Harmonic Analysis on Commutative Spaces

Joseph A. Wolf

American Mathematical Society
Harmonic Analysis on Commutative Spaces
Harmonic Analysis on Commutative Spaces

Joseph A. Wolf
To Lois
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xv</td>
</tr>
<tr>
<td>Notational Conventions</td>
<td>xv</td>
</tr>
<tr>
<td>Part 1. GENERAL THEORY OF TOPOLOGICAL GROUPS</td>
<td></td>
</tr>
<tr>
<td>Chapter 1. Basic Topological Group Theory</td>
<td>3</td>
</tr>
<tr>
<td>1.1. Definition and Separation Properties</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Subgroups, Quotient Groups, and Quotient Spaces</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Connectedness</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Covering Groups</td>
<td>7</td>
</tr>
<tr>
<td>1.5. Transformation Groups and Homogeneous Spaces</td>
<td>8</td>
</tr>
<tr>
<td>1.6. The Locally Compact Case</td>
<td>9</td>
</tr>
<tr>
<td>1.7. Product Groups</td>
<td>12</td>
</tr>
<tr>
<td>1.8. Invariant Metrics on Topological Groups</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 2. Some Examples</td>
<td>19</td>
</tr>
<tr>
<td>2.1. General and Special Linear Groups</td>
<td>19</td>
</tr>
<tr>
<td>2.2. Linear Lie Groups</td>
<td>20</td>
</tr>
<tr>
<td>2.3. Groups Defined by Bilinear Forms</td>
<td>21</td>
</tr>
<tr>
<td>2.4. Groups Defined by Hermitian Forms</td>
<td>22</td>
</tr>
<tr>
<td>2.5. Degenerate Forms</td>
<td>25</td>
</tr>
<tr>
<td>2.6. Automorphism Groups of Algebras</td>
<td>26</td>
</tr>
<tr>
<td>2.7. Spheres, Projective Spaces and Grassmannians</td>
<td>28</td>
</tr>
<tr>
<td>2.8. Complexification of Real Groups</td>
<td>30</td>
</tr>
<tr>
<td>2.9. p-adic Groups</td>
<td>32</td>
</tr>
<tr>
<td>2.10. Heisenberg Groups</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 3. Integration and Convolution</td>
<td>35</td>
</tr>
<tr>
<td>3.1. Definition and Examples</td>
<td>35</td>
</tr>
<tr>
<td>3.2. Existence and Uniqueness of Haar Measure</td>
<td>36</td>
</tr>
<tr>
<td>3.3. The Modular Function</td>
<td>41</td>
</tr>
<tr>
<td>3.4. Integration on Homogeneous Spaces</td>
<td>44</td>
</tr>
<tr>
<td>3.5. Convolution and the Lebesgue Spaces</td>
<td>45</td>
</tr>
</tbody>
</table>
3.6. The Group Algebra 48
3.7. The Measure Algebra 50
3.8. Adèle Groups 51

Part 2. Representation Theory and Compact Groups

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Basic Representation Theory</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.</td>
<td>Definitions and Examples</td>
<td>56</td>
</tr>
<tr>
<td>4.2.</td>
<td>Subrepresentations and Quotient Representations</td>
<td>59</td>
</tr>
<tr>
<td>4.3.</td>
<td>Operations on Representations</td>
<td>64</td>
</tr>
<tr>
<td>4.3A.</td>
<td>Dual Space</td>
<td>64</td>
</tr>
<tr>
<td>4.3B.</td>
<td>Direct Sum</td>
<td>64</td>
</tr>
<tr>
<td>4.3C.</td>
<td>Tensor Product of Spaces</td>
<td>65</td>
</tr>
<tr>
<td>4.3D.</td>
<td>Hom</td>
<td>67</td>
</tr>
<tr>
<td>4.3E.</td>
<td>Bilinear Forms</td>
<td>67</td>
</tr>
<tr>
<td>4.3F.</td>
<td>Tensor Products of Algebras</td>
<td>68</td>
</tr>
<tr>
<td>4.3G.</td>
<td>Relation with the Commuting Algebra</td>
<td>69</td>
</tr>
<tr>
<td>4.4.</td>
<td>Multiplicities and the Commuting Algebra</td>
<td>70</td>
</tr>
<tr>
<td>4.5.</td>
<td>Completely Continuous Representations</td>
<td>72</td>
</tr>
<tr>
<td>4.6.</td>
<td>Continuous Direct Sums of Representations</td>
<td>75</td>
</tr>
<tr>
<td>4.7.</td>
<td>Induced Representations</td>
<td>77</td>
</tr>
<tr>
<td>4.8.</td>
<td>Vector Bundle Interpretation</td>
<td>81</td>
</tr>
<tr>
<td>4.9.</td>
<td>Mackey’s Little-Group Theorem</td>
<td>82</td>
</tr>
<tr>
<td>4.9A.</td>
<td>The Normal Subgroup Case</td>
<td>82</td>
</tr>
<tr>
<td>4.9B.</td>
<td>Cohomology and Projective Representations</td>
<td>84</td>
</tr>
<tr>
<td>4.9C.</td>
<td>Cocycle Representations and Extensions</td>
<td>85</td>
</tr>
<tr>
<td>4.10.</td>
<td>Mackey Theory and the Heisenberg Group</td>
<td>87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Representations of Compact Groups</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.</td>
<td>Finite Dimensionality</td>
<td>93</td>
</tr>
<tr>
<td>5.2.</td>
<td>Orthogonality Relations</td>
<td>96</td>
</tr>
<tr>
<td>5.3.</td>
<td>Characters and Projections</td>
<td>97</td>
</tr>
<tr>
<td>5.4.</td>
<td>The Peter–Weyl Theorem</td>
<td>99</td>
</tr>
<tr>
<td>5.5.</td>
<td>The Plancherel Formula</td>
<td>101</td>
</tr>
<tr>
<td>5.6.</td>
<td>Decomposition into Irreducibles</td>
<td>104</td>
</tr>
<tr>
<td>5.7.</td>
<td>Some Basic Examples</td>
<td>107</td>
</tr>
<tr>
<td>5.7A.</td>
<td>The Group $U(1)$</td>
<td>107</td>
</tr>
<tr>
<td>5.7B.</td>
<td>The Group $SU(2)$</td>
<td>107</td>
</tr>
<tr>
<td>5.7C.</td>
<td>The Group $SO(3)$</td>
<td>110</td>
</tr>
<tr>
<td>5.7D.</td>
<td>The Group $SO(4)$</td>
<td>111</td>
</tr>
<tr>
<td>5.7E.</td>
<td>The Sphere S^2</td>
<td>111</td>
</tr>
<tr>
<td>5.7F.</td>
<td>The Sphere S^3</td>
<td>112</td>
</tr>
<tr>
<td>5.8.</td>
<td>Real, Complex and Quaternion Representations</td>
<td>113</td>
</tr>
<tr>
<td>5.9.</td>
<td>The Frobenius Reciprocity Theorem</td>
<td>115</td>
</tr>
</tbody>
</table>
Chapter 6. Compact Lie Groups and Homogeneous Spaces 119
 6.1. Some Generalities on Lie Groups 119
 6.2. Reductive Lie Groups and Lie Algebras 122
 6.3. Cartan’s Highest Weight Theory 127
 6.4. The Peter–Weyl Theorem and the Plancherel Formula 131
 6.5. Complex Flag Manifolds and Holomorphic Vector Bundles 133
 6.6. Invariant Function Algebras 136

Chapter 7. Discrete Co–Compact Subgroups 141
 7.1. Basic Properties of Discrete Subgroups 141
 7.2. Regular Representations on Compact Quotients 146
 7.3. The First Trace Formula for Compact Quotients 147
 7.4. The Lie Group Case 148

Part 3. INTRODUCTION TO COMMUTATIVE SPACES

Chapter 8. Basic Theory of Commutative Spaces 153
 8.1. Preliminaries 153
 8.2. Spherical Measures and Spherical Functions 156
 8.3. Alternate Formulation in the Differentiable Setting 160
 8.4. Positive Definite Functions 165
 8.5. Induced Spherical Functions 168
 8.6. Example: Spherical Principal Series Representations 170
 8.7. Example: Double Transitivity and Homogeneous Trees 174
 8.7A. Doubly Transitive Groups 174
 8.7B. Homogeneous Trees 175
 8.7C. A Special Case 176

