/S}$ owing to
the above. Therefore, $X_0 = \mathbf{P}(\mathcal{O}_W)$, and $A: X_0 \to P$ is equal to the structure map of $\mathbf{P}(\mathcal{O}_W)$. So it remains to show that this structure map is a closed embedding.

Fix $\lambda \in W$. Then $\dim k_\lambda(Q \otimes k_\lambda) = \dim k_\lambda H^0(X_\lambda, \mathcal{P}_\lambda)$. Suppose P_λ has two independent global sections. Each defines an effective divisor of degree 1, which is a k_λ-rational point x_i. Since neither section is a multiple of the other, the x_i are distinct. Hence the sections generate P_λ. So they define a map $h: X_\lambda \to \mathbf{P}_{k_\lambda}^1$ by [EGAII, 4.2.3] or [Har77, Thm. II, 7.1, p. 150]. Then h is birational since each x_i is the scheme-theoretic inverse image of a k_λ-rational point of $\mathbf{P}_{k_\lambda}^1$. Hence h is an isomorphism. But, by hypothesis, X_λ is of arithmetic genus at least 1. So there is a contradiction. Therefore, $\dim k_\lambda(Q \otimes k_\lambda) \leq 1$.

By Nakayama’s lemma, \mathcal{Q} can be generated by a single element on a neighborhood $V \subset W$ of λ. So there is a surjection $\mathcal{O}_V \to \mathcal{Q}_V$. It defines a closed embedding $\mathbf{P}(\mathcal{O}_V) \hookrightarrow \mathbf{P}(\mathcal{Q}_V)$. But the structure map $\mathbf{P}(\mathcal{O}_V) \to V$ is an isomorphism. Hence $\mathbf{P}(\mathcal{Q}_V) \to V$ is a closed embedding. But $\lambda \in W$ is arbitrary. So $\mathbf{P}(\mathcal{Q}_W) \to W$ is indeed a closed embedding.

Answer 9.4.15. Representing $\text{Pic}_{X/S}$ is similar to representing $\text{Pic}_{X'/S'}$ in Example 9.4.14, but simpler. Indeed, On $X \times_S \mathbb{Z}_S$, form an invertible sheaf \mathcal{P} by placing $\mathcal{O}_X(n)$ on the nth copy of X. Then it suffices to show this: given any S-scheme T and any invertible sheaf \mathcal{L} on X_T, there exist a unique S-map $q: T \to \mathbb{Z}_S$ and some invertible sheaf \mathcal{N} on T such that $(1 \times q)^* \mathcal{P} = \mathcal{L} \otimes f_T^* \mathcal{N}$.

Plainly, we may assume T is connected. Then the function $s \mapsto \chi(X_t, \mathcal{L}_t)$ is constant on T by [EGAIII2, 7.9.11]. Now, X_t is a projective space of dimension at least 1 over the residue field k_t; so $\mathcal{L}_t \simeq \mathcal{O}_{X_t}(n)$ for some n by [Har77, Prp. 6.4, p. 132, andCors. 6.16 and 6.17, p. 145]. Hence n is independent of t.

Set $\mathcal{M} := \mathcal{L}^{-1}(n)$. Then $\mathcal{M}_t \simeq \mathcal{O}_{X_t}$ for all $t \in T$. Hence $H^1(X_t, \mathcal{M}_t) = 0$ and $H^0(X_t, \mathcal{M}_t) = k_t$ by Serre’s explicit computation [EGAIII1, 2.1.12]. Hence $f_{T*} \mathcal{M}$ is invertible, and forming it commutes with changing the base T, owing to the theory in Subsection 9.3.10.

Set $\mathcal{N} := f_{T*} \mathcal{M}$. Consider the natural map $u: f_T^* \mathcal{N} \to \mathcal{M}$. Forming u commutes with changing T, since forming \mathcal{N} does. But u is an isomorphism on the fiber over each $t \in T$. So $u \otimes k_t$ is an isomorphism. Hence u is surjective by Nakayama’s lemma. But both source and target of u are invertible; so u is an isomorphism. Hence $\mathcal{L} \otimes f_T^* \mathcal{N} = \mathcal{O}_{X_T}(n)$.

Let $q: T \to \mathbb{Z}_S$ be the composition of the structure map $T \to S$ and the nth inclusion $S \hookrightarrow \mathbb{Z}_S$. Plainly $(1 \times q)^* \mathcal{P} = \mathcal{O}_{X_T}(n)$, and q is the only such S-map. Thus \mathbb{Z}_S represents $\text{Pic}_{X/S}$, and \mathcal{P} is a universal sheaf.

Answer 9.4.16. First of all, $\text{Pic}_{X/R}$ exists by Theorem 9.4.8. Now, $X_C \simeq \mathbf{P}_C^1$. Hence $\text{Pic}_{X/R} \times_R \mathbb{C} \simeq \mathbb{C}$ by Exercises 9.4.4 and 9.4.15. The induced automorphism of $\mathbb{Z}_{C \otimes \mathbb{R} C}$ is the identity; indeed, a point of this scheme corresponds to an invertible sheaf on \mathbf{P}_C^1, and every such sheaf is isomorphic to its pullback under any \mathbb{R}-automorphism of \mathbf{P}_C^1. Hence, by descent theory, $\text{Pic}_{X/R} = \mathbb{Z}_R$.

The above reasoning leads to a second proof that $\text{Pic}(\mathcal{O}(\mathcal{E}_t))$ is representable. Indeed, set $P := \text{Pic}(\mathcal{O}(\mathcal{E}_t))$. By the above reasoning, the pair

$$(P \otimes_R \mathbb{C}) \otimes_{\mathbb{C}} (\mathbb{C} \otimes_R \mathbb{C}) \Rightarrow P \otimes_R \mathbb{C}$$
is representable by the pair $\mathbb{Z}_{C^\otimes_R C} \to \mathbb{Z}_C$, whose coequalizer is \mathbb{Z}_R. On the other hand, in the category of étale sheaves, the coequalizer is P owing to Exercise 9.4.10.

Notice in passing that $\text{Pic}_{X/R} = \text{Pic}_{\mathbb{P}^1_R/R}$. But $\text{Pic}_{X/R}$ is not representable due to Exercise 9.2.4, where as $\text{Pic}_{\mathbb{P}^1_R/R}$ is representable owing to Exercise 9.4.15. □

Answer 9.5.7. Exercise 9.4.11 implies Z is quasi-projective. Hence Z is projective if Z is proper. By [EGAIV2, 2.7.1], an S-scheme is proper if it is so after an fppf base change, such as $f: X \to S$. But $f_X: X \times X \to X$ has a section, namely, the diagonal. Thus we may assume f has a section.

Using the Valuative Criterion for Properness [Har77, Thm. 4.7, p. 101], we need only check this statement: given an S-scheme T of the form $T = \text{Spec}(A)$ where A is a valuation ring, say with fraction field K, every S-map $u: \text{Spec}(K) \to Z$ extends to an S-map $T \to Z$. We do not need to check the extension is unique if it exists; indeed, this uniqueness holds by the Valuative Criterion for Separatedness [Har77, Thm. 4.3, p. 97] since Z is quasi-projective, so separated.

Since f has a section, u arises from an invertible sheaf \mathcal{L} on X_K by Theorem 9.2.5. We have to extend \mathcal{L} over X_T. Indeed, this extension defines a map $t: T \to \text{Pic}_{X/S}$ extending u, and t factors through Z because Z is closed and T is integral.

Plainly it suffices to extend $\mathcal{L}(n)$ for any $n \gg 0$. So replacing \mathcal{L} if need be, we may assume \mathcal{L} has a nonzero section. X_K is regular since X_K is integral. So X_K has a divisor D such that $\mathcal{O}(D) = \mathcal{L}$.

Let $D' \subset X_T$ be the closure of D. Now, X/S is smooth and T is regular, so X_T is regular by [EGAIV2, 6.5.2], so factorial by [EGAIV2, 21.11.1]. Hence D' is a divisor. And $\mathcal{O}(D')$ extends \mathcal{L}. □

Answer 9.5.16. Owing to Serre’s Theorem [Har77, Thm. 5.2, p. 228], we have $H^i(\Omega_X^2(n)) = 0$ for $i > 0$ and $n \gg 0$. So $\varphi(n) = \chi(\Omega_X^2(n))$. Hence

$$q = H^1(\Omega_X^2) - H^2(\Omega_X^2) + 1.$$

Serre duality [Har77, Cor. 7.13, p. 247] yields $\dim H^i(\Omega_X^2) = \dim H^{2-i}(\mathcal{O}_X)$ for all i. And $\dim H^0(\mathcal{O}_X) = 1$ since X is projective and geometrically integral. So

$$q = \dim H^1(\mathcal{O}_X).$$

Hence Corollary 9.5.14 yields $\dim \text{Pic}_{X/S} \leq q$, with equality in characteristic 0. □

Answer 9.5.17. Set $P := \text{Pic}_{X/S}$, which exists by Theorem 9.4.8. By Exercises 9.3.11 and 9.4.3, there exists a universal sheaf \mathcal{P} on $X \times P$.

Suppose $q = 0$. Then P is smooth of dimension 0 everywhere by Corollary 9.5.13. Let D be a relative effective divisor on X_T/T where T is a connected S-scheme. Then $\mathcal{O}_{X_T}(D)$ defines a map $\tau: T \to P$, and

$$\mathcal{O}_{X_T}(D) \simeq (1 \times \tau)^*\mathcal{P} \otimes f_T^*\mathcal{N}$$

for some invertible sheaf \mathcal{N} on T. Now, T is connected and P is discrete and reduced; so τ is constant. Set $\lambda := \tau T$, and view \mathcal{P}_λ as an invertible sheaf \mathcal{L} on X. Then $\mathcal{L}_T = (1 \times \tau)^*\mathcal{P}$. So $\mathcal{O}_{X_T}(D) \simeq \mathcal{L}_T \otimes f_T^*\mathcal{N}$, as required.

Consider the converse. Again by Exercise 9.4.3, there is a coherent sheaf \mathcal{Q} on P such that $\mathcal{P}(\mathcal{Q}) = \text{Div}_{X/S}$. Furthermore, \mathcal{Q} is nonzero and locally free at
any closed point \(\lambda \) representing an invertible sheaf \(\mathcal{L} \) on \(X \) such that \(H^1(\mathcal{L}) = 0 \) by Subsection 9.3.10; for example, take \(\mathcal{L} := \mathcal{O}_X(n) \) for \(n \gg 0 \).

Let \(U \subset P \) be a connected open neighborhood of \(\lambda \) on which \(Q \) is free. Let \(T \subset \mathbf{P}(Q) \) be the preimage of \(U \), and let \(D \) be the universal relative effective divisor on \(X_T/T \). Then the natural map \(A: T \to U \) is smooth with irreducible fibers. So \(T \) is connected. Moreover, \(A \) is the map defined by \(\mathcal{O}_{X_T}(D) \).

