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Preface 

I look at the floor and I see it needs sweeping. 

- Prom "While My Guitar Gently Weeps" by George Harrison of The Beatles 

What Part II is about 

Think the time is right for a palace revolution. 

- Prom "Street Fighting Man" by Mick Jagger and Keith Richards of The 

Rolling Stones 

To help put the aim of this volume in perspective, we indulge in some 
relative volume comparison (with apologies to Bishop and Gromov). Let 
gij = ' The Ricci Flow: An Introduction' by two of the authors (through
out this book we shall refer to this as 'Volume One' [142]), let T^ = 
'Hamilton's Ricci Flow' by three of the authors [146], let1 Rijki =F 'The 
Ricci Flow: Techniques and Applications, Part I: Geometric Aspects' by 
The Ricci Flowers2 (throughout this book we shall refer to this as 'Part 
I of this volume' [135]), let jftRijki 41 'The Ricci Flow: Techniques and 
Applications, Part II: Analytic Aspects' (i.e., this book) by The Ricci Flow
ers, and let ARijM = ' The Ricci Flow: Techniques and Applications, Part 
III: Geometric-Analytic Aspects' (forthcoming) by The Ricci Flowers (we 
shall refer to this as 'Part III of this volume' [136]).3 Both g{j and T^ 
are introductory books, whereas the latter more comprehensive monographs 
Rijki® §iRijki®^Rijkl are derived from the former. Finally, Volume Two 
refers to the collection of Parts I, II, and III. 

This is Part II, the sequel to Part I of this volume. In Rijki we discussed 
various geometric topics in Ricci flow in more detail, such as Ricci solitons, 
the Kahler-Ricci flow, the compactness theorem, Perelman's energy and 
entropy monotonicity and the application to no local collapsing, the reduced 
distance function and its application to the analysis of ancient solutions, and 
finally a primer on 3-manifold topology. 

We would like to t h a n k Andrejs Treibergs and Junfang Li for suggesting t he no ta t ion 
Rijki-

T h e Ricci Flowers ' is an abbrevia t ion for t h e manifold/var ie ty of au thors of this 
volume. 

o 
T h e originally in tended two pa r t s now comprise three par t s . 

ix 
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Here, in jftRijM-, w e discuss mostly analytic topics in Ricci flow includ
ing weak and strong maximum principles for scalar heat-type equations and 
systems on compact and noncompact manifolds, the classification by Bohm 
and Wilking of closed manifolds with 2-positive curvature operator, Bando's 
result that solutions to the Ricci flow are real analytic in the space variables, 
Shi's local derivative of curvature estimates and some variants, and differen
tial Harnack estimates of Li-Yau-type including Hamilton's matrix estimate 
for the Ricci flow and Perelman's estimate for fundamental solutions of the 
adjoint heat equation coupled to the Ricci flow. In the appendices we review 
aspects of Ricci flow and related geometric analysis and tensor calculus on 
the frame bundle. Various topics in this part also include the works of others 
as well as the authors. 

In Part III of this volume, i.e., in ARijM, we shall discuss aspects of 
Perelman's theory of ancient /^-solutions, Perelman's pseudolocality theo
rem, Hamilton's classification of nonsingular solutions, numerical simula
tions of Ricci flow, stability of the Ricci flow, the linearized Ricci flow, and 
the space-time formulation of the Ricci flow. In the appendices, for the 
convenience of the reader, we review and discuss aspects of metric and Rie-
mannian geometry, the reduced distance function and ancient solutions, and 
limited aspects of Ricci flat metrics on the K3 surface. 

As in previous volumes and as is perhaps typical in geometric analysis, 
throughout this book we apply both the techniques of the 'weak maximum 
detail principle' and 'exposition by parts'. To wit, we endeavor to supply 
the reader with as much detail as possible and we also endeavor, for the 
most part, to make the chapters independent of each other. 

As such, §iRijk£ (and ARijki as well) may be used either for a topics 
course or for self-study, where the lecturer or reader may wish to select 
portions from this book -§iRijki, its predecessors gij) T^-, and Ri^i, and its 
successor AR^u. 

Although the intent of this series of books on the Ricci flow is expository, 
there is no substitute for reading the original source material in Ricci flow. In 
particular, the papers of Hamilton and Perelman contain a wealth of original 
and deep ideas. We encourage interested readers to consult these papers. We 
also encourage the reader to consult other sources for Ricci flow including 
Cao and Zhu [78], Chen and Zhu [110], Ding [172], Kleiner and Lott [303], 
Morgan and Tian [363], Miiller [371], Tao [461], Topping [475], two of 
the authors [142], three of the authors [146], The Ricci Flowers [135] and 
[136] (Parts I and III of this volume), and sources for geometric evolution 
equations (e.g., the mean curvature flow) such as Chou and Zhu [127], 
Ecker [179], Zhu [522], and two of the authors [139]. Certain material, 
originally intended to appear in a successor volume to [146], has now been 
incorporated in Parts I, II, and III of this volume. 
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Highlights and interdependencies of Part II 

Half my life is in books' written pages. 
- From "Dream On" by Steven Tyler of Aerosmith 

0.1. Highlights. In this book we consider the following mostly analytic 
topics, described in more detail in the section "Contents of Part II of Volume 
Two" below. 

(1) Proofs are given of the weak maximum principles for scalars and 
systems on both compact and complete noncompact manifolds. In 
the noncompact case we have strived to present complete proofs 
of general results which are readily applicable. A proof is given 
of the strong maximum principle for systems with an emphasis 
on the evolution of the curvature operator under the Ricci flow. 
The application of the maximum principle to the Ricci flow was 
pioneered by Hamilton. 

(2) We present the solution of Bohm and Wilking of the conjecture of 
Rauch and Hamilton that closed manifolds, in any dimension, with 
positive curvature operator are diffeomorphic to spherical space 
forms. Bohm and Wilking prove that the normalized Ricci flow 
evolves Riemannian metrics on closed manifolds with 2-positive 
curvature operator to constant positive sectional curvature met-

4 

ncs. 
(3) We discuss the following two topics: (i) nonnegative curvature 

conditions which are not preserved under the Ricci flow and (ii) 
Bando's result that solutions of the Ricci flow on closed manifolds 
are real analytic. 

(4) We present Shi's local derivative of curvature estimates (including 
all higher derivatives) based on the Bernstein technique. We also 
present a refinement, due to one of the authors, where bounds 
on some higher derivatives of the initial metric are assumed and 
consequently improved bounds of all higher derivatives are obtained 
in space and time. 

(5) We discuss the differential Harnack estimates of Li-Yau-Hamilton-
type—giving a detailed proof of Hamilton's matrix estimate for 
complete solutions of the Ricci flow with bounded nonnegative cur
vature operator (this includes the noncompact case). An applica
tion is Hamilton's result that eternal solutions are steady gradient 
Ricci solitons. We also discuss a variant on Hamilton's proof of the 
matrix Harnack estimate. 

Partly based on Bohm and Wilking's work is the recent result of Brendle and Schoen 
[48] proving that positively |-pinched closed manifolds are diffeomorphic to spherical 
space forms. Related to this, Brendle and Schoen [48] and Nguyen [376] independently 
proved that the condition of positive isotropic curvature is preserved in all dimensions (a 
result previously known only in dimension 4 by the work of Hamilton). 
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(6) We present Perelman's differential Harnack estimate for fundamen
tal solutions of the adjoint heat equation coupled to the Ricci flow. 
This result, of which we give a detailed proof, will be used in the 
proof of Perelman's pseudolocality discussed in Part III. 

(7) We review tensor calculus on the frame bundle—a framework for 
proving Hamilton's matrix Harnack estimate for the Ricci flow. 

The appendices are intended to make this book more self-contained. 

0.2. In terdependencies . The chapters are for the most part indepen
dent. However, many of the results discussed in this book rely on various 
forms of the maximum principle.5 For example we have the following re
liances. 

(1) Chapter 11 on manifolds with positive curvature operator, Section 
1 of Chapter 13 on curvature conditions that are not preserved, 
and Chapter 15 on the matrix Harnack estimate all require the 
(time-independent) maximum principles for tensors and systems. 

(2) The maximum principles on noncompact manifolds in Chapter 12 
require some familiarity with the maximum principles on compact 
manifolds in Chapter 10. 

(3) Chapter 14 on local derivative estimates, Section 2 of Chapter 13 
on the real analyticity of solutions, and Chapter 16 on Perelman's 
differential Harnack estimate all require the maximum principle for 
scalar s. 

5Perhaps we may say, 'Geometric analysis is simple; just apply the maximum 
principle!' 
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Contents of Part II of Volume Two 

Councillor Hamann: Almost no one comes down here, unless, of course, there's 
a problem. 

- From the movie "The Matrix Reloaded" by the Wachowski brothers. 

Chapter 10. In this chapter we discuss the general formulation of the 
weak maximum principle for systems on closed manifolds, which applies to 
bilinear forms such as curvature tensors. The maximum principle for scalars 
may be considered as stating that solutions to a semilinear PDE are bounded 
by the solutions to the associated ODE obtained by dropping the Laplacian 
and any gradient terms. In particular for subsolutions/supersolutions to 
the heat equation, the maximum/minimum is nonincreasing/nondecreasing. 
This last statement has a generalization to symmetric 2-tensors, considered 
in Chapter 4 of Volume One, which gives general sufficient conditions to 
prove that the nonnegativity of tensor supersolutions to heat-type equations 
is preserved. We had previously applied this to the Ricci tensor and also 
obtained pinching estimates for the curvatures this way. 

To obtain various estimates for the curvatures in Volume One, we found 
it convenient to employ a more general formulation of the weak maximum 
principle. We prove this version in this chapter. More precisely we consider 
sections of vector bundles which satisfy a semilinear heat-type equation. 
The maximum principle for systems states that if the initial section lies in 
a subset of the vector bundle which is convex in the fibers and invariant 
under parallel translation and if the associated ODE obtained by dropping 
the Laplacian preserves this subset, then the solution to the PDE stays inside 
this convex set. 

The idea of the proof of this maximum principle is as follows. One 
can prove the maximum principle for functions by considering the spatial 
maximum function, which is Lipschitz in time, and showing that it is nonin-
creasing for subsolutions to the heat equation. In the case of the maximum 
principle for systems, one can look at the function of time which is the maxi
mum distance of the solution to the PDE from the subset. Using the support 
functions to the convex fibers, one can show that this maximum distance 
function s (£), which is again Lipschitz in time, satisfies an ODE of the form 
ds/dt < Cs. Since s (0) = 0, we conclude that s (t) = 0 and the maximum 
principle for systems follows. 

xvii 
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Refinements of the maximum principle include the case when the sub
sets with convex fibers are time-dependent and also when there is a so-called 
avoidance set for the solutions of the PDE. In terms of applications, one of 
the most important special cases is when the sections of the bundle are bi
linear forms. We discuss this case and applications to the curvature tensors. 
We also discuss the Aleksandrov-Bakelman-Pucci maximum principle for 
elliptic equations. 

Chapter 11. In this chapter we present Bohm and Wilking's solu
tion to the conjecture of Rauch and Hamilton on the classification of closed 
Riemannian manifolds with positive curvature operator.1 The flavor of this 
chapter is more algebraic with an essential component of the proof being the 
irreducible decomposition of (algebraic) curvature tensors. Generally, one 
of the ideas is to study when linear transformations of convex preserved sets 
(with respect to the ODE corresponding to the PDE satisfied by Rm) remain 
preserved. More specifically, via a 1-parameter family of linear transforma
tions the cone of 2-nonnegative curvature operators is mapped into the cone 
of nonnegative curvature operators. This reduces the classification prob
lem for Riemannian manifolds with 2-positive curvature operator to that for 
manifolds with positive curvature operator. To study the latter problem, 
one would hope that the cones of 2-positive curvature operators with arbi
trary Ricci pinching are preserved. Unfortunately there does not seem to 
be any known way to prove this. Instead, one can prove that suitable linear 
transformations of the cones of 2-positive curvature operators with arbitrary 
Ricci pinching are preserved. This is sufficient to prove the Rauch-Hamilton 
conjecture. 

Chapter 12. This chapter comprises two main topics: (1) weak max
imum principles on noncompact manifolds and (2) the strong maximum 
principle, which is a local result. In both cases we consider scalar parabolic 
equations and systems of parabolic equations. 

Since singularity models are often noncompact, it is important to be 
able to apply the weak maximum principle on complete, noncompact man
ifolds. We begin with the heat equation and present the weak maximum 
principle of Karp and Li which applies to solutions with growth slower than 
exponential quadratic in distance. Using barrier functions, we then give a 
weak maximum principle for bounded solutions of heat-type systems. As a 
special case, we show that complete solutions to the Ricci flow on noncom
pact manifolds, with nonnegative curvature operator initially and bounded 
curvature on space and time, have nonnegative curvature operator for all 
time. 

We also discuss mollifiers on Riemannian manifolds with a lower bound 
on the injectivity radius. One technical issue we discuss, using the mollifiers 
obtained above, is the construction of distance-like functions with bounds on 

They actually obtain the stronger result of classifying closed manifolds with 2-
positive curvature operator. 
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their gradients and upper bounds of their Hessians on complete Riemannian 
manifolds with bounded curvature. These distance-like functions are used 
to construct the barrier functions referred to in the previous paragraph. 

Moreover, this construction carries over to the case of the Ricci flow. 
The aforementioned mollifiers are not only applicable to the proof of the 
compactness theorem in regards to the center of mass (discussed in Chap
ter 4 of Part I of this volume), but also to constructing a barrier function 
used in the proof of Hamilton's matrix Harnack estimate in Chapter 15 
on complete noncompact Riemannian manifolds with bounded nonnegative 
curvature operator. 

A fundamental property of the heat equation is that a solution which is 
initially nonnegative immediately becomes either positive or identically zero. 
This property is known as the strong maximum principle. For a solution 
to the Ricci flow, the curvature tensor satisfies a heat-type equation. The 
strong maximum principle for systems, due to Hamilton based on earlier 
work of Weinberger and others, tells us that for solutions to the Ricci flow 
with nonnegative curvature operator (such as singularity models in dimen
sion 3) the curvature operator has a special form after the initial time. In 
particular, the image of the curvature operator is independent of time and 
invariant under parallel translation in space. Moreover, using the natural 
Lie algebra structure on the fibers A^, x G M, of the bundle of 2-forms, the 
image of the curvature operator is a Lie subalgebra. It is useful to observe 
that the strong maximum principle is a local result and does not require the 
solution to be complete or to have bounded curvature. We also formulate 
the strong maximum principle in the more general setting of Chapter 10, 
i.e., for sections of a vector bundle which solve a PDE. 

In dimension 3, A^ is isomorphic to 50 (3) and its only proper nontrivial 
Lie subalgebras are isomorphic to 50 (2), which is 1-dimensional. Hence, 
after the initial time, a solution to the Ricci flow on a 3-manifold with non-
negative sectional curvature either is flat, has positive sectional curvature, 
or admits a global parallel 2-form. In the last case, by taking the dual of this 
2-form, we have a parallel 1-form and the solution splits locally as the prod
uct of a surface solution and a line. This classification is useful in studying 
the singularities which arise in dimension 3. 

Chapter 13. In this chapter we discuss the following two topics in Ricci 
flow. 

