Valuations, Orderings, and Milnor K-Theory

Ido Efrat

Valuations, Orderings, and Milnor K-Theory

Valuations, Orderings, and Milnor K-Theory

Ido Efrat

EDITORIAL COMMITTEE

Jerry L. Bona
Michael G. Eastwood
Peter S. Landweber

J. T. Stafford, Chair

2000 Mathematics Subject Classification. Primary 12J10, 12J15; Secondary 12E30, 12J20, 19 F99.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-124

Library of Congress Cataloging-in-Publication Data
Efrat, Ido, 1963-
Valuations, orderings, and Milnor K-theory / Ido Efrat.
p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376; v. 124)
Includes bibliographical references and index.
ISBN 0-8218-4041-X (alk. paper)
1. Valuation theory. 2. Ordered fields. 3. K-theory I. Title. II. Mathematical surveys and monographs ; no. 124.

QA247.E3835 2006
515'.78-dc22
2005057091

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2006 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Introduction ix
Conventions xiii
Part I. Abelian Groups
Chapter 1. Preliminaries on Abelian Groups 5
§1.1. General facts 5
§1.2. Divisible hulls 7
§1.3. Rational ranks 11
§1.4. Characters 12
Chapter 2. Ordered Abelian Groups 15
§2.1. Basic properties and examples 15
§2.2. Ranks 17
§2.3. Cores 19
§2.4. Cofinality and infinitesimals 20
$\S 2.5$. Ordered abelian groups of rank 1 21
§2.6. Push-downs 23
§2.7. Well-ordered sets 24
§2.8. Formal power series 27
§2.9. Generalized rational functions 30
Part II. Valuations and Orderings
Chapter 3. Valuations 37
§3.1. Valuation rings 37
§3.2. Valuations 38
§3.3. Places 42
§3.4. Discrete valuations 43
Chapter 4. Examples of Valuations 47
§4.1. Valuations from unique factorization domains 47
§4.2. Valuations on power series fields 48
§4.3. Gauss valuations 50
Chapter 5. Coarsenings of Valuations 55
§5.1. Coarser and finer 55
§5.2. Quotients and compositions of valuations 56
§5.3. Coarsenings in the mixed characteristic case 60
Chapter 6. Orderings 63
§6.1. Ordered fields 63
§6.2. Examples of orderings 66
§6.3. Archimedean orderings 67
Chapter 7. The Tree of Localities 69
§7.1. Localities 69
§7.2. Localities on residue fields 70
§7.3. The tree structure 71
Chapter 8. Topologies 75
§8.1. Basic properties 75
§8.2. Continuity of roots 77
§8.3. Bounded sets 79
Chapter 9. Complete Fields 81
§9.1. Metrics 81
§9.2. Examples 82
§9.3. Completions 83
Chapter 10. Approximation Theorems 87
§10.1. Approximation by independent localities 87
§10.2. Approximation by incomparable valuations 90
$\S 10.3$. Consequences 93
Chapter 11. Canonical Valuations 95
§11.1. Compatible localities 95
§11.2. S-cores 98
§11.3. Explicit constructions 100
§11.4. Existence of valuations 103
Chapter 12. Valuations of Mixed Characteristics 107
§12.1. Multiplicative representatives 107
§12.2. λ-adic expansions 109
§12.3. p-perfect structures 110
§12.4. Rings of Witt vectors 116
§12.5. Mixed valuations under a finiteness assumption 118
Part III. Galois Theory
Chapter 13. Infinite Galois Theory 125
Chapter 14. Valuations in Field Extensions 127
§14.1. Chevalley's theorem 127
§14.2. Valuations in algebraic extensions 128
§14.3. The Galois action 130
Chapter 15. Decomposition Groups 133
§15.1. Definition and basic properties 133
§15.2. Immediateness of decomposition fields 134
§15.3. Relatively Henselian fields 136
Chapter 16. Ramification Theory 141
§16.1. Inertia groups 141
§16.2. Ramification groups 143
Chapter 17. The Fundamental Equality 151
$\S 17.1$. The fundamental inequality 151
$\S 17.2$. Ostrowski's theorem 153
§17.3. Defectless fields 157
§17.4. Extensions of discrete valuations 158
Chapter 18. Hensel's Lemma 161
$\S 18.1$. The main variants 161
§18.2. nth powers 164
§18.3. Example: complete valued fields 166
§18.4. Example: power series fields 168
§18.5. The Krasner-Ostrowski lemma 170
Chapter 19. Real Closures 175
§19.1. Extensions of orderings 175
§19.2. Relative real closures 177
§19.3. Sturm's theorem 181
$\S 19.4$. Uniqueness of real closures 184
Chapter 20. Coarsening in Algebraic Extensions 187
§20.1. Extensions of localities 187
$\S 20.2$. Coarsening and Galois groups 189
$\S 20.3$. Local closedness and quotients 190
§20.4. Ramification pairings under coarsening 191
Chapter 21. Intersections of Decomposition Groups 193
$\S 21.1$. The case of independent valuations 193
$\S 21.2$. The case of incomparable valuations 194
§21.3. Transition properties for Henselity 195
Chapter 22. Sections 199
$\S 22.1$. Complements of inertia groups 199
$\S 22.2$. Complements of ramification groups 203
Part IV. K-Rings
Chapter 23. κ-Structures 209
$\S 23.1$. Basic notions 209
$\S 23.2$. Constructions of κ-structures 210
§23.3. Rigidity 213
§23.4. Demuškin κ-structures 214
Chapter 24. Milnor K-Rings of Fields 217
§24.1. Definition and basic properties 217
§24.2. Comparison theorems 219
§24.3. Connections with Galois cohomology 221
Chapter 25. Milnor K-Rings and Orderings 225
§25.1. A K-theoretic characterization of orderings 225
$\S 25.2$. Cyclic quotients 228
Chapter 26. K-Rings and Valuations 231
§26.1. Valuations and extensions 231
§26.2. The Baer-Krull correspondence 234
§26.3. Totally rigid subgroups 235
§26.4. Sizes of multiplicative subgroups 236
§26.5. H_{S} and the K-ring 238
§26.6. Bounds in the totally rigid case 240
§26.7. Fans 242
§26.8. Examples of totally rigid subgroups 244
Chapter 27. K-Rings of Wild Valued Fields 247
§27.1. The discrete case 247
§27.2. A vanishing theorem 248
§27.3. The general case 250
Chapter 28. Decompositions of K-Rings 253
$\S 28.1$. The basic criterion 253
§28.2. Topological decompositions 256
§28.3. Local pairs 257
§28.4. Arithmetical decompositions 259
Chapter 29. Realization of κ-Structures 263
§29.1. Basic constructions 263
§29.2. K-rings modulo preorderings of finite index 265
§29.3. κ-structures of elementary type 267
Bibliography 269
Glossary of Notation 275
Index 281

Introduction

The fundamental theorem of arithmetic describes the structure of the multiplicative group \mathbb{Q}^{\times}of the field \mathbb{Q} of rational numbers as a direct sum

$$
\mathbb{Q}^{\times} \cong(\mathbb{Z} / 2) \oplus \bigoplus_{p \text { prime }} \mathbb{Z}
$$

Namely, a non-zero rational number a has a unique decomposition $a= \pm \prod_{p} p^{v_{p}(a)}$, where the exponents $v_{p}(a)$ are integers and are zero for all but finitely many primes p. This very basic fact brings together the three main objects studied in this book: multiplicative groups of fields, valuations, and orderings. In fact, as we shall see later on, the maps v_{p} are all non-trivial valuations on \mathbb{Q}, and the \pm sign corresponds to its unique ordering.

The attempts to generalize the fundamental theorem of arithmetic to arbitrary number fields F led to the creation of algebraic number theory. Of course, to make such a generalization possible, one had to modify the mathematical language used. The right generalization of both the notion of a prime number as well as of the \pm sign turned out to be that of an absolute value: a map $|\cdot|$ from F to the non-negative real numbers such that $|x|=0$ if and only if $x=0$, and such that

$$
|x \cdot y|=|x| \cdot|y| \quad \text { and } \quad|x+y| \leq|x|+|y|
$$

for all x, y in F. For instance, on \mathbb{Q} the usual ordering gives an absolute value $|\cdot|_{\infty}$ in the standard way, and each map v_{p} as above gives the p-adic absolute value $|x|_{p}=1 / p^{v_{p}(x)}$. For the p-adic absolute value $|\cdot|=|\cdot|_{p}$ the triangle inequality can be strengthened to the so-called ultrametric inequality

$$
|x+y| \leq \max \{|x|,|y|\}
$$

Absolute values having this stronger property are called non-Archimedean, the rest being referred to as Archimedean. Using these concepts it was possible to develop one of the most beautiful branches of algebraic number theory: the socalled ramification theory, which describes the behavior of absolute values under field extensions, and especially their reflection in Galois groups.