Chapter 9. Spherical Transforms and Plancherel Formulae 179
 9.1. Commutative Banach Algebras 179
 9.2. The Spherical Transform 184
 9.3. Bochner’s Theorem 187
 9.4. The Inverse Spherical Transform 191
 9.5. The Plancherel Formula for $K\backslash G / K$ 192
 9.6. The Plancherel Formula for G / K 194
 9.7. The Multiplicity Free Criterion 197
 9.8. Characterizations of Commutative Spaces 198
 9.9. The Uncertainty Principle 199
 9.9A. Operator Norm Inequalities for $K\backslash G / K$ 199
 9.9B. The Uncertainty Principle for $K\backslash G / K$ 202
 9.9C. Operator Norm Inequalities for G / K 203
 9.9D. The Uncertainty Principle for G / K 204
 9.10. The Compact Case 204
Chapter 10. Special Case: Commutative Groups

10.1. The Character Group 207
10.2. The Fourier Transform and Fourier Inversion Theorems 212
10.3. Pontrjagin Duality 214
10.4. Almost Periodic Functions 216
10.5. Spectral Theorems 218
10.6. The Lie Group Case 219

Part 4. Structure and Analysis for Commutative Spaces

Chapter 11. Riemannian Symmetric Spaces 225

11.1. A Fast Tour of Symmetric Space Theory 225
11.1A. Riemannian Basics 225
11.1B. Lie Theoretic Basics 226
11.1C. Complex and Quaternionic Structures 229
11.2. Classifications of Symmetric Spaces 231
11.3. Euclidean Space 236
11.3A. Construction of Spherical Functions 236
11.3B. General Spherical Functions on Euclidean Space 238
11.3C. Positive Definite Spherical Functions on Euclidean Space 240
11.3D. The Transitive Case 242
11.4. Symmetric Spaces of Compact Type 245
11.4A. Restricted Root Systems 245
11.4B. The Cartan–Helgason Theorem 246
11.4C. Example: Group Manifolds 249
11.4D. Examples: Spheres and Projective Spaces 250
11.5. Symmetric Spaces of Noncompact Type 252
11.5A. Restricted Root Systems 253
11.5B. Harish–Chandra's Parameterization 254
11.5C. Hyperbolic Spaces 255
11.5D. The c–Function and Plancherel Measure 257
11.5E. Example: Groups with Only One Conjugacy Class of Cartan Subgroups 258
11.6. Appendix: Finsler Symmetric Spaces 260

Chapter 12. Weakly Symmetric and Reductive Commutative Spaces 263

12.1. Commutativity Criteria 263
12.2. Geometry of Weakly Symmetric Spaces 264
12.3. Example: Circle Bundles over Hermitian Symmetric Spaces 268
12.4. Structure of Spherical Spaces 272
12.5. Complex Weakly Symmetric Spaces 275
12.6. Spherical Spaces are Weakly Symmetric 277
12.7. Krämer Classification and the Akhiezer–Vinberg Theorem 282
12.8. Semisimple Commutative Spaces 287
Introduction

Commutative space theory is a common generalization of the theories of compact topological groups, locally compact abelian groups, riemannian symmetric spaces and multiply transitive transformation groups. This is an elegant meeting ground for group theory, harmonic analysis and differential geometry, and it even has some points of contact with number theory and mathematical physics. It is fascinating to see the interplay between these areas, as illustrated by an abundance of interesting examples.

There are two distinct approaches to the theory of commutative spaces: analytic and geometric. The geometric approach, which is the theory of weakly symmetric spaces, is quite beautiful, but slightly less general and is still in a state of rapid development. The analytic approach, which is harmonic analysis of commutative spaces, has reached a certain plateau, so it is an appropriate moment for a monograph with that emphasis. That is what I tried to do here.

Commutative pairs \((G,K)\) (or commutative spaces \(G/K\)) can be characterized in several ways. One is that the action of \(G\) on \(L^2(G/K)\) is multiplicity-free. Another is that the (convolution) algebra \(L^1(K\backslash G/K)\) of \(K\)-bi-invariant functions on \(G\) is commutative. A third, applicable to the case where \(G\) is a Lie group, is that the algebra \(\mathcal{D}(G,K)\) of \(G\)-invariant differential operators on \(G/K\) is commutative. The common ground and basic tool is the notion of spherical function. In the Lie group case the spherical functions are the (normalized) joint eigenfunctions of the commutative algebra \(\mathcal{D}(G,K)\). The result is a spherical transform, which reduces to the ordinary Fourier transform when \(G = \mathbb{R}^n\) and \(K\) is trivial, an inversion formula for that transform, and a resulting decomposition of the \(G\)-module \(L^2(G/K)\) into irreducible representation spaces for \(G\). In many cases this can be made quite explicit. But in many others that has not yet been done.

This monograph is divided into four parts. The first two are introductory and should be accessible to most first year graduate students. The third takes a bit of analytic sophistication but, again, should be reasonably accessible. The fourth describes recent results and in intended for mathematicians beginning their research careers as well as mathematicians interested in seeing just how far one can go with this unified view of algebra, geometry and analysis.

Part 1, “General Theory of Topological Groups”, is meant as an introduction to the subject. It contains a large number of examples, most of which are used in the sequel. These examples include all the standard semisimple linear Lie groups, the Heisenberg groups, and the adèle groups. The high point of Part 1, beside
the examples, is construction of Haar measure and the invariant integral, and the discussion of convolution product and the Lebesgue spaces.

Part 2, “Representation Theory and Compact Groups”, also provides background, but at a slightly higher level. It contains a discussion of the Mackey Little–Group method and its application to Heisenberg groups, and a proof of the Peter–Weyl Theorem. It also contains a discussion of the Cartan highest weight theory with applications to the Borel–Weil Theorem and to recent results on invariant function algebras. Part 2 ends with a discussion of the action of a locally compact group \(G \) on \(L^2(G/\Gamma) \), where \(\Gamma \) is a co–compact discrete subgroup.

Part 3, “Introduction to Commutative Spaces”, is a fairly complete introduction, describing the theory up to its resurgence. That resurgence began slowly in the 1980’s and became rapid in the 1990’s. After the definitions and a number of examples, we introduce spherical functions in general and positive definite ones in particular, including the unitary representation associated to a positive definite spherical function. The application to harmonic analysis on \(G/K \) consists of a discussion of the spherical transform, Bochner’s theorem, the inverse spherical transform, the Plancherel theorem, and uncertainty principles. Part 3 ends with a treatment of harmonic analysis on locally compact abelian groups from the viewpoint of commutative spaces.

Part 4, “Structure and Analysis for Commutative Spaces”, starts with riemannian symmetric space theory as a sort of rôle model, and then goes into recent research on commutative spaces oriented toward similar structural and analytical results. The structure and classification theory for commutative pairs \((G, K) \), \(G \) reductive, includes the information that \((G, K) \) is commutative if and only if it is weakly symmetric, and this is equivalent to the condition that \((G_c, K_c) \) is spherical. Except in special cases the problem of determining the spherical functions, for these reductive commutative spaces, remains open. The structure and classification theory for commutative pairs \((G, K) \), where \(G \) is the semidirect product of its nilradical \(N \) with the compact group \(K \), is also complete, and in most cases here the theory of square integrable representations of nilpotent Lie groups leads to information on the spherical functions. The structure and classification in general depends on the results for the reductive and the nilmanifold cases; it consists of methods for starting with a short list of pairs \((G, K) \) and constructing all the others. Finally there is a discussion of just which commutative pairs are weakly symmetric.

At this point I should point out two areas that are not treated here. The first, already mentioned, is the general theory of weakly symmetric spaces, and the closely related areas of geodesic orbit spaces and naturally reductive riemannian homogeneous spaces. That beautiful topic, touched momentarily in Section 13.1C, has an extensive literature.

The second area not treated here consists of certain extensions of (at least parts of) the theory of commutative spaces. This includes the extensive but somewhat technical theory of semisimple symmetric spaces, (the pseudo–riemannian analogs of riemannian symmetric spaces of noncompact type), the theory of generalized Gelfand pairs \((G, H) \), and the study of irreducible unitary representations of \(G \) that have an \(H \)–fixed distribution vector. It also includes several approaches to
infinite dimensional analogs of Gelfand pairs. That elegant area is extremely active but its level of technicality takes it out of the scope of this book.

Acknowledgments

Much of the material in Parts 1, 2 and 3 was the subject of courses I taught at the University of California, Berkeley, over a period of years. Questions, comments and suggestions from participants in those courses certainly improved the exposition. Some of the material in Part 3 relies on earlier treatments of J. Dieudonné [Di] and J. Faraut [Fa], and much of the material in Part 4 depends on O. Yakimova’s doctoral dissertation [Y3]. In addition, a number of mathematicians looked at early versions of this book and made useful suggestions. These include D. Akhiezer (communications concerning his work with E. B. Vinberg on weakly symmetric spaces), D. Bao (discussions on Finsler manifolds), R. Goodman (advice on how to organize a book), I. A. Latypov and V. M. Gichev (communications concerning their work on invariant function algebras), J. Lauret, H. Nguyen and G. Ólafsson (for going over the manuscript), G. Ratcliff and C. Benson (communications concerning their work with J. Jenkins on spherical functions for commutative Heisenberg nilmanifolds), and the three mathematicians who refereed this volume (for some very useful remarks).