Suppose \(\mathcal{O}_{X_T}(D) \cong \mathcal{M}_T \otimes f_T^*\mathcal{N} \) for some invertible sheaves \(\mathcal{M} \) on \(X \) and \(\mathcal{N} \) on \(T \). Then \(A: T \to U \) is also defined by \(\mathcal{M}_T \). Say \(\mu \in P \) represents \(\mathcal{M} \). Then \(A \) factors through the inclusion of the closed point \(\mu \). Hence \(\mu = \lambda \); moreover, since \(A \) is smooth and surjective, its image, the open set \(U \), is just the reduced closed point \(\lambda \). Now, there is an automorphism of \(P \) that carries \(0 \) to \(\lambda \), namely, “multiplication” by \(\lambda \). So \(P \) is smooth of dimension \(0 \) at \(0 \). Therefore, \(q = 0 \) by Corollary 9.5.13.

In characteristic \(0 \), a priori \(P \) is smooth by Corollary 9.5.14. Now, \(A: T \to U \) is smooth. Hence, \(T \) is smooth too. But the preceding argument shows that, if the condition holds for this \(T \), then \(q = 0 \), as required. \(\square \)

Answer 9.5.23. By hypothesis, \(\dim X_s = 1 \) for \(s \in S \); so \(H^2(\mathcal{O}_{X_s}) = 0 \). Hence the \(\text{Pic}_{X_s/k_s}^0 \) are smooth by Proposition 9.5.19, so of dimension \(p_a \) by Proposition 9.5.13. Hence, by Proposition 9.5.20, the \(\text{Pic}_{X_s/k_s}^0 \) form a family of finite type, whose total space is the open subscheme \(\text{Pic}_{X/S}^0 \) of \(\text{Pic}_{X/S} \). And \(\text{Pic}_{X/S} \) is smooth over \(S \) again by Proposition 9.5.19.

Hence \(\text{Pic}_{X/S}^0 \) is quasi-projective by Exercise 9.4.11.

If \(X/S \) is smooth, then \(\text{Pic}_{X/S}^0 \) is projective over \(S \) by Exercise 9.5.7. Alternatively, use Theorem 9.5.4 and Proposition 9.5.20 again to conclude \(\text{Pic}_{X/S}^0 \) is proper, so projective since it is quasi-projective.

Conversely, assume \(\text{Pic}_{X/S}^0 \) is proper, and let us prove \(X/S \) is smooth. Since \(X/S \) is flat, we need only prove each \(X_s \) is smooth. So we may replace \(S \) by the spectrum of the algebraic closure of \(k_s \). If \(p_a = 0 \), then \(X \) is smooth, indeed \(X = \mathbf{P}^1 \), by [Har77, Ex. 1.8(b), p.298].

Suppose \(p_a > 0 \). Let \(X_0 \) be the open subscheme where \(X \) is smooth. Then there is a closed embedding \(A: X_0 \hookrightarrow \text{Pic}_{X/S}^0 \) by Exercise 9.4.13. Its image consists of points \(\lambda \) representing invertible sheaves of degree \(1 \). Fix a rational point \(\lambda \), and define an automorphism \(\beta \) of \(\text{Pic}_{X/S}^0 \) by \(\beta(\kappa) := \kappa^\lambda \). Then \(\beta A \) is a closed embedding of \(X_0 \) in \(\text{Pic}_{X/S}^0 \).

By assumption, \(\text{Pic}_{X/S}^0 \) is proper. So \(X_0 \) is proper. Hence \(X_0 \hookrightarrow X \) is proper since \(X \) is separated. Hence \(X_0 \) is closed in \(X \). But \(X_0 \) is dense in \(X \) since \(X \) is integral and the ground field is algebraically closed. Hence \(X_0 = X \); in other words, \(X \) is smooth. \(\square \)

Answer 9.6.4. As before, by Lemma 9.6.6, there is an \(m \) such that every \(\mathcal{N}(m) \) is generated by its global sections. So there is a section that does not vanish at any given associated point of \(X \); since these points are finite in number, if \(\sigma \) is a general linear combination of the corresponding sections, then \(\sigma \) vanishes at no associated point. So \(\sigma \) is regular, whence defines an effective divisor \(D \) such that \(\mathcal{O}_X(-D) = \mathcal{N}^{-1}(-m) \).
Plainly \(N^{-1} \) is numerically equivalent to \(O_X \) too. So \(\chi(N^{-1}(n)) = \chi(O_X(n)) \) by Lemma 9.6.6. Hence the sequence \(0 \rightarrow O_X(-D) \rightarrow O_X \rightarrow O_D \rightarrow 0 \) yields
\[
\chi(O_D(n)) = \psi(n) \quad \text{where} \quad \psi(n) := \chi(O_X(n)) - \chi(O_X(n-m)).
\]

Let \(T \subset \text{Div}_{X/k} \) be the open and closed subscheme parameterizing the effective divisors with Hilbert polynomial \(\psi(n) \). Then \(T \) is a \(k \)-scheme of finite type. Let \(M' \) be the invertible sheaf on \(X_T \) associated to the universal divisor; set \(M := M'(-n) \). Then there exists a rational point \(t \in T \) such that \(N = M_t \). Thus the \(N \) numerically equivalent to \(O_X \) form a bounded family. \(\square \)

Answer 9.6.7. Suppose \(a < a_r \). Suppose \(L(-1) \) has a nonzero section. It defines an effective divisor \(D \), possibly 0. Hence
\[
0 \leq \int h^{-1}[D] = \int h^{-1}\ell - \int h^r = a - a_r < 0,
\]
which is absurd. Thus \(H^0(L(-1)) = 0 \).

Let \(H \) be a hyperplane section of \(X \). Then there is an exact sequence
\[
0 \rightarrow L(n-1) \rightarrow L(n) \rightarrow L_H(n) \rightarrow 0.
\]
It yields the following bound:
\[
(A.9.6.7.1) \quad \dim H^0(L(n)) - \dim H^0(L(n-1)) \leq \dim H^0(L_H(n)).
\]
Since \(\binom{n+i}{i} - \binom{n-1+i}{i-1} = \binom{n+i-1}{i-1} \), the sequence also yields the following formula:
\[
\chi(L_H(n)) = \sum_{0 \leq i \leq r} a_i \binom{n+i}{i}.
\]

Suppose \(r = 1 \). Then \(\dim H^0(L_H(n)) = \chi(L_H(n)) = a_1 \). Therefore, owing to Equation (A.9.6.7.1), induction on \(n \) yields \(\dim H^0(L(n)) \leq a_1(n+1) \), as desired.

Furthermore, \(L_H \) is 0-regular. Set \(m := \dim H^1(L(-1)) \). Then \(L \) is \(m \)-regular by Mumford’s conclusion at the bottom of [Mum66, p. 102]. But
\[
m = \dim H^0(L(-1)) - \chi(L(-1)) = 0 - a_1(-1+1) - a_0 = -a_0.
\]
Thus we may take \(\Phi_1(u_0) := -u_0 \) where \(u_0 \) is an indeterminate.

Suppose \(r \geq 2 \). Then we may take \(H \) irreducible by Bertini’s Theorem [Sei50, Thm. 12, p. 374] or [Jou79, Cor. 6.7, p. 80]. Set \(h_1 := c_1 O_H(1) \) and \(\ell_1 := c_1 L_H \). Then
\[
\int \ell_1 h_1^{-2} = \int \ell h^{r-2}|H| = a < a_r.
\]
So by induction on \(r \), we may assume
\[
\dim H^0(L_H(n)) \leq a_r \binom{n+1-r}{r-1}.
\]
Therefore, owing to Equation (A.9.6.7.1), induction on \(n \) yields the desired bound.

Furthermore, we may assume \(L_H \) is \(m_1 \)-regular where \(m_1 := \Phi_{r-1}(a_1 \ldots, a_{r-1}) \). Set \(m := m_1 + \dim H^1(L(m_1 - 1)) \). By Mumford’s same work, \(L \) is \(m \)-regular. But
\[
m = m_1 + \dim H^0(L(m_1 - 1)) - \chi(L(m_1 - 1)) \leq m_1 + a_r \binom{m_1-1+r}{r} - \sum_{0 \leq i \leq r} a_i \binom{m_1-1+i}{i}.
\]
The latter expression is a polynomial in \(a_0, \ldots, a_{r-1} \) and \(m_1 \). So it is a polynomial \(\Phi_r \) in \(a_0, \ldots, a_{r-1} \), alone as desired.

In general, consider \(N := L(-a) \). Then
\[
\chi(N(n)) = \sum_{0 \leq i \leq r} b_i \binom{n+i}{i} \quad \text{where} \quad b_i := \sum_{j=0}^{r-i} a_{i+j}(-1)^j \binom{a-i-j}{j}.
\]
Set \(\nu := c_1 N \) and \(b := \int \nu h^{r-1} \). Then
\[
b = \int \ell h^{r-1} - a \int h^r = a - a a_r \leq 0 < a_r.
\]
Hence N is m-regular where $m := \Phi_r(b_0, \ldots, b_{r-1})$. But the b_i are polynomials in a_0, \ldots, a_r and a. Hence there is a polynomial Ψ_r depending only on r such that $m := \Psi_r(a_0, \ldots, a_r; a)$, as desired.

Answer 9.6.10. Let k' be the algebraic closure of k. If $H \otimes k' \subset G^r \otimes k'$, then $H \subset G^r$. But $G^r \otimes k' = (G \otimes k')^r$ by Lemma 9.6.10. Thus we may assume $k = k'$.

Then $H \subset \bigcup_{h \in H(k)} hG^0$. But G^0 is open, so hG^0 is too. And H is quasi-compact. So H lies in finitely many hG^0. So $G^0(k)$ has finite index in $H(k)G^0(k)$, say n. Then $h^n \in G^0(k)$ for every $h \in H(k)$. So $\varphi_n(H) \subset G^0$. Thus $H \subset G^r$.

Answer 9.6.11. Given n, plainly $L \otimes n$ corresponds to $\varphi_n \lambda$. And $L \otimes n$ is algebraically equivalent to O_X if and only if $\varphi_n \lambda \in \text{Pic}^0_X$ by Proposition 9.5.10. So L is τ-equivalent to O_X if and only if $\lambda \in \text{Pic}^0_X$ by Definitions 9.6.1 and 9.6.8.

Answer 9.6.13. Theorem 9.4.8 says Pic_X exists and represents Pic_X (ét). So Pic^0_X is of finite type by Proposition 9.6.12. Hence Pic^0_X is quasi-projective by Exercise 9.4.11.

