Systolic Geometry and Topology

Mikhail G. Katz

With an Appendix by Jake P. Solomon
Systolic Geometry and Topology

Mikhail G. Katz

With an Appendix
by Jake P. Solomon

American Mathematical Society
Dedicated to the memory of my parents,
Tsvi Dovid ben Moshe and Chaya bas Binyomin

The photograph on the back cover of the book had been taken by the author's late mother. The author is married and lives in Bnei Braq, Israel. The author is blessed with seven children, and he strives to emulate the serene ways of his late father, in raising them.
Contents

Preface xi
Acknowledgments xiii

Part 1. Systolic geometry in dimension 2 1

Chapter 1. Geometry and topology of systoles 3
 1.1. From Loewner to Gromov via Berger 3
 1.2. Contents of Part 1 6
 1.3. Contents of Part 2 7

Chapter 2. Historical remarks 13
 2.1. A la recherche des systoles, by Marcel Berger 13
 2.2. Charles Loewner (1893-1968) 14
 2.3. Pu, Pao Ming (1910-1988) 19
 2.4. A note to the reader 19

Chapter 3. The theorema egregium of Gauss 21
 3.1. Intrinsic vs extrinsic properties 21
 3.2. Preliminaries to the theorema egregium 22
 3.3. The theorema egregium of Gauss 24
 3.4. The Laplacian formula for Gaussian curvature 25

Chapter 4. Global geometry of surfaces 29
 4.1. Metric preliminaries 29
 4.2. Geodesic equation and closed geodesics 32
 4.3. Surfaces of constant curvature 33
 4.4. Flat surfaces 35
 4.5. Hyperbolic surfaces 35
 4.6. Topological preliminaries 37

Chapter 5. Inequalities of Loewner and Pu 39
 5.1. Definition of systole 39
 5.2. Isoperimetric inequality and Pu’s inequality 39
 5.3. Hermite and Bergé-Martinet constants 41
 5.4. The Loewner inequality 42

Chapter 6. Systolic applications of integral geometry 43
 6.1. An integral-geometric identity 43
 6.2. Two proofs of the Loewner inequality 44
 6.3. Hopf fibration and the Hamilton quaternions 46
6.4. Double fibration of \(SO(3)\) and integral geometry on \(S^2\) 46
6.5. Proof of Pu’s inequality 48
6.6. A table of optimal systolic ratios of surfaces 48

Chapter 7. A primer on surfaces 51
7.1. Hyperelliptic involution 51
7.2. Hyperelliptic surfaces 52
7.3. Ovalless surfaces 53
7.4. Katok’s entropy inequality 54

Chapter 8. Filling area theorem for hyperelliptic surfaces 57
8.1. To fill a circle: an introduction 57
8.2. Relative Pu’s way 59
8.3. Outline of proof of optimal displacement bound 60
8.4. Near optimal surfaces and the football 61
8.5. Finding a short figure eight geodesic 63
8.6. Proof of circle filling: Step 1 63
8.7. Proof of circle filling: Step 2 64

Chapter 9. Hyperelliptic surfaces are Loewner 69
9.1. Hermite constant and Loewner surfaces 69
9.2. Basic estimates 70
9.3. Hyperelliptic surfaces and \(\varepsilon\)-regularity 70
9.4. Proof of the genus two Loewner bound 71

Chapter 10. An optimal inequality for CAT(0) metrics 75
10.1. Hyperelliptic surfaces of nonpositive curvature 75
10.2. Distinguishing 16 points on the Bolza surface 76
10.3. A flat singular metric in genus two 77
10.4. Voronoi cells and Euler characteristic 80
10.5. Arbitrary metrics on the Bolza surface 82

Chapter 11. Volume entropy and asymptotic upper bounds 85
11.1. Entropy and systole 85
11.2. Basic estimate 86
11.3. Asymptotic behavior of systolic ratio for large genus 88
11.4. When is a surface Loewner? 89

Part 2. Systolic geometry and topology in \(n\) dimensions 91

Chapter 12. Systoles and their category 93
12.1. Systoles 93
12.2. Gromov’s spectacular inequality for the 1-systole 95
12.3. Systolic category 97
12.4. Some examples and questions 99
12.5. Essentialness and Lusternik–Schnirelmann category 100
12.6. Inessential manifolds and pullback metrics 101
12.7. Manifolds of dimension 3 102
12.8. Category of simply connected manifolds 104

Chapter 13. Gromov’s optimal stable systolic inequality for \(\mathbb{C}_p^n\) 107
CONTENTS

13.1. Federer’s proof of the Wirtinger inequality 107
13.2. Optimal inequality for complex projective space 108
13.3. Quaternionic projective plane 110

Chapter 14. Systolic inequalities dependent on Massey products 113
14.1. Massey Products via Differential Graded Associative Algebras 113
14.2. Integrality of de Rham Massey products 115
14.3. Gromov’s calculation in the presence of a Massey 116
14.4. A homogeneous example 118

Chapter 15. Cup products and stable systoles 119
15.1. Introduction 119
15.2. Statement of main results 120
15.3. Results for the conformal systole 122
15.4. Some topological preliminaries 124
15.5. Ring structure-dependent bound via Banaszczyk 125
15.6. Inequalities based on cap products, Poincaré duality 127
15.7. A sharp inequality in codimension 1 129
15.8. A conformally invariant inequality in middle dimension 130
15.9. A pair of conformal systoles 130
15.10. A sublinear estimate for a single systole 133

Chapter 16. Dual-critical lattices and systoles 135
16.1. Introduction 135
16.2. Statement of main theorems 135
16.3. Norms on (co-)homology 137
16.4. Definition of conformal systoles 138
16.5. Jacobi variety and Abel-Jacobi map 139
16.6. Summary of the proofs 140
16.7. Harmonic one-forms of constant norm and flat tori 141
16.8. Norm duality and the cup product 144
16.9. Hölder inequality in cohomology and case of equality 146
16.10. Proof of optimal $(1, n - 1)$-inequality 147
16.11. Consequences of equality, criterion of dual-perfection 148
16.12. Characterisation of equality in $(1, n - 1)$-inequality 149
16.13. Construction of all extremal metrics 151

Chapter 17. Generalized degree and Loewner-type inequalities 155
17.1. Burago-Ivanov-Gromov inequality 155
17.2. Generalized degree and BIG(n, b) inequality 156
17.3. Pu’s inequality and generalisations 157
17.4. A Pu times Loewner inequality 158
17.5. A decomposition of the John ellipsoid 159
17.6. An area-nonexpanding map 159
17.7. Proof of BIG(n, b)-inequality and Theorem 17.4.1 161

Chapter 18. Higher inequalities of Loewner-Gromov type 163
18.1. Introduction, conjectures, and some results 163
18.2. Notion of degree when dimension exceeds Betti number 164
18.3. Conformal BIG(n, p)-inequality
18.4. Stable norms and conformal norms
18.5. Existence of Lp-minimizers in cohomology classes
18.6. Existence of harmonic forms with constant norm
18.7. The BI construction adapted to conformal norms
18.8. Abel-Jacobi map for conformal norms
18.9. Attaining the conformal BIG bound

Chapter 19. Systolic inequalities for Lp norms
19.1. Case n ≥ b and Lp norms in homology
19.2. The BI construction in the case n ≥ b
19.3. Proof of bound on orthogonal Jacobian
19.4. Attaining the conformal BIG(n, b) bound

Chapter 20. Four-manifold systole asymptotics
20.1. Schottky problem and the surjectivity conjecture
20.2. Conway-Thompson lattices CTn and idea of proof
20.3. Norms in cohomology
20.4. Conformal length and systolic flavors
20.5. Systoles of definite intersection forms
20.6. Buser-Sarnak theorem
20.7. Sign reversal procedure SR and Aut(I_n,1)-invariance
20.8. Lorentz construction of Leech lattice and line CT_n^⊥
20.9. Three quadratic forms in the plane
20.10. Replacing λ1 by the geometric mean (λ1λ2)^1/2
20.11. Period map and proof of main theorem