I especially want to thank O. Yakimova for a number of helpful conversations concerning her work and E. B. Vinberg’s work on classification of smooth commutative spaces.

Notational Conventions

\(\mathbb{R}, \mathbb{C}, \mathbb{H} \) and \(\mathbb{O} \) denote the real, complex, quaternionic and octonionic number systems. If \(F \) is one of them, then \(x \mapsto x^* \) denotes the conjugation of \(F \) over \(\mathbb{R} \), \(F^{m \times n} \) denotes the space of \(m \times n \) matrices over \(F \), and if \(x \in F^{m \times n} \) then \(x^* \in F^{n \times m} \) is its conjugate transpose. We write \(\text{Re} F^{n \times n} \) for the hermitian \((x = x^*) \) elements of \(F^{n \times n} \) and \(\text{Re} F^{0 \times n}_0 \) for those of trace 0, and we write \(\text{Im} F^{n \times n} \) for the skew-hermitian \((x + x^* = 0) \) elements of \(F^{n \times n} \); that corresponds to the case \(n = 1 \).

In general we use upper case roman letters for groups, and when possible we use the corresponding lower case letters for their elements. If \(G \) is a Lie group then \(\mathfrak{g} \) denotes its Lie algebra. If \(\mathfrak{h} \) is a Lie subalgebra of \(\mathfrak{g} \) then (unless it is defined differently) \(H \) is the corresponding analytic subgroup of \(G \).
Bibliography

BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolutely irreducible representation, 321</td>
</tr>
<tr>
<td>adèle group, 52</td>
</tr>
<tr>
<td>adèle ring, 52</td>
</tr>
<tr>
<td>adjoint representation, 121</td>
</tr>
<tr>
<td>affine group, 15</td>
</tr>
<tr>
<td>Akhiezer–Vinberg Theorem, 281</td>
</tr>
<tr>
<td>algebra</td>
</tr>
<tr>
<td>: Jordan, 27</td>
</tr>
<tr>
<td>:: euclidean, 27</td>
</tr>
<tr>
<td>:: exceptional, 27</td>
</tr>
<tr>
<td>:: formally real, 27</td>
</tr>
<tr>
<td>:: reduced structure group, 27</td>
</tr>
<tr>
<td>:: special, 27</td>
</tr>
<tr>
<td>:: structure group, 27</td>
</tr>
<tr>
<td>: Lie, 21, 88, 120</td>
</tr>
<tr>
<td>: associative, 26</td>
</tr>
<tr>
<td>almost–periodic function, 217</td>
</tr>
<tr>
<td>almost–complex manifold, 133</td>
</tr>
<tr>
<td>almost–complex structure, 133, 229</td>
</tr>
<tr>
<td>α–representation, 85</td>
</tr>
<tr>
<td>amenable group, 218</td>
</tr>
<tr>
<td>antiholomorphic tangent bundle, 133</td>
</tr>
<tr>
<td>antiholomorphic tangent space, 133</td>
</tr>
<tr>
<td>approximate identity, 50, 155</td>
</tr>
<tr>
<td>associated vector bundle, 117</td>
</tr>
<tr>
<td>associative algebra, 26</td>
</tr>
<tr>
<td>automorphism group, 26</td>
</tr>
<tr>
<td>Baker–Campbell–Hausdorff formula, 88</td>
</tr>
<tr>
<td>Banach *–algebra, 56</td>
</tr>
<tr>
<td>Banach algebra</td>
</tr>
<tr>
<td>: commutative, 179</td>
</tr>
<tr>
<td>Banach–Steinhaus Theorem, 161</td>
</tr>
<tr>
<td>Bessel function, 244, 307</td>
</tr>
<tr>
<td>bilinear form</td>
</tr>
<tr>
<td>: antisymmetric, 68</td>
</tr>
<tr>
<td>: degenerate, 25</td>
</tr>
<tr>
<td>: invariant, 68</td>
</tr>
<tr>
<td>: symmetric, 68</td>
</tr>
<tr>
<td>block matrix, 13</td>
</tr>
<tr>
<td>Bochner space for G/K, 195</td>
</tr>
<tr>
<td>Bochner space for $K\backslash G/K$, 187</td>
</tr>
<tr>
<td>Bochner Theorem, 187</td>
</tr>
<tr>
<td>Bochner–Godement Theorem, 187</td>
</tr>
<tr>
<td>Bohr compactification of G, 216</td>
</tr>
<tr>
<td>Borel map, 84</td>
</tr>
<tr>
<td>Borel subalgebra, 126</td>
</tr>
<tr>
<td>: real, 127</td>
</tr>
<tr>
<td>Borel subgroup, 126</td>
</tr>
<tr>
<td>: real, 127</td>
</tr>
<tr>
<td>Borel–Weil Theorem, 135</td>
</tr>
<tr>
<td>Borel–Weil–Bott Theorem, 135</td>
</tr>
<tr>
<td>bounded (G,K)–spherical function, 166, 184, 242</td>
</tr>
<tr>
<td>bounded symmetric domain</td>
</tr>
<tr>
<td>: complex, 232</td>
</tr>
<tr>
<td>: quaternionic, 232</td>
</tr>
<tr>
<td>: real, 232</td>
</tr>
<tr>
<td>Bourbaki numbering of the simple roots, 125</td>
</tr>
<tr>
<td>Bruhat decomposition, 248</td>
</tr>
<tr>
<td>bundle</td>
</tr>
<tr>
<td>: fiber</td>
</tr>
<tr>
<td>:: associated, 81</td>
</tr>
<tr>
<td>:: principal, 81</td>
</tr>
<tr>
<td>: holomorphic line, 88</td>
</tr>
<tr>
<td>: structure group, 81</td>
</tr>
<tr>
<td>: vector</td>
</tr>
<tr>
<td>:: associated, 81, 117</td>
</tr>
<tr>
<td>c–function, 256</td>
</tr>
<tr>
<td>: formula, for symmetric space of noncompact type, 257</td>
</tr>
<tr>
<td>Carcano’s Theorem, 303</td>
</tr>
<tr>
<td>Cartan duality</td>
</tr>
<tr>
<td>: of orthogonal involutive Lie algebras, 228</td>
</tr>
<tr>
<td>: of riemannian symmetric spaces, 229</td>
</tr>
<tr>
<td>Cartan involution, 20, 21, 171</td>
</tr>
<tr>
<td>: conjugacy, 171</td>
</tr>
<tr>
<td>Cartan subalgebra, 122, 311</td>
</tr>
<tr>
<td>Cartan subgroup, 122</td>
</tr>
<tr>
<td>: compact part, 171</td>
</tr>
<tr>
<td>: fundamental, 171</td>
</tr>
<tr>
<td>: maximally compact, 171</td>
</tr>
<tr>
<td>: maximally noncompact, 171</td>
</tr>
<tr>
<td>: maximally split, 171</td>
</tr>
<tr>
<td>: noncompact (split) part, 171</td>
</tr>
<tr>
<td>Cartan’s Highest Weight Theorems, 129</td>
</tr>
<tr>
<td>Cartan–Helgason Theorem, 132, 247</td>
</tr>
<tr>
<td>Cartan–Killing form, 121</td>
</tr>
<tr>
<td>categorical quotient, 238, 242</td>
</tr>
</tbody>
</table>

373
Cauchy–Kowalevski Theorem, 133
Cauchy–Riemann equations, 133, 134
Cayley division algebra, 26
central character of a representation, 129
central reduction of a commutative pair, 320
central reduction of a Gelfand pair, 320
character (of a representation), 97
: central, 129
: infinitesimal, 334
Chebyshev polynomial, 176
Chevalley decomposition, 309
: extremely weak, 312
: very weak, 310
: weak, 310
co–isotropic subspace, 314
co–isotropic symplectic action, 314
co–rank of a group action, 317
cocycle representation, 85
coefficient homomorphism, 84
coefficient of a representation, 94
commutative Banach algebra, 179
commutative nilmanifold, 319
: irreducible, 320
commutative pair, 153
: central reduction, 320, 345
: criterion, 345
: decomposable, 345
: indecomposable, 346
: maximal, 320, 345
: principal, 327, 346
: restricted classification, 327
: $Sp(1)$–saturated, 327
: $Sp(1)$–saturated Gelfand pair, 346
commutative space, 153
commuting algebra, 61, 71
compactly embedded subgroup, 279
compatible root order, 246, 253
completely reducible representation, 60
complex manifold, 133
complex orthogonal group, 21
complex structure, 133
: integrable, 229
: invariant, 229
complex symmetric space, 229
complex symplectic group, 22
complexification, 30
complexified tangent space, 133
complexity of a group action, 317
concentrated, a measure on a set, 192
convolution
: classical, 47
: of (finite Borel) measures, 51
: on discrete group, 47
: on locally compact group, 47
convolution algebra, 49, 153
convolution of measures, 155
C^*–algebra of (G, K), 188