(1) Curvature conditions that are not preserved. The weak positivity 
(i.e., nonnegativity) of the following curvatures are preserved: scalar curva
ture, Ricci curvature in dimension 3, Riemann curvature operator, isotropic 
curvature, complex sectional curvature, as well as the 2-nonnegativity of 
the curvature operator. On the other hand, in this chapter we discuss some 
nonnegativity conditions which are not preserved under the Ricci flow. In 
particular, we consider the conditions of nonnegative Ricci curvature and 
nonnegative sectional curvature in dimensions at least 4 for solutions of the 
Ricci flow on both closed and noncompact manifolds. 
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(2) Bando's result that solutions to the Ricci flow on closed manifolds 
are real analytic in the space variables for positive time. The proof of this is 
based on keeping track of the constants in the higher derivatives of curvature 
estimates and summing these estimates. 

Chapter 14. In Chapter 7 of Volume One we encountered the global 
derivative of curvature estimates. The idea is to assume a curvature bound 
K for the Riemann curvature tensor and, by applying the weak maximum 
principle to the appropriate quantities, obtain bounds for the ra-th deriva
tives of the curvatures of the form | V m Rm| < CKt'™!2. In this chapter, we 
present Shi's local derivative of curvature estimates. The idea of localizing 
the derivative estimates is simply to multiply the quantities considered by 
a cutoff function. 

For the global first derivative of curvature estimate we previously con-
sidered t \ V Rm| + C |Rm| . This quantity does not seem to adapt well to 
localization. Instead we consider rjt (16K2 + |Rm| j |VRm| , where rj is a 
cutoff function. The local first derivative estimate we prove says that if a 
solution is defined on a ball of radius r and time interval [0, r] and if it has 
curvatures bounded by K, then we have 

|VRm| <CK(\ + - + K \rz r 

on the concentric ball of radius r /2 on the time interval [r/2, r] . 
Local higher derivative estimates are proven using a similar idea. For 

example, to bound the second derivatives, one applies the weak maximum 
principle to the quantity t2 | V2 Rm| , where the constant 
A is chosen appropriately. We also discuss a version of the local derivative 
estimates where bounds on the higher derivatives of the curvatures of the 
initial metric are assumed up to some order. In this case we obtain improved 
bounds for all higher derivatives of the curvatures. This result is useful in 
an approach toward constructing Perelman's standard solution. 

For complete solutions with bounded nonnegative curvature operator, 
the local derivative estimates, when combined with Hamilton's trace Har-
nack estimate, yield instantaneous local derivative bounds. Previously, in 
Chapters 7 and 8 of Part I of this volume, we saw applications of the local 
derivative estimates to the study of the reduced distance and the reduced 
volume. 

We also briefly discuss D. Yang's local Ricci flow. Here the velocity 
—2 Re of the metric is multiplied by a nonnegative weight function with 
compact support. The local Ricci flow provides another approach to Shi's 
short time existence theorem for the Ricci flow on noncompact manifolds. 

Chapter 15. This chapter discusses differential Harnack inequalities 
of Li-Yau-Hamilton-type for the Ricci flow. These gradient-type estimates, 
which are directly motivated by considering quantities which vanish on the 

±/t 
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(gradient) Ricci solitons as discussed in Chapter 1 of Part I of this vol
ume, provide useful bounds for the solution. The general form of the main 
estimate, which holds for complete solutions with bounded nonnegative cur
vature operator and which is known as Hamilton's matrix Harnack estimate, 
says that a certain tensor involving two and fewer derivatives of the curva
ture is nonnegative definite. 

The trace Harnack estimate, as the name suggests, is obtained by trac
ing the matrix inequality. This trace inequality has several important conse
quences, including the fact that scalar curvature does not decrease too fast 
in the sense that for a fixed point, t times the scalar curvature is a nonde-
creasing function of time. More generally, the trace inequality yields a lower 
bound for the scalar curvature at a point and time, in terms of the scalar 
curvature at any other point and earlier time, and the distance between the 
points and the time difference. 

We begin the proof of the Harnack estimate with the case of surfaces 
(dimension 2), in which case the evolution equation for the Harnack qua
dratic simplifies (in comparison to higher dimensions) and one can prove the 
trace inequality directly. This is unlike the situation in higher dimensions, 
where the trace inequality apparently can only be demonstrated by proving 
the matrix inequality and then tracing. 

In all dimensions, we recall the terms in the matrix Harnack quadratic 
obtained in Chapter 1 (p. 9) of Part I of this volume by differentiating 
the expanding gradient Ricci soliton equation. The Harnack calculations 
simplify when one uses the formalism, given in Appendix F, of considering 
tensors as vector-valued functions on the frame bundle. Using the above 
formalism, we present the evolution of Harnack calculations which are long 
but relatively straightforward. The evolution of the Harnack quantity looks 
formally similar to the evolution of the Riemann curvature operator and as 
such is amenable to the application of the weak maximum principle when 
the solution has nonnegative curvature operator. When the manifold is 
noncompact, the techniques used to enable this application are reminiscent 
of the techniques used to prove the maximum principle for functions. 

We also give a variant on Hamilton's proof of the matrix Harnack esti
mate, based on reducing the problem to showing that a symmetric 2-tensor 
is nonnegative definite. 

Chapter 16. In this chapter we give a proof of Perelman's differential 
Harnack-type inequality for solutions of the adjoint heat equation coupled 
to the Ricci flow. We begin by considering entropy and differential Har
nack estimates for the heat equation. Our approach for proving Perelman's 
differential Harnack-type inequality is to first prove gradient estimates for 
positive solutions of the (adjoint) heat equation. Using this and heat kernel 
estimates, we give a proof that for solutions to the adjoint heat equation 
coupled to the Ricci flow, Perelman's Harnack quantity (or, geometrically, 
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the modified scalar curvature) is nonpositive: 

r ( i ? + 2 A / - | V / | 2 ) + / - n < 0 . 

Appendix D. In this appendix we review some basic results for the 
Ricci flow. In particular, we recall the results on the short time and long time 
existence and uniqueness of the Ricci flow on closed and noncompact mani
folds, convergence results on closed manifolds assuming some sort of positiv-
ity of curvature, the rotationally symmetric neckpinch, curvature pinching 
estimates, strong maximum principle, derivative estimates, differential Har-
nack estimates, Perelman's energy and entropy monotonicity and no local 
collapsing, compactness theorems, and the existence of singularity models. 

Appendix E. In this appendix we review some basic geometric analysis 
related to the Ricci flow with an emphasis on the heat equation. We recall 
Duhamel's principle and its application to basic results for the heat kernel. 
We discuss the Cheeger-Yau comparison theorem for the heat kernel, the 
Li-Yau differential Harnack estimate, and Hamilton's gradient estimates. 

Appendix F. The material in this appendix is in preparation for Chap
ter 15 on Hamilton's matrix Harnack estimate. Given a Riemannian mani
fold, we describe a formalism for considering tensors as vector-valued func
tions on the (orthonormal) frame bundle. In the context of the Ricci flow, 
where we have a 1-parameter family of metrics, we add to this a modified 
time derivative which may be considered as a version of Uhlenbeck's trick. 
We discuss tensor calculus in this setting, including commutator formulas 
for the heat operator and covariant derivatives. These calculations are used 
for the Harnack calculations in Chapter 15. 



Notation and Symbols 

How many times must I explain myself before I can talk to the boss? 

- From "Forever Man" by Eric Clapton 

The following is a list of some of the notation and symbols which we use 
in this book. 

vv/ 
# 

Area 
ASCR 
AVR 
B(p,r) 
b 
Babcd 
bounded curvature 
CVJ 
const 
d±_ dr_ d^ d-^ 
df> df> df dt 
d 
dfi 
da 
A, AL , Ad 

covariant derivative 
defined to be equal to 
dot product or multiplication 
Hessian of / 
sharp operator 
symmetric tensor product 
dual vector field to the 1-form a 
area of a surface or volume of a hypersurface 
asymptotic scalar curvature ratio 
asymptotic volume ratio 
ball of radius r centered at p 
Bianchi map 
the quadratic -RapbqRcpdq 
bounded sectional curvature 
tangent cone at V of a convex set J C M.k 

constant 
a Dini time-derivative 
distance 
volume form 
volume form on boundary or hypersurface 
Laplacian, Lichnerowicz Laplacian, 
Hodge Laplacian 
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div 
En 

g(X,Y) = (X,Y) 
9(t) 

h 
H 
HVJ for V e dj 

Hess/ 
id 
IVP 
L 
LHS 

log 
X 
J 
£ 
C 
MCF 
9Jlet 
MVP 
X 

nun 

NRF 
V 

un 

ODE 

PDE 

PIC 
RF 
RHS 

i?, Rc, Rm 
R m # 

R 
Rc(R) 

divergence 
W1 with the flat Euclidean metric 
Christoffel symbols 
metric or inner product 
time-dependent metric, e.g., solution of 
the Ricci flow 
second fundamental form 
mean curvature 
set of closed half-spaces H containing 
J c R f e with V e OH 
Hessian of / (same as VV/ ) 
identity 
initial-value problem 
length 
left-hand side 
natural logarithm 
a time interval for the Ricci flow 
a time interval for the backward Ricci flow 
reduced distance or ^-function 
Lie derivative or £-length 
mean curvature flow 
space of Riemannian metrics on a manifold 
mean value property 
multiplication, when a formula does not fit on 
one line 
volume of the unit Euclidean (n — l)-sphere 
normalized Ricci flow 
unit outward normal 
volume of the unit Euclidean n-ball 
ordinary differential equation 
partial differential equation 
positive isotropic curvature 
Ricci flow 
right-hand side 
scalar, Ricci, and Riemann curvature tensors 
the quadratic Rm # Rm 
algebraic curvature operator 
a trace of R (of two indices) 
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Rc0 

S|(so(n)) 
snT 
SVJ for V 
Seal (R) or 
TXM 
T*M 
tr or trace 
tri 
V 
Vol 
Wk'p 

Kt 
WMP 

trace-free part of Re 
space of algebraic curvature operators 
side boundary dft x (0, T] 

G dj set of support functions of J C Rk at V 
trace (R) the full trace of R 

tangent space of M at x 
cotangent space of M. at x 
trace 
trilinear form on S2A?TXM 
vector bundle 
volume of a manifold 
Sobolev space of functions with 
< k weak derivatives in Lp 

space of functions locally in Wk,p 

weak maximum principle 



APPENDIX D 

An Overview of Aspects of Ricci Flow 

Well you wore out your welcome with random precision. 
- Prom "Shine On You Crazy Diamond" by Pink Floyd 

In this review appendix we recall some essential results, mostly contained 
in the earlier volumes: Volume One [142], [146], and Part I of this volume 
[135]. The results in this appendix form only a selection of the facts we feel 
are among the most relevant to the discussions in this volume on Ricci flow. 

1. Existence, uniqueness, convergence, and curvature evolution 

1.1. Short time and long time existence and uniqueness. The 
basic result enabling the Ricci flow to be used to study the geometry and 
topology of closed manifolds is the following result of Hamilton [244], whose 
proof was simplified by DeTurck in [169] and [170] (see also Chapter 3 of 
Volume One for an exposition). 

THEOREM D.l (Short time existence—closed manifolds). If(Mn,go) is 
a smooth closed Riemannian manifold, then there exists a unique smooth 
solution g (t), t G [0, T), of the Ricci flow with g (0) = go. 

We also have the following short time existence result of W.-X. Shi [444] 
on noncompact manifolds. 

THEOREM D.2 (Short time existence—complete with bounded curva
ture). If (A4n,go) is a complete noncompact Riemannian manifold with 
bounded sectional curvature, then there exists a complete solution g{t), t G 
[0, T), of the Ricci flow with g (0) — go and sectional curvature bounded on 
compact time intervals. 

Uniqueness of solutions to the Ricci flow on noncompact manifolds in 
the class of complete solutions with bounded sectional curvature is discussed 
in Chen and Zhu [111] (see also Hsu [277]). 

THEOREM D.3 (Uniqueness—complete with bounded curvature). Let 
Mn be a noncompact manifold. If gi (t), t G [0, Ti), and g2 (t), t G [0^T2), 
are complete solutions with bounded sectional curvatures and if g\ (0) = 
g2 (0), then 9l (t) = g2 (t) for all t G [0, min {Ti, T2}). 

Solutions to the Ricci flow may be continued as long as the curvature 
remains bounded (see Theorem 6.45 on p. 201 of Volume One). 

357 
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THEOREM D.4 (Long time existence—closed manifolds). If go is a smooth 
Riemannian metric on a closed manifold M71, then the Ricci flow with 
g (0) = go has a unique solution g (t) on a maximal time interval 0 < t < 
T < oo. Moreover, ifT< oo, then 

lim ( sup |Rm(x,£)| 1 = oo. 
tST\xEM J 

In view of the uniqueness Theorem D.3 and Shi's local derivative esti
mates (Theorem 14.14), we have the following. 

THEOREM D.5 (Long time existence—complete with bounded curva
ture) . / / #o is a complete Riemannian metric on a noncompact manifold 
M.n with bounded sectional curvature, then, in the class of complete solu
tions with bounded sectional curvatures, the Ricci flow with g (0) — go has a 
unique solution g (t) on a maximal time interval 0 < t < T < oo. Moreover, 
if T < oo, then \imty*T (suPxeM l-^m (x,t)\) = oo. 

For finite time singular solutions, Theorem D.4 can be improved to show 
that the Ricci tensor is unbounded (see Sesum [435] or, for an exposition, 
Theorem 6.41 on p. 240 of [146]). 

THEOREM D.6 (Long time existence improved). Under the same hy
potheses as Theorem D.4, we have ifT< oo; then 

lim ( sup |Rc(x,t) | ) = oo. 
t/T \xeM ) 

1.2. Convergence of solutions. The seminal result in Ricci flow is 
Hamilton's classification of closed 3-manifolds with positive Ricci curvature 
(see also Theorem 6.3 on p. 173 of Volume One and Theorem 2.1 on p. 96 of 
[146]). 

THEOREM D.7 (Hamilton, 3-manifolds with positive Ricci curvature). 
Let (Ai3,go) be a closed Riemannian 3-manifold with positive Ricci curva
ture. Then there exists a unique solution g (t) of the normalized Ricci flow 
with g (0) = go for all t > 0. Furthermore, as t -^ oo, the metrics g(t) con
verge exponentially fast in every Cm-norm to a C°° metric g^ with constant 
positive sectional curvature. 

The theorem above gives a useful criterion for when a closed 3-manifold 
is diffeomorphic to a spherical space form, namely it admits a metric with 
positive Ricci curvature. 

REMARK D.8 (Ricci flow on closed surfaces). Global existence and con
vergence to a constant curvature metric is known for the normalized Ricci 
flow on closed surfaces (see Theorem 5.1 on p. 105 in Volume One). 

In dimensions at least 3 we have the following result of Bohm and Wilk-
ing [43] generalizing Theorem D.7 (see Theorem 11.2 in this volume for an 
exposition). 
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THEOREM D.9 (Closed manifolds with 2-positive curvature operator). If 
(Mn, go), where n > 3, is a closed Riemannian manifold with 2-positive cur
vature operator, then there exists a unique solution (.Mn,g(£)), t G [0, oo), 
to the volume normalized Ricci flow with g (0) = go. This solution converges 
exponentially fast in each Ck-norm as t —> oo to a smooth constant positive 
sectional curvature metric. 