Appendix A. Period map image density (by Jake Solomon)
A.1. Introduction and outline of proof
A.2. Symplectic forms and the self-dual line
A.3. A lemma from hyperbolic geometry
A.4. Diffeomorphism group of blow-up of projective plane
A.5. Background material from symplectic geometry
A.6. Proof of density of image of period map

Appendix B. Open problems
B.1. Topology
B.2. Geometry
B.3. Arithmetic

Bibliography

Index
Preface

This text is based upon a recent course at Bar Ilan University, as well as upon numerous collaborative efforts (see the Acknowledgments Chapter following this Preface). After dealing with classical geometric preliminaries, including the *theorema egregium* of Gauss, we present new geometric inequalities of systolic type on Riemann surfaces, as well as their higher dimensional generalisations. Thus, the text can be viewed as an expanded version of a part of the survey by C. Croke and the present author [CrK03], which itself dealt with a small part of the material in M. Gromov’s seminal text *Filling Riemannian manifolds* [Gro83]. Most of the results presented here have been obtained over the past four years, a reflection of the rapid progress in the field since the publication of the monograph [Gro99] seven years ago. M. Berger’s recent monograph [Berg03] provides a fascinating historical perspective unburdened by proofs, *cf.* Section 2.1.
Acknowledgments

Many people have contributed to the present work at various stages of its development.

The present text involves the work of a number of collaborators. In alphabetical order, they are V. Bangert, C. Croke, S. Ivanov, C. Lescop, Y. Rudyak, S. Sabourau, M. Schaps, S. Shnider, J. Solomon, U. Vishne, and S. Weinberger. The author warmly thanks all of them for many fruitful interactions and enriching discussions.

We are grateful to D. Kazhdan and M. Belolipetsky for helpful discussions of arithmetic surfaces, and to A. Reid for help with simplicial volume.

We express appreciation to L. Ambrosio, G. Dula, J. Lagarias, C. LeBrun, F. Morgan, and S. Weinberger for insightful comments.

We are grateful to H. Farkas, S. Krushkal, and S. Shnider for helpful discussions of hyperelliptic surfaces; to M. Dutour for a helpful discussion of the combinatorial arguments of Section 8.7; and to F. Auer for the Super Bowl figures of Section 8.5.

We are grateful to D. Ebin, E. Leichtnam, and J. Lafontaine for discussions concerning the smooth dependence on parameters in Moser’s method, exploited in Proposition 16.13.2. We thank E. Kuwert for providing references concerning closed forms minimizing the L^p-norm in their cohomology class.

We are grateful to A. Marin for a proof of Proposition 18.2.6 on self-linking numbers.

We are grateful to B. White for a helpful discussion of the deformation theorem and the material of Section 18.2.

We express appreciation to P. Biran, S. Donaldson, C. LeBrun, and J. Solomon for insightful comments related to the surjectivity conjecture, and to R. Borcherds for help with the automorphism group of the Lorentzian lattice.

We are grateful to I. Babenko for detailed criticisms in the context of systolic category, to R. Brown for helpful comments on non-abelian cohomology, and to J. Oprea for a calculation of the rational category of an interesting homogeneous space in Proposition 14.4.2.

We are grateful to M. Kapovich for helpful comments concerning groups generated by reflections, related to the material of Appendix A.

We are grateful to R. Hain for clarifying the issue of the compatibility of two Massey product theories, cf. Theorem 14.2.2.

The author is grateful to Marcel Berger and to Louis de Branges for consenting to the inclusion of their comments respectively in Section 2.1 and Subsection 2.2.3.

We thank I. Chavel for some probing questions, and T. Sakai, J. Lafontaine, and N. Hitchin for reading an early version of the manuscript of the book, and making valuable suggestions.

Our thanks are due to Mrs. M. Beller for careful editing of portions of the text.
ACKNOWLEDGMENTS

I thank my wife for unbounded patience, and for accommodating unreasonable work schedules inherent in a task such as writing a book.

I thank Hashem Yisborach for giving me the strength to lead this work to its completion.
APPENDIX A

Period map image density (by Jake Solomon)

A.1. Introduction and outline of proof

We present a proof of the density of the image of the period map for the case of the n-fold blow-up of projective plane, $\mathbb{CP}^2 \# n\mathbb{CP}^2$. This result was first obtained by T. J. Li and A. Liu [Li01]. An alternative proof of the density may be found in [GayK04, Theorem 1, item (8)]. Our proof, similarly to that of [Li01], relies on the connection between Seiberg-Witten invariants and Gromov-Witten invariants, due to C. Taubes [Ta95], as further developed by D. McDuff [Mc96] and P. Biran [Bir97]. Our goal is to provide a non-technical exposition, accessible to a wide range of geometers and topologists.

More precisely, let M be a closed oriented four-manifold with intersection form

$$q : H^2(M, \mathbb{Z}) \otimes H^2(M, \mathbb{Z}) \rightarrow \mathbb{Z}.$$

By definition, $b^+(2)(M)$ is the maximal rank of a submodule of $H^2(M, \mathbb{Z})$ on which the restriction of q is positive definite. We assume throughout that $b^+_2(M) = 1$.

Given a vector space V, we denote by $\mathbb{P}(V)$ its projectivisation.

DEFINITION A.1.1. The positive cone $\mathcal{P} = \mathcal{P}(M)$ of M is

$$\mathcal{P} := \{ [\alpha] \in \mathbb{P}(H^2(M, \mathbb{R})) | q(\alpha, \alpha) > 0 \}.$$

Given a Riemannian metric \mathcal{G} on M, its Hodge star operator $*$ defines an involution on the space of harmonic two-forms $\mathcal{H}^2(M)$ and hence, by the Hodge theorem, on $H^2(M, \mathbb{R})$. We denote by

$$\mathcal{P}_\mathcal{G} \subset H^2(M, \mathbb{R})$$

the +1 eigenspace of the operator $*$, also known as the space of self-dual harmonic two-forms on M. If $\alpha \in \mathcal{P}_\mathcal{G}$, $\alpha \neq 0$, is a self-dual harmonic 2-form, we have

$$q(\alpha, \alpha) = \int_M \alpha \wedge \alpha = \int_M \alpha \wedge \ast \alpha = \|\alpha\|_{L^2}^2 > 0.$$

Our hypothesis $b^+_2(M) = 1$ therefore implies $\dim \mathcal{P}_\mathcal{G} = 1$. Let \mathcal{M} denote the space of Riemannian metrics on M.

DEFINITION A.1.2. The period map

$$\mathcal{P} : \mathcal{M} \longrightarrow \mathcal{P}(M)$$

is defined by $\mathcal{G} \mapsto [\mathcal{P}_\mathcal{G}]$.

The goal of this appendix will be to prove the following theorem in the special case when $M = \mathbb{CP}^2 \# n\mathbb{CP}^2$:

THEOREM A.1.3. The image of the period map is dense in \mathcal{P}.

195
This result was first obtained by T. J. Li and A. Liu in [Li01], where it is proved for arbitrary symplectic four-manifolds with $b_2^+ = 1$. Nonetheless, the result is perhaps most difficult precisely in the case we treat.

In general outline, the proof proceeds as follows. First, we show that it suffices, for $x = [\alpha]$ belonging to a dense subset of \mathcal{P}, to construct a symplectic form

$$\omega \in \Omega^2(M), \; d\omega = 0, \; \omega^2 \neq 0,$$

such that $[\omega] = x$. We note that the diffeomorphism group $\text{Diff}(M)$ acts by pullback both on the set of symplectic forms on M and on the positive cone \mathcal{P} of M. Thus, it suffices to construct ω such that $[\omega] = x$ for x in a dense subset of a fundamental domain for the action of $\text{Diff}(M)$ on \mathcal{P}. In fact, we will specify a subset $\mathcal{S} \subset \mathcal{P}$ that contains a fundamental domain for a suitable subgroup

$$G_{(-1,-2)} \subset \text{Diff}(M),$$

cf. (A.4.6), such that the image of the map \mathcal{P} is dense even in \mathcal{S}. We explicitly construct a finite set of diffeomorphisms of M which generate $G_{(-1,-2)}$, and then prove that \mathcal{S} contains a fundamental domain for the action of $G_{(-1,-2)}$ on \mathcal{P} by techniques of hyperbolic geometry.