C^*–algebra of G, 59

cyclic representation, 166

cyclic vector, 166

decomposable Gelfand pair, 345
defect of a group action, 317
degree (of a vertex in a graph), 350
differentiability
: level, 119
differential operator
: invariant, 160
direct integral
: of Hilbert spaces, 75
: L^2
: : of Hilbert spaces, 75
: L^p
: : of Hilbert spaces, 76
: : of linear operators, 76
: : of representations, 76
direct product group, 12
discrete series
: relative, 331
distributions on manifolds, 161
doubly transitive group, 174
dual homomorphism, 211
dual lattice, 208
Dynkin diagram, 125

Engel subalgebra, 311
e–concentrated, 199
equivalence (of representations), 61
euclidean group, 15
: proper, 15
exponential map
: riemannian, 225
exponential series, 120
extension
: of a representation to its stabilizer, 83
extension property, 83
extremely weak Chevalley decomposition, 312

field
: topological, 32
: p–adic, 32

Finsler geometry, 260
Finsler space, 261
: Berwald, 262
: absolutely homogeneous, 261
: distance, 261
: geodesic, 261
: homogeneous, 261
: isometry, 261
: reversible, 261
: symmetric, 261
Finsler structure, 260
Finsler symmetric space, 261
: geodesic symmetry, 261
Fock space, 89
formal degree, 332
Fourier inversion
: compact abelian group, 213
: compact group
:: scalar, 102
: discrete abelian group, 213
: for \((G, K)\)
:: scalar, 196
:: vector, 196
: for a locally compact abelian group, 212
: for symmetric space of noncompact type, 258
: product of abelian groups, 213
Fourier transform
: adjoint, 214
: classical, 208
: compact group
:: operator–valued, 104
: for \(G/K\)
:: vector, 196
: for \(K\backslash G/K\), 193
: for a locally compact abelian group, 208, 209
: for symmetric space of noncompact type, 258
: inverse
:: classical, 208
: locally compact abelian group, 214
Freudenthal multiplicity formula, 131
Frobenius Reciprocity Theorem, 116
function
: \((G, K)\)–spherical, 176
: spherical, 157
function algebra, 136
: antisymmetric, 136
: rotation–invariant, 136
: self adjoint, 136
: skew adjoint, 136
: symmetric, 136
functional equation (for spherical functions), 158
fundamental set
: for action of a discrete group, 141
: neighbor, 141
: normal, 141
\(\Gamma\) function, 238
Gelfand pair, 153
: central reduction, 320, 345
: criterion, 345
: decomposable, 345
: indecomposable, 346
: maximal, 320, 345
: principal, 327, 346
: restricted classification, 327
: special class, 154
: \(Sp(1)\)–saturated, 327
: \(Sp(1)\)–saturated Gelfand pair, 346
Gelfand transform, 179, 183
Gelfand–Godement–Helgason Theorem, 160
Gelfand–Mazur Theorem, 180
general linear group, 19
generalized Heisenberg group, 34
geodesic, 225
geodesic orbit space, 302
geodesic symmetry, 226
Gichev–Latypov Theorem, 137
Gindikin–Karpelevič formula, 257
\((G, K)\) spherical functions on \(\mathbb{E}^n\), 236
\((G, K)\)–spherical function, 176
\((G, K)\)–spherical function
: Harish–Chandra formula, 254
: on symmetric space of noncompact type, 254
global inner product, 78
Grassmann manifold, 29
: complex, 232
: oriented real, 232
: quaternionic, 232
: real, 232
group, 3
: Heisenberg, 33, 87
: Heisenberg for \(\mathbb{F}^n\), 34
: Lie, 119
: adèle, 52
: affine, 15
: algebra, 49
: automorphism, 26
: complex orthogonal, 21
: complex symplectic, 22
: direct product, 12
: euclidean, 15
: general linear, 19
: generalized Heisenberg for \(\mathbb{F}^{p,q}\), 34
: indefinite orthogonal, 22, 23
: indefinite special orthogonal, 24
: indefinite special unitary, 24
: indefinite symplectic unitary, 23
: indefinite unitary, 23
: linear Lie, 20
: linear algebraic, 20
: ordinary orthogonal, 22
: orthogonal, 21, 23
: projective general linear, 26
: proper euclidean, 15
: real orthogonal, 22
: real symplectic, 22
: semidirect product, 14
: special linear, 20
: special orthogonal, 22, 24
: special unitary, 23, 24
: symplectic, 21
: symplectic unitary, 23
topological, 3
topological quotient, 4
: unitary, 23
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>:: projective, 85</td>
</tr>
<tr>
<td>: very generalized Heisenberg for $\mathbb{R}^n \times (t,u)$, 34</td>
</tr>
<tr>
<td>: volume preserving, 20</td>
</tr>
<tr>
<td>group algebra, 49</td>
</tr>
<tr>
<td>Haar integral, 35</td>
</tr>
<tr>
<td>: left, 35</td>
</tr>
<tr>
<td>: right, 36</td>
</tr>
<tr>
<td>Haar measure, 35</td>
</tr>
<tr>
<td>: left, 35</td>
</tr>
<tr>
<td>: normalized, 93</td>
</tr>
<tr>
<td>: right, 36</td>
</tr>
<tr>
<td>Hahn–Banach Theorem, 162</td>
</tr>
<tr>
<td>has square integrable representations, 331</td>
</tr>
<tr>
<td>Heisenberg commutation relations, 88</td>
</tr>
<tr>
<td>: uniqueness of, 88</td>
</tr>
<tr>
<td>Heisenberg group, 33, 87, 303</td>
</tr>
<tr>
<td>Heisenberg group over \mathbb{C}, 34</td>
</tr>
<tr>
<td>Heisenberg group over \mathbb{F}, 34</td>
</tr>
<tr>
<td>Hermite monomial, 89</td>
</tr>
<tr>
<td>Hermite polynomial, 88</td>
</tr>
<tr>
<td>hermitian symmetric space, 229</td>
</tr>
<tr>
<td>highest weight of a representation, 129</td>
</tr>
<tr>
<td>Hilbert–Schmidt</td>
</tr>
<tr>
<td>: inner product, 100, 147</td>
</tr>
<tr>
<td>: norm, 100</td>
</tr>
<tr>
<td>: operator, 100, 147</td>
</tr>
<tr>
<td>Hirzebruch Proportionality Principle, 141</td>
</tr>
<tr>
<td>holomorphic function, 133</td>
</tr>
<tr>
<td>holomorphic line bundle, 88</td>
</tr>
<tr>
<td>holomorphic tangent bundle, 133</td>
</tr>
<tr>
<td>holomorphic tangent space, 133</td>
</tr>
<tr>
<td>holomorphic vector bundle, 134</td>
</tr>
<tr>
<td>Hom(B_{n_1}, B_{n_2}), 67</td>
</tr>
<tr>
<td>homogeneous space, 9</td>
</tr>
<tr>
<td>homogeneous tree, 175</td>
</tr>
<tr>
<td>hypergeometric equation, 250, 255</td>
</tr>
<tr>
<td>hypergeometric function, 251, 255</td>
</tr>
<tr>
<td>hypergroup, 51, 202</td>
</tr>
<tr>
<td>ideal</td>
</tr>
<tr>
<td>: regular, 179</td>
</tr>
<tr>
<td>identity component, 6</td>
</tr>
<tr>
<td>indecomposable</td>
</tr>
<tr>
<td>: algebraically, 60</td>
</tr>
<tr>
<td>: topologically, 60</td>
</tr>
<tr>
<td>indecomposable Gelfand pair, 346</td>
</tr>
<tr>
<td>indefinite orthogonal group, 22, 23</td>
</tr>
<tr>
<td>indefinite special orthogonal group, 24</td>
</tr>
<tr>
<td>indefinite special unitary group, 24</td>
</tr>
<tr>
<td>indefinite symplectic unitary group, 23</td>
</tr>
<tr>
<td>indefinite unitary group, 23</td>
</tr>
<tr>
<td>index (or a vertex of a tree), 175</td>
</tr>
<tr>
<td>indicator (= characteristic) function, 199</td>
</tr>
<tr>
<td>indivisible restricted root, 246, 253</td>
</tr>
<tr>
<td>induced spherical function, 169</td>
</tr>
<tr>
<td>induction by stages, 79</td>
</tr>
<tr>
<td>infinitesimal character (of a representation), 334</td>
</tr>
<tr>
<td>infinitesimal transvection, 226</td>
</tr>
<tr>
<td>inner product</td>
</tr>
<tr>
<td>: global, 78</td>
</tr>
<tr>
<td>integrability condition (C^∞), 133</td>
</tr>
<tr>
<td>integrability condition (C^ω), 133</td>
</tr>
<tr>
<td>integrable complex structure, 229</td>
</tr>
<tr>
<td>integration on homogeneous space, 45</td>
</tr>
<tr>
<td>intertwining operator, 61, 67</td>
</tr>
<tr>
<td>invariant integral, 35</td>
</tr>
<tr>
<td>invariant metric, 15</td>
</tr>
<tr>
<td>invariant vector field, 119</td>
</tr>
<tr>
<td>inverse Fourier transform, 208</td>
</tr>
<tr>
<td>Inverse Function Theorem, 120</td>
</tr>
<tr>
<td>inverse spherical transform</td>
</tr>
<tr>
<td>: for (G, K), 191</td>
</tr>
<tr>
<td>irreducible</td>
</tr>
<tr>
<td>: algebraically, 59</td>
</tr>
<tr>
<td>: topologically, 59</td>
</tr>
<tr>
<td>isometry group, 225</td>
</tr>
<tr>
<td>isotropic subspace, 314</td>
</tr>
<tr>
<td>isotropy subgroup, 9, 226</td>
</tr>
<tr>
<td>Iwasawa decomposition, 171, 248</td>
</tr>
<tr>
<td>Jacobi function, 256</td>
</tr>
<tr>
<td>Jacobi identity, 120</td>
</tr>
<tr>
<td>Jacobi polynomial, 251, 252</td>
</tr>
<tr>
<td>Jacobson–Morosov Theorem, 127</td>
</tr>
<tr>
<td>joint $D(G, K)$–eigenfunctions, 160</td>
</tr>
<tr>
<td>Jordan algebra, 27</td>
</tr>
<tr>
<td>: euclidean, 27</td>
</tr>
<tr>
<td>: table, 28</td>
</tr>
<tr>
<td>: exceptional, 27</td>
</tr>
<tr>
<td>: formally real, 27</td>
</tr>
<tr>
<td>: reduced structure group, 27</td>
</tr>
<tr>
<td>: special, 27</td>
</tr>
<tr>
<td>: structure group, 27</td>
</tr>
<tr>
<td>K–fixed vector, 167</td>
</tr>
<tr>
<td>Killing form, 121</td>
</tr>
<tr>
<td>Kimmelfeld–Vinberg Theorem, 274</td>
</tr>
<tr>
<td>Kirillov construction, 330</td>
</tr>
<tr>
<td>Kostant multiplicity formula, 131</td>
</tr>
<tr>
<td>Krämer classification of spherical spaces, 282</td>
</tr>
<tr>
<td>Laguerre polynomial, 307</td>
</tr>
<tr>
<td>Leray spectral sequence, 135</td>
</tr>
<tr>
<td>level of a weight, 131</td>
</tr>
<tr>
<td>level of differentiability, 119</td>
</tr>
<tr>
<td>Levi component, 309</td>
</tr>
<tr>
<td>Levi decomposition, 300</td>
</tr>
<tr>
<td>Levi subalgebra, 300</td>
</tr>
<tr>
<td>Lie algebra, 21, 88, 120</td>
</tr>
<tr>
<td>: Cartan decomposition, 122</td>
</tr>
<tr>
<td>: Cartan subalgebra, 122</td>
</tr>
<tr>
<td>: Dynkin diagram, 125</td>
</tr>
<tr>
<td>: Schläfi–Dynkin diagram, 125</td>
</tr>
</tbody>
</table>
subject index