When n = 3, the condition of 2-positive curvature operator is the same as 
positive Ricci curvature, so this result is the same as Theorem D.7. Earlier, 
Hamilton [245] proved this result under the stronger hypothesis of positive 
curvature operator for n — 4 and then H. Chen [112] proved this result for 
n = 4. In the case of initial Riemannian metrics on closed manifolds with suf
ficiently pointwise-pinched positive sectional curvatures, convergence of the 
Ricci flow was proved independently by Huisken, Margerin, and Nishikawa 
(see §1 of Chapter 7 in [146] for an exposition of some aspects of their 
proofs). 

Recently Brendle and Schoen [48] proved the following long-standing 
conjecture. 

THEOREM D.10 (Pointwise 1/4-pinched manifolds are space forms). If 
(Mn,g) is a closed Riemannian manifold with Km[n (x) > \Kmax(x) > 0 
for all x G M, then Ai admits a metric with constant positive sectional 
curvature, i.e., M is diffeomorphic to a spherical space form. 

This result is a beautiful generalization of the Rauch-Klingenberg-Berger 
topological sphere theorem, the Micallef-Moore pointwise ^-pinched topo
logical sphere theorem, the differential sphere theorems of Gromoll, Calabi, 
Sugimoto and Shiohama, Karcher, and Ruh,1 and the pointwise pinched 
differentiable sphere theorem of Huisken, Margerin, and Nishikawa. 

The proof of Theorem D.10 is based on combining a new 'curvature cone 
preservation' result with the work of Bohm and Wilking. In particular Bren
dle and Schoen show that weakly positive isotropic curvature is preserved in 
all dimensions n > 4. This result was also independently proved by Nguyen 
[376] (see also Andrews and Nguyen [9] for related work). 

1.3. Evolution of the Riemann curvature tensor. With respect 
to Uhlenbeck's trick, the evolution of the Riemann curvature tensor is given 
by 

d 
-WlRabcd = ^Rabcd + 2 (Babcd - Babdc + Bacbd - Badhc) , 

where Babcd = —RaebfRcedf ( s e e Section 2 of Chapter 6 of Volume One). 
The evolution of the Ricci tensor is 

d 
~^,Rab = ^Rab + ^RacdbRcd-

See [48] for these references. 
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The facts in this paragraph are derived on pp. 185-186 of Volume One. 
Consider the Lie algebra g == (A2T^./Vfn, [•, •]), where the bracket is defined 
by 

(D.l) [U, V]^ = gM (UikV£j - VikUej), 

which is isomorphic to so (n). Given local coordinates {a?4}, define the basis 
{<p(%^ : 1 < i < j < n} for g by 

yjW) =dxi Adxj. 

The structure constants (7, 'y of g are defined by 

A dxs] = (D.2) [dxp A dxq, dxr A dzs] = J^ Cffi^dx* A dxJ. 

We have 

CJpf{rs) = [dxpAdxll,dxrAdxs 
\ij) ~ ^ " " •* - >"•*< " " • * Jij 

(D.3) 
_ 1 / 9gr (%5Sj ~ S?SP) + g«° (grq - 6P6^ 

4 ] +9W (Sft] ~ 51$°) + 9ps (t!Srj ~ SriS]) 

The components of Rm * are given by 
(T)A\ (jim*} - R R r(pq),(rs)r(uv),(wx) 
V-^'^v ixu . i i I — 1^pquvlhrswxK-^ Uj\ (£k) 

(D.5) = 2 (Bikj£ ~ Bujk) . 

Using the first Bianchi identity, we have 

( R m )ijM = 2 (Bijkl - Bijik) • 

Thus 
—-Rm = ARm + Rm 2 + R m # . 
at 

2. The rotationally symmetric neckpinch 

The references for this section are the exposition in Section 5 of Chapter 2 
in Volume One and the original papers [10, 11] by Angenent and one of the 
authors. Remove two points ('poles') P± from Sn and identify <Sn\{P±} with 
(—1,1) x Sn~1. Consider a rotationally symmetric (i.e., SO(n)-invariant) 
metric of the form 

(D.6) g = h(r)2dr2 + f(r)2gsn-i. 

Parameterize by arc length s from a chosen origin, so that ds = h(r) dr. 
Then by equations (2.49)-(2.50) on p. 41 of Volume One, the sectional cur
vatures of g are 

f" I - i f f 
(D.7) Krad = -J— and iYsph = ^ } , 
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where a prime denotes differentiation with respect to s. By equation (2.51) 
of Volume One, the Ricci tensor of (D.6) is 

Re = - (n - 1) fj ds2 + ((n - 2) ^jf^ - ^ j / ( r ) V - i -

Now let (D.6) evolve by Ricci flow, -j^g — —2 Re. Regarding / and h as 
functions of s(r, t) and £, one finds that g evolves by Ricci flow if and only 
if 

(D.8a) £_ = („_!)£./», 

(D.8b) % = f" - (n - 2) -1 " ( / ' ) 2 

= (n- l)Kiad — . 

dt J v ; / ' 
(See equations (2.46)-(2.47) in Volume One.) Note that smoothness at the 
poles is equivalent to the boundary condition limr_^±i f = =Fl, together 
with the fact that (s± — s)-1/ is a smooth, even function of s± — 8, where 
s± denotes the distance from the chosen origin to the poles r = ±1. Note too 
that parameterizing by arc length has the effect of fixing a gauge, thereby 
making system (D.8) strictly parabolic; one pays for this with the commu
tator 

dt' ds_ 
We now describe a set of initial data that will pinch in finite time. We 

call local minima of / necks and local maxima bumps. We call the region 
between either pole and its closest bump a polar cap. Consider the following 
assumptions. 

(1) The metric has at least one neck that is 'sufficiently pinched'. To 
wit, the value of / at the smallest neck is sufficiently small relative 
to its value at either adjacent bump. 

(2) The scalar curvature R = 2(n — l)i^rad + (n — l)(n — 2)ifsph is 
positive everywhere. 

(3) The sectional curvature ifsph tangential to each sphere {r} x Sn~1 

is positive. 
(4) The Ricci curvature is positive on each polar cap. 

Some results below also use the following additional hypothesis. 
(5) The metric is reflection symmetric, i.e., f(r) = /(—r), and the 

smallest neck occurs at the origin r = 0. 
Note that assumption (3) is equivalent to the gradient bound | / ' | < 1 

and hence is easily achieved by scaling h. Note too that assumption (5) 
implies that the antipodal map is an isometry, so that the metric descends 
to a solution on 

The following result of Angenent and one of the authors yields the ex
istence of neckpinches under assumptions (l)-(4). (See Theorem 2.16 of 
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Volume One.) Theorem D.12 below shows that the stated estimates are 
sharp. 

THEOREM D.l l (Existence of rotationally symmetric neckpinch). As
sumptions (l)-(4) above define an open set of initial data go in the space of 
rotationally symmetric metrics on Sn such that for each metric go in this 
open set, there exists a unique rotationally symmetric solution g (t) of Ricci 
flow on Sn with g (0) = go- This solution forms a Type I singularity at a 
finite time T = T(go). Let s(t) denote the location of the smallest neck at 
time t. Then there exist C < oo and S > 0 such that the following estimates 
hold for the cylindrical radius function f. 

(1) (Interior cylinder estimate) In the innermost region 

(D.9) 

(D.10) 

\s-s\ <2X (T-t)log 

we have 

l + o ( l ) < f(r,t) 
y/2(n-2)(T-t) 

uniformly as t /* T. 

< 1 + C (s(r,t)-s(t)f 
( T - t ) l o g ( ^ ) 

(D.ll) 

In particular, for s — s = o I \ l(T — i) log ( T^I j L we have 

f(r,t) = 1 + o(l) ast /T. y/2{n-2){T-t) 

(2) (Intermediate cylinder estimate) In the intermediate annular re
gions 

(D.12) 2 W ( r - t ) i o g 
T-t 

1-6 
<\s-s\< ( r - t ) " ^ 

we have 

(D.13) 
f(r,t) < c s(r,t)-s(t) 
VT 

log 
s(r,t)-s(t) 

( T - i ) i o g ( ^ ) ^ ^ ( r - t ) i o g ( ^ ) 
/ 

If one adds assumption (5), then one can derive stronger estimates. (See 
[11].) In this case, it is convenient to take r = 0 as the origin, so that 
s(r,t) = JQ h(p)dp and s(t) = 0. Let T < oo denote the singularity time, 
and let 

/ 
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denote the radius of the neck rescaled by the radius of the shrinking round 
cylinder singularity model. Let 

s 

VT^t 
denote the rescaled distance to the neck, and let 

r = log — 

denote rescaled time. Note that r —» oo as t —• T_. 
THEOREM D.12 (Asymptotics of rotationally symmetric neckpinch). Un

der assumptions (l)-(5), the singularity time T is a continuous function of 
the initial datum go. The diameter remains bounded for all t G [0, T), and 
the singularity occurs only on the hypersurface {0}xS'n _ 1 . As the singularity 
develops, the solution exhibits the following asymptotic profile. 

Inner region: on any interval \a\ < A, one has 

(D.14) ix(<r, r) — 1 -\ \- o I — ) uniformly as r —> oo. 
8r \TJ 

Intermediate region: on any interval A < \a\ < By/r, one has 

a2 

(D.15) u(ay T) = \ 11 + (1 + o(l)) — uniformly as r —> oo. 

Outer region: for any e > 0, there exist C > 1 and t < T such that 
(D.16) 

l>/^2-e} , S <f(r,t)< (IV^^ + s) , S 

for all points near the neck such that \a\ > Cy/r and t G (t,T). 
REMARK D.13. Under assumptions (l)-(5), the solution g (t) descends 

to a solution on RPn , where the singularity forms along an RP n _ 1 . 
EXERCISE D.14. Show that for any e > 0, there is a te < T such that 

there exists an embedded e-neck2 in (<Sn, g (t)) for t G (t£,T). 

REMARK D.15. Roughly speaking, if L{t) — o ( w log(^^) J for t near 
T, then for every e > 0 there is a te < T such that there exists an embedded 
e-neck with normalized length L (t) in (Mn, g (t)) for t G (t£,T). 

For the convenience of the reader, we recall some estimates that are 
useful in the proof of Theorem D.l l . See Propositions 2.20, 2.30, and 2.36 
in Volume One. (Theorem D.12 requires weighted 1? estimates; see [11] for 
a complete proof.) 

PROPOSITION D.16 (Estimates for neckpinches). Let g(t) be a solution 
to Ricci flow of the form (D.6). If g(0) = go satisfies assumptions (l)-(4), 
then the following hold for as long as the solution exists. 

See Hamilton [255] or Part III of this volume for the definition of 'e-neck'. 
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(1) The gradient bound 

(D.17) | / ' | < 1 

is preserved. 
(2) The scale-invariant difference of the sectional curvatures 

a = f2(Ksph -X r ad) 

is uniformly bounded: 

(D.18) sup|a(-,t) | < A = sup|a(-,0)|. 

(3) The full curvature is controlled by the radius of the <Sn_1 factor; 
that is, there exists C = C(n,go) such that 

(D.19) |Rm| < -fi. 
C_ 
P 

(4) The radius f is strictly decreasing pointwise, and / 2 is uniformly 
Lipschitz in time, satisfying 

(D.20) - ( / 2 ) <2(A + n - l ) . 

(5) The radius fmin(t) of the smallest neck satisfies 

(D.21) (n - 2)(T - t) < fmin(t)2 < 2(n - 2)(T - t). 

(6) The singularity is of Type I. That is, there exists C = C(n^go) such 
that 

(D.22) | R m | < 
T-t 

(7) The solution has the Sturmian property. That is, the number of 
zeroes of f is finite and nonincreasing in time. If f ever has a 
degenerate critical point, i.e., a point such that f = f" = 0, then 
the number of zeroes of f decreases. 

(8) The solution remains concave on the polar caps, i.e., KY3i& > 0 
there. If r(t) denotes the location of the right-most (left-most) 
bump, then the limit D = limt//T f{r(t),t) exists. Also, if D > 0, 
then no singularity occurs on the polar cap. 

(9) Letc = 2- log (inf (Ksph(-, 0))). The quantity 

(D.23) F = - ^ l o g ( ^ 8 p h + c) 

is bounded from above by max{n — 2,supF(-,0)}. 
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3. Curvature pinching, derivative, and Harnack estimates 

3.1. Curvature pinching estimates. The curvature pinching esti
mates used to prove Theorem D.7, discussed in Chapter 6 of Volume One, 
were reviewed on pp. 461-463 in subsection 2.4 of Appendix A of Part I of 
this volume. 

The Hamilton—Ivey 3-dimensional curvature estimate was proved 
in [252] and [286], with the former paper proving the 'time-dependent fiber-
wise convex set' version (see also Theorem 9.4 on p. 258 of Volume One or 
Theorem 6.44 on p. 241 of [146]). The estimate says that for solutions to the 
Ricci flow on closed 3-manifolds, in the high curvature regions (i.e., where 
|Rm| is large) the sectional curvatures are almost nonnegative. In particular, 
this result applies to finite time singular solutions. 

THEOREM D.17 (Hamilton-Ivey estimate). Let (M3,g(t)) be a complete 
solution of the Ricci flow with bounded curvature on a 3-manifold for 0 < 
t < T. If Ai (Rm) (x,0) > - 1 for all x G M3, then at any point (x,t) G 
Ms x [0,T) where Ai (Rm) (x,t) < 0, we have 
(D.24) R > |Ai (Rm)| . (log |Ai (Rm)| + log (1 + t) - 3). 
In particular, 
(D.25) R > |Ai (Rm)| • (log |Ai (Rm)| - 3). 

REMARK D.18. For the justification of this result in the noncompact 
case, see subsection 5.1 of Chapter 12. 

As a consequence of the theorem, solutions to the Ricci flow on closed 
3-manifolds have 0-almost nonnegative curvature (see also §12.1 of [402], 
Corollary 6.47 on pp. 243-244 of [146], or Section 2 of Chapter 10). 

Let ip : (e3, oo) —> (0, oo) be defined by i\) (x) = x (logx — 3). 

COROLLARY D.19 (A 3-dimensional solution has (/)-almost nonnegative 
curvature). 7/ (M3,g(t)), t G [0,T)? is a solution of the Ricci flow on a 
closed 3-manifold with 

Ai(Rm)(x,0) > - 1 
for all x G M3, then 
(D.26) Ai (Rm) > - 0 (R) R - 3e6 

on M3 x [0, T), where 4> : R —> [0, oo) is defined by 

[ 0 ifu<3e6. 
The function (f) is bounded, on the interval [3e6,oo) it is decreasing, and 
lim^^oo (j) (u) = 0. Note also that ucj) (u) is nonnegative for all u G R. 

As mentioned above, another consequence of the Hamilton-Ivey estimate 
is that 3-dimensional ancient solutions have nonnegative sectional curvature 
(see also Lemma 6.50 on p. 244 of [146]). 



366 D. AN OVERVIEW OF ASPECTS OF RICCI FLOW 

LEMMA D.20 (A 3-dimensional ancient solution has Rm > 0). Every 
3-dimensional complete ancient solution with bounded curvature has non-
negative sectional curvature. 

Note that, in any dimension, complete ancient solutions with bounded 
curvature have nonnegative scalar curvature. 