On the other hand, to prove the density of the image of the map \mathcal{P} in $\mathcal{S} \subset \mathcal{P}$, we employ powerful techniques combining gauge theory and the theory of holomorphic curves on M.

We wish to thank P. Biran for several helpful conversations, and R. Borcherds for pointing out that \mathcal{S} indeed contains a fundamental domain for $G_{(-1,-2)}$.

A.2. Symplectic forms and the self-dual line

The proposition below highlights the role of symplectic structures in understanding the image of the period map.

Let M be a $2p$ dimensional smooth manifold. By definition, an almost complex structure on M is an automorphism J of the tangent bundle TM satisfying $J^2 = -1$. Now, suppose M is equipped with a symplectic form $\omega \in \Omega^2(M)$, cf. Section 14.2. Thus, we have $d\omega = 0, \omega^p \neq 0$.

Definition A.2.1. An almost complex structure J on M is called ω-tame if the $(0,2)$-tensor $\omega(\cdot, J\cdot)$ defines a positive definite bilinear form on each tangent space of M. It is called ω-compatible if, in addition, the bilinear form is symmetric.

It is not hard to show that the space of all ω-compatible almost complex structures on M is non-empty and contractible [McS98].

Proposition A.2.2. Assume $\dim M = 4$ and $b_2^+ (M) = 1$. An element of $\mathcal{P}(M)$ that can be represented by a symplectic form, necessarily lies in the image of the period map.

Proof. Let ω be a symplectic form on a four-manifold M. We first choose any ω-compatible almost complex structure J. Consider the metric $\mathcal{G} := \omega(\cdot, J\cdot)$. Let $\ast : \Omega^*(M) \to \Omega^*(M)$ denote the Hodge-star operator associated to \mathcal{G}. It follows from linear algebra that

$$\ast \omega = \omega.$$

Since $d \ast \omega = d\omega = 0$ by the definition of a symplectic form, we conclude that ω is harmonic with respect to the \mathcal{G}-Laplacian on 2-forms on M. Since ω is self-dual, it represents the line $\mathcal{P}_\mathcal{G}$.

\square
A.3. A lemma from hyperbolic geometry

Let \(\langle \cdot, \cdot \rangle \) denote the standard Lorentzian inner product on \(\mathbb{R}^{n+1} \) given by a diagonal matrix with entries \(-1, \ldots, -1, 1\), on the diagonal.

Recall that the isometry group of \(n \)-dimensional hyperbolic space \(\mathcal{H}^n \) is the group \(O(1,n; \mathbb{R}) \) of the linear transformations of \(\mathbb{R}^{n+1} \) preserving \(\langle \cdot, \cdot \rangle \). The action of \(O(1,n) \) on \(\mathcal{H}^n \) is given by restricting the action on \(\mathbb{R}^{n+1} \) to the subset \(\mathcal{H}^n_+ \subset \mathbb{R}^{n+1} \) defined by
\[
\mathcal{H}^n_+ = \{ x = (x_1, \ldots, x_n; x_{n+1}) \in \mathbb{R}^{n+1} | \langle x, x \rangle = +1, \ x_{n+1} > 0 \}.
\]
The space \(\mathcal{H}^n_+ \), equipped with pull back metric from \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle) \), is one of the standard models for \(\mathcal{H}^n \).

Definition A.3.1. An element \(r \in O(1,n) \) defines a reflection if for all \(v \in \mathbb{R}^{n+1} \), we have
\[
r(v) = v - 2 \frac{(e, v)}{(e, e)} e
\]
for a suitable \(e \in \mathbb{R}^{n+1} \) with \(\langle e, e \rangle < 0 \).

Let \(\Gamma \subset O(1,n; \mathbb{Z}) \) be a subgroup generated by reflections. To each reflection \(r \in \Gamma \) (not necessarily one of the generators), there corresponds a totally geodesic hyperplane \(\mu_r \subset \mathcal{H}^n \) called the mirror of \(r \), which is the locus of the fixed points of \(r \). Consider the union of all mirrors of reflections in \(\Gamma \). We call the closure of a connected component of the complement in \(\mathcal{H}^n \) of this union a cell. We employ the notation \(\{ C_i | i \in I \} \) for the collection of all such cells. The following result was stated, for example, in [Vin75, p. 324].

Proposition A.3.2. Each cell \(C_i \) is a fundamental domain for the action of \(\Gamma \) on \(\mathcal{H}^n \).

Proof. Fix a cell \(C_i \). Any point \(x \in \mathcal{H}^n \) lies in a suitable cell \(C_\beta, \beta \in I \). It suffices to find an element of \(\Gamma \) carrying \(C_\beta \) and hence also \(x \) to \(C_i \).

Lemma A.3.3. Only a finite number of mirrors of reflections in \(\Gamma \) can meet any compact subset \(K \subset \mathcal{H}^n \).

Proof. Without loss of generality, by replacing \(K \) with a ball containing it, we may assume \(K = B_r(p) \), the ball of radius \(r \) centered at some point \(p \in \mathcal{H}^n \). Note the following one to one correspondence between points of \(B_r(p) \) and hyperplanes intersecting \(B_r(p) \) : By the convexity of the distance function on \(\mathcal{H}^n \), any totally geodesic hyperplane \(\mu \subset \mathcal{H}^n \) contains a unique point \(q \) closest to \(p \). Clearly, if \(\mu \) intersects \(B_r(p) \), then \(q \in B_r(p) \). On the other hand, we may recover \(\mu \) from \(q \) as the totally geodesic hyperplane perpendicular to the unique length minimizing geodesic connecting \(q \) to \(p \). Now, suppose \(\{ \mu_i \} \) is an infinite sequence of distinct mirrors of reflections in \(\Gamma \) each of which meet \(B_r(p) \) and let \(q_i \) be the point of \(\mu_i \) closest to \(p \). Since \(B_r(p) \) is compact, by passage to a subsequence, we may assume the sequence \(q_i \) converges. It follows that the corresponding hyperplanes \(\mu_i \) converge, and so do the corresponding reflections. This contradicts the discreteness of \(O(1,n; \mathbb{Z}) \). \(\square \)

In particular, a path connecting \(C_\beta \) with \(C_i \) intersects only a finite number of mirrors. So, we may choose a finite sequence of adjacent cells
\[
C_\beta = C_{\beta_1}, C_{\beta_2}, \ldots, C_{\beta_m} = C_i.
\]
Adjacency means that each pair of cells \((C_\beta, C_{\beta+1})\) shares a unique mirror \(\mu_i\), where \(i = 1, \ldots, n - 1\). Reflecting sequentially in the mirrors \(\mu_i\) moves the cell \(C_\beta\) to the cell \(C_i\) by an isometry belonging to \(\Gamma\). In particular, this isometry moves \(x\) into the closure of \(C_i\), as required.

\[\square \]

A.4. Diffeomorphism group of blow-up of projective plane

Let \(M_n := \mathbb{CP}^2 \# n \mathbb{CP}^2\). Thus, \(M_n\) is \(\mathbb{CP}^2\) blown up at \(n\) points. We specify a basis of \(H_2(M_n, \mathbb{Z})\) as follows. Let \(L \in H_2(M_n, \mathbb{Z})\) be the homology class of a line in \(\mathbb{CP}^2\). Let \(E_i\) denote the homology class of the \(i^{th}\) exceptional divisor. Denote by \(\text{PD} : H^2(M_n, \mathbb{Z}) \to H_2(M_n, \mathbb{Z})\) the Poincaré duality isomorphism. Consider the basis in cohomology given by

\[
\lambda = \text{PD}^{-1}(L) \quad \text{and} \quad \epsilon_i = \text{PD}^{-1}(E_i) \in H^2(M_n, \mathbb{Z}).
\]

We denote the intersection form on \(H_2(M_n, \mathbb{Z})\) by \(Q\) or “\(^{*}\)”, and we write \(q = Q \circ \text{PD}\) for the intersection form on \(H^2(M_n, \mathbb{Z})\). An easy calculation yields

\[
L \cdot L = 1, \quad E_i \cdot L = 0, \quad E_i \cdot E_j = -\delta_{ij}. \quad (A.4.1)
\]

In other words, the intersection form is a Lorentzian inner product on \(H_2(M_n, \mathbb{Z})\).