: Weyl group, 124
: center, 121
: centralizer, 122
: commutative, 121
: direct sum, 120
: exponential map, 120
: homomorphism, 120, 121
: ideal, 120
: nilpotent, 121
: normalizer, 122
: of a Lie group, 120
: orthogonal involution, 226
: radical, 121
: rank, 124
: reductive, 121
: root
: :: Weyl chamber, 124
: :: chain, 124
: :: hyperplane, 124
: :: length, 124
: root decomposition, 122
: root lattice, 132
: root length, 125
: root reflections, 124
: root system, 122
: :: positive, 123
: :: rank, 124
: :: simple, 123
: roots, 122
: semidirect sum, 120
: semisimple, 121
: simple, 121
: solvable, 121
: soluble radical, 121
: splittable, 310
: subalgebra, 120

Lie group, 20, 119
: Cartan subgroup, 122
: Lie subgroup, 120
: Weyl group, 124
: centralizer, 122
: exponential map, 120
: homomorphism, 121
: normalizer, 122
: rank, 124

Lindelöf, 142
linear algebraic group, 20, 272
: complex, 272
: real, 272
: reductive, 272
linear algebraic groups, 82
linear functional
: multiplicative, 156, 179
linear Lie group, 20
L^p δ-bandlimited, 202
L^p c-concentrated, 202
L^p-induced spherical function, 169
L^p δ-concentrated, 202
Mackey Little Group Theorem, 83
Mackey obstruction, 86
Mal’cev splitting of a Lie algebra, 310
matrix coefficient, 94
maximal commutative pair, 320
maximal compact subgroup, 171
: conjugacy, 171
maximal Gelfand pair, 320, 345
maximal ideal space, 179
: topology, 182
: weak * topology, 182
maximal weight of a representation, 129
mean (on a topological group), 218
measurable set, 75
measure, 75
: Plancherel
: :: for (G, K), 191
: Radon, 157
: atomic, 104
: spectral, 218
: spherical, 156
measure algebra, 50, 51
measure space, 75
: complete, 75
: finite, 93
: product, 93
metaplectic representation, 91
minimal orthogonal involution Lie algebra, 227
minimal parabolic subalgebra, 171
Minkowski norm, 260
modular function, 41
module (of an automorphism), 41
multiplication of sets, 155
multiplicative linear functional, 156, 179
multiplicity free, 197
multiplicity free vs. “multiplicity free”, 307
multiplicity of a subrepresentation, 70
multiplicity of a weight, 128

Nelson’s Theorem, 162
: Gårding’s proof, 162
Newlander–Nirenberg Theorem, 133
nilradical or nilpotent radical
: of a Lie algebra, 300
: of a Lie group, 300
norm
: global
: :: L^∞, 78
: :: L^p, 78
normalized character (of a representation), 97

octonion division algebra, 26
: automorphism group, 27
: multiplication diagram, 27
: multiplication table, 26
octonion hyperbolic plane, 233
octonion projective plane, 233
1-parameter subgroup, 119
one parameter subgroup, 119
operator
 : Hilbert–Schmidt, 147
 : compact, 72
 : completely continuous, 72
 : trace class, 147
orbit, 9
ordinary orthogonal group, 22
orthogonal group, 21, 23
orthogonal involutive Lie algebra, 226
 : Cartan duality, 228
 : compact group, 228
 : compact type, 228
 : direct sum, 227
 : euclidean, 227
 : four classes of irreducible, 228
 : irreducible, 227
 : isomorphism, 227
 : minimal, 227
 : noncompact type, 228
oscillator representation, 91

p-adic integers, 51
p-adic number field, 32
Panyushev Theorems, 276
parabolic subalgebra, 126
 : minimal, 171
 : real, 127
parabolic subgroup, 36, 126
 : real, 127
parallel tensor field, 229
Peter–Weyl Theorem, 99
Pfaffian
 : of an antisymmetric bilinear form, 333
 : polynomial, 333
Plancherel density
 : for symmetric space of noncompact type, 258
Plancherel formula
 : compact group
 : Hilbert–Schmidt, 101
 : operator–valued, 104
 : trace form, 102
 : for G/K, 196
 : for $K\backslash G/K$, 193
 : locally compact abelian group, 214
Plancherel measure
 : for (G, K), 191
point mass, 155
Poisson algebra, 314
Poisson bracket, 314
polarization
 : real, 329
poloanas
 : group, 84
 : space, 84
Pontryagin Duality Theorem, 214
positive definite (G, K)-spherical function, 167, 184
positive definite function, 165
 : spherical, 167
positive restricted root system, 171
positive Weyl chamber, 254
primary constituents of a representation, 71
primary decomposition of a representation, 71
primary representation, 71
primary subrepresentation, 71
primary subspace (of a representation space), 71
principal fiber bundle, 81
principal Gelfand pair, 327, 346
principal series representation, 174
principal triple (F, \tilde{F}, V), 351
product
 : direct, 12
 : semidirect, 14
projective general linear group, 26
projective kernel, 140
projective space, 28
projective unitary group, 85
projective unitary representation, 85
quasi–character, 207
quaternion
 : structure
 : invariant, 113
 : structure on a vector space, 113
quaternionic structure, 230
quotient representation, 60
radial part of the Laplace–Beltrami operator, 254
radical
 : nilpotent, 300
 : solvable, 300
 : unipotent, 309
Radon measure, 35, 157
rank
 : of a riemannian symmetric space, 229
 : real, of a semisimple Lie group, 229
rank of a group action, 317
real form, 30
 : of a complex representation, 113
 : of a complex vector space, 113
real orthogonal group, 22
real polarization, 329
real rank, 229
real symplectic group, 22
reductive component, 309
reductive subalgebra, 309
regular ideal, 179
regular set, 130
relative discrete series representation, 331
representation