3.2. Strong maximum principle applied to Rm and 3-dimen
sional rigidity. As a consequence of Lemma D.20, we are interested in the 
structure of solutions on 3-manifolds with nonnegative sectional curvature. 
Fortunately such solutions are rather rigid. In all dimensions Hamilton's 
[245] strong maximum principle for Rm says the following (see also 
Theorem 6.60 on p. 247 of [146]). 

THEOREM D.21 (Strong maximum principle for Rm). Let (Mn,g(t))y 
t G [0, T), be a solution to the Ricci flow with nonnegative curvature operator: 
Rm [̂  (t)] > 0. There exists 6 > 0 such that for each t £ (0,8), the set 
Im(Rm [g (£)]) C A2T*A4n is a smooth subbundle which is invariant under 
parallel translation and constant in time. Moreover, Im(Rm[p(x,t)]) is a 
Lie subalgebra of A2T*Mn = so (n) for all x G M and t G (0,5). 

The aforementioned rigidity of 3-dimensional solutions with Rm > 0 is 
exhibited in the following classification of closed 3-manifolds with Rm > 0 
or Re > 0 due to Hamilton (see also Theorem 6.64 on p. 249 of [146]). 

THEOREM D.22 (3-manifolds with Rm > Oor Re > 0). If(M3,g(t)), t G 
[0, T), is a solution to the Ricci flow on a closed 3-manifold with nonnegative 
sectional (Ricci) curvature, then fort G (0, T) the universal covering solution 
[MS,g{t)j is either 

(1) R3 with the standard flat metric, 
(2) the product (<S2,/i(£)) x R, where h(t) is a solution to the Ricci 

flow with positive curvature, or 
(3) it has positive sectional (Ricci) curvature, and hence M3 is dif-

feomorphic to S3 (and M3 is diffeomorphic to a spherical space 
form). 

3.3. Derivative estimates. Returning to general solutions of the Ricci 
flow with bounded curvature, we recall the Bernstein—Bando—Shi global 
derivative of curvature estimates (BBS estimates), which reflect the 
smoothing property of the Ricci flow (see also Theorem 6.6 on p. 215 of 
[146]). 

THEOREM D.23 (Derivative estimates—global). If(Mn,g(t)), t e [0,T), 
is a solution of the Ricci flow on a closed manifold, then for each a > 0 and 
every m € N; there exists a constant C (m, n, a) depending only on m, n, 
and max {a, 1} such that if 

|Rm(x,*)|9(t) < K for all x e Mn andte [0, ̂ -] D [0,T), 
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then 
(D.27) 

\VmRm(x,t)\g(t) < C{mp2
a)K for all x € Mn and t € (0, - | ] n [0,T). 

Local versions of the above estimates are Shi's local derivative of 
curvature estimates (see also Theorem 6.9 on p. 216 of [146]). Such 
estimates form a fundamental tool in understanding singularity formation 
for solutions of the Ricci flow. 

THEOREM D.24 (Derivative estimates—local). For any a, K, r, n, and 
m G N, there exists C < oo depending only on a, K, r, n, and m such that 
if Mn is a manifold, p G M, and g(t), t G [0,7b], where 0 < 7b < a/K, 
is a solution to the Ricci flow on an open neighborhood U of p containing 
Bg(o) {Pir) as a compact subset, and if 

\Rm(x,t)\ <K for all x e U and t G [0,T0], 

then 
\V™Rm(y,t)\<C^K^n^ 

tm/2 

for all y G Bg{0) (p,r/2) and t G (0,2b]. 

Generalizing the above estimates, we also have the following global 
higher derivative estimates for the curvatures assuming bounds on some 
derivatives, due to one of the authors, as stated in Theorem 6.65 on p. 251 
of [146] (see Theorem 14.16 in this book for the proof). 

THEOREM D.25 (Modified global derivative estimates). For any con
stants a, K, r, £ > 0, n, and m G N, there exists a constant C < oo depending 
only on a,K,r,l,n, and m such that if Mn is a manifold, p G A4, and if 
g (t), t G [0, To], where 0 <TQ < a/K, is a solution to the Ricci flow on an 
open neighborhood U of p containing Bg^ (p, r) as a compact subset, and if 

\Rm(x,t)\ < K for all x eU and t G [0,T0], 

V fcRm(x,0) < K for all x G U and k < £, 

then 

|VmRm(y,t) | < r C , n l / 9 

for all y G Bg{0) (p,r/2) and t G (0,T0]. 

3.4. Differential Harnack estimates. Hamilton's trace Harnack 
estimate for the Ricci flow [247] says the following (see also Corollary 
15.3). 

THEOREM D.26 (Trace Harnack estimate for Ricci flow). If (Mn , g{ t)), 
t G [0, T), is a solution to the Ricci flow with nonnegative curvature operator, 
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so that RijkiUijUik > 0 for all 2-forms, and if (Mn , g( t)) is either compact 
or complete noncompact with bounded curvature, then 

(D.28) ^ + - + 2 (Vi?, V) + 2 Re (V, V)>0 

for any vector field V and t > 0. In particular, taking V = 0, one obtains 

Hence, for any x E M, and 0 < t\ <t2, we have 

R(x,t2) > —R(x,ti). 

The above estimate (D.28) follows from tracing the following more com
plicated 'matrix Harnack estimate' (see Theorem 15.1). 

THEOREM D.27 (Matrix Harnack estimate for Ricci flow). If(Mn, g( t)), 
t G [0, T), is a complete solution to the Ricci flow with bounded Rm > 0; 
then for any l-form W G C°° (klM) and 2-form U G C°° (A2M) we have 

(D.30) MijWiWj + 2PpijUpiWj + RpijqUpiUqj > 0, 

where Mij and Ppij are defined by (15.9) and (15.5), respectively. 

The assumption of nonnegative curvature operator is not very restrictive 
in dimension 3 in the sense that ancient solutions with bounded curvature 
satisfy this assumption. This is a consequence of Lemma D.20 above. 

A generalization of Theorem D.26 is the following (see Section 2 of Chap
ter 20 of Part III of this volume). 

THEOREM D.28 (Linear trace Harnack estimate). Let (Mn, g(t) ,h (t)), 
t G [0,T), be a solution to the linearized Ricci flow system 

d_ 
dt 
d 

fl+yij ~ *Rij-> 

rs-hij = (ALH)- = Ahij + 2Rkijihk£ — Rik^kj — Rjkhki 

such that g (t) is complete with bounded nonnegative curvature operator, 
h (0) > 0, and h (t) satisfies the bounds 

(D.31) | / i (x ,0) |<eA( 1 +^(°) ( x 'O )) , 

(D.32) [ [ e~Bd2^)(x'0)\h(x,t)\2dfig{t)dt<oo 
Jo JM 

for all x G M and t G [0,T), where O G M. Then h(t) > 0 for t G [0,t) 
and for any vector V we have 

(D.33) Z = div (div (h)) + (Re, h) + 2 (div (h), V) + h (V, V) + ^ > 0, 

where H — g^hij. 
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Theorem D.26 is the special case where h = Re (this choice of h is 
dt possible since Jr Re = A^ Re under the Ricci flow). 

4. Perelman's energy, entropy, and associated invariants 

In [402] Perelman introduced new monotone invariants for arbitrary 
solutions of the Ricci flow on closed manifolds. 

4.1. Energy and entropy monotonicity formulas. Perelman's en
ergy functional T is defined, for a Riemannian metric g and function / , by 
(5.1) on p. 191 of Part I of this volume, i.e., 

(gj) = j ( i?+|V/ |2)e-^. 
IM 

The first variation of T at (gij, f) in the direction (vij,h) is given by (Lemma 
5.3 on p. 192 of Part I of this volume) 

(D.34) 5{vMT(g,f) = - f % ( i ^ + V i V i / ) e " - f ^ 
JM 

+ fM(j-h) (2Af ~ lV/l2 + R) e_ /^' 
where V = g^Vij. The energy monotonicity formula says that under the 
evolution equations (5.34)-(5.35) on p. 199 of Part I of this volume, i.e., 

(D.35) ^ = - 2 Re, 

(D.36) | £ = - A / + |V/ | 2 - fl, 

we have (see (5.41) on p. 201 of Part I of this volume) 

(D.37) ^(g(t)J(t)) = 2 [ |Rc+VV/|2e-^. 

The pre-Harnack-type quantity ((5.42) in Part I of this volume) 

V = (2A/ - |V/ | 2 + R)e~f 

satisfies the evolution equation ((5.43) in Part I of this volume) 

• * F ~ f - | - - A + R J V = - 2 | Re + V V / | 2 e " / . 

Integrating this formula yields (D.37) (see p. 202 of Part I of this volume). 
The entropy functional W is defined, for a Riemannian metric g, function 

/ , and number r > 0, by ((6.1) on p. 222 of Part I of this volume) 

W(p, / , r ) = J [r (R + | V j f ) + / - n] {^T)-n'2e~U^ 
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The first variation of W at (gij,f,r) in the direction (vij,h,Q is (Lemma 
6.1 on p. 223 of Part I of this volume) 

(D.38) 

8W(v,h,0 (9, f, T) 

= J (-rvij + C9ij) \Rij + V i V j / - ^giA (4TTT)-n/2e-fdn 

|V / | 2 + / ~ n ~ 1 " ) (47rr)-"/2e-^/x. +iAi->-m*+>«-
Perelman's entropy monotonicity formula says that under the evolution 
equations (6.14)-(6.16) on p. 225 of Part I of this volume, i.e., 

d_ 
(D.39) 

(D.40) 

(D.41) 

aj.9ij — Zrtij) 

dt ' 

dt 

A/ + | V / | 2 - i ? + n 
27' 

we have ((6.17) on p. 226 of Part I of this volume) 

±W(g(t)J(t),r(t)) 

(D.42) J* 
JM 

Rc+vv/--s (47rr)-n/2e-fdfi > 0. 

Perelman's Harnack-type quantity for the adjoint heat equation ((6.20) on 
p. 227 of Part I of this volume), i.e., 

(i? + 2 A / - | V / | 2 ) + / - n ] ( 4 7 r r ) -n/2-f 

satisfies the evolution equation ((6.22) in Part I of this volume) 
1 |2 

\3*v = - 2 r R c + V V f - — g (ATTT) -n/2-f 

Integrating this yields (D.42) (see p. 228 of Part I of this volume). 

4.2. Associated monotonici ty of invariants. In this subsection we 
recall the monotonicity of invariants associated to the energy and entropy 
monotonicity formulas. 

Given a closed manifold M, let 2Jtet denote the space of smooth Rie-
mannian metrics on M. The A-invariant A : 9Jtet —> R is defined by ((5.45) 
on p. 204 of Part I of this volume) 

(D.43) \(g) = ini f. f(g, f) : feC™(M), J e~U^ = \\. 
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Taking w = e~^2, we have ((5.46)-(5.47) on p. 204 of Part I of this volume) 
(D.44) 

\{g) = inf i g(g, w) = U \Vw\2 + Rw2\ dfi : / v?d\i = 1, w > 0 1 . 

One can prove the following (see (5.48) in Part I of this volume for 
part (1) and Lemma 5.22 on pp. 204-205 of Part I of this volume for parts 
(2)-(4)). 

(1) The Euler-Lagrange equation for Q(g,w) as a functional of w is 

(D.45) Lw = -4Aw + Rw = G(g, w)w. 

(2) The invariant A (g) is equal to the lowest eigenvalue of the elliptic 
operator —4A + R. 

(3) There exists a unique minimizer WQ (up to a change in sign) of 
G(g,w) under the constraint JMw2dfi = 1. This minimizer wo is 
positive and smooth. 

(4) The function wo is the unique positive eigenfunction of 

(D.46) -4Aw0 + Rw0 = Xi (g) w0 

with L2-norm equal to 1. 
In terms of the functional J7, there exists a unique smooth minimizer /o 

oiT(g, •) under the constraint JM e~^d/i = 1. The minimizer fo = — 21ogu>o 
of T (g, •) is unique, C°°, and a solution to (Lemma 5.23 on p. 206 of Part 
I of this volume) 

(D.47) A(5) = 2 A / 0 - | V / o | 2 + JR. 

We have the following upper and lower bounds for A (p. 206 of Part I 
of this volume): 

(D.48) B^<m<r = ^^\Mm». 

We also verify that A depends continuously on g (Lemma 5.24 on p. 207 of 
Part I of this volume gives an effective estimate). In regards to the Ricci 
flow, we have the following (Lemma 5.25 on p. 209 of Part I of this volume). 

LEMMA D.29 (A-invariant monotonicity). If (Mn,g(t)), t e [0,T], is a 
solution to the Ricci flow, then 

!*(,«)) > Ix'W)), 
where the derivative -^ is in the sense of the lim inf of backward difference 
quotients. Hence X(g(t)) is nondecreasing in t G [0,T]. 

As an application, we have the following 'no breathers' result. A steady 
Ricci breather is a solution where the metrics at two different times are 
isometric (Lemma 5.28 on p. 210 of Part I of this volume). 
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LEMMA D.30 (No nontrivial steady breathers on closed manifolds). / / 
{Mn,g(t)) is a solution to the Ricci flow on a closed manifold such that 
there exist t\ < £2 with \(g(t\)) = A (#(£2)), then g (t) is Ricci flat. In 
particular, a steady Ricci breather on a closed manifold is Ricci flat. 

We may also consider the normalized A-invariant ((5.58) on p. 211 of 
Part I of this volume), i.e., 

(D.49) \(g) = X(g)-Vo\(M)2/n. 

Under the Ricci flow, we have the monotonicity of A when it is nonpositive 
(Lemma 5.30 on p. 212 of Part I of this volume). 

LEMMA D.31 (A-invariant monotonicity when A < 0). Let g(t) be a 
solution to the Ricci flow on a closed manifold Mn. If at some time t, 
A (t) < 0, then at that time we have 

(D.50) | A (<?(*)) 

1 | 2 

R c + V V / - - ( # + A/)<7 
n 

e~sd\x > 0, >2Vol2/n (g(t)) / 
JM 

where f (t) is the minimizer for T' (g (£),•), and the time-derivative is defined 
as the liminf of backward difference quotients. In particular, if ^A (g (*)) = 
0, then g (t) is a gradient Ricci soliton. 

The above lemma rules out nontrivial expanding breathers on closed 
manifolds (Lemma 5.31 on p. 213 of Part I of this volume). 

LEMMA D.32 (NO nontrivial expanding breathers). Expanding or steady 
breathers on closed manifolds are Einstein. 

We have the following monotonicity formula for the classical entropy 

M = / fe~^djji = — I ulogu dfi, 
JM JM 

where u = e~f (Lemma 5.35 on p. 215 of Part I of this volume). 

LEMMA D.33 (Monotonicity formula for the classical entropy). Suppose 
(Mn,g(t)J(t)), t G [0,T), is a solution of (D.35)-(D.36) on a closed 
manifold A4. Then 

f(g(t))>l^e-fd^ F(g(t)y 

(D.51) F(g(t)) < ^ — ^ f e-fdfji. 

This implies the following classical entropy monotonicity formula: 

(D-52> i ( * - ( n j ( M «- '* ) i ' *< r -«>)** 
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5. Compactness, no local collapsing, and singularity models 

5.1. Hamilton's Cheeger-Gromov-type compactness theorem 
for solutions. Hamilton has proved a Cheeger-Gromov-type compactness 
theorem for sequences of complete solutions of the Ricci flow with bounded 
curvatures and injectivity radii. The following statement is Theorem 3.10 on 
p. 131 of Part I of this volume (an exposition of a proof, following Hamilton's 
[253], is given in Chapters 3 and 4 of Part I of this volume). 