Suppose X is also geometrically normal. Since Pic^0_X is quasi-projective, to prove it is projective, it suffices to prove it is complete. By Proposition 9.6.12, forming Pic^0_X commutes with extending k. And by [EGAIV2, 2.7.1(vii)], a k-scheme is complete if (and only if) it is after extending k. So assume k is algebraically closed.

As λ ranges over the k-points of Pic^0_X, the cosets λPic^0_X cover Pic^r_X. So finitely many cosets cover, since Pic^0_X is an open by Proposition 9.5.3 and since Pic^r_X is quasi-compact, Now, Pic^0_X is projective by Theorem 9.5.4, so complete, And Pic^r_X is closed, again by Proposition 9.6.12. Hence Pic^r_X is complete.

Answer 9.6.15. First, suppose that L is bounded. Then \mathcal{M} defines a map $\theta: T \to \text{Pic}_X$, and $\theta(T) \supset \Lambda$. Since T is Noetherian, plainly so is $\theta(T)$; whence, plainly so is any subspace of $\theta(T)$. Thus Λ is quasi-compact.

Conversely, suppose Λ is quasi-compact. Since Pic_X is locally of finite type by Proposition 9.4.17, there is an open subscheme of finite type containing any given point of Λ. So finitely many of the subschemes cover Λ. Denote their union by U.

The inclusion $U \hookrightarrow \text{Pic}_X$ is defined by an invertible sheaf \mathcal{M} on X_T for some fppf covering $T \to U$. Replace T be an open subscheme so that $T \to U$ is of finite type and surjective. Since U is of finite type, so is T. Given $\lambda \in \Lambda$, let $t \in T$ map to λ. Then λ corresponds to the class of \mathcal{M}_t.

Answer 9.6.18. Theorem 9.6.16 asserts Pic^r_X is of finite type. So it is projective by Exercise 9.5.7.
9. THE PICARD SCHEME

Answer 9.6.21. Plainly, replacing S by an open subset, we may assume X/S is projective and S is connected. Given $s \in S$, set $\psi(n) := \chi(O_{X_s}(n))$. Then $\psi(n)$ is independent of s. Given m, set $\varphi(n) := m + \psi(n)$.

Let $\lambda \in \text{Pic}^m_{X/S}$. Then $\lambda \in \text{Pic}^m_{X/S}$ if and only if λ represents an invertible sheaf \mathcal{L} of degree m. And $\lambda \in \text{Pic}^r_{X/S}$ if and only if $\chi(\mathcal{L}(n)) = \varphi(n)$. But,

$$\chi(\mathcal{L}(n)) = \deg(\mathcal{L}(n)) + \psi(0) = \deg(\mathcal{L}) + \psi(n)$$

by Riemann’s Theorem and the additivity of $\deg(\bullet)$. Hence $\text{Pic}^m_{X/S} = \text{Pic}^r_{X/S}$. So Theorem 9.6.20 yields all the assertions, except for the two middle about $\text{Pic}^0_{X/S}$.

To show $\text{Pic}^0_{X/S} = \text{Pic}^r_{X/S}$, similarly we need only show $\deg \mathcal{L} = 0$ if and only if \mathcal{L} is r-equivalent to O_X, for, by Exercise 9.6.11, the latter holds if and only if $\lambda \in \text{Pic}^r_{X/S}$. Plainly, we may assume \mathcal{L} lives on a geometric fiber of X/S. Then the two conditions on \mathcal{L} are equivalent by Theorem 9.6.3.

Since \deg is additive, multiplication carries $\text{Pic}^0_{X/S} \times \text{Pic}^m_{X/S}$ set-theoretically into $\text{Pic}^m_{X/S}$. So $\text{Pic}^0_{X/S}$ acts on $\text{Pic}^m_{X/S}$ since these two sets are open in $\text{Pic}^0_{X/S}$.

Since X/S is flat with integral geometric fibers, its smooth locus X_0 provides an fppf covering of S. Temporarily, make the base change $X_0 \to S$. After it, the new map $X_0 \to S$ has a section. Its image is a relative effective divisor D, and tensoring with $O_X(mD)$ defines the desired isomorphism from $\text{Pic}^0_{X/S}$ to $\text{Pic}^m_{X/S}$.

Finally, to show there is no abuse of notation, we must show the fiber $(\text{Pic}^0_{X/S})_s$ is connected. To do so, we instead make the base change to the spectrum of an algebraically closed field $k \supset k_s$. Then X_0 has a k-rational point D, and again tensoring with $O_X(mD)$ defines an isomorphism from $\text{Pic}^0_{X/k}$ to $\text{Pic}^m_{X/k}$. So it suffices to show $\text{Pic}^m_{X/k}$ is connected for some $m \geq 1$.

Let $\beta: X_0^m \to \text{Div}^m_{X/k} \to \text{Pic}^m_{X/k}$ be composition of the map α of Exercise 9.3.8 and the Abel map. Since X is integral, so is the m-fold product X_0^m. Hence it suffices to show β is surjective for some $m \geq 1$.

By Exercise 9.6.7, there is an $m_0 \geq 1$ such that every invertible sheaf on X of degree 0 is m_0-regular. Set $m := \deg(O_X(m_0))$. Then every invertible sheaf \mathcal{L} on X of degree m is 0-regular, so generated by its global sections.

In particular, for each singular point of X, there is a global section that does not vanish at it. So, since k is infinite, a general linear combination of these sections vanishes at no singular point. This combination defines an effective divisor E such that $O_X(E) = \mathcal{L}$. It follows that β is surjective, as desired.

Answer 9.6.29. Suppose Λ is quasi-compact. Then, owing to Exercise 9.6.15, there exist an S-scheme T of finite type and an invertible sheaf \mathcal{M} on X_T such that every polynomial $\varphi \in \Pi$ is of the form $\varphi(n) = \chi(\mathcal{M}_t(n))$ for some $t \in T$. Hence, by [EGAIII2, 7.9.4], the number of φ is at most the number of connected components of T. Thus Π is finite.

Suppose Λ is connected. Then its closure is too. So we may assume Λ is closed. Give Λ its reduced subscheme structure. Then the inclusion $\Lambda \hookrightarrow \text{Pic}^m_{X/S}$ is defined by an invertible sheaf \mathcal{M} on X_T for some fppf covering $T \to \Lambda$. Fix $t \in T$ and set $\varphi(n) := \chi(\mathcal{M}_t(n))$. Fix n, and form the set T' of points t' of T such that $\chi(\mathcal{M}_{t'}(n)) = \varphi(n)$. By [EGAIII2, 7.9.4], the set T' is open, and so is its complement. Hence their images are open in Λ, and plainly these images are disjoint. But Λ is connected. Hence $T' = T$. Thus $\Pi = \{\varphi\}$.

\hfill \square
Appendix B. Basic intersection theory

This appendix contains an elementary treatment of basic intersection theory, which is more than sufficient for many purposes, including the needs of Section 9.6. The approach was originated in 1959–60 by Snapper. His results were generalized and his proofs were simplified immediately afterward by Cartier [Car60]. Their work was developed further in fits and starts by the author.

The Index Theorem was proved by Hodge in 1937. Immediately afterward, B. Segre [Seg37, §1] gave an algebraic proof for surfaces, and this proof was rediscovered by Grothendieck in 1958. Their work was generalized a tad in [Kle71, p.662], and a variation appears below in Theorem B.27. From the index theorem, Segre [Seg37, §6] derived a connectedness statement like Corollary B.29 for surfaces, and the proof below is basically his.

DEFINITION B.1. Let $F(X/S)$ or F denote the Abelian category of coherent sheaves F on X whose support $\text{Supp} F$ is proper over an Artin subscheme of S, that is, a 0-dimensional Noetherian closed subscheme. For each $r \geq 0$, let F_r denote the full subcategory of those F such that $\dim \text{Supp} F \leq r$.

Let $K(X/S)$ or K denote the “Grothendieck group” of F, namely, the free Abelian group on the F, modulo short exact sequences. Abusing notation, let F also denote its class. And if $F = \mathcal{O}_Y$ where $Y \subset X$ is a subscheme, then let $[Y]$ also denote the class. Let K_r denote the subgroup generated by F_r.

Let $\chi: K \to \mathbb{Z}$ denote the homomorphism induced by the Euler characteristic, which is just the alternating sum of the lengths of the cohomology groups.

Given $L \in \text{Pic}(X)$, let $c_1(L)$ denote the endomorphism of K defined by the following formula:

$$c_1(L)F := F - L^{-1} \otimes F.$$

Note that $c_1(L)$ is well defined since tensoring with L^{-1} preserves exact sequences.

LEMMA B.2. Let $L \in \text{Pic}(X)$. Let $Y \subset X$ be a closed subscheme with $\mathcal{O}_Y \in F$. Let $D \subset Y$ be an effective divisor such that $\mathcal{O}_Y(D) \cong L_Y$. Then

$$c_1(L) \cdot [Y] = [D].$$

PROOF. The left side is defined since $\mathcal{O}_Y \in F$. The equation results from the sequence $0 \to \mathcal{O}_Y(-D) \to \mathcal{O}_Y \to \mathcal{O}_D \to 0$ since $\mathcal{O}_Y(-D) \cong L^{-1} \otimes \mathcal{O}_Y$. \qed

LEMMA B.3. Let $L, M \in \text{Pic}(X)$. Then the following relations hold:

$$c_1(L)c_1(M) = c_1(L) + c_1(M) - c_1(L \otimes M);$$

$$c_1(L)c_1(L^{-1}) = c_1(L) + c_1(L^{-1});$$

$$c_1(O_X) = 0.$$

Furthermore, $c_1(L)$ and $c_1(M)$ commute.

PROOF. Let $F \in K$. By definition, $c_1(O_X)F = 0$; thus the third relation holds. Plainly, each side of the first relation carries F into

$$F - L^{-1} \otimes F - M^{-1} \otimes F + L^{-1} \otimes M^{-1} \otimes F.$$

Thus the first relation holds. It and the third relation imply the second. Furthermore, the first relation implies that $c_1(L)$ and $c_1(M)$ commute. \qed
LEMMA B.4. Given \(\mathcal{F} \in \mathbb{F}_r \), let \(Y_1, \ldots, Y_s \) be the \(r \)-dimensional irreducible components of \(\text{Supp} \mathcal{F} \) equipped with their induced reduced structure, and let \(l_i \) be the length of the stalk of \(\mathcal{F} \) at the generic point of \(Y_i \). Then, in \(\mathbb{K}_r \),
\[
\mathcal{F} \equiv \sum l_i \cdot [Y_i] \mod \mathbb{K}_{r-1}.
\]

PROOF. The assertion holds if it does after we replace \(S \) by a neighborhood of the image of \(\text{Supp} \mathcal{F} \). So we may assume \(S \) is Noetherian.