At this point, it was natural to ask for a generalization of this theory to arbitrary fields F. Unfortunately, the notion of an absolute value, which was satisfactory in the number field case, is inadequate in general, so better concepts had to be found. The right substitute for the notion of an Archimedean absolute value has been systematically developed by E. Artin and O. Schreier in the late 1920s ([Ar], [AS1], [AS2]), following an earlier work by Hilbert: this is the notion of an ordering on F, i.e., an additively closed subgroup P of the multiplicative group F^{\times}of F (standing for the set of "positive" elements) such that $F^{\times}=P \cup-P$.

The proper definition in the non-Archimedean case is more subtle, and was introduced by W. Krull in his landmark 1931 paper [Kru2]. Roughly speaking, instead of looking at the absolute value $|\cdot|$ itself, Krull focused on the group homomorphism $v=-\log |\cdot|: F^{\times} \rightarrow \mathbb{R}$. Of course, this minor modification cannot change much, and is still insufficient for general fields. However, Krull's conceptual breakthrough was to replace the additive group \mathbb{R} by an arbitrary ordered abelian group (Γ, \leq). Thus what we now call a Krull valuation on the field F is a group homomorphism $v: F^{\times} \rightarrow \Gamma$, where (Γ, \leq) is an ordered abelian group, which satisfies the following variant of the ultrametric inequality:

$$
v(x+y) \geq \min \{v(x), v(y)\}
$$

for $x \neq-y$.
Krull's seminal work [Kru2] paved the way to modern valuation theory. Starting from this definition, he introduced some of the other key ingredients of the theory: valuation rings, the analysis of their ideals, the convex subgroups of (Γ, \leq), and the connections between all these objects and coarsenings of valuations. He adapted for his general setting the (already existent) notions of decomposition, inertia, and ramification subgroups of Galois groups over F. Furthermore, he studied maximality properties of valued fields with respect to field extensions. In a somewhat more implicit way he also studied a notion which will later on become central in valuation theory, namely, Henselian valued fields (although he does not give it a name). This notion turned out to be the right algebraic substitute in the setup of Krull valuations for the topological property of completeness. It is analogous to the notion of a real closed field introduced by Artin and Schreier in the context of ordered fields. The term "Henselian" is in honor of K. Hensel, who discovered the field \mathbb{Q}_{p} of p-adic numbers, and proved (of course, under a different terminology) that its canonical valuation is Henselian $[\mathbf{H e}]$. We refer to $[\mathbf{R o}]$ for a comprehensive study of the early (pre-Krull) history of valuation theory.

The classical theory of valuations from the point of view of Krull and his followers is well presented in the already classical books by O. Endler [En], P. Ribenboim [Ri1], and O.F.G. Schilling [Schi]. Yet, over the decades that elapsed since the publication of these books, valuation theory went through several conceptual developments, which we have tried to present in this monograph.

First, the different definitions in the Archimedean and non-Archimedean cases caused a split of the unified theory into two separate branches of field arithmetic: the theory of ordered fields on one hand, and valuation theory on the other hand. While Krull still keeps in [Kru2] a relatively unified approach (at least to the extent possible), later expositions on general valuation theory have somewhat abandoned the connections with orderings. Fortunately, the intensive work done starting in the 1970s on ordered fields and quadratic forms (which later evolved into real algebraic geometry) revived the interest in this connection, and led to a reintegration of these two sub-theories. T.Y. Lam's book [Lam2] beautifully describes this interplay between orderings and valuations from the more restrictive viewpoint of the reduced theory of quadratic forms, i.e., quadratic forms modulo a preordering (see also [Lam1] and $[\mathbf{J r}]$). In the present book we adopt this approach in general, and whenever possible study orderings and valuations jointly, under the common name localities.

Second, starting already from Krull's paper [Kru2], the emphasis in valuation theory has been on its Galois-theoretic aspects. These will be discussed in detail in

Part III of the book. However, by their mere definitions, valuations and orderings are primarily related to the multiplicative group F^{\times}of the field F, and much can be said when studying them in this context. This approach has become dominant in the ordered field case (as in [Lam2]). However, it is our feeling that in the valuation case this viewpoint has been somewhat neglected in favor of the Galois-theoretic one. Therefore, in addition to presenting the classical theory of Galois groups of valued field extensions, we devote several sections (in Parts II and IV of the book) to developing the theory with emphasis on subgroups S of F^{\times}. In particular, we focus on valuations satisfying a natural condition called S-compatibility, which is the analog of Henselity in the multiplicative group context.

Part IV takes this approach one step further, and studies the Milnor K-theory of valued and ordered fields F. We recall that the Milnor K-group of F of degree r is just the tensor product $F^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} F^{\times}$(r times) modulo the simple relations $a_{1} \otimes \cdots \otimes a_{r}=0$ whenever $a_{i}+a_{j}=1$ for some $i<j$. Several important results (or conjectures) in arithmetic geometry indicate that there should be some kind of parallelism between Milnor's K-theory and Galois theory of fields. For instance, the Bloch-Kato conjecture predicts a canonical isomorphism between $K_{r}^{\text {II }}(F) / n$ and the Galois cohomology group $H^{r}\left(F, \mu_{n}^{\otimes r}\right)$ (where $r \geq 0$ and $n \geq 1$ are integers with char $F \not \backslash n$, and the cohomology is with respect to the r-times twisted cyclotomic action); this has been proved in several important cases by A.S. Merkurjev, A.A. Suslin, M. Rost, V. Voevodsky, and others (see §24.3). It is therefore not surprising that large parts of the Galois theory of valued and ordered fields have analogs in this natural framework of Milnor's K-theory. These analogs will be presented in Part IV. In some sense, this shift of viewpoint resembles the introduction of the K-theoretic approach to higher class field theory, complementing the earlier Galois-theoretic approach (see [FV, Appendix B] and $[\mathbf{F K}]$).

Finally, there has been much interest lately in construction of non-trivial valuations on fields. Such constructions emerged in the context of ordered fields (in particular, L. Bröcker's "trivialization of fans" theorem $[\mathbf{B r} 1]$), and later in an elementary and explicit way by B. Jacob, R. Ware, J.K. Arason, R. Elman, and Y.S. Hwang ([J1], [War2], [AEJ], [HwJ]). Such constructions became especially important in recent years in connection with the so-called birational anabelian geometry. This line of research originated from ideas of A. Grothendieck ([G1], [G2]) as well as from works of J. Neukirch ([N1], [N2]). Here one wants to recover the arithmetic structure of a field (if possible, up to an isomorphism) from its various canonical Galois groups. The point is that usually the first step is to recover enough valuations from their cohomological (or K-theoretic) "footprints"; see, e.g., $[\mathbf{B o t}],[\mathrm{Ef1}],[\mathbf{E f 7}],[\mathbf{E f F}],[\mathbf{N S W}, \mathrm{Ch} . \mathrm{XII}],[\mathbf{P} 1],[\mathbf{P} 2],[\mathbf{P} 3],[\mathbf{S p}],[\mathbf{S z}]$ for more details. In $\S 11$ we give a new presentation of the above-mentioned line of elementary constructions, based on the coarsening relation among valuations. While these constructions were considered for some time to be somewhat mysterious, they fit very naturally into the multiplicative group approach as discussed above, especially when one uses the K-theoretic language. In $\S 26$ we use this language to prove the main criterion for the existence of "optimal" valuations, as is required in the applications to the birational anabelian geometry. This is further related to the notion of fans in the theory of ordered fields, thus closing this fruitful circle of ideas that began with $[\mathbf{B r} 1]$.