THEOREM D.34 (Compactness for solutions). Let {(M%, gk (t), Ok)}keN, 
t G (a, a;) 3 0, be a sequence of complete pointed solutions to the Ricci flow 
such that 

(1) (uniformly bounded curvatures) 

\R>mk\k ^ Co on Mk x (a,a;) 

for some constant Co < oo independent of k and 
(2) (injectivity radius estimate at t = 0) 

in<Wo) (° f c) - ^ 
for some constant LO > 0. 

Then there exists a subsequence {jk}keN su°h that {(Mjk^9jk (t) jOjk)}keN 
converges to a complete pointed solution to the Ricci flow (M^^goo (t), Ooo)> 
t G (a, a;), as k —> oo. 

The result above is basic to understanding the formation of singularities 
for solutions of the Ricci flow. In particular, given a singular solution and a 
sequence of space-time points, one may dilate the solution about these points 
to obtain a sequence of solutions to the Ricci flow. The compactness theorem 
gives a criterion for when there exists a subsequence which converges. 

REMARK D.35 (Compactness without inj bound). In [207] Glickenstein 
proved an analogue of the above theorem where the injectivity radii of the 
solutions in the sequence are not assumed to be bounded from below. 

5.2. Perelman's no local collapsing theorem. The understanding 
of singularity formation was greatly advanced by Perelman's no local col
lapsing (NLC) theorem (Theorem 4.1 in Perelman's [402]; for expositions, 
see also Theorem 5.35 on p. 194 of [146] or Theorem 6.58 on p. 256 of Part 
I of this volume). 

THEOREM D.36 (Perelman—no local collapsing). Let g(t), t G [0,T), be 
a smooth solution to the Ricci flow on a closed manifold Ain. If T < oo, 
then for any p G (0, oo) there exists n = K ( # ( 0 ) , T , p) > 0 such that g(t) is 
K-noncollapsed below the scale p for all t G [0,T). 

Perelman also proved an improved version of his no local collapsing 
theorem (see also Theorem 6.74 on p. 267 of Part I of this volume). 
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THEOREM D.37 (NO local collapsing theorem improved). Let (Mn, g (£)), 
t G [0, T% be a solution to the Ricci flow on a closed manifold with T < oo 
and let p G (0, oo). There exists a constant K — K(n,g(0), T, p) > 0 such 
that if p G M, t G [0, T), and r G (0,p] are s-ac/i £/ia£ 

R < r~2 in Bg{t) (p, r ) , 

Vol^) Bg(t) (p, s) ^ 
-^ AC 

5 n -
/or all 0 < s < r. 

5.3. p- and ^-invariants, monotonicity, and volume ratios. The 
p-invariant is defined by ((6.49) on p. 236 of Part I of this volume) 

fi(g, T) = inf tw(g, f,r):J {^r)-n'2e-f d^i = l | 

and the ^-invariant is defined by ((6.50) in Part I of this volume) 

Ks) = i n f { p ( s , T ) : T G R + } . 
The Euler-Lagrange equation of W(#, / , r ) as a functional of / subject to 
the constraint JM(47rr)~n/2e-fdp = 1 is ((6.51) on p. 237 of Part I of this 
volume) 

r ( 2A/ - |V/ | 2 + R) + / - n = W(g, f, r ) . 

For any given g and r > 0 on a closed manifold M.n (Lemma 6.23 in 
Part I of this volume), 

(D.53) p(g,r) > - o o 

is finite. 
For any metric g on a closed manifold Mn and r > 0, there exists a 

smooth minimizer fT of W (#, •, r ) in the space 

if e C°°(M) : y (AKT)-n'2e-fdiig = l | 

(Lemma 6.24 on p. 238 of Part I of this volume). 
The entropy monotonicity formula implies the following (Lemma 6.26 

on p. 239 of Part I of this volume). 

LEMMA D.38 (p-invariant monotonicity). Let (Mn,g(t),), t G [0,T], 
be a solution of the Ricci flow on a closed manifold with r (t) > 0 satisfying 
^ = - 1 . For all 0 < h < t2 < T, we have 

(D.54) p (g ( t2) , r (t2)) >fi(g (h), r (tx)). 

Since we have C°° Cheeger-Gromov convergence by the compactness 
theorem when we extract a limit of a sequence of rescalings of a singular 
solution of the Ricci flow, we consider the p-invariant under C°° Cheeger-
Gromov convergence (Lemma 6.28 on p. 240 of Part I of this volume). 
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LEMMA D.39 (p under Cheeger-Gromov convergence). Suppose that we 
have (Aff},gk,%k) ~^ CA/^POOJ^OO) in the C°° Cheeger-Gromov sense. Then 
for any r > 0, 

l^(goo^r) > l imsupp(g k ,r) . 

As an application of the /i-invariant monotonicity we have the following 
(Theorem 6.29 on p. 242 of Part I of this volume). 

THEOREM D.40 (Shrinking breathers are gradient solitons). A shrinking 
breather for the Ricci flow on a closed manifold must be a gradient shrinking 
Ricci soliton. 

The behavior of p (#, r) for r large has the following property (Lemma 
6.30 on p. 243 of Part I of this volume). 

LEMMA D.41 (/i —• oo as r —• oo when A > 0). If \{g) > 0, then 
lim p (g, r) = oo. 

T—>00 

The behavior of p (#, r ) for r small has the following properties (Lemma 
6.33 on p. 244 of Part I of this volume). 

LEMMA D.42 (Behavior of p{g,r) for r small). Suppose {Mn,g) is a 
closed Riemannian manifold. 

(i) There exists f > 0 such that 
p (g, r ) < 0 for all r G (0, f). 

(ii) 
lim fi (5, r) = 0. 

T—>0+ 

The ^/-invariant has the following properties (Lemma 6.35 on pp. 244-245 
of Part I of this volume). 

LEMMA D.43 (^-invariant monotonicity). Let (Mn,g(t)), t e [0,T), be 
a solution to the Ricci flow on a closed manifold. 

(1) The invariant i/(g(t)) is nondecreasing on [0, T), as long as u(g(t)) 
is well defined and finite. 

(2) Furthermore, if X (g (t)) > 0 and ifv(g(t)) is not strictly increasing 
on some interval, then g(t) is a gradient shrinking Ricci soliton. 

(3) Ifv(g(to)) — —ex) for some to, then v(g{t)) — —oo for allt G [0, to] • 

A link between //-monotonicity and no local collapsing is given by the 
following (Proposition 6.64 on pp. 258-259 of Part I of this volume). 

PROPOSITION D.44 (/J, controls volume ratios). Let p G (0, oo). There 
exists a constant C2 = C2 (^,p) < 00 such that if (Mn,g) is a closed 

Riemannian manifold, p G M and r G (0, p] are such that Re > —c\ (n) r~2 

and R < c\ (n) r~2 in B (p, r ) , then 

(D.55) v (g, r2) < log Y o l B ^ + c2 (n, p). 
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That is, 

In particular, if for some K > 0 and r £ (0,p\ the metric g is K-collapsed at 
the scale r, then 

v{g,r2) < log K + C2 (n, p). 

More specifically we have the following (Proposition 6.70 on pp. 264-265 
of Part I of this volume). 

PROPOSITION D.45 (Bounding \i by the scalar curvature and volume 
ratio). The /^-invariant has the following upper bound in terms of local geo
metric quantities. For any closed Riemannian manifold [Mn,g) , point 

p € Mj and r > 0, we have 
(D.56) 

/ r2 [ R+dfi\ 
JB( (~ 2\ ^^ Vol B(p,r) \i{g,r2) <log ^ ^ + 36+ "BM Vol S ( p , r ) 

VolB(p, r /2) ' Vol B(p , r ) 
v / 

where i?+ = max {i?, 0} is £/ie positive part of the scalar curvature. 

The ^-invariant controls volume ratios (Proposition 6.72 on p. 266 of 
Part I of this volume). 

PROPOSITION D.46 (Bounding volume ratios by vr). If (Mn,g) is a 
closed Riemannian manifold, R < c\ (n) r~2 in B (p, r), and 0 < s < r, then 

Vol£(P>*) > e-3-(36+Cl(n))e«/r(§) 

where 
isr(g) = inf u(g,r) >v{g) 

r€(0 , r 2 ] 

5.4. Existence of singularity models. When combined with the 
compactness theorem (Theorem D.34), Theorem D.36 yields the existence 
of singularity models for finite time singular solutions on closed manifolds 
and it helps classify these singularity models. In particular, we have the 
following (see also Corollary 5.48 on p. 202 and Corollary 5.51 on p. 203 of 
[146] or Corollaries 3.26 and 3.29 on pp. 142-143 of Part I of this volume). 

COROLLARY D.47 (Obtaining singularity models). Let (Mn,g(t)), t £ 
[OjT), T < oo, be a singular solution to the Ricci flow on a closed manifold. 
If {(xi,ti)} is a sequence of points and times with U —> T and if for some 
C < oc and (3 > 0 

(D.57) sup |Rm| < CKU 
Mnx[u-(3K-\ti} 
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where K{ = |Rm(xi,£j)| —> oo, then there exists a subsequence such that the 
dilated solutions (Ain,gi (t) ,Xi), where 

9i (t) == Ki9 (U + K-H) , 

converge to a complete limit solution {M^^goo (t), #00) of the Ricci flow 
defined on the time interval [—/?, 0] on a possibly noncompact and topologi
cal^ distinct manifold M7^ with |Rmoo| < C. Moreover, there exists K, > 0, 
independent of {(xi,U)}, such that (M1^, goo {t)) is n-noncollapsed on all 
scales. 

Since for all AS > 0 the cigar is ^-collapsed at all large enough scales 
(see Exercise 5.54 on p. 204 of [146]), we have the following consequence 
(Corollary 5.55 on p. 205 of [146]). 

COROLLARY D.48 (The cigar is not a finite time singularity model). Let 
(Mn,g(t)), t G [0,T), be a solution to the Ricci flow on a closed manifold 
with T < oc. The cigar soliton (E2 ,5s) or its product with a flat solution 
to the Ricci flow (such as the line) cannot occur as a singularity model 

The following will appear in Chapter 20 in Part III of this volume. 

THEOREM D.49 (Immortal solutions are expanding gradient solitons). 
Let {Mn,g{t)), t G (a, oo); be a complete immortal solution to the Ricci 
flow such that g(t) has nonnegative curvature operator andtR(x,t) achieves 
its space-time maximum somewhere at (xo,to). Assume further that M 
is simply connected with positive Ricci curvature. Then (M,g(t)) is an 
expanding gradient soliton. 



APPENDIX E 

Aspects of Geometric Analysis Related to Ricci 
Flow 

This is the world we live in, and these are the hands we're given. 

- Prom "Land of Confusion" by Genesis 

In this appendix we collect some basic results in geometric analysis which 
are related to the results and techniques in Ricci flow. 

1. Green 's function 

In this section we discuss the Green's function first on Euclidean space 
and then on complete Riemannian manifolds. Two references for this section 
are §2.2.4 of Evans [185] and Aubin [16]. 

1.1. The Green's function on Euclidean space. The Euclidean 
Green's function on En , where n > 3, is defined by 

(E.l) T(x, y) = } - \x - y\2-n. 
(n — 2) nujn 

Here uon denotes the volume of the unit n-ball Bn, so that nuon is the 
area of the unit (n — l)-sphere <Sn_1. When n = 2, we define Y{x,y) = 
— ̂  log \x — y\. Henceforth we consider the case n > 3 and leave the re
maining case of n — 2 to the reader. 

As we shall see in the next subsection, the Euclidean Green's function 
is the fundamental solution of t he Laplace equation. That is, its 
Laplacian is, in the sense of distributions, the negative of the <S-function. 

In preparation, we compute the partial derivatives of V up to second 
order. The first partial derivatives of the Euclidean Green's function are 
given by 

l?r(a'y)=(nJ)n^(£(^-^ 
(2-n)/2 

* ~ y J 
\k=i / 

1 xl - yl 

nuM£Li(*fc-?/fc)2)n/2' 
Let r = \x — y\. Taking the norm of (E.2), we have 

1 1 
(E.3) 

dxl v J < 
nun r" 

379 
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since \xl — yl\ < r. Consequently, for any bounded domain ft we have that 
both T(x,y) and |^-T(x,?/) | are integrable over ft. This implies we can 
interchange the order of differentiation and integration of T, so that for any 
C1 function / with compact support, we have 

(E.4) A J T(x, y)f{yW (y) = j ^ (J^iT(x, y)) Hv)dfi (y) • 

Next we compute the Hessian of T: 

d2 

dxldxi 
?r(x,j/) 

1 d x3 — y3 

(E.5) = < 

ncon dxi \(Y2=l{xk - yk)2)n/2 

1 (x< - yi){xi - yi) 
UJn rn+2 

,i\2 1 (xl - yl 

rn+2 
1 1 if i = j . 

In particular, taking the trace of this formula, we obtain 

(E.6) Axr(x,j/) = 0 

for x ^ y. By symmetry, we also have A2/r(x, y) = 0 for x ^ y. 
By (E.5), we have 

d2 

dx{dxi 
T{x9y) < 

un \x - y\r 

However for x G fi the function on the RHS is not integrable with re
spect to y over $1, so the above estimate is not sufficient to show that we 
can interchange the order of differentiation and integration in computing 
^ (Jo r ( x ' y)f(y)^l1 (v)) • We shall carry out an equivalent computation by 
cutting off the singularity at x = y. 

1.2. The Euclidean Green's function is the fundamental solu
tion of the Laplace equation. In this subsection we shall show that on 
En we have 

Adistr(y)r(a,y) = Sx(y), 

i.e., for any function / which is C2 with compact support, 

(E.7) / T(x,y)Af(y) d/z (y) = - / ( x ) . 

The integral on the LHS has a singularity at y = x, so we need to excise 
a ball about the singularity in order to apply the divergence theorem and 
integrate by parts. 
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Let B£ = B(x,e). We compute 

/ T(x,y){Vf(y),u(y))da(y) 
JdBe 

= f dwy(T(x,y)Vf(y))dfi(y) 
JRn\B£ 

= [ ((Vyr(x,y),Vf(y)) + r(x,y)Af(y))dn(y), 
JRn\B£ 

where v is the unit outward pointing normal to Wl\Be. On the other hand, 
we also compute 

/ f(y)(VyT(x,y),u(y))da(y) 

= / dwy(f(y)VyT(x,y))dfi(y) 
JRn\Bs 

= [ (VyT(x,y),Vf(y))d(,(y), 
JRn\B£ 

where we used AyT(x, y) = 0. Taking the difference of the above two equa
tions, we obtain 

/ (T(x, y) (V/(y), v(y)) - f(y) (V„r(x, y), u{y))) da(y) 
JdBe 

= [ r(x,y)Af(y)d»(y). 