Let \(\mathcal{F}' \subset \mathbb{F}_r \) denote the family of \(\mathcal{F} \) for which the assertion holds. Since \(\text{length}(\bullet) \) is an additive function, \(\mathcal{F}' \) is “exact” in the following sense: for any short exact sequence \(0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow 0 \) such that two of the \(\mathcal{F} \)'s belong to \(\mathcal{F}' \), then the third does too. Trivially, \(\mathcal{O}_Y \in \mathcal{F}' \) for any closed integral subscheme \(Y \subset X \) such that \(\mathcal{O}_Y \in \mathcal{F}_r \). Hence \(\mathcal{F}' = \mathbb{F}_r \) by the “Lemma of Dévissage,” [EGAIII, Thm. 3.1.2].

LEMMA B.5. Let \(\mathcal{L} \in \text{Pic}(X) \). Then \(c_1(\mathcal{L})\mathbb{K}_r \subset \mathbb{K}_{r-1} \) for all \(r \).

PROOF. Let \(\mathcal{F} \in \mathbb{F}_r \). Then \(\mathcal{F} \) and \(\mathcal{L}^{-1} \otimes \mathcal{F} \) are isomorphic at the generic point of each component of \(\text{Supp} \mathcal{F} \). So Lemma B.4 implies \(c_1(\mathcal{L})\mathcal{F} \in \mathbb{K}_{r-1} \).

LEMMA B.6. Let \(\mathcal{L} \in \text{Pic}(X) \), let \(\mathcal{F} \in \mathbb{K}_r \), and let \(m \in \mathbb{Z} \). Then
\[
\mathcal{L}^\otimes m \otimes \mathcal{F} = \sum_{i=0}^r (m+i-1)c_1(\mathcal{L})^i \mathcal{F}.
\]

PROOF. Let \(x \) be an indeterminate, and consider the formal identity
\[
(1-x)^n = \sum_{i \geq 0} (-1)^i \binom{n}{i} x^i.
\]
Replace \(x \) by \(1 - y^{-1} \), set \(n := -m \), and use the familiar identity
\[
(-1)^i \binom{n}{i} = \binom{m+i-1}{i},
\]
to obtain the formal identity
\[
y^m = \sum (m+i-1)(1 - y^{-1})^i.
\]
It yields the assertion, because \(c_1(L)^i \mathcal{F} = 0 \) for \(i > r \) owing to Lemma B.5.

THEOREM B.7 (Snapper). Let \(\mathcal{L}_1, \ldots, \mathcal{L}_n \in \text{Pic}(X) \), let \(m_1, \ldots, m_n \in \mathbb{Z} \), and let \(\mathcal{F} \in \mathbb{K}_r \). Then the Euler characteristic \(\chi(\mathcal{L}_1^\otimes m_1 \otimes \cdots \otimes \mathcal{L}_n^\otimes m_n \otimes \mathcal{F}) \) is given by a polynomial in the \(m_i \) of degree at most \(r \). In fact,
\[
\chi(\mathcal{L}_1^\otimes m_1 \otimes \cdots \otimes \mathcal{L}_n^\otimes m_n \otimes \mathcal{F}) = \sum a(i_1, \ldots, i_n) (m_1+i_1-1) \cdots (m_n+i_n-1)
\]
where \(i_j \geq 0 \) and \(\sum i_j \leq r \) and where \(a(i_1, \ldots, i_n) := \chi(c_1(\mathcal{L}_1)^i_1 \cdots c_1(\mathcal{L}_n)^i_n \mathcal{F}) \).

PROOF. The theorem follows from Lemmas B.6 and B.5.

DEFINITION B.8. Let \(\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X) \), repetitions allowed. Let \(\mathcal{F} \in \mathbb{K}_r \). Define the intersection number or intersection symbol by the formula
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} := \chi(c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F}) \in \mathbb{Z}.
\]
If \(\mathcal{F} = \mathcal{O}_X \), then also write \(\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \) for the number. If \(\mathcal{L}_j = \mathcal{O}_X(D_j) \) for a divisor \(D_j \), then also write \((D_1 \cdots D_r \cdot \mathcal{F}) \), or just \((D_1 \cdots D_r) \) if \(\mathcal{F} = \mathcal{O}_X \).
THEOREM B.9. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$ and $\mathcal{F} \in K_r$.
(1) If $\mathcal{F} \in F_{r-1}$, then $\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} = 0$.
(2) (symmetry and additivity) The symbol $\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F}$ is symmetric in the \mathcal{L}_j. Furthermore, it is a homomorphism separately in each \mathcal{L}_j and in \mathcal{F}.
(3) Set $\mathcal{E} := \mathcal{L}_1^{-1} \oplus \cdots \oplus \mathcal{L}_r^{-1}$. Then
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} = \sum_{i=0}^{r} (-1)^i \chi((\wedge^i \mathcal{E}) \otimes \mathcal{F}).
\]

PROOF. Part (1) results from Lemma B.5. So the symbol is a homomorphism in each \mathcal{L}_j owing to the relations asserted in Lemma B.3. Furthermore, the symbol is symmetric owing to the commutativity asserted in Lemma B.3. Part (3) results from the definitions.

COROLLARY B.10. Let $\mathcal{L}_1, \mathcal{L}_2 \in \text{Pic}(X)$ and $\mathcal{F} \in K_2$. Then
\[
\int c_1(\mathcal{L}_1) c_1(\mathcal{L}_2) \mathcal{F} = \chi(\mathcal{F}) - \chi(\mathcal{L}_1^{-1} \otimes \mathcal{F}) - \chi(\mathcal{L}_2^{-1} \otimes \mathcal{F}) + \chi(\mathcal{L}_1^{-1} \otimes \mathcal{L}_2^{-1} \otimes \mathcal{F}).
\]

PROOF. The assertion is a special case of Part (3) of Proposition B.9.

COROLLARY B.11. Let D_1, \ldots, D_r be effective divisors on X, and $\mathcal{F} \in F_r$. Set $Z := D_1 \cap \cdots \cap D_r$. Suppose $Z \cap \text{Supp} \mathcal{F}$ is finite, and at each of its points, \mathcal{F} is Cohen–Macaulay. Then
\[
(D_1 \cdots D_r \cdot \mathcal{F}) = \text{length} H^0(\mathcal{F}_Z) \text{ where } \mathcal{F}_Z := \mathcal{F} \otimes \mathcal{O}_Z.
\]

PROOF. For each j, set $\mathcal{L}_j := \mathcal{O}_X(D_j)$ and let $\sigma_j \in H^0(\mathcal{L}_j)$ be the section defining D_j. Set $\mathcal{E} := \mathcal{L}_1^{-1} \oplus \cdots \oplus \mathcal{L}_r^{-1}$. Form the corresponding Koszul complex $(\wedge^i \mathcal{E}) \otimes \mathcal{F}$ and its cohomology sheaves $\mathcal{H}((\wedge^i \mathcal{E}) \otimes \mathcal{F})$. Then
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} = \sum_{i=0}^{r} (-1)^i \chi((\wedge^i \mathcal{E}) \otimes \mathcal{F})
\]
owing to Part (3) of Proposition B.9 and to the additivity of χ. Furthermore, essentially by definition, $H^0((\wedge^i \mathcal{E}) \otimes \mathcal{F}) = \mathcal{F}_Z$. And by standard local algebra, the higher \mathcal{H}^i vanish. Thus the assertion holds.

LEMMA B.12. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$ and $\mathcal{F} \in F_r$. Let Y_1, \ldots, Y_s be the r-dimensional irreducible components of $\text{Supp} \mathcal{F}$ given their induced reduced structure, and let l_i be the length of the stalk of \mathcal{F} at the generic point of Y_i. Then
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} = \sum_i l_i \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r)[Y_i].
\]

PROOF. Apply Lemma B.4 and Parts (1) and (2) of Proposition B.9.

LEMMA B.13. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$ and $Y \subset X$ a closed subscheme with $\mathcal{O}_Y \in F$. Let $D \subset Y$ be an effective divisor such that $\mathcal{O}_Y(D) \simeq \mathcal{L}_r|Y$. Then
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r)[Y] = \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_{r-1})|D|.
\]

PROOF. Apply Lemma B.2.

PROPOSITION B.14. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$ and $\mathcal{F} \in F_r$. If all the \mathcal{L}_j are relatively ample and if $\mathcal{F} \notin K_{r-1}$, then
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} > 0.
\]
PROOF. Proceed by induction on r. If $r = 0$, then $\int F = \dim H^0(\mathcal{F})$ essentially by definition, and $H^0(\mathcal{F}) \neq 0$ since $F \notin \mathbf{K}_{r-1}$ by hypothesis.

Suppose $r \geq 1$. Owing to Proposition B.12, we may assume $\mathcal{F} = \mathcal{O}_Y$ where Y is integral. Owing to Part (2) of Theorem B.9, we may replace \mathcal{L}_r by a multiple, and so assume it is very ample. Then, for the corresponding embedding of Y, a hyperplane section D is a nonempty effective divisor such that $\mathcal{O}_Y(D) \cong \mathcal{L}_r|Y$. Hence the assertion results from Proposition B.13 and the induction hypothesis.

Lemma B.15. Let $g: X' \to X$ be an S-map. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$ and let $F \in F_r(X'/S)$. Then

$$\int c_1(g^*\mathcal{L}_1) \cdots c_1(g^*\mathcal{L}_r)F = \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r)g_*F.$$

PROOF. Let $\mathcal{G} \in F_r(X'/S)$. Then, by hypothesis, $\text{Supp} \mathcal{G}$ is proper over an Artin subscheme of S, and $\dim \text{Supp} \mathcal{G} < r$; furthermore, X/S is separated. Hence, the restriction $g|\text{Supp} \mathcal{G}$ is proper; so $g(\text{Supp} \mathcal{G})$ is closed. And by the dimension theory of schemes of finite type over Artin schemes, $\dim g(\text{Supp} \mathcal{G}) < r$. Therefore, $R^i g_* \mathcal{G} \in F_r(X/S)$ for all i.