Lemma A.4.1. There is an element \(r_i \in \text{Diff}(M_n)\) that is the connect sum of the diffeomorphism given by complex conjugation on the \(i^{th}\) copy of \(\mathbb{CP}^2\) with the identity diffeomorphism on the remaining \(M_{n-1} = \mathbb{CP}^2 \# (n - 1) \mathbb{CP}^2\).

Proof. We must show that the two diffeomorphisms can be connected, to obtain a global diffeomorphism of \(M_{n-1} \# \mathbb{CP}^2\). That is, we must show that the identity map of \(S^3 \subset \mathbb{C}^2\) can be smoothly isotoped through diffeomorphisms to the map arising from complex conjugation restricted to \(S^3 \subset \mathbb{C}^2\). Indeed, both maps arise from matrices belonging to the special orthogonal group \(SO(4)\). Since the Lie group \(SO(4)\) is connected, we may connect these two matrices by a smooth path of matrices in \(SO(4)\), each of which induces a diffeomorphism on \(S^3\).

We note that \(r_i^*\) acts on cohomology by the formula

\[
r_i^*(\alpha) = \alpha - 2 \frac{q(\alpha, \epsilon_i)}{q(\epsilon_i, \epsilon_i)} \epsilon_i, \quad \alpha \in H^2(M_n, \mathbb{Z}). \quad (A.4.2)
\]

Thus, \(r_i^*\) is the reflection of the Lorentzian lattice \((H^2(M_n, \mathbb{Z}), q)\), which corresponds to the vector \(\epsilon_i\). An element \(\beta\) of self-intersection \(-2\) defines a reflection by a similar formula

\[
r_\beta^*(\alpha) = \alpha - 2 \frac{q(\alpha, \beta)}{q(\beta, \beta)} \beta. \quad (A.4.3)
\]

The following lemma may be found in [FriM94].

Lemma A.4.2. Let \(M\) be a four-manifold. Let \(\beta \in H^2(M, \mathbb{Z})\) be Poincaré dual to an embedded 2-sphere of self-intersection \(-2\). Then there exists a suitable diffeomorphism \(r_\beta \in \text{Diff}(M)\) such that \(r_\beta^*\) acts on \(H^2(M, \mathbb{Z})\) by reflection corresponding to \(\beta\) in the sense of \((A.4.3)\).

Now let \(M = M_n\), and let \(i, j, k = 1, \ldots, n\), assumed pairwise distinct. We set

\[
\beta = \epsilon_{ijk} := \lambda - \epsilon_i - \epsilon_j - \epsilon_k. \quad (A.4.4)
\]

Let \(r_\beta\) denote the diffeomorphism provided by Lemma A.4.2. In fact, in this particular case, we may choose the diffeomorphism \(r_\beta\) to be a biholomorphism. Using
algebraic geometry, these biholomorphisms can be constructed explicitly and are known as Cremona transformations [GriH78]. We define \(r_{ijk} \) to be the Cremona transformation associated to \(\epsilon_{ijk} \). We set

\[
\mathcal{S}_n := \{ [\alpha] \in \mathcal{P}(M_n) \mid q(\alpha, \epsilon_i) > 0, \ q(\alpha, \epsilon_{ijk}) > 0 \ \forall i, j, k \}.
\]

(A.4.5)

Furthermore, we let

\[
G_{(-1,-2)} \subset \text{Diff}(M_n)
\]

be the subgroup generated by the \(n \) diffeomorphisms \(r_i \) and the \(\binom{n}{3} \) diffeomorphisms \(r_{ijk} \). Here the indices \((-1,-2)\) help recall the nature of the generators of the group \(G_{(-1,-2)} \).

PROPOSITION A.4.3. The set \(\mathcal{S} = \mathcal{S}_n \) contains a fundamental domain of the action of \(G_{(-1,-2)} \) on \(\mathcal{P}(M_n) \).

PROOF. Let \(\rho : \text{Diff}(M_n) \to \text{End}(H^2(M_n), q) \) be the natural homomorphism, and set

\[
\tilde{G}_{(-1,-2)} := \rho \left(G_{(-1,-2)} \right).
\]

Clearly, it suffices to show that \(\mathcal{S} \) contains a fundamental domain of \(\tilde{G}_{(-1,-2)} \). Let

\[
\pi : H^2(M_n) \setminus \{0\} \to \mathbb{P}(H^2(M_n))
\]

denote the natural projection, and let

\[
H^+_M = \{ \alpha \in H^2(M_n) \mid q(\alpha, \alpha) = 1 \}.
\]

Clearly, the restriction

\[
\pi|_{H^+_M} : H^+_M \to \mathcal{P}
\]

is a \(\tilde{G}_{(-1,-2)} \)-equivariant diffeomorphism. We now apply Proposition A.3.2 above with \(\Gamma = \tilde{G}_{(-1,-2)} \), noting that since the inequalities (A.4.5) defining \(\mathcal{S} \) arise from the mirrors of reflections in \(\tilde{G}_{(-1,-2)} \), \(\mathcal{S} \) must contain a cell \(C_I \). \hfill \Box

A.5. Background material from symplectic geometry

We will exploit P. Biran’s criterion [Bir97, Bir01] for second cohomology classes of a symplectic four-manifold to be approximately represented by symplectic forms. Let \((M, \omega)\) be a closed symplectic four-manifold. A submanifold \(N \subset M \) is called symplectic if the restriction of \(\omega \) to \(N \) is a symplectic form. By analogy with algebraic geometry, we will call a class \(E \in H_2(M) \) exceptional if it can be represented by an embedded symplectic 2-sphere \(\Sigma \subset M \) such that \(\Sigma \cdot \Sigma = -1 \).

DEFINITION A.5.1. We will denote by \(E_\omega \subset H_2(M) \) the set of all \(\omega \)-exceptional classes.

Before stating Biran’s theorem, we mention that four-manifolds whose Seiberg-Witten invariants vanish when the Seiberg-Witten moduli space has non-zero dimension are said to have Seiberg-Witten simple type. For our purposes, all we need to know is that closed simply connected symplectic four-manifolds with \(b_2^+ = 1 \) do not have Seiberg-Witten simple type. As before, we denote by \(q(\cdot, \cdot) \) the intersection form on \(H^2(M) \).
THEOREM A.5.2 (P. Biran). Let (M,ω) be a closed symplectic four-manifold. Assume M does not have Seiberg-Witten simple type. Let $\alpha \in H^2(M)$ belong to the positive cone of M, i.e. $q(\alpha, \alpha) > 0$. Suppose that α also satisfies

1. $q(\alpha, [\omega]) > 0$,
2. $\alpha(E) > 0$ for all $E \in E_\omega$.

Then there exist symplectic forms on M representing cohomology classes arbitrarily close to α.

This result was proved in [Bir97] using Taubes’s Seiberg-Witten Gromov-Witten correspondence [Ta95], as further developed by McDuff [Mc96], combined with the technique of symplectic inflation due to F. Lalonde and D. McDuff [LaM96].