JRn\B£ 

Furthermore, 

1 
/ r(x,y)(Vf(y),v(y))da(y) 

JdB£ 

<sup |V/(y) |Area(5B £ (n — 2) nujnen~2 

sup|V/(y) |e , 
n - 2 

which tends to zero as e —> 0. 
Next we calculate the term with (V2/r(x,y), v(y)). This is easily done 

since v(y) — — \{y — x) for y E dBe (recall that v is the outward pointing 
normal to M.n\B£). In particular, using (E.2) and noting that the derivative 
with respect to y is the negative of the derivative with respect to i , we have 

(vyr(x,y)My)) = —~ 
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for y G B£. Thus we have 

f(y)(WyT(x,y),u(y))da(y) I. BBe 

= ZTTT^T / f(y)Mv) 
nunen J9BE 

as s —> 0 since / is continuous at x. Thus if we let e —> 0, then we obtain 
/ R » r ( x , y)Af{y)dfi (y) = - / R „ <V y r (x , y), V / (y)> dj* (y) = - / ( * ) > i-e-> 

^distr(y)r(x, y) = -<Sx(y). 

Suppose tha t / is a C2 function with compact support. We now want 
to show tha t the C2 function 

u = Qf(x)= f T(x,y)f(y)dn(y) 
JRn 

is a solution to the Poisson equation 

(E.8) Au = f. 

We shall show tha t the above equation is t rue in the sense of distributions. 
Tha t is, we let 0 G C™(Rn) and show tha t 

/ Qf(x)A<l>(x)diJL(x)= ( f{x)cf>{x)d^{x). 
JRn JRn 

We do this as follows: 

/ Qf(x)A</>(x)d»(x)= [ (f T(x,y)f(y)dn(y))A<l>(x)dljL(x) 
JRn JRn \JRn J 

= f ( f r{x,y)A<f>(x)dlM{x))f(y)dfi{y) 
JRn \JRn J 

= / 4>(v)f(y)dn(y), 
JRn 

where to obtain the last equality we used (E.7). Hence Qf is a weak solution 
of (E.8). Since Qf is C 2 , it is actually a classical solution. 

1.3. Green's funct ion on c losed manifo lds . In this section we de
rive an expression for the Green's function for the Laplacian on a closed Rie-
mannian manifold (-Mn ,g) . We follow the exposition in Aubin [16]. Again 
we suppose n > 3 (for n = 2, the reader may revise the method below with 
appropriate changes of logr for r2~n). We try to mimic the method for E n . 
The first approximation to the Green's function is H (x, y) = H (dg (x, y)), 
where 

r2-n 
H (r) = — 7? (r) 

w (n - 2) nujn ' w 
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and r\ (r) is a C°° function taking values in [0,1] which is equal to 1 on [0, 5) 
for some small 5 > 0 and equal to 0 on [L, OO), where i = minx€>M inj^ (x) 
denotes the injectivity radius of M.. 

The metric in geodesic polar coordinates centered at x can be represented 
as 

g = dr2 + v2gijddiddK 

Let \g\ = det (#r / ) ( n_i) x( n_i) • The Laplacian of a radial function / (r) is 

= / " W + ( ^ + |;logv^)/'(r). 

So 
(E.9) 

d r r / , rl-n . . r2~n ,. , 
ar nu>n (n — 2) nwn 

(E.10) 

- ^ F r) = ^ i T? r) - 2 77' (r) + 7 - 77" (r) , 
arz nujn nu>n [n — 2) nun 

(E.ll) 

AyH (x, y) = ± 1 77 (r) - 2 77' (r) + - ^ — 7?" (r) 
nw„ na>n (n — 2) na>n 

+ ( — ~ + | " log V ^ [ ) ( r? (r) + — ^ — 7/ (r) ) 
\ r a r / \ nuin (n — 2) no;„ / 

- 2 j r?' (r) - (J- log y W 77 (r)) r 
l-n 

n — 2 J \dr ) } nun 

d , /r-r „ , A r2~n 
+ ^ / ( r ) | : l o g ^ + ^ ( r ) ) 

(n — 2) na;n ' 

Once again, we remove a small ball from a neighborhood of the singu
larity. Let / : M —> M. be C2 with compact support inside B (X,L) and let 
B£ = B (x, s) with s > 0 smaller than the injectivity radius. Now, 

/ H (x, y) A / (y) dti (y) - [ AyH (x, y) / (y) d/i (y) 
JM\B£ JM\B£ 

= [ divy [H (x, y) Vf (y)} dfi (y) - f div y [VyH (x, y) f (y)] d^ (y) 
JM\B£ JM\B£ 

= f H{x, y) ( V / (y), 1/ (i/)> AT (y) - / / (y) {VyH (x, y), 1/ (y)) AT (y). 

Now, since £ is smaller than the injectivity radius, the definition of 
H (x, y) implies tha t there is a constant C < oo depending only on the 
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geometry and dimension such that 

/ H(x,y)(Vf(y),v(y))d*(y) 
JdB£ 

< Cel~n sup |V / | en~v = Csup | V / | e. 
M M 

This goes to zero as e —> 0. The other term looks like 

/ f(y)(VyH(x,y),v(y))da(y) 

i F2-n \ r 
-V(e)+(ri 9 , r/(e)) / f(y)d*(y), (n - 2) nun J JdBe nuri 

recalling that v (y) is the outward pointing normal for Ai\B£. lie < 5, then 
this is equal to 

UUJr, 
-—T [ f(y)da(y). 
•£n-1 JdB£

 J 

Since the local geometry as e —> 0 is Euclidean, this converges to / (x). We 
thus see that 

/ H(x,y)Af(y)dn(y) = -f(x)+[ AyH (x,y) f (y)d»(y). 
JM JM IM JM 

If we could solve 

/ F(x,y)Af(y)dn(y)= f AyH (x,y) f (y) dfi (y), 
JM JM 

then the Green's function would be H (x, y) — F (x, y). This comes down to 
solving 

AyF(x,y) = H(x,y) 

in the weak sense (for each x), where H (x,y) = AyH (x,y) is a known 
function. If H (x, y) were continuous in y for all x, then we could solve this 
equation in the classical sense and we would be done. However, AyH (x, y) 
is not necessarily continuous. Note that by (E.ll) we only know that 
\AyH(x,y)\<Crl-n. 

Instead, we use H(x,y) again to come close to solving this problem, 
taking the second approximation to the Green's function to be 

G2 (x, y) = H (x, y) + H2 (x, y), 

where 

H2(x,y)= [ H(x,z)AzH(z,y)dfjL(z). 
JM 
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We see that G2 (#, y) satisfies 

/ G2(x,y)Af(y)dn(y) 
JM 

= - / (y) + / AyH(x,y)f(y)dv(y) 
JM 

+ [ ([ H(x,z)AzH(z,y)dfi(z))Af(y)dfi(y) 
JM \JM J 

= - / ( ! / ) + / AyH(xJy)f(y)dfi(y) 
JM 

+ 1 (-f(*)+ [ AyH(z,y)f(y)d»(y))AzH(z,x)dvt(z) 
JM \ JM J 

= -f(y)+ [ (f AyH(z,y)AzH(z,x)d»(z))f(y)dvL(y), 
JM \JM / 

where we have used the symmetry of H (x, y) and H2 (#, y). 

For k > 2 we inductively define 

Hk+i(x,y) 

= / . . . / H(x,zi)AZlH(zi,z2)'''AZkH(zk,y)dii(zi)-"dii(zk), 
JM JM 

Gfc+i Or, y) = H 0 , y) + H2 (x, y) + • • • + #fc+i (a;, y). 

Let fco be the smallest integer such that the multiple integral 

H(x,y) 

= = / . . . / AxH(x, zi) AZlH(zi, z2)-- Az H(zko,y) d/i (zi) • • • rf/i (zfco) 

is a continuous function of x and y. We see that 

/ Gh0+1(x,y)Af(y)d»(y) = -f(y)+ f H (y,x) f (y) dfi(y). 
.AM JM 

The existence of feo G N is guaranteed by the following. 

LEMMA E.l. Le£ $ (#, y) = J ^ * (x, 2) 6 (z, y) d/j, (z) and suppose that 
\V(x,z)\ < Cd{x,z)a~n and \G(z,y)\ < Cd{y,z)b~n, where 0 < a,b < n. 
Then there exists a constant C < 00 such that 

C'd{x,y)a+b-n ifa + b<n, 
\$(x,y)\<{ C'(l + \logd(x,y)\) ifa + b = n, 

C" if a + b> n. 
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PROOF. We may assume that | d (x ,y ) < L7 since otherwise &(x,y) is 
bounded by a constant. Let d = d(x,y) /2. In order to avoid singularities 
in one of the functions, we split $ (x, y) into 

(E.12) $(x,y)= [ U/ (x, Z) 6 (*, 2/) dp (z) 

JB(x4) 

JB\ 

I 
JM 

There is no singularity for © in the first integral in (E.12), so 
< / \V(x,z)Q(z,y)\dljL(z) 

JB(x,d) 

+ / q(x,z)Q(z,y)dfi(z) 
lB{y,3d)\B(x,d) 

+ / y{x,z)Q(z,y)dfi(z). 
lM\B(y,3d) 

/ ^(x,z)@(z,y)dfi(z) 
JB(x,d) 

<Cdh~n [ \V(x,z)\dii(z) 
JB(x,d) 

<C2db~n [ d{x,z)a-nd/i(z) 
JBixA) 

< C'da+b-n. 

The second integral in (E.12) has no singularity in \I/, so 

/ *(x,z)e(z,y)dn(z) 
JB(y,3d)\B(x4) 

<Cda~n [ \e(z9y)\dfjL(z) 
JB(y,3d) 

<C2da~n [ d(y,z)b-ndfi(2 
lB(y,3d) 

< cfda+b-n. 

Finally, we compute the third integral in (E.12): 

/ 
JM M\B(y,3d) 

<d + c2 

<d + c2 

<c2(i + 

V(x,z)Q{z,y)dn(z) 

J 
L 

b—n 

)\B(y,3d) 
d(x,z)a-nd(z,y)°-ndn(z) 

b-r 

B(y,,,)\B(y,3d) 

LJzAr) 
(d(y,z)-2d)a-nd(y,z)°-nd^(z 

r^drda 
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since d (y, z) < d (x, z) + 2d and | r > 2d on the domain. Hence 

f n,( \nf w r\\^ J ^ / ( l + rfa+6"n) ifa + 6 ^ n , 
JM\B(VM)

 K J V ^ V ^ " I C'(l + |logd|) ifa + 6 = n. 

a 
bmce \AxH{x,y)\ < Cd(x,y)l~n, Lemma E.l can be applied induc

tively to get the following: 

/ ••• / AxH{x,z{) AZlH(zi,z2)'- Az k H (zko,y)dfi(z1) - - - dfi(zko] 
JM JM 

<Cd(xjy)ko+l-n. 

Hence, there exists ko < n such that H(x,y) < C. Thus, we can solve 

AyF(x,y) = H(x,y) 

and the Green's function is 

G 0 , y) = Gko (x, y)-F (x, y). 

We have the following result of Colding and Minicozzi, Theorem 0.1 in 
[154] (see also Theorem 1.1 in [334]). 

THEOREM E.2 (Asymptotics of the Green's function when Re > 0 and 
#00 > 0). If(Mn,g), n > 3, is a complete noncompact Riemannian manifold 
with nonnegative Ricci curvature and maximum volume growth, then 

n(n-2)0ooG(x,y) = 

2/-+00 d2~n(x,y) 

where O^ is defined by (16.72). 

As a consequence of Theorem 16.38, in particular using the estimates 
in (16.74) and the relation G (x, y) = J0°° H (x, y, r) dr, Li, Tarn, and Wang 
(Corollary 2.2 in [334]) obtained the following sharp estimates for the Green's 
function. 

THEOREM E.3. If (Mn,g) is a complete noncompact Riemannian man
ifold with nonnegative Ricci curvature and maximum volume growth, then 
for any 5 > 0 the Green's function of {M,g) has the following upper and 
lower bounds: 

n{n-2)0x(6d(x,y)) 
<G(x,y) 

< (1 + C(n, 0^(5 + (3)) (1 - 8)1-* d2'n {X>V) 

n (n — 2 

where (3(5,d(x,y)) is defined in (16.75). 
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1.4. Hopf boundary point lemma. Let (.Mn,g) be a complete Rie
mannian manifold. We say that a closed domain Ct satisfies the inte
rior sphere condition at a point xo G dCt if there exists a geodesic ball 
B (p, r) C int (CI) with x0 G dB (p, r) . 

The Hopf boundary point lemma says the following (see Lemma 3.4 on 
p. 34 of Gilbarg and Trudinger [206]). 

THEOREM E.4 (Hopf boundary point lemma, I). Let (Mn,g) be a com
plete Riemannian manifold and let f2 C M be a closed domain. Ifu:Ct-^R 
is a function with u G C2 (int (CI)) satisfying 

(E.13) Au + (X,Vu) > 0 , 

where X is a bounded vector field, xo G dCl is a point where 

u(x) < u (xo) for all x G Ct^ 

u is continuous at XQ, and Ct satisfies the interior sphere condition at xo, 
then 

if this unit outward normal derivative exists. 

We also have the following variants. 

THEOREM E.5 (Hopf boundary point lemma, II). Same hypotheses as 
above except that instead of (E.13) we have 

Au + (X, Vu) + cu>0 

in Ct, where c : Ct —> R is a bounded function. Then the same conclusion 
holds in either of the following cases: 

(1) c < 0 and u (xo) > 0, 
(2) arbitrary c and u (XQ) = 0. 

REMARK E.6. The Hopf boundary point lemma is proved by the weak 
maximum principle using a radial barrier (comparison) function (this is 
where the interior sphere condition is used). 

2. Positive and fundamental solutions to the heat equation 

The proofs of results quoted in this section regarding fundamental solu
tions may be found in Berger, Gauduchon, and Mazet [36] and Chavel [92]. 
The original work on the heat kernel parametrix is due to Minakshisundaram 
and Pleijel [356]. The proofs of the differential Harnack estimates may be 
found in the original [335], the book [429], or the expository [139]. We 
shall use the terminologies 'heat kernel' and 'minimal positive fundamental 
solution of the heat equation' interchangeably. 

A fundamental solution to the heat equation is defined as follows. 
See Definition E.I.I on p. 204 of [36] (or Definition 1 on p. 135 of [92]). 
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DEFINITION E.7 (Fundamental solution to heat equation). Let (Mn,g) 
be a complete Riemannian manifold. We say a function h : M x M x 
(0, oc) —> R is a fundamental solution to the heat equation if 

(1) (regularity) h is continuous, C2 in the first variable, and C1 in the 
third variable, 

(2) (solution to the heat equation) 

— -Axjh(x,y,t) = 0, 

(3) (tends to the delta function) 
lim h(-,y,t) = 5y 

t—>0-\-

for any y G M, i.e., for any continuous function / on Ai with 
compact support we have 

lim / h (x, y, t) / (x) d\i (x) = / (y). 

As we shall see below, there exists a C°° fundamental solution h (x, y, t) 
which is symmetric in x and y, and, in the case where M is closed, which is 
unique and positive. When (.A/f, g) is complete and noncompact, the minimal 
positive fundamental solution (i.e., heat kernel) is unique and symmetric in 
x and y; see subsection 2.2 below. 

First note that if u is a solution of the heat equation on a closed manifold, 
then 

— / u(x, t) dn (x) = / - ^ (x, t) d/x (x) 

(E.14) = / Aw(ar,t)d//(a:) = 0. 
IM 

We also have that if u > 0, then 

— / -U (x, t) logu(x, t) dji(x) — i (Au-\ogu +Au) (x,t)dfi(x) 
dt JM JM 

(E.15) = - / L 3 _ (x? t) djJL (x) < o. 