: Banach algebra on a Banach space, 57
 : bounded, 57
 : Segal–Shale–Weil, 91
 : Weil, 91
 : absolutely irreducible, 321
 : adjoint, 121
 : admissible, 148
 : algebraic direct sum, 65
 : basic weight, 131
 : character, 148
 : cocycle, 85
 : compact, 72
 : completely continuous, 72
 : completely reducible, 60
 : complexification of real, 113
 : contragredient, 64, 329
 : distribution character, 148
 : dual, 64, 329
 : equivalence, 61
 : finite dimensional
 : character, 97
 : normalized character, 97
 : finite multiplicity, 71
 : fundamental weight, 131
 : global character, 148
 : group on Banach space, 56
 : bounded, 56
 : induced
 : by stages, 79
 : L^p, 78
 : unitary, 78
 : infinitesimal character, 334
 : left regular
 : of group, 56
 : of group algebra, 57
 : of measure algebra, 57
 : on $L^p(G)$, 56
 : linear, 85
 : metaplectic, 91
 : multiplicity–free, 71
 : norm–preserving, 56
 : orthogonal direct sum, 65
 : oscillator, 91
 : principal series, 174
 : quaternionic, 113
 : quotient representation, 60
 : real, 113
 : relative (mod Z) discrete series, 331
 : right regular
 : of group, 57
 : on $L^p(G)$, 57
 : semisimple, 60
 : spherical principal series, 174
 : square integrable (mod Z), 331
 : subquotient, 60
 : subrepresentation, 60
 : tempered, 55

: topologically completely irreducible, 62
 : unitary, 56
 : projective, 85
 : unitary equivalence, 61
 : unitary principal series, 174
 : weight, 128
 : weight lattice, 131
 : weight space decomposition, 128
 : L^∞ discrete direct sum, 65
 : L^p direct sum, 64
 : L^p discrete direct sum, 65

representation space, 56

representative function, 140

restricted root space decomposition, 246, 253

restricted root system, 171, 253

restricted Weyl group, 254

Riemann–Lebesgue Lemma, 183, 186

riemannian covering, 229

riemannian homogeneous space, 226

riemannian nilmanifold, 301

riemannian symmetric space, 226

: for an orthogonal involutive Lie algebra, 227
 : rank, 229

Riesz–Thorin interpolation, 200

root lattice, 132

scalar Fourier inversion

: for (G, K), 196

scalar Fourier transform, 193

scalar part, 230

Schläfli–Dynkin diagram, 125

Schur Orthogonality Relation, 96

Schur's Lemma, 61

Segal–Shale–Weil representation, 91

semidirect product group, 14

seminorm, 161

semisimple representation, 60

σ–compact, 11

simple restricted root system, 171

skew–gradient, 315

Sobolev Inequalities, 162

solvable radical

: of a Lie algebra, 300
 : of a Lie group, 300

$Sp(1)$–saturated Gelfand pair, 327, 346

special linear group, 20

special orthogonal group, 22, 24

special unitary group, 23, 24

spectral measure, 218

spectral radius, 180

Spectral Radius Theorem, 181

Spectral Theorem, 219

spectrum (of an element of a Banach algebra), 180

spherical

: homogeneous space
symmetry
 : geodesic, 226
symplectic action, 314
 : co–isotropic, 314
symplectic group, 21
symplectic manifold, 314	symplectic unitary group, 23
tangent space, 225
tensor power
 : antisymmetric
 : of Banach representations, 67
 : of Banach spaces, 67
 : of Banach representations
 : projective, 67
 : of Banach spaces
 : projective, 67
 : symmetric
 : of Banach representations, 67
 : of Banach spaces, 67
tensor product
 : of Banach algebras
 : projective, 68
 : of Banach representations
 : exterior projective, 66
 : of Banach spaces
 : algebraic, 65
 : projective, 66
 : of Hilbert spaces
 : projective, 67
 : of unitary representations
 : exterior projective, 67
 : interior projective, 67
Thomas' Theorem, 160
Titchmarsh Inequality, 200
topological action, 8
topological field, 32
topological group isomorphism, 11
topological space
 : regular, 3
topological transformation group, 8
topology
 : quotient, 4
 : subspace, 4
totally real submanifold, 239
trace class
 : operator, 100, 147
translation, 3
 : left, 3
 : on quotient space, 5
 : right, 3
translation–invariant vector field, 119
transvection, 226
tree, 175, 350
 : homogeneous, 175
 : rooted, 350
 : root, 350
trigonometric polynomial, 217
2-step Nilpotent Theorem, 299 : structure of commutative spaces, 264
Two-Step Nilpotent Theorem, 299
Type I, 82

uncertainty principle
: classical, 199
: for G/K, 204
: for $K\backslash G/K$, 202
: for locally compact abelian groups, 199
unimodular (group), 41
unipotent radical, 309
unitary dual, 70
unitary dual group, 208
unitary equivalence (of representations), 61
unitary group, 23
unitary principal series representation, 174
universal covering group, 8
universal covering space, 7
universal enveloping algebra, 334

vector field
: invariant, 119
vector Fourier inversion
: for (G, K), 196
very generalized Heisenberg group, 34
Vinberg’s Decomposition Theorem, 318
volume preserving group, 20

weak containment, 55
weak symmetry
: conditions on, 267
: differential–geometric, 266
: group–theoretic, 265
weakly commutative coset space, 314
weakly commutative pair, 314
weakly symmetric
: complex pair (G_{c}, H_{c}), 276
:: compact real form of, 276
:: real form of, 276
:: weak symmetry of, 276
: coset space G/K, 265
: pair (G, K), 265
: riemannian manifold, 264
: weak symmetry, 265