The prerequisites of this book are quite minimal. We assume a good algebraic knowledge at a beginning graduate level, including of course familiarity with general
field theory and Galois theory. The generalization of finite Galois theory to infinite normal extensions is reviewed for the reader's convenience in $\S 13$. Likewise we develop the basic facts and formalisms of Milnor's K-theory in $\S \S 23-24$ in order not to assume any prior knowledge in this area. On the other hand, we do assume familiarity with the language of homological algebra (exact sequences, commutative diagrams, direct and inverse limits, etc.). The presentation is mostly self-contained, and only very few facts are mentioned without proofs: the "snake lemma" and some basic properties of flatness in $\S 1.1$, the structure theory of finitely generated modules over a principal ideal domain and the Nakayama lemma in §17.4, short cohomological discussions in $\S 22.2, \S 24.3$ and Remark 25.1.7, and some facts from local class field theory in $\S 27.1$.

Unlike most existing texts on valuation theory, we chose not to develop the theory using commutative algebra machinery, but rather to use the machinery of abelian groups. This simplifies the presentation in many respects. The required results about abelian groups (and in particular ordered abelian groups) are developed in Part I of the book.

Needless to say, we have not pretended to fully describe here the vast research work done on valued and ordered fields throughout the twentieth century and which still goes on today. The choice of material reflects only the author's personal taste (and even more so, his limitations). More material can be found in the texts by Ax $[\mathbf{A x}]$, Bourbaki [Bou1], Endler [En], Jarden [Jr], Ribenboim ([Ri1], $[\mathbf{R i} 3]$), Schilling [Schi], and Zariski and Samuel [$\mathbf{Z S}]$ on valuation theory, as well as those by Knebusch and Scheiderer [KnS], Lam ([Lam1], [Lam2]), Prestel [Pr] and Scharlau [Sch2] on ordered fields. Likewise, the reference list at the end of this monograph surely covers only a small portion of the possible bibliography. Other and more comprehensive lists of references on valuation theory can be found in $[\mathbf{F V}],[\mathbf{R o}]$, and at the Valuation Theory internet site at http://math.usask.ca/fvk /Valth.html. A comprehensive bibliography on the work done until 1980 on ordered fields is given in [Lam1].

I thank Eli Shamovich as well as the anonymous referees for their very valuable comments on previous versions of this manuscript.

This book was typeset using $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro system of the American Mathematical Society.

Conventions

The image, kernel, and cokernel of a group homomorphism $f: A \rightarrow B$ will be denoted as usual by $\operatorname{Im}(f), \operatorname{Ker}(f)$, $\operatorname{Coker}(f)$, respectively. Thus $\operatorname{Coker}(f)=$ $B / \operatorname{Im}(f)$. Given an abelian group A and a positive integer n, we denote the image, kernel, and cokernel of the homomorphism $A \rightarrow A$ of multiplication by n by $n A,{ }_{n} A$, and A / n, respectively.

For a prime number p we set $\mathbb{Z}_{p}=\varliminf \preceq<\mathbb{Z} / p^{i}$. Likewise, we set $\hat{\mathbb{Z}}=\varliminf \mathbb{Z} / n$, where n ranges over all positive integers, and the inverse limit is with respect to the divisibility relation.

Unless explicitly stated otherwise, all rings will be tacitly assumed to be commutative with 1, and all modules two-sided (an important exception will be the κ-structures, discussed in Part IV, which are anti-commutative rings). The group of invertible elements in a ring R will be denoted by R^{\times}. In particular, the multiplicative group $F \backslash\{0\}$ of a field F will be denoted by F^{\times}. A grading on a ring will always be by the nonnegative integers.

Given a subset A of a group, we denote the subgroup it generates by $\langle A\rangle$. The notation $B \leq A$ will mean that B is a subgroup of the group A.

Given a subsets A, B of a field F and an element c of F we set

$$
\begin{aligned}
A \pm B= & \{a \pm b \mid a \in A, b \in B\}, \quad A B=\{a b \mid a \in A, b \in B\} \\
& -A=\{-a \mid a \in A\}, \quad c A=\{c a \mid a \in A\},
\end{aligned}
$$

etc.
We denote the fixed field of a group G of automorphisms of a field E by E^{G}. If a is an element of some field extension of E and is algebraic over E, then we denote its irreducible polynomial over E by $\operatorname{irr}(a, E)$. An extension $F \subseteq E$ of fields will be written as E / F, and its transcendence degree will be denoted by $\operatorname{tr} \cdot \operatorname{deg}(E / F)$.