REMARK A.5.3. Although in general, when $b_2^+ = 1$, the Seiberg-Witten invariants depend on the choice of a chamber, there is a canonical choice of chamber for symplectic manifolds. So, in the case under consideration, we may refer to the Seiberg-Witten invariants unambiguously.

REMARK A.5.4. The main idea behind the proof Theorem A.5.2 is to use the non-vanishing of the Seiberg-Witten invariants to construct a symplectically embedded surface representing a multiple of the Poincare dual of the chosen class α. Taubes did this in a remarkable string of papers outlined in [Ta95]. Symplectic inflation uses the embedded symplectic surface to construct a symplectic form representing a cohomology class arbitrarily close to α.

In very broad outline, Taubes’s argument runs as follows: A solution to the Seiberg-Witten equations consists of a section of a certain vector bundle as well as a connection on that bundle. The non-vanishing of the Seiberg-Witten invariant implies the existence of such a solution to the equations. Moreover, this solution persists under a large variety of perturbations. In the limit of a specially chosen large perturbation, the vanishing sets of the sections become symplectically embedded surfaces.

In order to apply Theorem A.5.2, we will need to analyze which classes in $H_2(M)$ can be ω-exceptional. This will rely heavily on the theory of J-holomorphic curves, which we now outline. Let M be a smooth manifold admitting an almost complex structure J and let Σ be a Riemann surface with complex structure j.

DEFINITION A.5.5. A J-holomorphic Σ-curve in M is a map $u : \Sigma \rightarrow M$ satisfying the Cauchy-Riemann equation

$$J \circ du - du \circ j = 0.$$

Here, we will be interested exclusively in J-holomorphic spheres, i.e. in the case $\Sigma \simeq S^2$. Now we formulate the connection between ω-exceptional classes, on the one hand, and J-holomorphic curves, on the other. If (M,ω) is a symplectic manifold, we denote by $J_\omega(M)$ the set of ω-tame complex structures on M, cf. Definition A.2.1. The following result was proved by McDuff [Mc90].

THEOREM A.5.6. For J belonging to a residual subset of $J_\omega(M)$, there exists a unique embedded J-holomorphic sphere representing each element $E \in E_\omega$.

Our main tool will be the property of positivity of intersections for J-holomorphic curves, first stated by M. Gromov [Gro85]. For a detailed history and exposition of the proof of this theorem, see [McS04, Appendix E].
A J-holomorphic curve $u : \Sigma \to M$ is called \textit{simple} if it does not factor as the composition $u' \circ \phi$ of a map of Riemann surfaces $\phi : \Sigma \to \Sigma'$ with a J-holomorphic curve $u' : \Sigma' \to M$ such that the degree of ϕ is is greater than one.

\textbf{Theorem A.5.7.} Each pair $A_0, A_1 \in H_2(M)$ of homology classes represented by distinct, connected, simple J-holomorphic curves, satisfies $A_0 \cdot A_1 \geq 0$.

Since embedded J-holomorphic spheres are always simple, we can combine Theorem A.5.6 with Theorem A.5.7 to deduce constraints on E_ω.

Finally, we note that if (M, ω) is a symplectic manifold, then each almost complex structure $J \in J_\omega(M)$ makes TM into a complex vector bundle. Recall that the Chern classes of a complex vector bundle belong to integral cohomology. Since $J_\omega(M)$ is contractible, it follows that the Chern classes of TM do not depend on the choice of $J \in J_\omega(M)$. We will use the following topological lemma relating intersection numbers in a symplectic four-manifold (M, ω) with the first Chern class of its tangent bundle $c_1(TM)$.

\textbf{Lemma A.5.8} (The adjunction formula). Let (M, ω) be a symplectic four-manifold and let $\Sigma \subset M$ be a symplectic submanifold of $\dim \Sigma = 2$. Then

$$c_1(TM)([\Sigma]) = [\Sigma] \cdot [\Sigma] + \chi(\Sigma).$$

\textbf{Proof.} Choosing $J \in J_\omega(M)$, we may consider TM as a complex vector bundle. Since Σ is embedded, choosing a Hermitian metric on TM, we have the splitting $TM|_\Sigma \simeq T\Sigma \oplus \nu_{\Sigma}$, where ν_{Σ} denotes the normal bundle of Σ. Since the first Chern class of a line bundle is its Euler class, we have

$$c_1(\nu_{\Sigma}) = \Sigma \cdot \Sigma, \quad c_1(T\Sigma) = \chi(\Sigma).$$

The lemma follows immediately from the Whitney sum formula. \hfill \qed

\textbf{A.6. Proof of density of image of period map}

As before, let

$$\pi : H^2(M_\alpha) \setminus \{0\} \to \mathbb{P}(H^2(M_\alpha))$$

denote the natural projection. Define

$$S := \{ \alpha \in \pi^{-1}(S) \mid q(\alpha, \lambda) > 0 \}.$$

By Proposition A.4.3, it suffices to prove that if $\alpha \in \tilde{S}$, we can find cohomology classes arbitrarily close to α represented by symplectic forms. To this end, we will need to apply Theorem A.5.2.

Theorem A.5.2 starts with a symplectic manifold (M, ω). So, to apply Theorem A.5.2 in the case $M = M_\alpha$, we first need to construct a symplectic form ω on M. In fact, in order to facilitate the study of E_ω, we will work in the more rigid Kähler category. Recall that a Kähler form on M is a symplectic form ω such that J_ω contains an integrable complex structure induced by holomorphic coordinate charts on M. We use the fact that M_α arises as the complex analytic blowup of \mathbb{CP}^2 at n points. As such, it admits a canonical complex structure, which we denote by J_α.

Lemma A.6.1. There exists a Kähler form \(\omega_\delta \) on \(M_n \) representing the class
\[
\lambda - \delta (\epsilon_1 + \ldots + \epsilon_k) \in H^2(M_n)
\]
for all sufficiently small \(\delta > 0 \). The canonical complex structure \(J_n \) on \(M_n \) arising from the complex analytic blow-up construction is compatible with \(\omega_\delta \) for all \(\delta \).

Proof. The Fubini-Study form on \(\mathbb{CP}^2 \) is well known to be Kähler [GriH78]. The lemma then follows from the general construction of Kähler forms on blow-ups [GriH78, p. 192]. We note that if we were not interested in the existence of a compatible integrable complex structure, this argument could be carried through entirely in the symplectic category using McDuff’s symplectic blow-up construction [McS98]. \(\square \)

It is important to emphasize that in order to apply Theorem A.5.2, we need first to fix a symplectic structure \(\omega \) on \(M \). Theorem A.5.2 then allows us to construct new symplectic forms representing cohomology classes \(\alpha \) that satisfy conditions (1) and (2). However, Lemma A.6.1 allows us some freedom as to which symplectic structure we fix. So, for any fixed class \(\alpha \in \mathcal{S} \), we can choose a symplectic form \(\omega \) such that condition (1) holds. Indeed, since by assumption \(q(\alpha, \lambda) > 0 \), for \(\delta_0 \) sufficiently small we have \(q(\alpha, \omega_{\delta_0}) > 0 \). At this point, we fix \(\omega = \omega_{\delta_0} \).

In order to verify condition (2) of Theorem A.5.2, we need to derive constraints on the set of exceptional classes \(E_\omega \). The following lemma, which shows that certain classes actually are exceptional, via the combination of Theorems A.5.6 and A.5.7 will help constrain which other classes might be exceptional. We define
\[
E_{ij} := L - E_i - E_j
\]
for \(i \neq j \).

Lemma A.6.2. The classes \(E_i \) and \(E_{ij} \) are exceptional for any symplectic form \(\omega \) with respect to which \(J_n \) is compatible. In particular, we have \(E_i, E_{ij} \in E_\omega \) for \(\omega = \omega_{\delta_0} \).

Proof. It suffices to show that \(E_i, E_{ij} \), can be represented by spheres holomorphically embedded with respect to \(J_n \). Then since \(J_n \) is \(\omega \) compatible, such spheres will automatically be symplectic.