Define a map $F_r(X'/S) \to K_r(X/S)$ by $\mathcal{G} \mapsto \sum_{i=0}^r (-1)^i R^i g_* \mathcal{G}$. It induces a homomorphism $Rg_* : K_r(X'/S) \to K_r(X/S)$. And $\chi(Rg_* (\mathcal{G})) = \chi(\mathcal{G})$ owing to the Leray Spectral Sequence [EGA III, 0-12.2.4] and to the additivity of χ [EGA III, 0-11.10.3]. Furthermore, $\mathcal{L} \otimes R^i g_* (\mathcal{G}) \cong R^i g_* (g^* \mathcal{L} \otimes \mathcal{G})$ for any $\mathcal{L} \in \text{Pic}(X)$ by [EGA III, 0-12.2.3.1]. Hence $c_1(\mathcal{L}) Rg_* (\mathcal{G}) = Rg_* (c_1(g^* \mathcal{L}) \mathcal{G})$. Therefore,

$$\int c_1(g^*\mathcal{L}_1) \cdots c_1(g^*\mathcal{L}_r)F = \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r)Rg_*F.$$

Finally, $Rg_* F = g_* F \mod K_{r-1}(X/S)$, because $R^i g_* F \in F_{r-1}$ for $i \geq 1$ since, if $W \subset X'$ is the locus where $\text{Supp} F \to X$ has fibers of dimension at least 1, then $\dim g(W) \leq r - 1$. So Part (1) of Theorem B.9 yields the asserted formula.

Proposition B.16 (Projection Formula). Let $g: X' \to X$ be an S-map. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$. Let $Y' \subset X'$ be an integral subscheme with $\mathcal{O}_{Y'} \in F_r(X'/S)$. Set $Y := g Y' \subset X$, give Y its induced reduced structure, and let $\deg(Y'/Y)$ be the degree of the function field extension if finite and be 0 if not. Then

$$\int c_1(g^*\mathcal{L}_1) \cdots c_1(g^*\mathcal{L}_r)[Y'] = \deg(Y'/Y) \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r)[Y].$$

PROOF. Lemma B.4 yields $g_* \mathcal{O}_{Y'} \equiv \deg(Y'/Y)[Y] \mod K_{r-1}(X/S)$. So the assertion results from Lemma B.15 and from Part (1) of Theorem B.9.

Proposition B.17. Assume S is the spectrum of a field, and let T be the spectrum of an extension field. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X)$ and $F \in F_r(X/S)$. Then

$$\int c_1(\mathcal{L}_1, T) \cdots c_1(\mathcal{L}_r, T)F_T = \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r)F.$$

PROOF. The base change $T \to S$ preserves short exact sequences. So it induces a homomorphism $\kappa : K_r(X/S) \to K_r(X_T/T)$. Plainly κ preserves the Euler characteristic. The assertion now follows.
PROPOSITION B.18. Let \(\mathcal{L}_1, \ldots, \mathcal{L}_r \in \text{Pic}(X) \). Let \(\mathcal{F} \) be a flat coherent sheaf on \(X \). Assume \(\text{Supp} \mathcal{F} \) is proper and of relative dimension \(r \). Then the function
\[
y \mapsto \int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F}_y
\]
is locally constant.

PROOF. The assertion results from Definition B.8 and [Mum70, Cor., top p.50].

DEFINITION B.19. Let \(\mathcal{L}, \mathcal{N} \in \text{Pic}(X) \). Call them \emph{numerically equivalent} if
\[
\int c_1(\mathcal{L})[Y] = \int c_1(\mathcal{N})[Y]
\]
for all closed integral curves \(Y \subset X \) with \(\mathcal{O}_Y \in \mathbf{F}_1 \).

PROPOSITION B.20. Let \(\mathcal{L}_1, \ldots, \mathcal{L}_r; \mathcal{N}_1, \ldots, \mathcal{N}_r \in \text{Pic}(X) \) and \(\mathcal{F} \in \mathbf{K}_r \). If \(\mathcal{L}_j \) and \(\mathcal{N}_j \) are numerically equivalent for each \(j \), then
\[
\int c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_r) \mathcal{F} = \int c_1(\mathcal{N}_1) \cdots c_1(\mathcal{N}_r) \mathcal{F}.
\]

PROOF. If \(r = 1 \), then the assertion results from Lemma B.12. Suppose \(r \geq 2 \). Then \(c_1(\mathcal{L}_2) \cdots c_1(\mathcal{L}_r) \mathcal{F} \in \mathbf{K}_1 \) by Lemma B.5. Hence
\[
\int c_1(\mathcal{L}_1)c_1(\mathcal{L}_2) \cdots c_1(\mathcal{L}_r) \mathcal{F} = \int c_1(\mathcal{N}_1)c_1(\mathcal{L}_2) \cdots c_1(\mathcal{L}_r) \mathcal{F}.
\]
Similarly, \(c_1(\mathcal{N}_1)c_1(\mathcal{L}_3) \cdots c_1(\mathcal{L}_r) \mathcal{F} \in \mathbf{K}_1 \), and so
\[
\int c_1(\mathcal{N}_1)c_1(\mathcal{L}_2)c_1(\mathcal{L}_3) \cdots c_1(\mathcal{L}_r) \mathcal{F} = \int c_1(\mathcal{N}_1)c_1(\mathcal{N}_2)c_1(\mathcal{L}_3) \cdots c_1(\mathcal{L}_r) \mathcal{F}.
\]
Continuing in this fashion yields the assertion.

PROPOSITION B.21. Let \(g : X' \to X \) be an \(S \)-map. Let \(\mathcal{L}, \mathcal{N} \in \text{Pic}(X) \).

(1) If \(\mathcal{L} \) and \(\mathcal{N} \) are numerically equivalent, then so are \(g^* \mathcal{L} \) and \(g^* \mathcal{N} \).

(2) Conversely, when \(g \) is proper and surjective, if \(g^* \mathcal{L} \) and \(g^* \mathcal{N} \) are numerically equivalent, then so are \(\mathcal{L} \) and \(\mathcal{N} \).

PROOF. Let \(Y' \subset X' \) be a closed integral curve with \(\mathcal{O}_{Y'} \in \mathbf{F}_1(X'/S) \). Set \(Y := g(Y') \) and give \(Y \) its induced reduced structure. Then Proposition B.16 yields
\[
\int c_1(g^* \mathcal{L})[Y'] = \deg(Y'/Y) \int c_1(\mathcal{L})[Y] \quad \text{and} \quad \int c_1(g^* \mathcal{N})[Y'] = \deg(Y'/Y) \int c_1(\mathcal{N})[Y].
\]
Part (1) follows.

Conversely, suppose \(g \) is proper and surjective. Let \(Y \subset X \) be a closed integral curve with \(\mathcal{O}_Y \in \mathbf{F}_1(X/S) \). Then \(Y \) is a complete curve in the fiber \(X_s \) over a closed point \(s \in S \). Hence, since \(g \) is proper, there exists a complete curve \(Y' \) in \(X_s \) mapping onto \(Y \). Indeed, let \(y \in Y \) be the generic point, and \(y' \in g^{-1}Y \) a closed point; let \(Y' \) be the closure of \(y' \) given \(Y' \) its induced reduced structure. Plainly \(\mathcal{O}_{Y'} \in \mathbf{F}_1(X'/S) \) and \(\deg(Y'/Y) \neq 0 \). The two equations displayed above now yield Part (2).

DEFINITION B.22. Assume \(S \) is Artin, and \(X \) a proper curve. Let \(\mathcal{L} \in \text{Pic}(X) \). Define its \emph{degree} \(\deg(\mathcal{L}) \) by the formula
\[
\deg(\mathcal{L}) := \int c_1(\mathcal{L}).
\]
Let \(D \) be a divisor on \(X \). Define its \emph{degree} \(\deg(D) \) by \(\deg(D) := \deg(\mathcal{O}_X(D)) \).
PROPOSITION B.23. Assume S is Artin, and X a proper curve.
(1) The map $\deg : \text{Pic}(X) \to \mathbb{Z}$ is a homomorphism.
(2) Let $D \subset X$ be an effective divisor. Then
$$\deg(D) = \dim H^0(\mathcal{O}_D).$$
(3) (Riemann’s Theorem) Let $\mathcal{L} \in \text{Pic}(X)$. Then
$$\chi(\mathcal{L}) = \deg(\mathcal{L}) + \chi(\mathcal{O}_X).$$
(4) Suppose X is integral, and let $g : X' \to X$ be the normalization map. Then
$$\deg(\mathcal{L}) = \deg(g^*\mathcal{L}).$$

PROOF. Part (1) results from Theorem B.9 (2). And Part (2) results from Lemma B.13. As to Part (3), note $\deg(\mathcal{L}^{-1}) = -\deg(\mathcal{L})$ by Part (1). And the definitions yield $\deg(\mathcal{L}^{-1}) = \chi(\mathcal{O}_X) - \chi(\mathcal{L})$. Thus Part (3) holds. Finally, Part (3) results from the definition and the Projection Formula. \qed

DEFINITION B.24. Assume S is Artin, and X a proper surface. Given a divisor D on X, set
$$p_a(D) := 1 - \chi(\mathcal{O}_X(D)) \mathcal{O}_X).$$

PROPOSITION B.25. Assume S is Artin, and X a proper surface. Let D and E be divisors on X. Then
$$p_a(D + E) = p_a(D) + p_a(E) + (D \cdot E) - 1.$$
Furthermore, if D is effective, then
$$p_a(D) = 1 - \chi(\mathcal{O}_D);$$
in other words, $p_a(D)$ is equal to the arithmetic genus of D.

PROOF. The assertions result from Lemmas B.3 and B.2. \qed

PROPOSITION B.26 (Riemann–Roch for surfaces). Assume S is the spectrum of a field, and X is a reduced, projective, equidimensional, Cohen–Macaulay surface. Let ω be a dualizing sheaf, and set $\mathcal{K} := \omega - \mathcal{O}_X$. Let D be a divisor on X. Then $\mathcal{K} \in \mathbf{K}_1$; furthermore,
$$p_a(D) = \frac{(D^2) + (D \cdot \mathcal{K})}{2} + 1 \quad \text{and} \quad \chi(\mathcal{O}_X(D)) = \frac{(D^2) - (D \cdot \mathcal{K})}{2} + \chi(\mathcal{O}_X).$$

If X/S is Gorenstein, that is, $\omega = \mathcal{O}_X(\mathcal{K})$ for some “canonical” divisor \mathcal{K}, then
$$p_a(D) = \frac{(D \cdot (D + \mathcal{K}))}{2} + 1 \quad \text{and} \quad \chi(\mathcal{O}_X(D)) = \frac{(D \cdot (D - \mathcal{K}))}{2} + \chi(\mathcal{O}_X).$$

PROOF. Since X is reduced, ω is isomorphic to \mathcal{O}_X on a dense open subset of X by [AK70, (2.8), p.8]. Hence $\mathcal{K} \in \mathbf{K}_1$.
Set $\mathcal{L} := \mathcal{O}_X(D)$. Then $(D^2) := \int c_1(\mathcal{L})^2 = -\int c_1(\mathcal{L})c_1(\mathcal{L}^{-1})$ by Parts (1) and (2) of Theorem B.9. Now, the definitions yield
$$c_1(\mathcal{L})(-c_1(\mathcal{L}^{-1})\mathcal{O}_X + \mathcal{K}) = c_1(\mathcal{L})(\mathcal{L} - 2\mathcal{O}_X + \omega)$$
$$= \mathcal{L} + \omega - 3\mathcal{O}_X + 2\mathcal{L}^{-1} - \mathcal{L}^{-1} \otimes \omega \quad \text{and}$$
$$c_1(\mathcal{L})(-c_1(\mathcal{L}^{-1})\mathcal{O}_X + \mathcal{K}) = c_1(\mathcal{L})(\mathcal{L} - \omega) = \mathcal{L} - \omega - \mathcal{O}_X + \mathcal{L}^{-1} \otimes \omega.$$
But, $H'(L)$ is dual to $H^{2-k}(L^{-1} \otimes \omega)$ by duality theory; see [Har77, Cor. 7.7, p. 244], where k needn't be taken algebraically closed. So $\chi(L) = \chi(L^{-1} \otimes \omega)$. Similarly, $\chi(\mathcal{O}_X) = \chi(\omega)$. Therefore,

$$(D^2) + (D \cdot K) = 2(\chi(L^{-1}) - \chi(\mathcal{O}_X)) \quad \text{and} \quad (D^2) - (D \cdot K) = 2(\chi(L) - \chi(\mathcal{O}_X)).$$

Now, $-c_1(\mathcal{O}_X(D)) \mathcal{O}_X = L^{-1} - \mathcal{O}_X$. The first assertion follows.