Bibliography

[Ab] S. Abhyankar, Two notes on formal power series, Proc. Amer. Math. Soc. 7 (1956), 903-905.
[AEJ] J.K. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110, 449-467.
[Ar] E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg 5 (1927), 100-115.
[AS1] E. Artin and O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg 5 (1927), 85-99.
[AS2] E. Artin and O. Schreier, Eine Kennzeichnung der reell abgeschlosenen Körper, Abh. Math. Sem. Univ. Hamburg 5, 225-231.
[Ax] J. Ax, A metamathematical approach to some problems in number theory, In: Proc. Sympos. Pure Math. 20 (Institute on Number Theory, Stony Brook, N. Y., 1969), Amer. Math. Soc., Providence, R.I., 1971, pp. 161-190.
[Ba] R. Baer, Über nicht archimedisch geordnete Körper, Sitz. Ber. der Heidelberger Akad. Abh. (1927), 3-13.
[BaT] H. Bass and J. Tate, The Milnor ring of a global field, In: Algebraic K-Theory (Battelle Institute Conference 1972), H. Bass (ed.), Vol. II, Springer Lect. Notes Math. 342, 1973, pp. 349-446.
[Be1] E. Becker, Euklidische Körper und euklidische Hüllen von Körpern, J. reine angew. Math. 268-269 (1974), 41-52.
[Be2] E. Becker, Partial orders on a field and valuation rings, Comm. Algebra 18 (1976), 1932-1976.
[Be3] E. Becker, Hereditarily-pythagorean Fields and Orderings of higher Level, IMPA Lect. Notes 29, IMPA, Rio de Janeiro, 1978.
[BeBG] E. Becker, R. Berr, and D. Gondard, Valuation fans and residually real closed Henselian fields, J. Algebra 215 (1999), 574-602.
[BeK] E. Becker and E. Köpping, Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg 46 (1977), 143-177.
[BeS] E. Becker and K.-J. Spitzlay, Zum Satz von Artin--Schreier über die Eindeutigkeit des reellen Abschlusses eines angeordneten Körpers, Comment. Math. Helv. 50 (1975), 8187.
[BoT] F. Bogomolov and Y. Tschinkel, Reconstruction of function fields, a preprint, 2003.
[Bou1] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Chapters 1-7, SpringerVerlag, Berlin, 1989.
[Bou2] N. Bourbaki, Elements of Mathematics, Algebra II, Springer-Verlag, Berlin, 1990.
[Br 1$]$ L. Bröcker, Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149-163.
[Br2] L. Bröcker, Über die Anzahl der Anordnungen eines kommutativen Körpers, Arch. Math. 31 (1978), 133-136.
[Ch] C. Chevalley, Algebraic Functions of one Variable, Math. Surveys VI, Amer. Math. Soc., New York, 1951.
[Cr1] T.C. Craven, Characterizing reduced Witt rings of fields, J. Algebra 53 (1978), 68-77.
[Cr2] T.C. Craven, Characterizing reduced Witt rings II, Pac. J. Math. 80 (1979), 341-349.
[D] M. Deuring, Verzweigungstheorie bewerteter Körper, Math. Ann. 105 (1931), 277-307.
[Di] V. Diekert, Über die absolute Galoisgruppe dyadischer Zahlkörper, J. reine angew. Math. 350 (1984), 152-172.
[Ef1] I. Efrat, A Galois-theoretic characterization of p-adically closed fields, Israel J. Math. 91 (1995), 273-284.
[Ef2] I. Efrat, Orderings, valuations and free products of Galois groups, In: Séminaire de Structures Algébriques Ordonnées, Lecture Notes No. 54, University of Paris VII, 1995.
[Ef3] I. Efrat, Finitely generated pro-p Galois groups of p-Henselian fields, J. Pure Appl. Algebra 138 (1999), 215-228.
[Ef4] I. Efrat, Free pro-p product decompositions of Galois groups, Math. Z. 225 (1997), 245261.
[Ef5] I. Efrat, Pro-p Galois groups of algebraic extensions of \mathbb{Q}, J. Number Theory 64 (1997), 84-99.
[Ef6] I. Efrat, Construction of valuations from K-theory, Math. Res. Letters 6 (1999), 335344.
[Ef7] I. Efrat, The local correspondence over absolute fields - an algebraic approach, Intern. Math. Res. Notices 2000:23 (2000), 1213-1223.
[Ef8] I. Efrat, Demuškin fields with valuations, Math. Z. 243 (2003), 333-353.
[Ef9] I. Efrat, Quotients of Milnor K-rings, orderings and valuations, Pac. J. Math. (to appear).
[Ef10] I. Efrat, Compatible valuations and generalized Milnor K-theory, Trans. Amer. Math. Soc. (to appear).
[EfF] I. Efrat and I. Fesenko, Fields Galois-equivalent to a local field of positive characteristic, Math. Res. Letters 6 (1999), 345-356.
[En] O. Endler, Valuation Theory, Springer-Verlag, Berlin, 1972.
[EnEg] O. Endler and A.J. Engler, Fields with Henselian valuation rings, Math. Z. 152 (1977), 191-193.
[Eg1] A.J. Engler, Fields with two incomparable Henselian valuation rings, manuscripta math. 23 (1978), 373-385.
[Eg2] A.J. Engler, Totally real rigid elements and F_{π}-henselian valuation rings, Comm. Algebra 25 (1997), 3673-3697.
[FV] I. Fesenko and S.V. Vostokov, Local Fields and their Extensions - A Constructive Approach, Amer. Math. Soc., Providence, RI, 2002.
[FK] I. Fesenko and M. Kurihara (eds.), Invitation to higher local fields (Conference Proceedings, Münster, August-September 1999), Geometry \& Topology Publications, Coventry, 2000.
[FJr] M. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Heidelberg, 2005.
[Fu] L. Fuchs, Abelian groups, Pergamon Press, New York-Oxford-London-Paris, 1960.
[G1] A. Grothendieck, Esquisse d'un program, In: Geometric Galois Actions: 1. Around Grothendieck's esquisse d'un programme, L. Schneps et al. (eds.), Lect. Note Ser. 242, Cambridge University Press, Lond. Math. Soc., 1997, pp. 5-48.
[G2] A. Grothendieck, A letter to G. Faltings, In: Geometric Galois Actions: 1. Around Grothendieck's esquisse d'un programme, L. Schneps et al. (eds.), Lect. Note Ser. 242, Cambridge University Press, Lond. Math. Soc., 1997, pp. 49-58.
[Ha] H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitz.-Ber. d. Wiener Akad., Math.-Nat. Klasse, Abt. IIa 116 (1907), 601-653.
[Has] H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1949.
[HasS] H. Hasse and F.K. Schmidt, Die Struktur discret bewerteter Körper, J. reine angew. Math. 170 (1933), 4-63.
[He] K. Hensel, Theorie der algebraischer Zahlen, Teubner, Leipzig, 1908.
[Hi] D. Hilbert, Grundlagen der Geometrie, B.G. Teubner, Stuttgart, 1987.
[Hö] O. Hölder, Die Axiome der Quantität und die Lehre vom Maß, Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64; J. Math. Psych. 40 (1996), 235-252 (English translation).
[HwJ] Y.S. Hwang and B. Jacob, Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. Math. 47 (1995), 527-543.
[I] K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc. 80 (1955), 448469.
[J1] B. Jacob, On the structure of pythagorean fields, J. Algebra 68 (1981), 247-267.
[J2] B. Jacob, Fans, real valuations, and hereditarily-Pythagorean fields, Pac. J. Math 93 (1981), 95-105.
[JWd] B. Jacob and A. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293 (1986), 693-722.
[JWr1] B. Jacob and R. Ware, A recursive description of the maximal pro-2 Galois group via Witt rings, Math. Z. 200 (1989), 379-396.
[JWr2] B. Jacob and R. Ware, Realizing dyadic factors of elementary type Witt rings and pro-2 Galois groups, Math. Z. 208 (1991), 193-208.
[Jak1] A.V. Jakovlev, The Galois group of the algebraic closure of a local field, Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1968), 1283-1322 (Russian); Math. USSR, Izv. 2 (1968), 1231-1269 (English Translation).
[Jak2] A.V. Jakovlev, Remarks on my paper: "The Galois group of the algebraic closure of a local field", Izv. Akad. Nauk SSSR, Ser. Mat. 42 (1978), 212-213 (Russian); Math. USSR Izv. 12 (1978), 205-206 (English Translation).
[Jn] U. Jannsen, Über Galoisgruppen lokaler Körper, Invent. Math. 70 (1982/83), 53-69.
[JnW] U. Jannsen and K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Invent. Math. 70 (1982/83), 71-98.
[Jr] M. Jarden, Intersections of local algebraic extensions of a Hilbertian field, In: Generators and Relations in Groups and Geometries (Lucca 1990), A. Barlotti et al. (eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 333, Kluwer, Dordrecht, 1991, pp. 343-405.
[Kah] B. Kahn, La conjecture de Milnor (d'aprés V. Voevodsky), Sém. Bourbaki 1996/97, Astérisque 245 (1997), 379-418.
[Kap1] I. Kaplansky, Maximal fields with valuations I, Duke J. Math. 9 (1942), 303-321.
[Kap2] I. Kaplansky, Infinite abelian groups, The University of Michigan Press, Ann Arbor, Michigan, 1969.
[Ked] K.S. Kedlaya, The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc. 129 (2001), 3461-3470.
[Ker] I. Kersten, Brauergruppen von Körpern, Vieweg, Braunschweig, 1990.
$[\mathrm{Kn}] \quad$ M. Knebusch, On the extension of real places, Comment. Math. Helv. 48 (1973), 354369.
[KnS] M. Knebusch and C. Scheiderer, Einführung in die reelle Algebra, Vieweg, Braunschweig, 1989.
[Ko1] H. Koch, Über die Galoissche Gruppe der algebraischen Abschliessung eines Potenzreihenkörpers mit endlichem Konstantenkörper, Math. Nachr. 35 (1967), 323-327.
[Ko2] H. Koch, The Galois group of a p-closed extension of a local field, Dokl. Akad. Nauk SSSR 238 (1978), 19-22 (Russian); Soviet Math. Dokl. 19 (1978), 10-13 (English translation).
[Ko3] H. Koch, Galois theory of p-extensions, Springer-Verlag, Berlin, 2002.
[Koe1] J. Koenigsmann, From p-rigid elements to valuations (with a Galois-characterisation of p-adic fields) (with an appendix by F. Pop), J. reine angew. Math. 465 (1995), 165-182.
[Koe2] J. Koenigsmann, Encoding valuations in absolute Galois groups, In: Valuation theory and its applications, Vol. II (Saskatoon 1999), F.-V. Kuhlmann et al. (eds.), Fields Inst. Commun. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 107-132.