Indeed, let \(\Sigma \subset M \) be a holomorphically embedded sphere, let \(x \in \Sigma \) and let \(X \in T_x \Sigma \). Then the vectors \(X, J_nX \), form a basis for \(T_x \Sigma \), and by compatibility \(\omega(X, J_nX) > 0 \). Hence, \(\omega|_{T\Sigma} \) is non-degenerate, i.e. a symplectic form.

In particular, \(E_i \) is represented by the exceptional divisor \(E_i \) of the \(i^\text{th} \) blowup. This is well known to be an embedded holomorphic sphere with respect to \(J_n \), cf. [GriH78, p. 182]. Furthermore, using the fact that the Cremona transformation \(r_{ijk} \) is a biholomorphism, and noting that
\[
r_{ijk}(\epsilon_i) = \lambda - \epsilon_j - \epsilon_k,
\]
we see that \(E_{jk} \) is represented by the embedded holomorphic sphere \(r_{ijk}(E_i) \). \(\square \)

Given \(E \in E_\omega \), we write \(E = e_0L - \sum_i e_iE_i \). Also, we use the abbreviated notation \(c_1 = c_1(TM) \in H^2(M) \).

Lemma A.6.3. Every exceptional class \(E \) satisfies the following 4 conditions:

(i) \(E \cdot E = -1 \), i.e. \(e_0^2 - \sum_i e_i^2 = -1 \).
(ii) \(c_1(E) = 1 \), i.e. \(3e_0 - \sum_i e_i = 1 \).
(iii) Either $E = E_i$, or $e_0 > 0$ and $e_i \geq 0$, $\forall i$.
(iv) Either $E = E_{ij}$ for some $i \neq j$, or $E \cdot E_{ij} \geq 0$, i.e. $e_0 - e_i - e_j \geq 0$ for all $i \neq j$.

Proof. Item (i) is part of the definition of an exceptional class. To prove (ii), we apply Lemma A.5.8 to obtain

$$c_1(E) = -1 + 2 = 1, \quad c_1(L) = 1 + 2 = 3, \quad c_1(E_i) = -1 + 2 = 1.$$

To prove item (iii), assume $E \neq E_i$. Combining Lemma A.6.2 with Theorems A.5.6 and A.5.7, we deduce that $E \cdot E_i \geq 0$. Hence $e_i \geq 0$ for all $i \geq 1$. It then follows from (ii) that $e_0 > 0$. Finally, (iv) follows immediately from Lemma A.6.2 combined with Theorems A.5.6 and A.5.7, as before.

We now apply the preceding lemma to verify condition (2). By definition, if $\alpha \in \mathcal{S}$, we have $\alpha(E_i) = q(\alpha, e_i) > 0$. In particular, condition (2) is satisfied when $E = E_i$. To deal with the case $E \neq E_i$, we introduce the following lemma.

Lemma A.6.4. Let $\alpha \in \mathcal{S}$. Write $\alpha = a_0 \lambda - \sum_i a_i e_i$. Let $a_{i_1} \geq a_{i_2} \geq a_{i_3}$ be the three largest coefficients among the a_1, \ldots, a_n. Let

$$E = e_0 L - \sum_i e_i E_i$$

be an exceptional class, and assume $E \neq E_i$. Then

$$\alpha(E) \geq e_0 q(\alpha, e_{i_1 i_2 i_3}),$$

where $e_{i_1 i_2 i_3}$ is the class defining the appropriate Cremona map as in (A.4.4).

Proof. First we prove that if $E \neq E_i$ then

$$0 \leq e_i \leq e_0$$

for all i. Indeed, if $E = E_{ij}$ then inequality (A.6.2) is immediate. Otherwise, by rearranging the inequality of (iv), we obtain

$$e_i \leq e_0 - e_j.$$

Then we use the fact that by (iii) we have $e_j \geq 0$ and $e_i \geq 0$ to conclude equation (A.6.2).

Combining (A.6.2) and (ii), we know that the coefficients e_i of any exceptional divisor $E \neq E_i \in E_\omega$ must satisfy the inequalities

$$0 \leq e_i \leq e_0 \quad \text{and} \quad \sum_i e_i = 3e_0 - 1.$$

(A.6.3)

Now, by the formula for the intersection form,

$$q(\alpha, E) = a_0 e_0 - \sum_i a_i e_i.$$

(A.6.4)

We think of (A.6.1) as a lower bound for expression (A.6.4) as we hold α fixed and allow E to vary over all exceptional classes with fixed non-zero e_0. By (A.6.3), for a fixed value of e_0, the number of possible choices for the coefficients e_i are finite. So, for one particular choice of the e_i, the expression (A.6.4) must be minimized. Clearly it suffices to prove the lower bound (A.6.1) for this minimizing choice. It is not important whether this choice of the e_i can actually be realized by an exceptional class.
Recall that i_1, i_2, i_3, are the indices such that $a_{i_1} \geq a_{i_2} \geq a_{i_3}$ are the largest of the coefficients a_i of α. We assert that the choice of the coefficients e_i that minimizes the expression (A.6.4) is given by

$$e_{i_1} = e_{i_2} = e_0, \quad e_{i_3} = e_0 - 1, \quad e_i = 0, \ i \neq i_1, i_2, i_3. \quad \text{(A.6.5)}$$

Indeed, we prove by induction that for an arbitrary choice of the coefficients e_i the value of expression (A.6.4) cannot be less than the value given the choice (A.6.5). Indeed, starting with an arbitrary choice of the coefficients e_i satisfying (A.6.3), we execute the following algorithm repeatedly until it terminates:

1. If e_{i_1} or $e_{i_2} < e_0$ and $e_j > 0$ for some $j \neq i_1, i_2, i_3$, then increment e_{i_1} or e_{i_2} by 1 and decrement e_j by 1.

2. Otherwise, if e_{i_1} or $e_{i_2} < e_0$ and $e_{i_3} = e_0$ then increment e_{i_1} or e_{i_2} by 1 and decrement e_{i_3} by 1.

3. Otherwise, if $e_{i_3} < e_0 - 1$ and $e_j > 0$ for some $j \neq i_1, i_2, i_3$, increment e_{i_3} by 1 and decrement e_j by 1.

4. Otherwise, terminate.

It is clear that executing this algorithm can only decrease the expression (A.6.4). On the other hand, using equations (A.6.3), it is easy to see that this algorithm terminates only when e_i are as in (A.6.5). Finally, since e_{i_1}, e_{i_2}, e_{i_3}, are bounded by e_0, the process must terminate after a finite number of steps. Indeed, the value of one of the coefficients e_{i_1}, e_{i_2}, e_{i_3}, must increase at each step. Furthermore, the value of e_{i_3} can only decrease once, whereas the values of e_{i_1} and e_{i_2} can never decrease.

Now, substituting choice (A.6.5) into expression (A.6.4), we obtain

$$\alpha(E) = a_0 e_0 - \sum_i a_i e_i$$

$$\geq a_{i_3} + a_0 e_0 - (a_{i_1} + a_{i_2} + a_{i_3}) e_0$$

$$= a_{i_3} + e_0 q(\alpha, e_{123}),$$

Since $\alpha \in \tilde{S}$ we know that $q(\alpha, e_{i_3}) > 0$ and hence $a_{i_3} > 0$. Equation (A.6.1) follows immediately.

Finally, to check condition (2) of Theorem A.5.2, we apply Lemma A.6.4 to conclude $\alpha(E) \geq e_0 q(\alpha, e_{i_1 i_2 i_3}) > 0$ by the defining equation of the fundamental domain which corresponds to the appropriate Cremona transformation.
APPENDIX B

Open problems

We conclude with a list of open problems in systolic topology, geometry, and arithmetic.

B.1. Topology

B.1.1. In Subsection 1.3.3 above, we described an application of a map between classifying spaces to the (still open) problem of the determination of the optimal systolic ratio of projective spaces, see [BaKSS06]. The argument in [BaKSS06] exploits the inclusion of classifying spaces, $BS^1 \to BS^3$, resulting from the Lie group inclusion $S^1 \to S^3$. There is a natural way to try to generalize such an argument.