Suppose ω is invertible. Then $-c_1(\omega^{-1}) \mathcal{O}_X = K$ owing to the definitions. And $-\int c_1(L)c_1(\omega^{-1}) = \int c_1(L)c_1(\omega)$ by Part (2) of Theorem B.9. Therefore, $(D \cdot K) = (D \cdot K)$. Hence Part (2) of Theorem B.9 yields the second assertion. \square

Theorem B.27 (Hodge Index). Assume S is the spectrum of a field, and X is a geometrically irreducible complete surface. Assume there is an $\mathcal{H} \in \text{Pic}(X)$ such that $\int c_1(\mathcal{H})^2 > 0$. Let $L \in \text{Pic}(X)$. Assume $\int c_1(L)c_1(\mathcal{H}) = 0$ and $\int c_1(L)^2 > 0$. Then L is numerically equivalent to \mathcal{O}_X.

Proof. We may extend the ground field to its algebraic closure owing to Proposition B.17. Furthermore, we may replace X by its reduction; indeed, the hypotheses are preserved due to Lemma B.12, and the conclusion is preserved due to Definition B.19.

By Chow’s Lemma, there is a surjective map $g: X' \to X$ where X' is an integral projective surface. Furthermore, we may replace X' by its normalization. Now, we may replace X by X' and \mathcal{H} and L by $g^*\mathcal{H}$ and g^*L. Indeed, the hypotheses are preserved due to the Projection Formula, Proposition B.16. And the conclusion is preserved due to Part (2) of Proposition B.21.

By way of contradiction, assume that there exists a closed integral subscheme $Y \subset X$ such that $\int c_1(L)\mathcal{O}_Y \neq 0$. Let $g: X' \to X$ be the blowing-up along Y, and $E := g^{-1}Y \subset X$ the exceptional divisor. Let E_1, \ldots, E_n be the irreducible components of E, and give them their induced reduced structure.

Since X is normal, it has only finitely many singular points. Off them, Y is a divisor, and g is an isomorphism. Hence one of the E_i, say E_1 maps onto Y, and the remaining E_i map onto points. Therefore, $\int c_1(g^*L)[E_1] = \int c_1(gL)[Y]$ and $\int c_1(g^*L)[E_i] = 0$ for $i \geq 2$ by the Projection Formula. Hence Lemma B.12 yields $\int c_1(g^*L)[E] = \int c_1(L)[Y]$. The latter is nonzero by the new assumption, and the former is equal to $\int c_1(g^*L)c_1(\mathcal{O}_X)(E)$ by Lemma B.13.

Set $\mathcal{M} := \mathcal{O}_{X'}(E)$. Then $\int c_1(g^*L)c_1(\mathcal{M}) \neq 0$. Moreover, by the Projection Formula, $\int c_1(g^*\mathcal{H}) > 0$ and $\int c_1(g^*\mathcal{L})c_1(g^*\mathcal{H}) = 0$ and $\int c_1(g^*\mathcal{L})^2 > 0$. Let’s prove this situation is absurd. First, replace X by X' and \mathcal{H} and L by $g^*\mathcal{H}$ and g^*L.

Let \mathcal{G} be an ample invertible sheaf on X. Set $\mathcal{H}_1 := \mathcal{G} \otimes \mathcal{M}$ and $\mathcal{L}_1 := \mathcal{L} \otimes \mathcal{H}$. Then

$$\int c_1(L)c_1(H_1) = m \int c_1(L)c_1(\mathcal{G}) + \int c_1(L)c_1(\mathcal{M})$$

by additivity (see Part (2) of Theorem B.9). Now, $\int c_1(L)c_1(\mathcal{M}) \neq 0$. Hence there is an $m > 0$ so that $\int c_1(L)c_1(H_1) \neq 0$ and so that H_1 is ample.

Set $\mathcal{L}_1 := \mathcal{L} \otimes \mathcal{H}$. Since $\int c_1(\mathcal{L})c_1(\mathcal{H}) = 0$, additivity yields

$$\int c_1(L_1)^2 = p^2 \int c_1(\mathcal{L})^2 + q^2 \int c_1(\mathcal{H})^2,$$

and

$$\int c_1(L_1)c_1(H_1) = p \int c_1(L)c_1(H_1) + q \int c_1(H)c_1(H_1) .$$

Since $\int c_1(L)c_1(H_1) \neq 0$, there are p, q with $q \neq 0$ so that $\int c_1(L_1)c_1(H_1) = 0$. Then $\int c_1(L_1)^2 > 0$ since $\int c_1(L)^2 \geq 0$ and $\int c_1(H)^2 > 0$. Replace \mathcal{L} by L_1 and \mathcal{H} by H_1. Then \mathcal{H} is ample, $\int c_1(L)c_1(\mathcal{H}) = 0$ and $\int c_1(\mathcal{L})^2 > 0$.

APPENDIX B. BASIC INTERSECTION THEORY

319
Set $\mathcal{N} := \mathcal{L}^\otimes n \otimes \mathcal{H}^{-1}$ and $\mathcal{H}_1 := \mathcal{L} \otimes \mathcal{H}^a$. Take $a > 0$ so that \mathcal{H}_1 is ample. By additivity,

$$\int c_1(\mathcal{N})c_1(\mathcal{H}_1) = n \int c_1(\mathcal{L})^2 - a \int c_1(\mathcal{H})^2.$$

Take $n > 0$ so that $\int c_1(\mathcal{N})c_1(\mathcal{H}_1) > 0$. Then additivity and Proposition B.14 yield

$$\int c_1(\mathcal{N})c_1(\mathcal{H}) = \int c_1(\mathcal{H})^2 < 0,$$

$$\int c_1(\mathcal{N})^2 = n^2 \int c_1(\mathcal{L})^2 + \int c_1(\mathcal{H})^2 > 0.$$

But this situation stands in contradiction to the next lemma. \(\square\)

Lemma B.28. Assume S is the spectrum of a field, and X is an integral surface. Let $\mathcal{N} \in \text{Pic}(X)$, and assume $\int c_1(\mathcal{N})^2 > 0$. Then these conditions are equivalent:

(i) For every ample sheaf \mathcal{H}, we have $\int c_1(\mathcal{N})c_1(\mathcal{H}) > 0$.

(i') For some ample sheaf \mathcal{H}, we have $\int c_1(\mathcal{N})c_1(\mathcal{H}) > 0$.

(ii) For some $n > 0$, we have $H^0(\mathcal{N}^\otimes n) \neq 0$.

Proof. Suppose (ii) holds. Then there exists an effective divisor D such that $\mathcal{N}^\otimes n \cong O_X(D)$. And $D \neq 0$ since $\int c_1(\mathcal{N})^2 > 0$. Hence (i) results as follows:

$$\int c_1(\mathcal{N})c_1(\mathcal{H}) = \int c_1(\mathcal{H})c_1(\mathcal{N}) = \int c_1(\mathcal{H})[D] > 0$$

by symmetry, by Lemma B.13, and by Proposition B.14.

Trivially, (i) implies (i'). Finally, assume (i'), and let's prove (ii). Let ω be a dualizing sheaf for X; then ω is torsion free of rank 1, and $H^2(\mathcal{L})$ is dual to $\text{Hom}(\mathcal{L}, \omega)$ for any coherent sheaf \mathcal{F} on X; see [FGA, p.149-17], [AK70, (1.3), p.5, and (2.8), p.8], and [Har77, Prp. 7.2, p.241]. Set $K := \omega - O_X \in \mathcal{K}_1$.

Suppose \mathcal{L} is invertible and $H^2(\mathcal{L})$ is nonzero. Then there is a nonzero map $\mathcal{L} \to \omega$, and it is injective since X is integral. Let \mathcal{F} be its cokernel. Then

$$K = \mathcal{F} - c_1(\mathcal{L}^{-1})O_X \in \mathcal{K}_1.$$

Hence Proposition B.14, symmetry, and additivity yield

$$\int c_1(\mathcal{K}) = \int c_1(\mathcal{L})c_1(\mathcal{K}).$$

Take $\mathcal{L} := \mathcal{N}^\otimes n$. Then $\int c_1(\mathcal{H})c_1(\mathcal{L}) = n \int c_1(\mathcal{H})c_1(\mathcal{N})$ by additivity. But $\int c_1(\mathcal{N})c_1(\mathcal{H}) > 0$ by hypothesis. Hence $H^2(\mathcal{N}^\otimes n)$ vanishes for $n \gg 0$. Now,

$$\chi(\mathcal{N}^\otimes n) = \int c_1(\mathcal{N})^2 \binom{n+1}{2} + a_1 n + a_0$$

for some a_1, a_0 by Snapper's Theorem, Theorem B.7. But $\int c_1(\mathcal{N})^2 > 0$ by hypothesis. Therefore, (ii) holds. \(\square\)

Corollary B.29. Assume S is the spectrum of a field, and X a geometrically irreducible projective r-fold with $r \geq 2$. Let D, E be effective divisors, with E possibly trivial. Assume D is ample. Then $D + E$ is connected.
Proof. Plainly we may assume the ground field is algebraically closed and X is reduced. Fix $n > 0$ so that $nD + E$ is ample; plainly we may replace D and E by $nD + E$ and 0. Proceeding by way of contradiction, assume D is the disjoint union of two closed subschemes D_1 and D_2. Plainly D_1 and D_2 are divisors; so $D = D_1 + D_2$.