[Kra] M. Krasner, Sém. d'Algébre, Inst. Henri Poincaré, Paris, 1964.
[KreN] M.G. Krein and M.A. Naimark, The method of symmetric and Hermitian forms in the theory of separation of the roots of algebraic equations, Kharkov, 1936 (Russian); Lin. Multilin. Algebra 10 (1981), 265-308 (English translation).
[Kru1] W. Krull, Galoissche Theorie bewerteter Körper, Sitz.-Ber. d. Bayerischen Akademie, Math.-nat. Abteilung (1930), 225-238.
[Kru2] W. Krull, Allgemeine Bewertungstheorie, J. reine angew. Math. 167 (1931), 160-196.
[Ku] F.-V. Kuhlmann, Henselian function fields and tame fields, a manuscript, Heidelberg, 1990.
[KuPR] F.-V. Kuhlmann, M. Pank and P. Roquette, Immediate and purely wild extensions of valued fields, manuscripta math. 55 (1986), 39-67.
[KuKM] F.-V. Kuhlmann, S. Kuhlmann and M. Marshall (eds.), Valuation theory and its applications (Saskatoon 1999), Fields Inst. Commun. 32-33, Amer. Math. Soc., Providence, RI, 2002/3.
[Kul] M. Kula, Fields with prescribed quadratic form schemes, Math. Z. 167 (1979), 201-212.
[Kür] J. Kürschák, Über Limesbildung und allgemeine Körpertheorie, J. reine angew. Math. 142 (1913), 211-253.
[Lam1] T.Y. Lam, The theory of ordered fields, In: Ring Theory and Algebra III (Norman, Oklahoma, 1979), B.R. MacDonald (ed.), Lecture Notes in Pure and Applied Math. 55, Marcel Dekker, New York/Basel, 1980, pp. 1-152.
[Lam2] T.Y. Lam, Orderings, valuations and quadratic forms, Conf. Board of the Mathematical Sciences 52, Amer. Math. Soc., Providence, RI, 1983.
[Lam3] T.Y. Lam, Introduction to Quadratic Forms over Fields, Amer. Math. Soc., Providence, RI, 2005.
[Lg] S. Lang, Algebra, Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.
[Len] H. Lenstra, Construction of the ring of Witt vectors, a manuscript, 2002.
[Lz1] M. Lazard, Détermination des anneaux p-adiques et π-adiques dont les anneaux des restes sont parfaits, Sém. Krasner 9, Fac. Sci. Paris, Paris, 1953/4.
[Lz2] M. Lazard, Bemerkungen zur Theorie der bewerteten Körper und Ringe, Math. Nach. 12 (1954), 67-73.
[Mac1] S. MacLane, Subfields and automorphisms of p-adic fields, Ann. Math. 40 (1939), 423442.
[Mac2] S. MacLane, The universality of formal power series, Bull. Amer. Math. Soc. 45 (1939), 888-890.
[Mar1] M. Marshall, Abstract Witt Rings, Queen's Pap. Pure Appl. Math. 57, Kingston, 1980.
[Mar2] M. Marshall, Spaces of orderings IV, Canad. J. Math. 32 (1980), 603-627.
[Mar3] M. Marshall, An approximation theorem for coarse V-topologies on rings, Canad. Math. Bull. 37 (1994), 527-533.
[Mar4] M. Marshall, Spaces of Orderings and Abstract Real Spectra, Springer Lect. Notes Math. 1636, Springer-Verlag, Berlin-Heidelberg, 1996.
[Mar5] M. Marshall, The elementary type conjecture in quadratic form theory, Cont. Math. $\mathbf{3 4 4}$ (2004), 275-293.
[Mat] H. Matsumura, Commutative algebra, W.A. Benjamin, Inc., New York, 1970.
[MelS] O.V. Mel'nikov and A.A. Sharomet, The Galois group of a multidimensional local field of positive characteristic, Matem. Sbornik 180 (1989), 1132-1146 (Russian); Math. USSRSb. 67 (1990), 595-610 (English translation).
[MerS1] A.S. Merkur'ev and A.A. Suslin, K-cohomology of Brauer-Severi varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR, Ser. Mat. 46 (1982), 1011-1046 (Russian); Math. USSR Izv. 21 (1983), 307-340 (English translation).
[MerS2] A.S. Merkurjev and A.A. Suslin, The Norm residue symbol of degree 3, Izv. Akad. Nauk SSSR, Ser. Mat. 54 (1990), 339-356 (Russian); Math. USSR Izv. 36 (1991), 346-368 (English translation).
[Mi] J. Milnor, Algebraic K-theory and quadratic forms, Invent. math. 9 (1970), 318-344.
[Min] J. Mináč, Galois groups of some 2-extensions of ordered fields, C.R. Math. Rep. Acad. Sci. Canada 8 (1986), 103-108.
[N1] J. Neukirch, Eine algebraische Kennzeichnung der Henselkörper, J. reine angew. Math. 231 (1968), 75-81.
[N2] J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), 296-314.
[N3] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999.
[NSW] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, SpringerVerlag, Berlin-Heidelberg, 2000.
[O1] A. Ostrowski, Über sogennate perfekte Körper, J. reine angew. Math. 147 (1917), 191204.
[O2] A. Ostrowski, Über einige Lösungen der Funktionalgleichung $\varphi(x) \cdot \varphi(y)=\varphi(x \cdot y)$, Acta Math. 41 (1918), 271-284.
[O3] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1934), 269-404.
[P1] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. reine angew. Math. 392 (1988), 145-175.
[P2] F. Pop, On Grothendieck's conjecture of birational anabelian geometry, Ann. Math. 139 (1994), 145-182.
[P3] F. Pop, Glimpses of Grothendieck's anabelian geometry, In: Geometric Galois Actions: 1. Around Grothendieck's esquisse d'un programme, L. Schneps et al. (eds.), Lect. Note Ser. 242, Cambridge University Press, Lond. Math. Soc., 1997, pp. 113-126.
[Pr] A. Prestel, Lectures on Formally real Fields, Lect. Notes Math. 1093, Springer-Verlag, Berlin, 1984.
[Ra1] F.J. Rayner, Relatively complete fields, Proc. Edinburgh Math. Soc. 11 (1958), 131-133.
[Ra2] F.J. Rayner, An algebraically closed field, Glasgow Math. J. 9 (1968), 146-151.
[Ri1] P. Ribenboim, Théorie des Valuations, Les Presses de l'Université de Montréal, Montréal, 1968.
[Ri2] P. Ribenboim, Equivalent forms of Hensel's lemma, Expo. Math. 3 (1985), 3--24.
[Ri3] P. Ribenboim, The Theory of Classical Valuations, Springer-Verlag, New York, 1999.
[Ris] L. Ribes, Introduction to profinite Groups and Galois Cohomology, Queen's Pap. Pure Appl. Math. 24, Kingston, 1970.
[Ro] P. Roquette, History of valuation theory I, In: Valuation theory and its applications, Vol. I (Saskatoon 1999), F.-V. Kuhlmann et al. (eds), Fields Inst. Commun. 32, Amer. Math. Soc., Providence, RI, 2002, pp. 291-355.
[Ry] K. Rychlik, Zur Bewertungstheorie der algebraischen Körper, J. reine angew. Math. 153 (1923), 94-107.
[Sa] I.R. Šafarevič, On p-extensions, Amer. Math. Soc. Transl. Ser. 24 (1956), 59-72.
[Sch1] W. Scharlau, Über die Brauer-Gruppe eines Hensel-Körpers, Abh. Math. Sem. Univ. Hamburg 33 (1969), 243-249.
[Sch2] W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, Berlin, 1985.
[Schi] O.F.G. Schilling, The Theory of Valuations, Math. Surveys 4, Amer. Math. Soc., New York, 1950.
[Schm] F.K. Schmidt, Mehrfach perfekte Körper, Math. Ann. 108 (1933), 1-25.
[Se1] J.-P. Serre, Extensions de corps ordonnés, C.R. Acad. Sci. Paris 229 (1949), 576-577.
[Se2] J.-P. Serre, Local Fields, Springer-Verlag, Berlin, 1979.
[Se3] J.-P. Serre, Galois Cohomology, Springer-Verlag, Berlin 2002.
[Se4] J.-P. Serre, Topics in Galois Theory, Jones and Barlett, Boston, 1992.
[Sp] M. Spiess, An arithmetic proof of Pop's Theorem concerning Galois groups of function fields over number fields, J. reine angew. Math. 478 (1996), 107-126.
[St] A.L. Stone, Nonstandard analysis in topological algebra, In: Applications of ModelTheory to Algebra, Analysis and Probability Theory (Pasadena, Calif., 1967), W.A.J. Luxemburg (ed.), Holt, Rinehart and Winston, New York, 1969, pp. 285-299.
[Ste] D. Ştefănescu, A method to obtain algebraic elements over $K((t))$ in positive characteristic, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.) 26 (74) (1982), 77-91.
[Sz] T. Szamuely, Groupes de Galois de corps de type fini (d'apres̀ Pop), Sém. Bourbaki 2002/3, Astérisque 294 (2004), 403-431.
[Szy] K. Szymiczek, Quadratic forms over fields, Dissertationes Math. (Rosprawy Mat.) 152 (1977).
[T] O. Teichmüller, Über die Struktur diskret bewerteter perfekte Körper, Math. Nachr. Ges. Wissensch. Göttingen, Kl. I (1936), 151-161.
[U1] K. Uchida, Isomorphisms of Galois groups of algebraic function fields, Ann. Math. 106 (1977), 589-598.
[U2] K. Uchida, Isomorphisms of Galois groups of solvably closed Galois extensions, Tohôku Math. J. 31 (1979), 359-362.
[U3] K. Uchida, Homomorphisms of Galois groups of solvably closed Galois extensions, J. Math. Soc. Japan 33 (1981), 595-604.
[V1] V. Voevodsky, Motivic cohomology with $\mathbb{Z} / 2$-coefficients, Publ. Math. IHES 98 (2003), 59-104.
[V2] V. Voevodsky, On motivic cohomology with \mathbb{Z} / l-coefficients, a preprint.
[Wad] A.R. Wadsworth, p-Henselian fields: K-theory, Galois cohomology, and graded Witt rings, Pac. J. Math. 105 (1983), 473-496.
[War1] R. Ware, When are Witt rings groups rings? II, Pac. J. Math. 76 (1978), 541-564.
[War2] R. Ware, Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 13381355.
[War3] R. Ware, Galois groups of maximal p-extensions, Trans. Amer. Math. Soc. 333 (1992), 721-728.
[We] H. Weber, $Z u$ einem Problem von H.J. Kowalsky, Abh. Braunschweig. Wiss. Ges. 29 (1978), 127-134.
[Win] K. Wingberg, Der Eindeutigkeitssatz für Demuškinformationen, Invent. Math. 70 (198283), 99-113.
[Wit] E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad p ${ }^{n}$. Struktur diskret bewerteter Körper mit vollkommenem Restklassenkörper der Charakteristik p, J. reine angew. Math. 176 (1937), 126-140.
[ZS] O. Zariski and P. Samuel, Commutative Algebra II, Springer-Verlag, New York-Heidelberg, 1975.