weight
: highest, 129
: maximal, 129
: multiplicity, 128
: of a representation, 128
: space decomposition of representation
 space, 128
weight lattice, 131
: positive, 132
Weil representation, 91
Weyl character formula, 130
Weyl degree formula, 131
Weyl group, 124
Weyl involution, 277, 358
working assumptions
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \exp_G(a)$</td>
<td>complex number field, xv</td>
</tr>
<tr>
<td>$A(R)$</td>
<td>complex number field, xv</td>
</tr>
<tr>
<td>$A : G = NA K \to a$</td>
<td>$C^{m \times n}$, $m \times n$ complex matrices, xv</td>
</tr>
<tr>
<td>$A(\pi)$, commuting algebra of π</td>
<td>$C(K\backslash G/K)$, K–bi-invariant continuous</td>
</tr>
<tr>
<td>α, maximal abelian subspace of a in Cartan decomposition $gg = t + s$, 245</td>
<td>functions that vanish at ∞ on G, 153</td>
</tr>
<tr>
<td>α_d, adjoint representation of Lie group, 121</td>
<td>$C_\infty(X)$, continuous functions that vanish at infinity on X, 183</td>
</tr>
<tr>
<td>$ad = d\alpha_d$, adjoint representation of Lie algebra, 121</td>
<td>Δ_G, modular function of G, 41</td>
</tr>
<tr>
<td>α_t, conjugation, 3</td>
<td>$\Delta_{G/H}(h) = \Delta_G(h)/\Delta_H(h)$, 44</td>
</tr>
<tr>
<td>$AP(G)$, almost periodic functions on G, 217</td>
<td>$\text{Der}(\mathfrak{l})$, Lie algebra of derivations of \mathfrak{l}, 120</td>
</tr>
<tr>
<td>$\text{Aut}(H_n)$, automorphism group of H_n, 87, 303</td>
<td>dist, distance function on $V(T)$, 175</td>
</tr>
<tr>
<td>$B(G/K)$, Bochner space for G/K, 195</td>
<td>$E(T)$, edges of tree T, 175, 350</td>
</tr>
<tr>
<td>$B(K\backslash G/K)$, Bochner space for $K\backslash G/K$, 187</td>
<td>$E_{\mathfrak{b}, \mathfrak{p}_x}$, collineation group of octonion projective plane, 233</td>
</tr>
<tr>
<td>B_π, representation space of π, 56</td>
<td>$\exp_x : T_x(M) \to M$, riemannian exponential map, 225</td>
</tr>
<tr>
<td>$B(B)$, algebra of bounded operators on Banach space B, 56</td>
<td>$</td>
</tr>
<tr>
<td>$by(\xi,\eta) = f(\xi,\eta)$, 329</td>
<td>$\mathbb{F}^{p,q}$, $p \times q$ matrices over \mathbb{F} with hermitian form of signature (p,q), 33</td>
</tr>
<tr>
<td>$BS = BS(G, K)$, bounded (G, K)–spherical functions, 184</td>
<td>$\hat{f}(\omega) = \int_G f(g)\omega(g^{-1}) \mu_\omega(g) = m_\omega(f)$, spherical transform, 184</td>
</tr>
<tr>
<td>$C(K\backslash G/K)$, K–bi-invariant continuous functions on G, 153</td>
<td>$\hat{f}(\pi) = \text{trace} \hat{\pi}(f)$, scalar–valued Fourier transform, 102</td>
</tr>
<tr>
<td>$C^1(G)$, continuous compactly supported functions $G \to \mathbb{C}$, 37</td>
<td>$f \to F(f) = (\hat{\phi}(f))_{</td>
</tr>
<tr>
<td>$C_c(K\backslash G/K)$, K–bi-invariant continuous compactly supported functions on G, 153</td>
<td>$f^\circ(g) = f(g^{-1})$, 154</td>
</tr>
<tr>
<td>$C_c(G)$, continuous compactly supported functions $G \to \mathbb{C}$, 37</td>
<td>$f^\dagger(g) = \int_K \int_K f(k_1gk_2) d\mu_K(k_1)d\mu_K(k_2)$, 153</td>
</tr>
</tbody>
</table>
$f^\theta(g) = f(\theta(g))$, 154
$f_{u,v}$, matrix coefficient, 94
$2F_1$, hypergeometric function, 251, 255
$F_2/\text{Spin}(9)$, octonion projective plane, 233
$F_3, B_3/\text{Spin}(9)$, octonion hyperbolic plane, 233

$G \to G/H$, projection to quotient, 121
G^0, topological component of $1 \in G$, 6
$G(q)$, Borel q-cochains, 84
G_A, adèlic group of G_k, 52
G_C, complexification of G, 30
$G_{k,n}(C)$, complex Grassmann manifold, 29
$G_{k,n}(\mathbb{H})$, quaternion Grassmann manifold, 29
$G_{k,n}(\mathbb{R})$, real Grassmann manifold, 29
$G_{p,q;F} = U(p,q;F)$, universal enveloping algebra of g, 164
\widehat{G}, Bohr compactification of G, 216
\widehat{G}, unitary dual of G, 70
\widehat{G}, universal covering group of G, 8
δ, Gelfand transform, 183
(g, σ, b), orthogonal involutive Lie algebra, 226
$g = t + m$, decomposition by the symmetry, 226
g, Lie algebra of G, 21
$g = t + s$, Cartan decomposition, 245
$GL(V)$, $GL(n;\mathbb{F})$, preserves volume, 20
$GL(B)$, bounded operators on B with bounded inverse, 56
$GL(V)$, $GL(n;\mathbb{F})$, general linear group, 19
$G_{m,n}$, subgroup of $I(M)$ generated by transvections, 229
$g_{m,n} = [m,m] + m$, minimal orthogonal involutive Lie algebra, 227

$H := Z_G(h) = T_A$, maximally split Cartan subgroup of G, 245
$H := Z_G(h) = T \times A$, maximally split Cartan subgroup of G, 253
$H^2(M;\mathbb{Z})$, integral cohomology in degree 2, 230
$H^s(G;A) = Z^s(G;A)/B^s(G;A)$, Borel q-cohomology, 84
H^K, K-fixed vectors in H, 167
$H_n = H_n,C$, usual Heisenberg group, 34
H_n, Heisenberg group, 87, 303
$H(\psi)$, ψ-primary subspace of H, 71
$H_{n,\psi}$, generalized Heisenberg group based on \mathbb{F}^n, 34
$H_{p,q;\mathbb{F}}$, generalized Heisenberg group based on $\mathbb{F}^{p,q}$, 34, 303
$H_{s,t,u;\mathbb{F}}$, very generalized Heisenberg group based on $\mathbb{F}^{s \times (t,u)}$, 34
$H^m \times n$, $m \times n$ quaternion matrices, 34

$\mathcal{H}^2 = \int_Y H_g \, d\tau(y)$, L^2 direct integral of Hilbert spaces, 75
$\mathcal{H}^p = \int_Y H_g \, d\tau(y)$, L^p direct integral of Hilbert spaces, 76
$h := t + a$, maximally split Cartan subalgebra of g, 245, 253
Hom(B_{π_1}, B_{π_2}), 67
Hom$_G(B_{\pi_1}, B_{\pi_2})$, intertwining operators, 67

$I(\pi, \pi')$, intertwining operators $B_\pi \to B_{\pi'}$, 61
$I(\pi_1, \pi_2)$, intertwining operators, 67
Im $C^{n \times n}$, complex skew–hermitian $n \times n$, 34
Im $H^{m \times n}$, quaternion skew–hermitian $n \times n$, 34
Im $\mathcal{O}^{n \times n}$, octonion skew–hermitian $n \times n$, 34
Im $\mathbb{R}^{n \times n}$, real skew–hermitian $n \times n$, 34
Ind$_G^H(C)$, spherical function L^2–induced from ζ, 169
Ind$_G^H(C)$, spherical function L^p–induced from ζ, 169
Ind$_H^G(e_0)$, unitarily induced representation, 78
Ind$_H^G(e_0)$, L^p induced representation, 78
Int(g), group generated by $\text{Ad}(\exp(g))$, 126
$\int_G f(x) \mu_C(x)$, left Haar integral on G, 35
$\int_G \phi(gH) \, d\mu_{G/H}(gH)$, 45
$I(M)$, isometry group of riemannian manifold M, 225

J_r, Bessel function of the first kind of order ν, 244, 307
\mathcal{K}_A, adèlic ring of algebraic number field \mathcal{K}, 52
$\kappa : G = NAK \to K$ by $g = \nu(g) \exp A(g)\kappa(g)$, 254