Proceed by induction on r. Suppose $r = 2$. Then, since D_1 and D_2 are disjoint, $(D_1 \cdot D_2) = 0$ by Lemma B.13. Now, D is ample. Therefore, Proposition B.14 yields

\begin{align*}
(D_1^2) = (D \cdot D_1) > 0 \quad \text{and} \quad (D_2^2) = (D \cdot D_2) > 0.
\end{align*}

These conclusions contradict Theorem B.27 with $\mathcal{H} := \mathcal{O}_X(D_1)$ and $\mathcal{L} := \mathcal{O}_X(D_2)$.

Finally, suppose $r \geq 3$. Let H be a general hyperplane section of X. Then H is integral by Bertini’s Theorem [Sei50, Thm. 12, p. 374]. And H is not a component of D. Set $D' := D \cap H$ and $D'_1 := D_1 \cap H$. Plainly D'_1 and D'_2 are disjoint, and $D' = D'_1 + D'_2$; also, D' is ample. So induction yields the desired contradiction. \(\square\)
Bibliography

Nicolas Bourbaki, *Éléments de mathématique. Fascicule XXVIII. Algèbre commu-
tative. Chapitre 3: Graduations, filtra-

Joël Briançon, *Description de Hilb^nC{x, y}*, Invent. Math. 41 (1977), no. 1, 45–89.

Kle73, Completeness of the characteristic system, Advances in Math. 11 (1973), 304–310.

Index

(Art/k), 143
(CLoc/k), 145
(Loc/k), 145
D_f, 156
D_{F_0,Q_0}, 155
Def_X, 152
Def_{f_0}, 152
I-adic
 filtration, 181
 topology, 181
I-good filtration, 188
S^1, 108, 109
S^2, 108, 109
\mathbb{P}^2, 108, 109
\mathbb{Q}^2, 108, 109
\mathbb{Q}, 108
$\mathcal{F}_{\text{cart}}$, 55
$\mathcal{F}_{\text{cart}}$, 55
$h_{\mathcal{F}_{\text{cart}}}$, 55
h_X, 13, 107
$h_{\mathcal{F}_{\text{cart}}}$, 55
$h_{\mathcal{F}_{\text{cart}}}$, 55
τ-equivalent, 291
$\text{div}(\mathcal{F})$, 161
m-regular sheaf, 114
étale cover, 215
étale topology, 26
 global, 27
2-Yoneda Lemma
 strong version, 60
 weak version, 59
Abelian
 map, 241, 263
Abelian
 function, 242
 integral, 238
 scheme, 222, 289
 variety, 222, 242
 dual, 246
action
 of a discrete group object, 25
 of a functor into groups on a functor into
 sets, 20
 of a group object on an object, 21
 as a group homomorphism, 22
 characterization via diagrams, 21
addition theorem, 238, 241
adic
 filtration, 181
 noetherian ring, 181
 topology, 181
Albanese variety, 246
algebraic space, 104, 271
algebraically equivalent, 280
algebraizable coherent sheaf, 205
amplitude
 perfect, 199
AR zero, 189
arithmetic genus, 243, 284, 318
ARML, 189
arrow
 cartesian, 41
 properties, 42
 equivariant, 21
 invariant, 100
Artin--Rees theorem, 189
Artin--Rees zero, 189
Artin--Rees--Mittag-Leffler condition, 189
Artinian local algebra, 143
base-change
 formula, 196
 homomorphism, 91, 118, 121
 compatibility, 92
 isomorphism, 118, 121, 197
 map, 91, 118, 121, 195
 property of Hilbert and Quot schemes, 112
 theorem, 92, 121
base-preserving
 functor, 42
 natural transformations, 56
bounded family, 291
Brauer group, 257
canonical
 topology, 35
 truncation, 200
cartesian arrow, 41
 properties, 42
Cartier divisor, 247, 257
Castelnuovo Lemma, 115
Castelnuovo--Mumford regularity, 114, 249
category
comma, 11
fibered, 42
F_{cart}, 55
equivalence of, characterization, 56
fiber of, 42
in equivalence relations, 58
in equivalence relations, characterization, 58
in groupoids, 52
in sets, 53
in sets, characterization, 53
in sets, equivalence with functors, 54
morphism of, 42
of quasi-coherent sheaves, 50
of sheaves, 49
of sheaves, as a stack, 74
representable, 59
representable, characterization, 61
split, 45
of artinian local algebras (Art/k), 143
of complete local algebras (CLoc/k), 145
of local algebras (Loc/k), 145
opposite, 11
with discrete group object, 24
with discrete objects, 23
Chevalley and Rosenlicht theorem, 276
class of arrows
local, 89
stable, 48
classical topology, 26
classifying stack of a topological group, 48
cleavage, 43
co-equaliser, 134
cohomogeneous sheaves extension of, 131
cohomologically flat sheaf, 202, 272
comma
category, 11
topology, 35
comparison theorem, 253
complete intersection
local, 149
local ring, 149
complete linear system, 258
complete local algebra, 145
completeness of the characteristic system, 244, 285
completion
formal, 185
complex
Grothendieck, 119
pseudo-coherent, 199
cotangent, 226
intersection cohomology, 173
perfect, 199
strictly perfect, 199
condition
Artin–Rees-Mittag-Leffler, 189
Mittag-Leffler, 189
connected component of e, 275
contravariant functor, 11
cotangent complex, 226
covering, 25, 252
creant, 170
curve (over a scheme), 219
curvilinear scheme, 172
deformation
of a flat scheme, 212
of a vector bundle, 210
deformation functor, 143
D_f, 156
D_{F_0,Q_0}, 155
$D_{X,P}$, 144
$D_{\text{e}f_X}$, 152
$D_{\text{e}f_E}$, 152
$H_{Z,X}$, 144
h_R, 145
examples of, 144
morphism of, 143
pro-representable, 148
smooth morphism of, 150
degree, 317
depth, 163
descent
along torsors, 103
for affine morphisms, 90
for modules, 80
for quasicoherent sheaves, 82
for sheaves of commutative quasi-coherent algebras, 87
via ample invertible sheaves, 93
descent data
functoriality of, 75
object with, 68
via sieves, 71
descent morphism, 86
discrete
group object, 24
object, 23
object functor, 23
preserves finite products, 24
discrete object functor, 23
preserves finite products, 24
divisor
Cartier, 247, 257
effective, 257
relative effective, 258
dual
Abelian variety, 246, 290
autoduality, 246, 290
numbers, 281
effective
Cartier divisor relative, 161
epimorphism, 34
quotient, 134
effective Cartier divisor
\(\text{div}(F) \), 161
embedding dimension, 145
epimorphism, 34
effective, 34
equalizer, 30
equivalence
of categories, 10
of fibered categories, 56
characterization, 56
equivalence criteria, 246, 278
equivalence relation
schematic, 133
equivalent
\(\tau \), 291
algebraically, 280
numerically, 291, 317
equivalent topologies, 33
has the same stacks, 78
have the same sheaves, 33
equivariant
arrow, 21
object, 63
especially surjective functor, 10
essentially zero projective system, 189
example
Grothendieck–Raynaud, 289
Hironaka, 103, 112
Iarrobino, 168
Mumford, 267
Severi and Zappa, 285
exchange property, 203, 260
extension
small, 144
of coherent sheaves, 131
faithfully flat morphism of schemes, 9
family
bounded, 291
Poincaré, 244, 277
fiber functor, 216
fiber of a fibered category, 42
fibered
category, 42
\(F_{\text{cart}} \), 55
equivalence of, characterization, 56
in equivalence relations, characterization, 58
in groupoids, 52
in sets, 53
in sets, characterization, 53
in sets, equivalence with functors, 54
of quasi-coherent sheaves, 50
of sheaves, 49
of sheaves, as a stack, 74
representable, characterization, 61
subcategory, 55
filtration
\(I \)-adic, 181
\(I \)-good, 188
adic, 181
good, 188
flat morphism of schemes, 8
flatness
generic, 122, 123
flatness criterion, 184
flattening stratification, 123
Fock space, 177
formal
completion, 185
functions, theorem on, 193
scheme (affine noetherian), 182
scheme (locally noetherian), 182
spectrum, 182
formula
base-change, 196
fpf topology, 27
fpqc
classification of fpqc sheaves, 36
classification of fpqc stacks, 83
morphism of schemes, 28
properties of, 28
topology, 28
local properties in the, 29
fully faithful functor, 10
functor
\(\text{Div}_{X/S} \), 259
\(\text{LinSys}_{U(X/S)} \), 261
\(\text{Pic}_X \), 252
\(\text{Pic}(X/S)(\text{ét}) \), 252
\(\text{Pic}(X/S)\) (fpf), 252
\(\text{Pic}(X/S)(\text{zar}) \), 252
\(\text{Pic}_{X/S} \), 252
base-preserving, 42
contravariant, 11
deformation, 143
examples of, 144
discrete object, 23
preserves finite products, 24
essentially surjective, 10
fiber, 216
fully faithful, 10
Hilbert, 108, 109
of morphisms \(\text{Mor}_S \), 133
of points, 13, 107, 251
preserving finite products, 11
Quot, 109
representable, 14
classification via existence of a universal object, 15
elements of, 15
is a sheaf in the fpqc topology, 34
is a sheaf in the global classical topology, 34
separated, 29
 characterization via sieves, 32
functoriality
 of descent data, 75
fundamental group, 215

generalized Jacobian, 247, 289
generic flatness, 122, 123
genus
 arithmetic, 243, 284, 318
generic flatness, 240, 243, 284
topological, 240
generalized Jacobian, 240, 243, 284
gerbe, 211
global
 étale topology, 27
classical topology, 26
 Zariski topology, 26
good filtration, 188
Grassmannian, 111
 as a Hilbert scheme, 111
generalized Jacobian, 247, 289
 as a Quot scheme, 110
 construction of, 112
 of a coherent sheaf, 111
 of a vector bundle, 110
Grothendieck
 complex, 119
topology, 25
Grothendieck’s specialization theorem, 218
Grothendieck–Murre theorem, 270
group
 fundamental, 215
group object, 18
 characterization via diagrams, 18
discrete, 24
 homomorphism of group objects, 20
 group scheme, 18
 groupoid, 11
Heisenberg algebra, 177
Hilbert
 functor, 108, 109
 polynomial, 109
 scheme, 107, 108, 159, 166, 171
 of hypersurfaces in \(\mathbb{P}^n \), 111
 scheme of points, \(S^{[n]} \)
 stratification of, \(S_p^{[n]} \), 171
 scheme of points, \(X^{[n]} \), 159
 incidence correspondence, 166
Hilbert scheme
 examples of, 169
 of a smooth curve
 smoothness of, 167
 of a smooth surface
 partition of, 171
 smoothness of, 167
 Hilbert’s
 fifteenth problem, 248