Glossary of Notation

\mathbb{N}	the non-negative integers
\mathbb{Z}	the rational integers
\mathbb{Q}	the rational numbers
\mathbb{R}	the real numbers
\mathbb{C}	the complex numbers
\mathbb{F}_{q}	the field of q elements
\mathbb{Z}_{p}	the p-adic integers
\mathbb{Q}_{p}	the field of p-adic numbers
$\hat{\mathbb{Z}}$	the p-adic completion of \mathbb{Z}
$\left.1 \cdot\right\|_{\infty}$	Archimedian absolute value on \mathbb{Q}, ix
$\|\cdot\|_{p}$	p-adic absolute value on \mathbb{Q}, ix
F^{\times}	multiplicative group of F, ix
$\operatorname{Im}(f)$	image of the map f, xiii
$\operatorname{Ker}(f)$	kernel of the homomorphism f, xiii
Coker (f)	cokernel of the homomorphism f, xiii
${ }_{n} A$	n-torsion subgroup of an abelian group A, xiii
R^{\times}	group of invertible elements in a ring R, xiii
E^{G}	fixed field of E under the automorphism group G, xiii
tr.deg (E / F)	relative transcendence degree of an extension E / F, xiii
$\Gamma_{\text {tor }}$	torsion subgroup of $\Gamma, 5$
Γ_{p}	p-primary subgroup of $\Gamma, 5$
$\Gamma_{\text {div }}$	divisible hull of $\Gamma, 7$
ι_{Γ}	canonical map $\Gamma \rightarrow \Gamma_{\text {div }}, 8$
$\frac{1}{n} \Gamma$	group of all α in $\Gamma_{\text {div }}$ with $n \alpha \in \Gamma, 10$
$\frac{1}{1 \infty} \Gamma$	l-divisible hull of $\Gamma, 10$
$\operatorname{rr}(\Gamma)$	rational rank of $\Gamma, 11$
$\chi_{\bar{\mu}}(\Gamma)$	group of characters of Γ into $\bar{\mu}, 12$
$\leq_{\text {div }}$	extension of \leq to the divisible hull, 16
$\operatorname{rank}(\Gamma)$	rank of $\Gamma, 17$
Γ_{Σ}	Σ-core of $\Gamma, 19$
Γ_{inf}	group of infinitesimal elements in $\Gamma, 20$
$\leq_{\text {R }}$	standard order on $\mathbb{R}, 20$

K^{Γ}	set of maps $f: \Gamma \rightarrow K, 27$
Supp (f)	support of the map $f, 27$
Γ_{f}	cut of $f \in K^{\Gamma}, 27$
$f \preceq f^{\prime}$	$f, f^{\prime} \in K^{\Gamma}$ coincide on $\Gamma_{f}, 27$
$K((\Gamma))$	formal power series field, 28
$K[[\Gamma]]$	series in $K((\Gamma))$ with non-negative support, 29
$K_{\text {Puis }}((\Gamma))$	generalized Puiseux series field, 30
$K(\Gamma)$	generalized rational function field, 30
$\operatorname{rank}(v)$	rank of a valuation $v, 39$
v_{O}	valuation associated with a valuation ring $O, 39$
O_{v}	valuation ring of $v, 39$
\bar{F}_{v}	residue field of (F, v), 40
G_{v}	principal unit group of $v, 40$
m_{v}	valuation ideal of $v, 40$
$O_{v} \times$	group of v-units, 40
π_{v}	place associated with $v, 40$
\bar{S}_{v}	push-down of S under $v, 41$
v_{π}	valuation corresponding to a prime π in a UFD, 47
v_{∞}	degree valuation on $K(t), 48$
$v_{\pi, \text { cont }}$	π-content valuation, 53
cont (f)	content of a polynomial $f, 53$
$v^{\#}$	mirror valuation of $v, 53$
$u \leq v$	u is coarser than v, v finer than $u, 56$
v / u	quotient valuation, 56
$<_{P}$	strict ordering relation corresponding to an ordering P, 63
\leq_{P}	coarse ordering relation corresponding to an ordering $P, 63$
$(a, b)_{P}$	open interval relative to $P, 63$
$(a, \infty)_{P}$	infinite open interval relative to $P, 63$
$(-\infty, b)_{P}$	infinite open interval relative to $P, 63$
$[a, b]_{P}$	closed interval relative to $P, 64$
$\|\cdot\|_{P}$	absolute value corresponding to $P, 64$
ΣS	non-zero sums of elements of $S, 64$
ΣF^{2}	non-zero sums of squares, 65
G_{λ}	69
$\lambda_{1} \leq \lambda_{2}$	coarsening relation for localities, 69
$O_{R}(P)$	valuation ring associated with $P, 71$
\mathcal{T}_{λ}	topology of locality $\lambda, 75$
\mathcal{T}^{0}	\mathcal{T}-neighborhoods of 0,79
d_{P}	metric induced by an ordering $P, 81$
$d_{v, c}$	metric induced by a valuation $v, 81$

d_{v}	metric induced by a valuation $v, 82$
$\operatorname{Val}(S)$	set of all S-compatible valuations, 95
$\operatorname{Val}(S, H)$	subset of $\operatorname{Val}(S), 95$
$v_{(1)}(S, H)$	supremum of $\operatorname{Val}(S, H), 96$
$v_{(2)}(S, H)$	infimum of $\operatorname{Val}(S) \backslash \operatorname{Val}(S, H), 96$
v_{S}	S-core of $v, 99$
$v^{*}(S, H)$	99
$A(S)$	100
$O^{-}(S, H)$	$F \backslash H$-part of $O(S, H), 100$
$O^{+}(S, H)$	H-part of $O(S, H), 100$
$O(S, H)$	explicit construction of a valuation ring, 100
H_{S}	105
$B^{p^{\infty}}$	107
ρ_{v}	Teichmüller character, 108
$\sum_{i=0}^{\infty} \rho\left(\bar{a}_{i}\right) \lambda^{i}$	λ-adic expansion, 110
$A\left[X_{i}^{p^{-n}} \mid i \in I, n \in \mathbb{N}\right]$	112
f_{i}^{*}	generic coefficients in p-perfect structures, 112-113
$W(\bar{A})$	115
$W(\bar{F})$	Witt vector ring over $\bar{F}, 116$
W_{α}	118
$(G: H)$	(supernatural) index of a subgroup H of a profinite group $G, 125$
$\|G\|$	(supernatural) order of a profinite group $G, 125$
[$E: F]$	(supernatural) degree of an algebraic field extension $E / F, 125$
$\operatorname{Aut}(E / F)$	automorphism group of a normal extension $E / F, 126$
$\operatorname{Gal}(E / F)$	Galois group of a Galois extension $E / F, 126$
$e(u / v)$	ramification index, 128
$f(u / v)$	inertia degree, 128
$N_{E / F}$	the norm map, 131
$Z(u / v)$	decomposition group, 133
E_{Z}	decomposition field, 133
u_{Z}	induced valuation on decomposition field, 133
$\bar{f}(X)$	residue polynomial, 136
$F_{\text {sep }}$	separable closure of $F, 139$
$F_{\text {sol }}$	solvable closure of $F, 139$
$F(p)$	maximal pro-p Galois extension of $F, 139$
$T(u / v)$	inertia group, 141
E_{T}	inertia field, 142
u_{T}	valuation induced on inertia field, 142
$\chi(u / v)$	group of characters of valued field extension, 144
$V(u / v)$	ramification group, 145