L^r, dual lattice, 208
$L^p(K\setminus G/K)$, K–bi–invariant L^p functions on G, 153
$\ell(w, \Sigma^+)$, length of w in positive system Σ^+, 125
ℓ_k, left translation, 3
$L_{m}^{(n-1)}$, generalized Laguerre polynomial of order $n - 1$, 307
$\Lambda_k(B)$, k^{th} antisymmetric power of Banach space B, 67
$\Lambda_k(\pi)$, k^{th} antisymmetric power of Banach representation π, 67
Λ_{rt}, root lattice of a Lie algebra, 132
$\Lambda_{w,t,G}$, weight lattice of a Lie group, 132
$\Lambda_{w,t,G}^+$, positive cone in weight lattice of G, 132
Λ_{wt}, weight lattice of a representation, 131
Table Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjoint Representations, Classical Groups,</td>
<td>130</td>
</tr>
<tr>
<td>Adjoint Representations, Exceptional Groups,</td>
<td></td>
</tr>
<tr>
<td>Benson–Jenkins–Ratcliff Classification, 305, 306</td>
<td></td>
</tr>
<tr>
<td>Brion–Mikityuk–Yakimova Classification</td>
<td></td>
</tr>
<tr>
<td>: Compact, Semisimple, Non–Simple Weakly Symmetric Spaces, 289</td>
<td></td>
</tr>
<tr>
<td>: Complex Semisimple Non–Simple Weakly Symmetric Spaces, 288</td>
<td></td>
</tr>
<tr>
<td>Classical Simple Lie Groups, 126</td>
<td></td>
</tr>
<tr>
<td>Commutative Principal Pairs, 355</td>
<td></td>
</tr>
<tr>
<td>Comparison of Tables 13.4.1 and 13.2.5, 326</td>
<td></td>
</tr>
<tr>
<td>Connected Dynkin Diagrams, 125</td>
<td></td>
</tr>
<tr>
<td>Dynkin Diagrams, 125</td>
<td></td>
</tr>
<tr>
<td>Hermitian Symmetric Spaces, 233</td>
<td></td>
</tr>
<tr>
<td>: Real Forms, 235</td>
<td></td>
</tr>
<tr>
<td>Kač Classification, 305, 306</td>
<td></td>
</tr>
<tr>
<td>Krämer Classification</td>
<td></td>
</tr>
<tr>
<td>: of Compact Spherical Spaces, 282</td>
<td></td>
</tr>
<tr>
<td>: of Complex Spherical Spaces, 283</td>
<td></td>
</tr>
<tr>
<td>: of Noncompact Real Spherical Spaces, 286</td>
<td></td>
</tr>
<tr>
<td>Maximal Indecomposable Principal Saturated Pairs, 328, 347</td>
<td></td>
</tr>
<tr>
<td>Maximal Irreducible Nilpotent Gelfand Pairs, 320</td>
<td></td>
</tr>
<tr>
<td>Maximal Principal Indecomposable Non–Reactive Non–Nilmanifold</td>
<td></td>
</tr>
<tr>
<td>Non–Sp(1)–Saturated Gelfand Pairs, 352, 353</td>
<td></td>
</tr>
<tr>
<td>“Multiplicity Free” Irreducible Representations, 305, 306</td>
<td></td>
</tr>
<tr>
<td>Octonion Division Algebra, 27</td>
<td></td>
</tr>
<tr>
<td>Quaternionic Symmetric Spaces, 235</td>
<td></td>
</tr>
<tr>
<td>: Complex Forms, 236</td>
<td></td>
</tr>
<tr>
<td>Rank 2 Root Systems, 124</td>
<td></td>
</tr>
<tr>
<td>Restricted Root System</td>
<td></td>
</tr>
<tr>
<td>: Compact, Real Rank 1, 250</td>
<td></td>
</tr>
<tr>
<td>: Hyperbolic Spaces, 255</td>
<td></td>
</tr>
<tr>
<td>: Noncompact, Real Rank 1, 255</td>
<td></td>
</tr>
<tr>
<td>: Spheres and Projective Spaces, 250</td>
<td></td>
</tr>
<tr>
<td>Riemannian Symmetric Spaces</td>
<td></td>
</tr>
<tr>
<td>: G/K with G Classical Simple, 232</td>
<td></td>
</tr>
<tr>
<td>: G/K with G Exceptional Simple, 232</td>
<td></td>
</tr>
<tr>
<td>: Complex Cases, 233</td>
<td></td>
</tr>
<tr>
<td>: Group Manifolds and their</td>
<td></td>
</tr>
<tr>
<td>Noncompact Duals, 231</td>
<td></td>
</tr>
<tr>
<td>: Quaternionic Cases, 235</td>
<td></td>
</tr>
<tr>
<td>: Spaces of Rank 1, 233</td>
<td></td>
</tr>
<tr>
<td>Simple Formally Real Jordan Algebras, 28</td>
<td></td>
</tr>
<tr>
<td>Vector Representations, 129</td>
<td></td>
</tr>
<tr>
<td>Vinberg Classification of Maximal</td>
<td></td>
</tr>
<tr>
<td>Irreducible Nilpotent Gelfand Pairs, 320</td>
<td></td>
</tr>
<tr>
<td>Weakly Symmetric Spaces</td>
<td></td>
</tr>
<tr>
<td>: G/K with G Compact Simple, 282</td>
<td></td>
</tr>
<tr>
<td>: Branching Compact Non–Semisimple Circle Bundles, 292</td>
<td></td>
</tr>
<tr>
<td>: Branching Noncompact Reductive</td>
<td></td>
</tr>
<tr>
<td>: Non–Semisimple Circle Bundles, 293</td>
<td></td>
</tr>
<tr>
<td>: Circle Bundles over Hermitian Symmetric Spaces, 286</td>
<td></td>
</tr>
<tr>
<td>: Compact Non–Semisimple Circle Bundles, 292</td>
<td></td>
</tr>
<tr>
<td>: Compact, Semisimple, Not Simple, 289</td>
<td></td>
</tr>
<tr>
<td>: Complex Simple Cases, 283</td>
<td></td>
</tr>
<tr>
<td>: Complex, Semisimple, Not Simple, 288</td>
<td></td>
</tr>
<tr>
<td>: Noncompact Real Simple Cases, 286</td>
<td></td>
</tr>
<tr>
<td>: Noncompact Reductive</td>
<td></td>
</tr>
<tr>
<td>: Non–Semisimple Circle Bundles, 292</td>
<td></td>
</tr>
<tr>
<td>Yakimova Classification</td>
<td></td>
</tr>
<tr>
<td>: Maximal Indecomposable Principal</td>
<td></td>
</tr>
<tr>
<td>: Sp(1)–Saturated Gelfand Pairs, 348</td>
<td></td>
</tr>
<tr>
<td>: Maximal Indecomposable Principal Saturated Nilpotent Gelfand Pairs,</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td></td>
</tr>
<tr>
<td>: Maximal Principal Indecomposable Saturated Nilpotent Gelfand Pairs,</td>
<td></td>
</tr>
<tr>
<td>352, 353</td>
<td></td>
</tr>
</tbody>
</table>

387
Titles in This Series

142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz’ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
134 Dana P. Williams, Crossed products of C*-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck’s FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004
111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
TITLES IN THIS SERIES

109 **Goro Shimura**, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 **Michael Farber**, Topology of closed one-forms, 2004
107 **Jens Carsten Jantzen**, Representations of algebraic groups, 2003
105 **Charalambos D. Aliprantis and Owen Burkinshaw**, Locally solid Riesz spaces with applications to economics, second edition, 2003
103 **Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré**, Lusternik-Schnirelmann category, 2003
102 **Linda Rass and John Radcliffe**, Spatial deterministic epidemics, 2003
101 **Eli Glasner**, Ergodic theory via joinings, 2003
100 **Peter Duren and Alexander Schuster**, Bergman spaces, 2004
99 **Philip S. Hirschhorn**, Model categories and their localizations, 2003
98 **Victor Guillemin, Viktor Ginzburg, and Yael Karshon**, Moment maps, cobordisms, and Hamiltonian group actions, 2002
96 **Martin Markl, Steve Shnider, and Jim Stasheff**, Operads in algebra, topology and physics, 2002
95 **Seiichi Kamada**, Braid and knot theory in dimension four, 2002
94 **Mara D. Neusel and Larry Smith**, Invariant theory of finite groups, 2002
91 **Richard Montgomery**, A tour of subriemannian geometries, their geodesics and applications, 2002
90 **Christian Gérard and Izabella Laba**, Multiparticle quantum scattering in constant magnetic fields, 2002
89 **Michel Ledoux**, The concentration of measure phenomenon, 2001
88 **Edward Frenkel and David Ben-Zvi**, Vertex algebras and algebraic curves, second edition, 2004
87 **Bruno Poizat**, Stable groups, 2001
86 **Stanley N. Burris**, Number theoretic density and logical limit laws, 2001
84 **László Fuchs and Luigi Salce**, Modules over non-Noetherian domains, 2001
83 **Sigurdur Helgason**, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000
82 **Goro Shimura**, Arithmetical in the theory of automorphic forms, 2000
81 **Michael E. Taylor**, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 **Lindsay N. Childs**, Taming wild extensions: Hopf algebras and local Galois module theory, 2000

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This book starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces. Those spaces form a simultaneous generalization of compact groups, locally compact abelian groups, and riemannian symmetric spaces. Their geometry and function theory is an increasingly active topic in mathematical research, and this book brings the reader up to the frontiers of that research area with the recent classifications of weakly symmetric spaces and of Gelfand pairs.

Part 1, “General Theory of Topological Groups”, is an introduction with many examples, including all of the standard semisimple linear Lie groups and the Heisenberg groups. It presents the construction of Haar measure, the invariant integral, the convolution product, and the Lebesgue spaces.

Part 2, “Representation Theory and Compact Groups”, provides background at a slightly higher level. Besides the basics, it contains the Mackey Little-Group method and its application to Heisenberg groups, the Peter–Weyl Theorem, Cartan’s highest weight theory, the Borel–Weil Theorem, and invariant function algebras.

Part 3, “Introduction to Commutative Spaces”, describes that area up to its recent resurgence. Spherical functions and associated unitary representations are developed and applied to harmonic analysis on G/K and to uncertainty principles.

Part 4, “Structure and Analysis for Commutative Spaces”, summarizes riemannian symmetric space theory as a rôle model, and with that orientation delves into recent research on commutative spaces. The results are explicit for spaces G/K of nilpotent or reductive type, and the recent structure and classification theory depends on those cases.

Parts 1 and 2 are accessible to first-year graduate students. Part 3 takes a bit of analytic sophistication but generally is accessible to graduate students. Part 4 is intended for mathematicians beginning their research careers as well as mathematicians interested in seeing just how far one can go with this unified view of algebra, geometry, and analysis.

For additional information and updates on this book, visit

www.ams.org/bookpages/surv-142