In particular, for the fundamental solution h we have 

(E.16) / h(x,y,t)dfj,(x) = 1 
JM 

for all y G M and £ G (0, oo) (since lim^o+ XM ^ (x ' ^' )̂ ̂  (x) = • ' • ) • 

2.1. Uniqueness, symmetry, and existence of the fundamental 
solution on closed manifolds. A basic tool in the study of the heat 
equation is Duhamel's principle, which is based on integration by parts and 
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may be considered as a space-time version of Green's formula (see p. 137 of 
Chavel [92]).1 Let • = ^ - A be the heat operator. 

LEMMA E.8 (Duhamel's principle, I). Let (Mn,g) be a closed Riemann
ian manifold. If A and B are functions on M x (0, t) which are both C2 in 
space and C1 in time, then for any 0 < t\ < t2 < t we have 

(E.17) 

J dsf (-(—)(w,t-s)B(w,s) + A(w,t-s)(—)(w 

= / A(w,t-t2)B(w,t2)d/jJ(w) - / A(w,t-ti)B(w,ti)dfi(w), 
JM JM 

and 

I ds / ( - (DA) (w,t-s)B(w,s) + A(w, t - s) (OB) (w, s)) dfi ( 
Jt! JM 

= (A(w,t- t2) B (w, t2) -A(w,t- h) B (w, h)) d\i (w). 
JM M 

PROOF. The LHS of (E.18) and the LHS of (E.17) are both equal to2 

ds (- ( — j (w,t-s)B(w,s) + A(w,t-s) ( — ) (w,s))dfi(w) 

+ ds ((AA) (w, t-s)B(w,s)-A (w, t - s) (AS) (w, s)) dp (w) 
Jt! JM 

rt2 Q r 
= / ds— / A(w,t — s) B (w,s) dfi(w) 

Jt± vs JM 

= / A(w,t-t2)B(w,t2)d/j,(w) - / A(w,t-ti)B(w,ti)dfi(w), 
JM JM 

which is equal to the RHS of (E.18). • 

The following two theorems, both consequences of Duhamel's principle, 
comprise Theorem 1 on p. 138 of [92].3 

THEOREM E.9 (Uniqueness and symmetry of fundamental solution). 
Let (Mn^g) be a closed Riemannian manifold. The fundamental solution 
h(x,y,t) to the heat equation is unique and symmetric, i.e., h(y,x,t) = 
h(x,y,t). 

This statement applies to (E.18); equation (E.17) follows simply from the fundamen
tal theorem of calculus. 

2We used fM ((AA) B - A (AB)) d\i = 0 to obtain the first equality. 
3, Compare with the symmetry of the Green's function: G (y, x) = G (x, y). 
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PROOF. Suppose that hi(x,y,t) and h2(x,y,t) are fundamental solu
tions of the heat equation. Taking t\ —> 0+, t2 —» £_, A (w, r) — h\ (w, x, r ) , 
and B (w, s) = hi (w, y, s) in (E.18), we have 

0 = lim / hi (w,x,t - t2)h2 (w,y, t2)dfi( 
ti-^t- JM 

— lim / hi(w,x,t — t\)h2(w,y,ti)dii{ 
*i-*0+ JM /.M 

= h2{x,y,t) -hi(y,x,t). 

In particular, if /i is a fundamental solution, then by taking hi = h2 = h we 
have 

h(x,y,t) = h(y,x,t). 

Thus, for any fundamental solutions /ii and h2, 

hi(x,y,t) = h2(x,y,t). 

D 

Via convolution, the fundamental solution may be used to solve the 
initial-value problem (IVP) for the heat equation. 

THEOREM E.10 (Representation for solution to IVP). Let (Mn,g) be a 
closed Riemannian manifold. If f : M —• R is a continuous function and 
F : A4 x (0, 00) - ^ K i s f l bounded continuous function, then the solution 
u : M x [0, 00) —> R to £/ie initial-value problem 

(E.19a) - - A U = F on A4 x (0,oo), 

(E.19b) w( . ,0) = / ( - ) onJW, 

i/ ^ exists, is given by 
(E.20) 

u(x,t)= h 0 , y, *) / (y) d\i (y) + I ds / /i (x, y,t- s)F (y, s) dfi (y). 
JM Jo JM 

If F = 0, then the solution does exist and is given by 

(E.21) u(x9t)= f h (x, y, t) f (y) dfi (y). 
JM 

PROOF. By taking t\ —• 0+, t2 —• £_, 

A (it;, T) — h (x, w, r ) , and 5 (if, s) = u {w, s) 
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all in (E.18), we have 

ds h(x,w,t — s) F (w,s) d/jb(w) 
Jo JM 

= lim / (h(x,w,s)u{w,t) — h{x,w,t)u(w,e))dii(w) £->°+ JM 

= u(x,t) — / h(x,w,t) f (w)d[jL(w). 
JM 

This shows that if the solution to the IVP (E.19) exists, then it is of the 
form (E.20). 

Now if F = 0, then we can differentiate (E.21) under the integral sign: 

(?£ - Au) (*, t) = j(j±- Ah) (x, y, t) f (y) dfi (y) = 0. 

On the other hand, for each x G M we have 

lim / h 0 , y, t) f (y) dp (y) = / (x) 
*-*°+ JM 

so that limt_>o+ u (x, t) = f (x). • 

For t G (0, oo) define 

fit : C° (M) -> C°° (M) 

by 

(E.22) (S)t (/)) (x)= [ h (x, y, t) / (i/) dM (i/). 

That is, S)t (f) is the solution at time t to the heat equation with initial value 
/ . By the uniqueness of solutions to the heat equation on closed manifolds 
we have the semi-group property: 

(E.23) 5 t 2 ° % =i3ti+t2-
By definition this says 

/ h(xJy,ti+t2)f(y)dn(y) 
JM 

= / h(x1zJt2)(S)tl(f))(z)d^(z) 
JM 

= / h(x,z,t2)( / h(z,y,ti) f (y)dn(y)) dv(z) 
JM \JM J 

= / ( / h(x,z, t2) h (z, y, ti) dfi (z) ) f (y) dji (y) 
JM \JM J 

for all continuous functions / . Hence 

(E.24) h(x,y,ti +t2) = / h(x,z,t2)h(z,y,ti)dfi,(z). 
JM 
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For any continuous function / we have 

t& (/) , />L* = ( % 2 ° % 2 (/) , />L2 = | |%2 (/) \fL2 > 0. 
Hence $)t is a nonnegative operator. Another consequence is h (x, x, t) > 0. 
In fact, we have the following lemma which is a consequence of the strong 
maximum principle (see Theorem 1 on p. 181 of [92]). 

LEMMA E . l l (Strict positivity of the heat kernel). Let (Mn,g) be a 
closed Riemannian manifold. The heat kernel is positive, i.e., h (x, ?/, t) > 0. 

PROOF. We first show that h (x, y, t) > 0. Given a nonnegative function 
/ : M —> R, let u : M x [0, oo) —• R be the solution to the heat equation 
with ix(x, 0) = / (x) for all x G M. By the maximum principle we have 
u > 0. On the other hand, by (E.21) we have 

u(x,t)= / h(x,z,t) f (z)djii(z). 
JM 

Now given y E A4, take /^ to be a sequence of nonnegative functions 
limiting to 5y. Since JM h (x, z, t) fk (z) d/j, (z) > 0, we conclude h (x, y, t) > 
0. 

The strict positivity h(x,y,t) > 0 follows from the strong maximum 
principle and the simple fact that h is not identically zero; note that 

lim (47rt)n/2/i(x,x,t) = 1. 

• 
As a consequence of the positivity of /i and (E.21) we have the following. 

COROLLARY E.12 (Heat kernel has largest sup norm). Let (Mn,g) be a 
closed Riemannian manifold. We have 

(E.25) \u(x,t)\<majth(x,y,t) [ \f{y)\d^{y). 

Thus, at any positive time (a multiple of) the fundamental solution has the 
largest L°°-norm among all solutions of the heat equation with fixed initial 
L1-norm. 

For closed manifolds, the fundamental solution exists. See §E.III of 
Chapter III in [36] (or §4 of Chapter VI, in particular (45)-(46) on p. 154, 
in [92]). 

THEOREM E.13 (Existence of the heat kernel). If (Mn,g) is a closed 
Riemannian manifold, then there exists a unique fundamental solution of 
the heat equation. 

The rough idea of the proof of the existence of the heat kernel on Ai is 
to transplant the Euclidean heat kernel to M and use it as an approximate 
solution by multiplying it by a finite power series in t with coefficients which 
are functions of x and y. 
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2.2. Uniqueness and existence of the minimal positive funda
mental solution on complete noncompact manifolds. The idea for 
proving the existence of the minimal positive fundamental solution of the 
heat equation on complete noncompact manifolds is to choose an exhaus
tion {Ui} of M by compact regular domains and to take the limit of the 
associated Dirichlet heat kernels. The following is on p. 158 of [92]. 

DEFINITION E.14 (Dirichlet heat kernel). Let (Mn,g) be a smooth com
pact Riemannian manifold with interior int(*A/f) and nonempty boundary 
dM. We say that /ID • M x M x (0, oo) —> R is a Dirichlet heat kernel 
of (M,g) if hi) is continuous and ^D|int(A4)xint(.M)x(o,oo) i s a fundamental 
solution4 and satisfies the Dirichlet boundary condition: 

hD(x,y,t) = 0 

for all x e dM, y e int (M), and t G (0, oo). 

Clearly 

(E.26) lim / hD (x, y, t) dfi (x) = 1. 
*->°+ JM 

Note that in comparison to (E.16) we have 

— / hD(x,y,t)dfi(x)= / AhD (x, y, t) d\i (x) 
at JM JM 

= / -^-{x,y,t)d^{x) < 0, 
JdM av 

where we used the Hopf boundary point lemma (Theorem E.4). Hence 

(E.27) / hD{x7y,t)d/i(x) < 1 
JM 

for all y E int (M) and t G (0, oo). 
The following is on p. 164 of [92]. 
PROPOSITION E.15 (Existence of Dirichlet heat kernel). If (Mn,g) is a 

smooth compact Riemannian manifold with interior int {M) and nonempty 
boundary dM, then there exists a Dirichlet heat kernel of (M,g). 

PROOF. (Sketch.) There exists an extension of (Mn,g) to a smooth 
closed Riemannian manifold (Mn,g). Let 

h : M x M x (0, oo) -> R 

be the heat kernel of (M^g), which exists by Theorem E.13. There exists 
a solution 

u : int (M) x int (M) x (0, oo) -> R 

That is, (J^ — A x) h(x,y,t) = 0 and for any continuous function / on int (M) with 
compact support we have l i m ^ o + J*. , M ) h (x, y, t) f (x) d\i (x) = f (y). 
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to (Ĵ - — Ax) u (x, y, t) = 0 with n (x, y, 0) = 0 for x, y G int (.M) and with 

u(x,y,t) = -h(x,y,i) 
for x G &M, y G int ( X ) , and £ G (0, oo) (see pp. 161-164 of [92]). Define 

hD : int (M) x int (M) x (0, oo) -^ K 
by 

/ID (X, y,t) = h (x, y,t) + u (x, y, t ) . 
We leave it as an exercise for the reader to check that h^ is a Dirichlet heat 
kernel of (M,g). • 

The following is Duhamel's principle for manifolds with boundary (see 
p. 145 of [92]). 

LEMMA E.16 (Duhamel's principle, II). Let (Mn, g) be a smooth compact 
Riemannian manifold with boundary dM. and let • = Ĵ  — A. If A and B 
are functions on Mx (0, t) which are both C2 in space and C1 in time, then 
for any 0 < t\ < t2 < t we have 

/ (A (w, t-t2)B (w, t2) -A(w,t- tx) B (w, h)) d/i (w) 
JM 

= ds (- (DA) (w, t-s)B(w,s) + A (w, t - s) (OB) (w, s)) d/d (w) 
Jt! JM 

+ J 2dsJ (- ( — J (w,t - s) B(w, s) + A(w, t - s) (-^J (w, syjda H , 

where -^ and da are the unit outward normal derivative and volume form 
on dM, respectively. 

The proof of this lemma is the same as for Lemma E.8 except that now 
Green's formula says that 

DEFINITION E.17 (Minimal positive fundamental solution). We say that 
a positive fundamental solution h (x,y,£) is the minimal positive funda
mental solution if for every positive fundamental solution h(x,y,t) we 
have h (x, y,t) > h (x, y1t). Clearly, if h exists, then it is unique. 

Let {Ui)ien be an exhaustion of M by compact regular domains, so that 
Ui C int (Wi+i) for alii G N and |J ieN Ui = M. Let hi'MixUiX (0, oo) —• R 
be the Dirichlet heat kernel of (Z^, g\u). By the maximum principle we 
have /ii_|_i > hi on Ui xUi x (0, oo). We define 

h:MxMx (0,oo) -+R 

by 
(E.28) h = lim hi = sup hi. 

i—>oo 
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EXERCISE E.18. Show that 

h = sup/i^, 
u 

where hjj denotes the Dirichlet heat kernel of (U, g\u) and the supremum is 
taken over all compact regular domains U (with nonempty interior). 

HINT: Apply the maximum principle. Note that given any compact 
regular domain W, there exists i G N such that U C int (Ik). 

We now show that h is the minimal positive fundamental solution of 
(Mn,g). 

THEOREM E.19 (Existence of minimal positive fundamental solution). 
If (Mn,g) is a complete noncompact Riemannian manifold, then there exists 
a minimal positive fundamental solution of (A4n,g). 

The main tool we use is the following (see Lemma 3 on p. 187 of [92]). 

LEMMA E.20 (Local bound for solutions of the heat equation). Let 
(A1n, g) be a complete Riemannian manifold and suppose u : M. x (0, T) —• R 
is a solution to the heat equation with 

J \u(x,t)\dfi(x) <C 
JM 

for all t G (0, T). Then for any compact subset K C M and to G (0, T), 

\u(x,t)\ < C 

for all x G K and t G \to,T), where C < oo depends only on (Mn,g), K, 
T\ and to. Moreover, for each k G N we have 

Vku <Ck on if x [t0, T), 

where Ck < oo depends only on (Mn,g), k, K, T, and to. 

PROOF. The idea of the proof is similar to that for obtaining inequality 
(E.25). In the present case we localize the application of Duhamel's principle 
as follows. Given any compact subset K C A4, let (p : M —> [0,1] be a 
smooth function with compact support and with ip = 1 on K. Let u : 
M x (0, T) —» R be a solution to the heat equation with 

/ \u(x,t)\djjJ(x) < C 
JM 

for all t G (0,T). Let Q be a compact regular domain with K C supp (<p) C 
ft C M. and let HQ denote the Dirichlet heat kernel of ($1, # |Q) , which exists 
by Proposition E.15. Given any t0 £ (0,T), if x G M and t G ( ^ , T ) , 
then by taking t\ — ^ , £2 / t, A(W,T) = IIQ(W,X,T), and B(w,s) = 
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(p (w) u (w, s) all in (E.18), we have 

<p(x)u(x,t)= hn(w,x,t-^)(p(w)u(w,-^J d\i (w) 

- ds hn(',x,t-s)(u(s)A(p + 2(Vu(s),V(f))dfji 
J^ JM 

since 
• ((f (•) u (•, s)) = -u (s) Acp-2 (Vu (s), V<p). 