E_{V}
u_{V}
$\operatorname{Tr}_{E / F}$
$H \backslash G / U$
$d(u / v)$
$\wp(X)$
$\mathbb{Q}_{p, \text { alg }}$
\mathbb{C}_{p}
sgn_{P}
$V_{P}\left(a_{0}, \ldots, a_{m}\right)$
$W_{P}(c)$
G_{F}
Frob_{q}
$G_{F}(p)$
$\chi_{\bar{F}, p}$
Tens(Γ)
κ
ϵ
ϵ_{A}
0
$\prod_{i \in I} A_{i}$
\otimes_{κ}
$A[\Gamma]$
$\wedge_{*}(\Gamma)$
Bock $_{A}$
$\mathrm{St}_{F, r}(S)$
$K_{r}^{M}(F) / S$
$K_{*}^{M}(F) / S$
$K_{r}^{M}(F)$
$K_{*}^{M}(F)$
$\left\{a_{1}, \ldots, a_{r}\right\}_{S}$
$\left\{a_{1}, \ldots, a_{r}\right\}$
Res
\cup
$\hat{F}^{(n, p)}$
trg
Bock $_{F, S}$
T_{M}
N_{S}
ramification field, 145
valuation induced on ramification field, 145
trace map, 145
set of double cosets of $G, 151$
defect, 154
Artin-Schreier polynomial $X^{p}-X, 165$
field of algebraic p-adic numbers, 167
completion of algebraic closure of $\mathbb{Q}_{p}, 173$
sign map associated with $P, 182$
number of sign changes in a_{0}, \ldots, a_{m} relative to $P, 182$
182
absolute Galois group of $F, 201$
Frobenius automorphism, 201
maximal pro- p Galois group of $F, 202$
pro-p cyclotomic character of $\bar{F}, 202$
tensor algebra over $\Gamma, 209$
tensor algebra over $\{ \pm 1\}, 209$
unique non-zero element of $\kappa_{1}, 209$
image of ϵ in a κ-structure $A, 209$
trivial κ-structure, 209
direct product of κ-structures, 210
tensor product of κ-structures, 210
extension of A by $\Gamma, 211$
alternating algebra over $\Gamma, 213$
Bockstein operator of $A, 214$
group of Steinberg elements in $\left(F^{\times} / S\right)^{\otimes r}, 217$
Milnor K-group of F modulo S of degree $r, 217$
Milnor K-ring of F modulo $S, 217$
Milnor K-group of F of degree $r, 218$
Milnor K-ring of $F, 218$
symbol in $K_{r}^{M}(F) / S, 218$
symbol in $K_{r}^{M}(F), 219$
restriction morphism, 219
cup product, 221
descending sequence of a pro-p group $\hat{F}, 222$
transgression map, 222
Bockstein operator in $K_{*}^{M}(F) / S, 225$
236
subgroup generated by the non-p-rigid elements, 237

$\mathrm{Cl}_{\mathcal{T}}$	\mathcal{T}-closure, 256
\mathcal{A}	set of κ-structures realizable by preorderings of finite index, 265
$\nu(A)$	number of morphisms $A \rightarrow \kappa, 267$
\mathcal{E}_{q}	set of q-elementary type κ-structures, 267