Since the group S^3 is the standard building block in Lie group theory, in principle the field is wide open for generalisation, by exploiting the inclusion of classifying spaces corresponding to the subgroup inclusion $S^3 \leq G$, where G is a compact Lie group. It remains to be seen whether geometrically meaningful results can be obtained in this fashion.

More fundamentally, while the link of homotopy theory to systolic geometry tends to involve integral homotopy theory, many of the arguments, e.g. for general systolic freedom [Katz95a, CrK03], and the above results on quaternionic projective space, tend to be rational (see, e.g. [Su74]). It would be desirable to forge a direct connection between rational homotopy theory and systolic geometry. This would constitute a considerable simplification, and requires clarification.

B.1.2. The equality of the systolic category and the Lusternik-Schnirelmann category for 3-manifolds stems from the fact both are determined via the simple “free versus non-free” dichotomy for the fundamental group. In this dimension, the only intermediate value of either category is 2, and the result for this value follows from the appropriate classification in terms of sphere bundles over the circle. The main mathematical content on the systolic side is provided by Gromov’s 1-systolic inequality for essential manifolds, which characterizes the maximal value of the category.

The situation is more complex for 4-manifolds, where there is a pair intermediate values, namely, 2 and 3. Thus, in the non-essential case (not covered by Gromov’s inequality), there is a potential for a deeper invariant. The distinction between the two intermediate values may depend on a study of Massey products in 4-manifolds.

Given a (non-essential) 4-manifold M with $b_1(M) \geq 1$, we note the following. If the cup product on $H^1(M, \mathbb{R})$ does not vanish, both categories must be at least 3 (by comparison with real cup-length). Otherwise, one expects the existence of a nontrivial Massey product in this case to be the deciding factor in distinguishing
between the two intermediate values of systolic category, similarly to the Lescop invariant for 3-manifolds. The issue is related to the surjectivity of the Abel-Jacobi map $M \to J_1(M)$ to the Jacobi torus $J_1(M) = T^{b_1}(M)$. This surjectivity can be studied at the level of lifts to suitable covers, such as the universal free abelian cover. Here the nontriviality of the homology fiber of the lift at this level, is a sufficient condition.

Alternatively, one can study the map from M (with $b_1(M) = 2$) to a more general space, e.g. exploiting the step 2 nilpotent completion and the map to the corresponding 3-manifold, instead of the map to the 2-torus, cf. Remark 12.7.5.

B.2. Geometry

B.2.1. It was shown in [BaKSS06] that, contrary to the complex case clarified by M. Gromov, the symmetric metric on the quaternionic projective plane turns out not to be its systolically optimal metric, contrary to expectation expressed in a number of publications in Riemannian geometry, see Subsection 1.3.3 above.

The technique used in [BaKSS06] involves the exceptional Lie algebra E_7. Can this technique be refined to determine the precise value of the optimal systolic ratio of the two-point homogeneous spaces of non-complex type?

B.2.2. It was proved in [KatzS06a] that a genus 2 surface satisfies the Loewner inequality, and in [KatzS05], that surfaces of genus at least 20 are Loewner. The cases $3 \leq g \leq 19$ are open. One approach would be to use the capacity of annuli, cf. Remark 6.2.2.

Can efficient pair of pants decompositions for hyperbolic surfaces, combined with capacity of cylinders, be used to obtain efficient lower bounds for systoles of surfaces? By using the results by P. Buser and M. Seppälä [BusSe02] on “short” pair of pants decompositions of hyperbolic surfaces, one may be able to obtain suitable bounds for the capacity of the corresponding cylinders (i.e. annuli obtained by cutting open each pair of pants), and derive inequalities for higher genus surfaces.

B.3. Arithmetic

B.3.1. Consider the Weeks 3-manifold M_W. It is well known that its orbifold fundamental group $\pi \subset \text{PSL}(2, \mathbb{C})$ is arithmetic. Consider principal congruence subgroups of π and the corresponding covers $M(p)$ of M_W. Do such covers satisfy a bound similar to the $4/3$-bound (1.2.3) for the principal congruence tower of Hurwitz surfaces, i.e. $\text{syst}_1(M(p)) \geq \frac{2}{3} \log \|M(p)\|$ (without an additive constant)?

B.3.2. For hyperbolic 3-manifolds, the orthogonal group $O(3, 1)$ is identified with the complex 2 by 2 matrices, hence admits trace estimates for congruence towers similar to the SL$(2, \mathbb{R})$ case, dealt with in [KatzSV07]. For n-manifolds, no such identification is available for $n \geq 4$. What kind of lower bounds can one obtain for congruence towers of arithmetic hyperbolic n-manifolds?

B.3.3. The most “symmetric” genus 2 surface, namely the Bolza surface, is not a Hurwitz surface (which is, by definition, a $(2, 3, 7)$ triangle surface), but rather a $(2,3,8)$ triangle surface, cf. Section 10.2. Do $(2,3,8)$ triangle surfaces satisfy a bound similar to the bound (1.2.3) in the Hurwitz case?
B.3.4. In the case of arithmetic Fuchsian groups defined over \mathbb{Q}, P. Buser and P. Sarnak [BusS94] use the existence of a non-congruence subgroup of index 2, to prove a lower bound for the conformal systole via an eigenvalue estimate. Does this technique extend to arbitrary arithmetic groups? Does it extend to Kleinian groups?
Bibliography

BIBLIOGRAPHY

Grundlehre der Theorie der Variationshindernisse

2.

duals.

w.

d.

H.

d.

variational

d.

length.

of.

of.

closed

curves,

Gauss'

lattices

of.

rational

s.

s.

and

n.

Sphere

generales

algebraic

mathematical

collection.

lattices

the

n.

amazing

t.

manifolds

l.

h.

1.

r.

of.

r.

and

problems.

f.

and

4/

-

s.

l.

l.

l.

.

r.

7

lattices.

Topologi

Hamilton-Jacobi

equation.

21

[FarbW05]

[FarK92]

[FaS04]

[Fed69]

[Fed74]

[FedF60]

[FelHL98]

[FelHT01]

[Fer77]

[FreU84]

[ConS99]

[CorT03]

[Cro88]

[CrK03]

[DaHM88]

[DaS98]

[Dav89]

[Do79]

[DR03]

[DT99]

[EeS64]

[Ell88]

[BIBLIOGRAPHY]

BIBLIOGRAPHY

Index

(2,3,7) triangle surface, 7, 206
(2,3,8) triangle surface, 77, 206

Abel-Jacobi map, 9, 10, 59, 119, 136, 139, 139, 140, 140, 155, 156, 159, 161, 163, 164, 167, 168, 174, 175, 180
absolute degree, 59, 155, 158, 169
adjunction formula, 201
Alexander-Whitney product, 115, 124
arithmetic group, xiii, 5–7, 88, 206
arithmetic/geometric mean inequality, 161, 174, 178