 Theorem 90, 256
Hilbert-Chow morphism
 existence of, 166
 of a smooth curve is an isomorphism, 169
Hilbert-Chow morphism, \(\rho \), 159
Hodge index theorem, 319
holomorphic symplectic variety, 170
homomorphism
 of deformations, 210
 specialization, 217
homomorphism of group objects, 20
hull, pro-representable, 150
 characterization of, 150
 existence of, 151
 unicity of, 151
ideal of definition
 of a locally noetherian forma scheme, 183
 of an adic ring, 181
intersection
 cohomology, 173
 number, 314
 symbol, 314
 invariant arrow, 100
 irregularity, 243, 284
Jacobi Inversion Problem, 239
Jacobi, 241, 245
generalized, 247
jointly surjective, 26
K3 surface, 225
Kodaira Vanishing theorem, 279

 Lemma
 2-Yoneda
 strong version, 60
 weak version, 59
 Yoneda
 dual form, 18
 Castelnuovo, 115
 on generic flatness, 122, 123
 Yoneda
 strong version, 14
 weak version, 13
Lie algebra, 273, 283
Lie–Kolchin theorem, 277
lifting of a flat scheme, 212
local algebra, 145
Artinian, 143
 category of, \((Art/k) \), 143
 category of, \((Loc/k) \), 145
 complete, 145
 category of, \((CLoc/k) \), 145
local class of arrows, 89
local complete intersection, 149
in a scheme, 157
local Picard scheme, 272
locally of finite presentation
morphism of schemes, 7
Macdonald's formula, 174
Mittag-Leffler condition, 189
ML, 189
morphism
Hilbert-Chow morphism, 159
existence of, 166
of deformation functors, 143
of fibered categories, 42
of formal schemes, 182
smooth, 213
morphism of schemes
faithfully flat, 9
flat, 8
fppf, 28
properties of, 28
locally of finite presentation, 7
projective, 126
quasi-compact, 7
quasi-projective, 126
strongly projective, 126
strongly quasi-projective, 126
morphism of sheaves, 29
Néron–Severi, 244
natural transformation
base-preserving, 56
numerically equivalent, 291
object
discrete, 23
universal, 15
object with descent data
effective, 73
via sieves, 71
obstruction, 210, 213
obstruction space, T_2, 147
Oort devissage, 270, 271, 273
opposite category, 11
path
between fiber functors, 216
perfect
amplitude, 199
complex, 199
Picard
functor
absolute, 252
relative, 252
the, 257
group, 237
integral, 243
number, 244
scheme, 237, 262
local, 272
Plücker coordinates, 114
Plücker relations, 114
Poincaré
family, 244, 277
sheaf, 262
polynomial
Hilbert, 109
prestack, 72
categorization of, 73
pretopology, 26
pro-representable
functor, 148
hull, 150
categorization of, 150
existence of, 151
unicity of, 151
projection isomorphism, 197
projective morphism, 126
projective system
especially zero, 189
strict, 189
property of exchange, 203, 260
pseudo-coherent complex, 199
pseudo-functor, 44
pullback, 41
punctual Hilbert scheme, H_n, 171
of curvilinear subschemes, H^*_n, 172
quasi-compact morphism of schemes, 7
quasi-functor, 58
categorization, 58
quasi-projective morphism, 126
Quot functor, 109
Quot scheme, 107
quotient
by a group action, 160
existence of, 160
by a schematic equivalence relation, 134
effective, 134
universal, 114
Ramanujam–Samuel theorem, 274, 280
refinement, 33
categorization via sieves, 33
regular sheaf, 114
regularity
Castelnuovo–Mumford, 114, 249
representable
fibered category, 59
categorization, 61
functor, 14
categorization via existence of a universal object, 15
examples of, 15
is a sheaf in the fpqc topology, 34
is a sheaf in the global classical topology, 34
Riemann theorem, 318
Riemann–Roch theorem, 242, 318
rigidification, 255
ring
adic noetherian, 181
Samuel’s conjecture, 272
saturated topology, 34
saturation of a topology, 34
properties of, 34
schematic equivalence relation, 133
scheme
G^0, 275
G^*, 295
$\text{Pic}^c_{X/S}$, 262
Abelian, 222
abelian, 289
Chevalley, 248
formal, 182
Schlessinger theorem, 151
semiregular, 284
separated functor, 29
characterization via sieves, 32
set
$\text{Pic}^c_{X/S}$, 299
sheaf, 29
m-regular, 114
classification of fpqc, 36
classification via sieves, 32
cohomologically flat, 202, 272
Poincaré, 262
regular, 114
universal, 262
sheafification, 39
existence of, 39
sheaf
associated with a set of arrows, 30
belonging to a topology, 31
site, 25
small étale, 26
subcanonical, 35
small étale site, 26
small extension, 144
smooth
morphism
of deformation functors, 150
of formal schemes, 213
topology, 33
specialization homomorphism, 217
spectrum
formal, 182
split fibered category, 45
splitting, 45
stable class of arrows, 48
stack, 72
characterization of, 73
classification of fpqc, 83
classification via sieves, 77
Stein factorization, 193
stratification
flattening, 123
strict
projective system, 189
strictly perfect complex, 199
strictly semismall, 173
strongly projective morphism, 126
strongly quasi-projective morphism, 126
subcanonical
site, 35
topology, 35
subcategory
fibered, 55
subordinate topology, 33
characterization via sieves, 33
substack, 79
surface
K_3, 225
over a scheme, 224
symmetric power, $X^{(n)}$, 159
tangent space
of a deformation functor, T_1, 147
of a ring, 145
tangent space at 0, 281
tangent-obstruction theory, 147
generalized, 147
of a coherent sheaf, 157
of a locally complete intersection sub-
scheme, 157
of a section of the Hilbert scheme, 156
of a section of the Quot scheme, 155
unicity of, 147, 148
the module \mathcal{Q}, 260
theorem
a representable functor is a sheaf in the
fpqc topology, 34
addition, 238, 241
Artin, 271
Artin–Rees, 189
base-change, 92, 121
Briançon, 172
Cartier, 278, 279, 283, 285
characterization of τ-equivalence, 291
characterization of numerical equivalence, 291
Chevalley and Rosenlicht, 276
comparision, 253
computation of the Lie algebra, 281
Deligne, 291
descent
along torsors, 103
for affine morphisms, 90
for modules, 80
for quasicoherent sheaves, 82
for sheaves of commutative quasi-
coherent algebras, 87
via ample invertible sheaves, 93
existence of $\text{Pic}^c_{X/S}$, 263, 272, 290
existence of $\text{Pic}^c_{X/S}$, 297
existence of $\text{Pic}^c_{X/k}$, 269, 276
existence of $\text{Pic}^c_{X/S}$, 290
existence of a split fibered category equivalent to a given fibered category, 61
existence of flattening stratifications, 123
existence of Hilbert-Chow morphisms, 166
existence of pro-representable hulls, 151
existence of quotients by a finite group action, 160
genera, 160
existence of quotients by flat projective equivalence relations, 135
existence of sheafifications, 39
finiteness of Pic^*_X/S, 299
finiteness of Pic^*_X/S, 297
flattener, 271
generic representability, 270
Grothendieck’s specialization, 218
Grothendieck–Murre, 270
Hodge Index, 319
Kodaira Vanishing, 279
Lie–Kolchin, 277
Mumford, 116, 269
of generic representability, 270
on Betti numbers of the Hilbert schemes
of a smooth surface, 174
on formal functions, 193
properties of intersection numbers, 315
Ramanujam–Samuel, 274, 280
Raynaud, 291
relative representability, 271
representability of $\text{LinSys}_{E/X}/S$, 261
representability of Div_X/S, 259
representability of functors of morphisms, 133
representability of Quot functors, 127
Riemann, 318
Riemann–Roch, 242, 318
Schlessinger, 151
smoothness of the Hilbert scheme of a smooth curve, 167
smoothness of the Hilbert scheme of a smooth surface, 167
Snapper, 314
the Hilbert–Chow morphism of a smooth surface is strictly semismall, 173
the Hilbert–Chow morphism of a curve is an isomorphism, 169
Zariski’s connectedness, 193
Zariski’s Main, 194
thickening, 183
topological
genus, 240
group, 18
topology
I-adic, 181
étale, 26
adic, 181
canonical, 35
classical, 26
global, 26
comma, 35
equivalent, 33
has the same sheaves, 33
has the same stacks, 78
fpf, 27
fpqc, 28
local properties in the, 29
global étale, 27
global Zariski, 26
Grothendieck, 25
saturated, 34
saturation of a, 34
properties of, 34
smooth, 33
subcanonical, 35
subordinate, 33
characterization via sieves, 33
wild flat, 27, 35, 82
Zariski, 248
tor-amplitude, 199
tor-dimension, 199
torsor, 100
characterization of, 100
trivial, 100
transition isomorphisms, 68
transitivity triangle (of perfect complexes), 226
trivial torsor, 100
truncation
canonical, 200
universal
object, 15
quotient, 114
sheaf, 262
valuative criterion for properness, 112
variety
Abelian, 222, 242
Albanese, 246
holomorphic symplectic, 170
wild flat topology, 27, 35, 82
Yoneda Lemma
dual form, 18
strong version, 14
weak version, 13
Zariski topology, 248
global, 26
Zariski’s
connectedness theorem, 193
Main Theorem, 194
Titles in This Series

123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck’s FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004
111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
TITLES IN THIS SERIES

90 Christian Gérard and Izabella Laba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second edition, 2004
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001
84 László Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001
83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000
81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000
74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000
72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999
71 Lajos Pukánszky, Characters of connected Lie groups, 1999
70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999
69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999
67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999
65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999
64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 Mark Hovey, Model categories, 1999
62 Vladimir I. Bogachev, Gaussian measures, 1998

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Alexander Grothendieck introduced many concepts into algebraic geometry; they turned out to be astoundingly powerful and productive and truly revolutionized the subject. Grothendieck sketched his new theories in a series of talks at the Séminaire Bourbaki between 1957 and 1962 and collected his write-ups in a volume entitled "Fonements de la Géométrie Algèbrique," known as FGA.

Much of FGA is now common knowledge; however, some of FGA is less well known, and its full scope is familiar to few. The present book resulted from the 2003 "Advanced School in Basic Algebraic Geometry" at the ICTP in Trieste, Italy. The book aims to fill in Grothendieck's brief sketches. There are four themes: descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. Most results are proved in full detail; furthermore, newer ideas are introduced to promote understanding, and many connections are drawn to newer developments.

The main prerequisite is a thorough acquaintance with basic scheme theory. Thus this book is a valuable resource for anyone doing algebraic geometry.