Index

Abhyankar, 170
absolute value ix
Archimedean, ix corresponding to an ordering, 64
non-Archimedean, ix
p-adic, ix
alternating algebra, 213
Arason, xi, 95, 100, 213
Archimedean
absolute value, ix
ordered abelian group, 23
ordering, $35,67,71,81,85,88$
valuation, 39
Archimedes' axiom, 20
Artin, ix-x, 65, 69, 175, 178, 180, 184, 228
Ax, x, 135
Baer, 69, 234, 267
Baer-Krull correspondence, 234, 267
Bass, 207, 209, 225, 231, 233
Becker, 175, 180
birational anabelian geometry, xi, 238
Bloch-Kato conjecture, xi, 221-222
Bockstein map, 214, 225, 226, 228, 244-245
Borchardt, 181
bounded set, 79-80, 89-90
Bourbaki, xii
Bröcker, xi, 164, 243, 267
character, 12-14, 199
cyclotomic, 202
characteristic (of a ring), 107
Chevalley, 127-128, 152, 170, 188
coarser
locality, 69-73, 76, 187-191, 195, 255-257
valuation, $55-61,96-100,189,191-192$
cofinal, 20-23, 129
comparable
localities, $90-93,131,195$
valuations $91-92,96-97,99,131,193-195,197-198$
compatible,
local pair, 257-258, 260
locality, 35, 95-98, 207
valuation, 95-98, 100, 103, 105, 165, 207, 231-235, 238-244, 250-251
complete, $82-83,108,110-111,117,166-167,173$
completion, 82-85, 133, 167-168, 172-173, 248, 250, 268
composition of valuations, 59-60
content
of a polynomial, 53
valuation, 53
continuity of roots, 77-78, 171
convex hull, 16-18, 20, 23-25
convex subgroup, x, 16-24, 55-56, 61, 72, 98
core
of a valuation, 98-99, 101, 103, 198
Σ-, 19-20, 95, 101
Craven, 262, 265
cut, 27
cyclotomic character, 202
decomposition
field, 133-139, 142-143, 149, 152-154, 158, 160, 188-190, 199-201, 203
group, 133-139, 141, 145, 165, 189-191, 193-196, 199-204
Dedekind, 123
defect, 151, 154-158, 170
defectless, 158, 167, 170
degree,
of an algebraic extension, 125-126
valuation, $48,54,60$
Demuškin κ-structure, 209, 214-216, 247, 250-251, 267
Deuring, 123, 151
direct product of κ-structures, 210, 215-216, 253-262, 265-268
discrete
ordered abelian group, 20-23
valuation, $36,43-46,48,50,87,107-108,110,117,129,157-159,167-168$,
202, 204, 213, 231, 233, 247-248, 250, 264-265
valuation ring, $43,47,111,117$
divisible
group, 5, 158, 167, 169
hull, 7-11, 16, 18, 129
p-, 106, 119-120, 250-251
double cosets, 151-153
elementary type
conjecture, 207, 268
κ-structure, 267-268
Elman, xi, 95, 100, 213
embedding of valued fields, 137
Endler, x, xii, 95
Engler, 95, 194
equivalent valuations, 39-40, 130-131, 133-134, 142-145, 152
Euclidean
algorithm, 181
closure, 177-178
field, $95,177-178,180,195,228$
expansion, λ-adic, 109-113, 116, 160
extension
of κ-structures, 209, 211-214, 216, 229, 230-233, 241-245, 263-268
of localities, 187-191
of ordered fields, 175-181, 184-185
of valued fields, $42,117,123,127-132,152-153,157-160,189-192$
fan, xi, 231, 242-246
trivialization of, xi, 243
valuation, 241-242
finer
locality, 69-73, 76, 187-191, 195, 255-257
valuation, 55-61, 96-100, 189, 191-192
finest common coarsening, 71-72, 87, 89, 91-94, 96, 188, 194, 240, 245, 256
flat, 6-7
formal power series, $15,27-31,47-50,59,66-67,82-83,107,109,161,168-170$
formally real, $63,178,195$
Frobenius automorphism, 201-202
fundamental equality, 157-160
fundamental inequality, 128, 151-156, 165, 200, 248
Galois
action on valuations, $130-134,142,145,152$
group, 126
symbol, 221-222, 228
Gauss lemma, 53
Gauss valuation, 50-54
classical, 52-53, 77, 171
extended, 51-54, 60
restricted, 52, 60, 77, 171
generalized rational functions, $30-31,47,50-52,60,168,264$
Grothendieck, xi
Hasse, 110, 202
Hensel, x, 48, 166-167
Hensel-Rychlik condition, 162-164
Henselian valuation, x, 139, 154, 158, 166-167, 169
p-, 139, 165
relative to an extension, 136-139, 159, 161-164, 171, 193-198
solvably, 139, 164
transition properties, 196-198
Henselization, 139, 189
p-, 139
relative to an extension, 136-139
solvable, 139
Hensel's lemma, 95, 137, 161-164, 166-167, 177
Hermite, 181
Hilbert, ix, 31, 123, 203, 221
symbol, 247
homomorphism over a subgroup, 5
Huang, 170
Hwang, xi, 234
immediate extension, $42,45,84-85,133-135,138,155,168-169$
independent
localities, $87-90,93,167,193-194,257$
topologies, 254, 256
index, 125
inertia
degree, 128-130, 153-154
field, 141-147
group, x, 141-147, 189, 192, 199-201
infinitesimal, 20-22
interval, 63-64, 67, 182-184
Iwasawa, 202
Jacob, xi, 95, 100, 207, 213, 236, 243, 261, 265, 268
Jacobi, 181
Jakovlev, 204
Jannsen, 204
Jarden, xii
Kaplansky, 123
Kedlaya, 170
Knebusch, xii
Koch, 204
Koenigsmann, 198
Krasner, 123
Krasner-Ostrowski lemma, 164, 170-171, 268
Krull, x, 15, 123, 151, 168-169, 234, 267
topology, 126, 133, 141
valuation, $\mathrm{x}, 37-38$,
Kuhlmann, 203
Kula, 261
Kürschák, 172
κ-structure, 207, 209-217, 260, 265, 267
trivial, 209
Lam, x, xii
Laurent series, 29, 50, 83, 107, 111, 157, 152, 204
Lazard, 111
local closure, 190
local pair, 257-262
compatible, 257-258
degenerate, 258
locality, 69
quotient, 70
trivial, 69
locally closed, 189-191
MacLane, 110, 169
Marshall, 79, 261, 265, 268
maximal pro-p Galois extension, 139, 164, 177, 197, 202, 222
maximally complete, 169
Mel'nikov, 204
Merkurjev, xi, 221, 228
metric
associated with a locality, 81-85, 166, 168
complete, 82
Milnor, 207, 219
Milnor K-ring, xi, 218-219
modulo a multiplicative subgroup, xi, 207, 217-225
minimal non-degenerate compatible system, 259-262
mirror valuation, 53-54, 60
mixed characteristic case, 60-61, 107-120
Moore, 245
morphism
of ordered abelian groups, 15-16
of κ-structures, 210
multi-linearity, 218-219, 231
multiplicative group, ix
multiplicative representatives, 107-109
Nakayama lemma, 160
Neukirch, xi
norm residue map, 221
opposite signs, 175
order (supernatural), 125
ordered abelian group, x, 15-24
Archimedean, 23
of rank 1, 21-23
ordered field, x, 63-66, 81, $85,123,175-185,228,242$
ordering, ix,x, 35, 63-67, 69-71, 75-76, 81, 85, 88, 95, 97, 123, 175-185, 187, $189,195,207,225-228,234,242-244,256,258,262,267$
Archimedean, 35, 67, 71, 81, 85, 88
ordering relation, 63,66
Ostrowski, 47, 123, 151, 153-155, 157-158, 164, 167, 170-171, 191, 268
p-adic
absolute value, ix
integers, 48, 109, 116
numbers, $\mathrm{x}, 48,82,87,109,166-168,172-173,204,247-248,267-268$
place, 42
valuation, $38,40,42,47-48,82,172-173,247-248$
valuation ring, 37,40
π-adic valuation, 47,53
Pank, 203
p-perfect
ring, 107, 111
structure, 110-116
place, 42-43
associated with a valuation, 41,59
Pop, 118
pre-additive, 104-105
preordering, 64-66, 70, 207, 226-227, 241-243, 262, 266
Prestel, xii
primary decomposition, 5, 12
primary element, 249-250
primary group, $5,12,14,130,135,146,200$
principal units
of a valuation ring, 37
of a valuation, 40
pro-abelian, 125, 139
profinite, 125
pro-p, 125, 149, 164, 197-198, 202, 222, 267
pro-solvable, 125
Puiseux series, Γ-, 30, 50, 169-170
push-down, 41, 70
Pythagorean, 178
quotient
locality, 70-71
valuation, 56-59
ramification
field, 143-149
index, 128-130, 154-155
group, 143-148
pairing, 147, 191-192
theory, ix, x, 123, 199
rank
of an ordered abelian group, 17-19
of a valuation, $39,56,129$
rational rank, 11-12, 19, 20
Rayner, 170
real closed, x, 177
relative to an extension, 177-181
real closure, 177
relative to an extension, 177-185, 190
uniqueness of, 184-185
realizable, 263
reduced, 225
residue field,
of a valuation, 40
of a valuation ring, 37
residue polynomial, 136, 160-164
restriction morphism, 219
Ribenboim, x, xii, 92
rigid, 213-214, 216, 235, 237, 239
ring topology, $75,79,219,256$
Roquette, 170
Rost, xi, 221
Samuel, xii
Scharlau, xii
Scheiderer, xii

Schilling, x, xii
Schmidt, 110, 123, 193
Schreier, ix, x, 65, 69, 175, 180, 184, 228
separable closure, 139, 172, 204
Sharomet, 204
slicing lemma, 60-61, 102
snake lemma, 6
solvable closure, 139, 164
Ştefănescu, 170
Steinberg, 229
elements, 217
Sturm's theorem, 181-184
supernatural number, 125-126, 129
support, 27-30, 48-51, 168-169
Suslin, xi, 221, 228
Sylow, pro-p subgroup, 125, 145, 198
Sylvester, 181
symbol, 218
Szymiczek, 213
Tate, 207, 209, 221, 225, 231, 233
Teichmüller character, 108-109
tensor algebra, 209, 211
tensor product
of graded rings, 210
of κ-structures, 210-211
topology associated with a locality, 75-77
torsion group, 5
torsion-free group, 5
totally rigid, 233-234, 238, 240-246
tower property
for defects, 155
for inertia degrees, 130
for ramification indices, 130
for supernatural degrees, 125
for supernatural indices, 125
tree, 73
triangle inequality, ix, 64
ultrametric inequality
for absolute values, ix
for valuations, viii, 38
uniformizer
of a discrete valuation, 44
of a p-perfect structure, 111
uniquely divisible, 5
units group, 37,40
valuation, 38-42
discrete, 43-46
of rank 1, 39, 56, 60-61, 81, 83-85, 87, 119-120, 166-167, 172,
193-194, 248-250
trivial, 39
valuation ideal, 40
valuation ring, 37-38
associated with an ordering, 71, 97
discrete, 43-45, 111
trivial, 37
value group, 38
valued field, 39
vanishing theorem, 248-249
Voevodsky, xi, 221
Wadsworth, 165, 231, 233
Ware, xi, 95, 100, 213, 266
weak approximation theorem, 87-91, 93, 193, 256
Weber, 79
well-ordered, 24-27
Wingberg, 204
Witt, 35, 107, 110
Witt vectors, ring of, 107, 111, 116-18, 167, 204
Zariski, xii

Titles in This Series

124 Ido Efrat, Valuations, orderings, and Milnor K-theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005

121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004

111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
97 V. A. Vassiliev, Applied Picard-Lefschetz theory, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002
92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002

This monograph is a comprehensive exposition of the modern theory of valued and ordered fields. It presents the classical aspects of such fields: their arithmetic, topology, and Galois theory. Deeper cohomological aspects are studied in its last part in an elementary manner. This is done by means of the newly developed theory of generalized Milnor K-rings. The book emphasizes the close connections and interplay between valuations and orderings, and to a large extent, studies them in a unified manner.
The presentation is almost entirely self-contained. In particular, the text develops the needed machinery of ordered abelian groups. This is then used throughout the text to replace the more classical techniques of commutative algebra. Likewise, the book provides an introduction to the Milnor K-theory.
The reader is introduced to the valuation-theoretic techniques as used in medern Galois theory, especially in applications to birational anabelian geometry, where one needs to detect valuations from their "cohomological footprints". These powerful techniques are presented here for the first time in a unified and elementary way.

For additional information

\simeq and updates on this book, visit www.ams.org/bookpages/surv-I 24

AMS on the Web
wWW.ams.org

SURV/I 24