Banaszczyk’s inequality, 6, 125, 126, 130, 131–134
Bergé-Martinet constant, 9, 41, 42, 42, 121, 136, 139, 147, 157
Besse, 14
Bolza surface, 7, 76, 76, 77, 78, 80, 82
Burago-Ivanov-Gromov inequality, 123, 135, 155, 156, 163
Buser-Sarnak theorem, 5, 7, 10, 88, 131, 138, 181, 183, 185, 186, 207

capacity, 45
CAT(0) space, 7, 21, 59, 69, 75, 76, 78, 80–82
Cayley projective plane, 5, 13, 112
classifying map, 100, 100, 102, 103
classifying space, 8, 101, 205
corea formula, 4, 10, 148, 155, 161, 162, 167, 177, 180
comass norm, 98, 107, 116, 117, 122, 125, 125, 126–128, 132, 134, 138, 163, 169, 170, 182, 184
compression theorem, 95, 101, 102, 105
conformal factor, 26, 31, 36, 43, 44, 48, 65, 81
conformal systole, 5, 10, 11, 77, 122, 131, 131, 135, 136, 138, 177, 181, 184, 185, 207
congruence subgroup, 5–7, 88, 206
Conway-Thompson lattice, 10, 182, 183, 187, 189, 190, 192
corank, 166
Cremona transformation, 199, 202–204
critical exponent, 86
critical lattice, 41, 155, 163, 164, 167, 175
cup-length, 9, 10, 99, 104, 120, 121, 123, 156, 165
curvature (see Gaussian curvature), 22
de Rham algebra, 109, 115
differential graded associative algebra, 109, 110, 113, 114, 115, 124
Donaldson’s theorem, 185
dual-critical lattice, 9, 42, 120, 135–137, 140, 149, 150, 153
E7, 8, 206
tenropy (see volume entropy), 54
essential manifold, 4, 95, 95, 97, 99, 100, 101–103
exceptional Lie algebra, 8, 206
filling area conjecture, 6, 57, 58–60, 158, 168
filling radius, 58, 96, 96
free abelian cover, 10, 139, 139, 155, 164, 173
Fubini-Study metric, 109
Fuchsian group, 6, 7
Ganea conjecture, 100, 105
Gaussian curvature, 21, 22, 22, 24, 24, 25–27, 31, 33–36, 38, 40, 46, 61, 158
godesic equation, ii, 32, 32
Gromov’s inequality, 4, 5, 95, 95, 96, 97, 102, 113, 123, 205
Gromov’s stable inequality, 5, 8, 98, 107, 108, 186

Hamilton quaternions, 46
harmonic form, 122
Hasse-Minkowski theorem, 187
Hermite constant, 9, 20, 41, 41, 42, 69, 123, 127, 155, 162, 180
Hodge star operator, 111, 122, 144, 182, 184, 192, 195
Hopf fibration, 46
Hurstwitz surface, 7, 206
hyperbolic surface, 35
hyperelliptic surface, xiii, 6, 51, 52–54, 57–
60, 63, 65, 69–71, 75, 76, 80
icosahedron, 76
indeterminacy subgroup, 114, 115, 117
integral-geometric identity, 4, 6, 39, 43, 46,
47, 58–60
intersection form, 184
isodual lattice, 42, 185
isoperimetric quotient, 107, 116, 118
J-holomorphic curve, 6, 10, 200
Jacobi torus, 5, 9, 10, 59, 132, 136, 139, 139,
155, 156, 159, 161, 168
John ellipsoid, 159, 159, 162, 168, 169, 177,
180
Katok’s inequality, 6, 7, 55, 85, 86
Kleinian group, 6, 207
Kronecker pairing, 138
Laplace-Beltrami operator, 25, 26, 77
Leech lattice, 10, 183, 183, 189
lemniscate, 51
Lescop invariant, 157, 166, 206
Lie group, 46, 198, 205
Lipschitz chain, 93, 101
Lipschitz cycle, 93, 94, 124, 126–128
Loewner inequality, ii, 4, 6–9, 37, 39, 42, 44,
45, 58, 69–71, 77, 86, 89, 119, 122, 135,
139, 155–157, 159, 163, 168
Loewner, Charles, 14
Lorentzian lattice, xiii, 10, 181, 183, 197, 198
Lusternik-Schnirelman category, 3, 5, 98,
157, 168

map between classifying spaces, 205
Massey product, xiii, 8, 99, 113, 116–118,
120, 182, 205
Minkowski’s theorem, 132
Moser’s method, xiii, 9, 120, 137, 151

nilmanifold, 118, 136, 137, 156
normal current, 120, 145

octahedron, 76–78, 82
ovalless real surface, 6, 53, 58, 60, 65

Perelman, G., 103
period map, 5, 10, 181–183, 189, 195, 195
principal congruence subgroup, 7, 206
Pu times Loewner inequality, 158
Pu’s inequality, 4, 6, 39, 40, 40, 46, 48, 57–
60, 69, 82, 100, 121, 122, 135, 157–159,
162
Pu, P.M., 19

quaternion algebra, 6, 7

ramification point, 51, 53, 54, 60, 64–66, 70,
72, 73, 76
rational homotopy theory, 205

saddle point, 22
Schottky problem, 5, 181
Seiberg-Witten invariants, 6, 10, 195, 199,
200
simplicial volume, xiii, 7
singular cochain complex, 115
Smale manifold, 99, 104
stable norm, 8, 10, 94, 109, 117, 119, 120,
125, 127, 128, 132, 138, 159, 162, 167–
169, 175, 180, 184
stereographic projection, 61, 76
successive minima, 6, 10, 35, 35, 41, 119,
188–192
Sullivan model, 118
surjectivity conjecture, xiii, 181, 189, 190,
192
systolic category, xiii, 5, 8, 98, 99, 168

Talmud, 15

theorema egregium, ii, xi, 21, 22, 24, 25
Thom, René, 3, 13
Toomer invariant, 118
Toponogov theorem, 81
tower of covers, 7, 206

time entropy, 6, 7, 54, 55, 85, 86

Weierstrass point, 6, 7, 51, 52, 54, 58, 60,
64, 70, 71, 76, 78, 80, 81
Wirtinger constant, 111
Wirtinger inequality, 8, 13, 107, 108, 109, 111

volume entropy, 6, 7, 54, 55, 85, 86

Weierstrass point, 6, 7, 51, 52, 54, 58, 60,
64, 70, 71, 76, 78, 80, 81
Wirtinger constant, 111
Wirtinger inequality, 8, 13, 107, 108, 109, 111

volume entropy, 6, 7, 54, 55, 85, 86

Weierstrass point, 6, 7, 51, 52, 54, 58, 60,
64, 70, 71, 76, 78, 80, 81
Wirtinger constant, 111
Wirtinger inequality, 8, 13, 107, 108, 109, 111

volume entropy, 6, 7, 54, 55, 85, 86

Weierstrass point, 6, 7, 51, 52, 54, 58, 60,
Titles in This Series

137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
135 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James
 Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow:
 Techniques and applications, Part I: Geometric aspects, 2007
134 Dana P. Williams, Crossed products of C*-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in
 Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
 Novokshenov, Painlevé transcendents, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
125 Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy Transform,
 2006
124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttscche, Luc Illusie, Steven L. Kleiman, Nitin
 Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck’s FGA
 explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and
 asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with
 applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith,
 Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups
 II. Main theorems: The classification of simple QTKE-groups, 2004
111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I.
 Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups,
 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with
 applications to economics, second edition, 2003
TITLES IN THIS SERIES

103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Laba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second edition, 2004
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001
84 László Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001
83 Sigurur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 Goro Shimura, Arithmetical in the theory of automorphic forms, 2000
81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000
78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, 2000
76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, 2000
75 Greg Hjorth, Classification and orbit equivalence relations, 2000

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The systole of a compact metric space X is a metric invariant of X, defined as the least length of a noncontractible loop in X. When X is a graph, the invariant is usually referred to as the girth, ever since the 1947 article by W. Tutte. The first nontrivial results for systoles of surfaces are the two classical inequalities of C. Loewner and P. Pu, relying on integral-geometric identities, in the case of the two-dimensional torus and real projective plane, respectively. Currently, systolic geometry is a rapidly developing field, which studies systolic invariants in their relation to other geometric invariants of a manifold.

This book presents the systolic geometry of manifolds and polyhedra, starting with the two classical inequalities, and then proceeding to recent results, including a proof of M. Gromov’s filling area conjecture in a hyperelliptic setting. It then presents Gromov’s inequalities and their generalisations, as well as asymptotic phenomena for systoles of surfaces of large genus, revealing a link both to ergodic theory and to properties of congruence subgroups of arithmetic groups. The author includes results on the systolic manifestations of Massey products, as well as of the classical Lusternik-Schnirelmann category.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-137