Integrating by parts, we have 

/ hn (•, x,t-s) (u (s) Aip + 2 (Vu (s), Vcp)) dfi 
JM 

= / (-hn (•, x, t - s)u (s) Aip - 2u (s) (Vhn (•, x, t — s) , Vy>)) d/x. 

Hence, if x G if and £ G (^ , T), then 

(E.29) 

ix (x, i) = / /in (w, x, t - -^ J <p O ) u I w, -^ J dfi (w) 

+ ds u(s) (HQ (•, x, £ - s) Ay? + 2 (V/ift (•, x, t - s), V</?)) d/x, 
J to. JQ-K 

where we could change the domains of integration from Ai to fi and ft — K 
since supp ((f) C f2 and </? = 1 on K, respectively. 

We have 

0<hn (w,x,t-^J <C 

for all x G X, w G f2, and £ G [to, T). Hence 

/ hQ(w,x,t-^)(p(w)ulw^)diJJ(w) 

(E.30) < C XhH d/x (w) < C. dn (w)<C j 
\u ( w> ~o 

Moreover, 

\hn (w, x,t-s) Af (w) + 2 (Vhn (w, x, t - s), V<p (w))\ < C 

for x E K, w eft- K,t e [t0, T), and 5 G [^, t]. Hence 

(E.31) 

\ ds u(s) (hQ (., x, t - 5) A<p + 2 (V/in (•, x, £ - s ) , V<p)) 
L/4? JQ-K 

d\i 

<C 1 ds I u(s) dm 
\Jt8- Jn-K 

<CT. 
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We conclude from (E.29), (E.30), and (E.31) that for x G K, t0 G (0,T), 
and te [t0,T), 

\u(x,t)\ < C. 
Taking covariant derivatives of (E.29), we obtain bounds of all spatial deriva
tives of u in K x [to, T). D 

With this local bound we may give the 

P R O O F OF THEOREM E.19. Let h : M x M x (0, oo) —> R be the func
tion defined by (E.28) as the limit of increasing Dirichlet heat kernels as
sociated to an exhaustion {Ui}ieN of M by compact regular domains. By 
Lemma E.20, for any compact subset K a M and to G (0, T) we have 

\hi(x,y,t)\<Co 
for all x,y G K and t G [to, T), where Co < oo is independent of i. Hence 

(E.32) h(x,y,t) = lim hi (x,y,t) 

is finite on K x K x [to,T). By Lemma E.20, for all k G N we have 
| Vkhi (x, y, t) | < Ck < oo independent of i<EN in KxKx [to, T). Hence the 
limit function h is C°° and after passing to a subsequence the convergence 
of {hi} to /i in (E.32) is uniform in any C£ on compact subsets of M. Thus 
h is a solution of the heat equation, i.e., 

d A -x- ; h (x, y, t) = 0. 

Since hi (x, y, t) — hi (y, x, t), we have that /i is symmetric, i.e., 

h{x,y,t) = h(y,x,t). 

Since hi > 0 in int (Ui) and /i > /i^, we have h > 0 on M x A< x (0, oo). 
Now we show that /i is a fundamental solution of the heat equation. By 

(E.27) we have 

(E.33) / h(x,y,t)dn(x)<l 
JM 

for all y G M and t G (0, oo). If ZY C M is a compact regular domain with 
nonempty interior, then by (E.33) and (E.26) and since h > hu-> where hu 
is the Dirichlet heat kernel of (U, g\u), we have 

lim / h (x,y,t)d/i (x) = 1 
*^°+ Ju 

for any y G M. Finally, if ip is continuous, then 

lim / h(x,y,t)<p(y)dn(y) = (p(x). 

(See p. 190 of [92] for a proof of this.) • 
We have the following uniqueness result of Dodziuk [174] (see also The

orem 3 on p. 183 and Theorem 4 on pp. 188-189 of [92]). 
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THEOREM E.21 (Uniqueness of fundamental solution when Re > — k). 
If {Mn,g) is a complete noncompact Riemannian manifold with Ricci cur
vature bounded from below, then the minimal positive fundamental solution 
(i.e., the heat kernel) of (Mn,g) is the unique positive fundamental solution 
of(Mn,g). 

2.3. Comparison theorem for fundamental solutions. Let hUjK 
denote the heat kernel of the simply-connected, complete, n-dimensional 
manifold (Mn,g) of constant sectional curvature K. At each time hUiK is 
a radial function so that we may define Hn?# by 

hn,K (5, y, t) = Rn,K (dg (x, y),t). 

We have the following comparison theorem for positive fundamental solu
tions [105]. 

THEOREM E.22 (Cheeger and Yau). If (Mn,g) is a complete Riemann
ian manifold with Re > (n — 1) K for some K £ R, then the positive funda
mental solution h (x, y, t) of the heat equation has the lower bound 

(E.34) h(x,y,t)>Rn,K(d(x,y),t). 

REMARK E.23. When K = 0, we obtain (16.12). 

PROOF. (Sketch.) The idea of the proof is to apply Duhamel's prin
ciple and the Laplacian comparison theorem. By Duhamel's principle, in 
particular, taking t\ —> 0+, £2 —• £-, A(W,T) = ^n,K (d(x,w) , r ) , and 
B (w, s) = h (w, y, s) all in (E.17), we have 

h(x,y,t) -KnjK(d(x,y),t) 

(E.35) = - / " dsf (^^^\(d(x,w)it-s)'h(w,y,s)dti(w) 

+ J dsj H n,K (d(x,w) ,t — s) • {~Q^J (wi Vi s) ̂  (w) ' 

Now | | = Aghj whereas we have 

l(d(x,w),t-s) 

= - ( A H n , j K - ) {d(x,w),t-s) 

-p-5 + HK (d (x, w)) — J H UjK (d (x, w),t-s), 

where (AH n 5 x) (dg(x,y) ,t) = (Khn,K) (x,y,t) is well-defined since the 
latter is a radial function and where HK (T) denotes the mean curvature 
of the sphere of radius r in the simply-connected space form of constant 
sectional curvature K. 
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Given a point p G M, let Cut (p) denote the cut locus of p. Recall 
that the Laplacian on M may be written in geodesic spherical coordinates 
centered at p as 

(E.36) (A/) H = ̂ 1(W) + H (w,p) | £ (w) + (ASMf) (w) 

for w G M — ({p} U Cut (p)), where H (w,p) denotes the mean curvature at w 
of the geodesic sphere S (p,r) = {y £ M : d(y,p) = r} , where r = d(w,p), 
and where Asfar) denotes the intrinsic Laplacian of S (p, r) . 

By the Laplacian comparison theorem (i.e., by the comparisons for the 
mean curvatures of geodesic spheres) we have 

H (w, x) < HK (d (x, w)). 

This inequality and (see Lemma 2.3 of [105]) 

d 
Hn;K ) (d(x,w),t- s) < 0 

imply 

f d2 d\ 
- [-Q^2 +HK{d{x,w))—\ KniK(d(x,w),t-s) 

where h (x, w, t — s) = H n ^ (d (#, it;), t — s). Hence 

'if1' (d(x^w)^~ s)^" \^9,whJ (x,w,t- s), 

where A9iW denotes the Laplacian with respect to the metric g and the 
variable w. Applying this to (E.35), we conclude that 

h(x,y,t) -H.niK(d(x,y),i) 

> — / ds Ag,wh (#, w,t — s) • h (w, y, s) d\i (w) 
Jo JM 

+ I ds I h(x,w,t — s) - Ag^wh(w,y,s)dfjJ(w) 
Jo JM 

= 0. 

2.4. Fundamental solutions on Riemannian products. 

• 

EXERCISE E.24 (Fundamental solution on a product). For i = 1,2 let 
{M™\gi) be complete Riemannian manifolds and let hi : Mi x (0, oo) —> R 
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be fundamental solutions to the heat equation: 

( | - A * ) * = 0 ' 
lim hi = 6Vi, t—o+ 

where yi G Aii. Show that the function 

h ( # i , a?2, t ) = /ii (a?i, i ) • /i2 (#2, t ) 

is a fundamental solution to the heat equation o n M i X M.2, in particular, 

[di " Api+^2 ) ^ = °' 
\im+h = 6{yuy2). 

SOLUTION TO EXERCISE E.24. We compute 

f QI ~ A9i+92J (hi (xi,t) • h2 (ar2,t)) 

= ( ^ - &gi J hi (xi,t) • h2 (x2, t) + /ii (#i, t) • ( — - A ^ J /i2 (x2, t) 

= 0 

and for any smooth function with compact support / on M\ x M.2 

lim / hi(xi,t)h2(x2,t)f(x1,X2)diJLg1+g2(xi,X2) 

= lim / hi(xi,t)[ h2(x2,t)f(xi,X2)diig2(x2))dngi(xi) 
*-^o+ y ^ i V.M2 / 

= lim / hi(xi,t)f(xi1y2)dfigi (xi) 
t->0+ J Mi 

= / (2/1,2/2) • 
For the second equality we used 

/ h2{x2,t) f {xi,x2)diLg2 (x2) - f(xi,y2) 
JM2 

<Ct, 

where C < oo is independent of xi, which holds since / is smooth with 
compact support. 

EXAMPLE E.25 (Flat plane bundles over S1). Given A E O ( 2 ) , consider 
the flat rank 2 real vector bundle V over the circle S1 = R/Z = [0,1] /~, 
where 0~1, defined by 

V = ( [ 0 , l ] x R 2 ) / « , 
where (0, A (x)) « (1, x) for x G R2. Note that V is orientable if A G SO (2) 
and V is nonorientable if A G O (2) — SO (2). The standard flat metric on 
[0,1] x R2 induces a flat Riemannian metric on V. 
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Generalizing the above example, consider the following situation. Let 
(*Mn,g) be a complete Riemannian manifold and suppose that n : V —• M 
is a flat rank k real vector bundle over Ai, where locally (V,#y) is isomet
ric to the product M x Ek and parallel translation defines local isometries 
from (7T_1 (U) ,#y) to (U,g) x Eh for sufficiently small neighborhoods U in 
Ai. Note that if (M,g) is flat, then (V,#y) is also flat (as a Riemannian 
manifold). 

Let h : M x (0, oo) - ^ R b e a fundamental solution to the heat equation: 

( I - A » ) A = O ' 
lim h — Sv, 

where y G Ai. The fundamental solution on Euclidean space Efc = (Rfc, g^fc), 
centered at the origin, is given by 

fcRfc(«,) = (47rt)- f c/2c-Ha/« 

where W = (w1,..., u^) and \w\ = ^ = 1 (u'2) • Given z G V , let |z| be the 
norm of z considered as a vector in the fiber V7r(z) (this is the same as the 
distance of z to the 0-section of V). Given y E M, let 0y £ Vy denote the 
zero vector in the fiber over y. We define the function 

hv (z, t) = h(n (z), t) • (47rt)"fc/2 e~\z\2'u. 

Then hy : V x (0, 00) —• R is a fundamental solution centered at 0y G V. 
That is, a fundamental solution of V, when centered at a point on the 0-
section, can be well-defined as a 'product' of fundamental solutions of (A4, g) 
and Euclidean space. 

Consider the circle of length 1, i.e., S1 = R/Z.5 Its universal cover is 
Z —> R —> S1 with the deck transformations given by the translations by the 
integers. The fundamental solution on R centered at 0 is 

M M ) = (47rir 1 / 2e-* 2 / 4 i . 

This induces the fundamental solution on 5 1 , which as a Z-invariant function 
on R x (0, 00), is defined by 

hsr (x,t) = (47T*)-1/2 J2 e-(x+m>2/4*. 
ra€N 

By Z-invariant we mean hsi (x + £,t) = h$i (x, t) for all £ G N, x G R, and 
t > 0 . 

'A nice treatment of the discussion in this paragraph is given in Mumford [372]. 
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3. Li—Yau differential Harnack estimate 

We now recall the seminal differential Harnack estimate of Li and Yau 
[335]. 

THEOREM E.26 (Li-Yau estimate—Re > -kg). If(Mn,g) is a complete 
Riemannian manifold with Re > — k and if u is a positive solution to the 
heat equation, then for any a > 1, 

d , 1 , _ , |2 . f n nk 
(E.37) _ l o g „__ |v iog< + c,^- + ^-1jj>0. 

When k = 0, by taking a —> 1, we obtain (16.8): 

| l o g « - | V l o g « | 2 + | > 0 . 

Theorem E.26 is an immediate consequence of taking R —> oo in the follow
ing. 

PROPOSITION E.27 (Li-Yau estimate on balls for Re > -k). If (Mn,g) 
is a complete Riemannian manifold with Re > — k and if u is a positive 
solution to the heat equation, then for any a > 1 we have 
(E.38) 

fdL 1 , „ r l 9 \ (n nk \ COL ( a2 r - \ 
JSS> ( * - « | V i | ) + a U + v^)+ * (^i+ ^V - °' 
where B(p,R) == {x G M : d(x^p) < R} and C < oo. 

The idea of the proof of the proposition is as follows. Define a cutoff 
function by6 

where the C°° function I/J : [0, oo) —> [0,1] is defined so that 
( 1 ) ^ = 1 for t E [0,1] and if; = 0 for t > 2, 
(2) V' < 0, l-^f- < C, and \^'f\ < C. 

Define the gradient quantity 
d 

(E.39) P = —logu- (1-e) |Vlogu|2 = Alogu + e\\/\ogu\2 , 
C/u 

where £ > 0 is to be chosen below (when k — 0, it is optimal to take e — 0).7 

One may compute that 
BP 2 

(E.40) — > A P + 2 ( V l o g u , V P } + - ( l - £ ) ( A l o g t t ) 2 - 2 ( l - e ) f c | V l o g u | 2 

The cutoff function is introduced to handle the case where M. is noncompact; it is 
also useful in that it localizes the estimate. 

Note that, in the case where u is the Euclidean heat kernel, P vanishes everywhere 
on Rn x (0, oo) when e = 0. 
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(note that, when k = e = 0, this says ^ > A P + 2 (Vlogu, VP) + \P2). 
Consider any time interval [0,T], where T G (0, oo), and suppose (xo,to) £ 
P(p, 2P) x [0, T] is a point at which (f)P attains a negative minimum. Using 
that at (x0,*o) we have V(0P) - 0, A(0P) > 0, and ̂ (</>P) < 0, one 
obtains after some calculation 

2* / , ̂ 9 , ( „N / , C , a2 „ /-x \ nk2a2t 0 < - ^ ( « P ) 2 - <*P) (* + ^ ( — f + * v % ) + ^ — ^ 

This then implies for any x G B(p, 2R) 

2T 2P2 V « - l / 2 ( a - l ) " 
The result follows since <\> = 1 in P(p, P) and T is arbitrary. 

Integrating the inequality in Theorem E.26 along space-time paths yields 
the following. 

THEOREM E.28 (Path-integrated Harnack estimate for Re > —k). If 
{Mn,g) is a complete Riemannian manifold with Re > — k and if u is a 
positive solution to the heat equation, then for any a > 1 we have 

(E.41) ^ 4 > f ^ V Q % x P ( - ^ ( X l ' X 2 ) 2 - ™k Jti-tA v ' u(x1,t1)-\tj P \ 4 t2-t! 2(a-l)K2 l>) 
for any x\,x2 € M. and 0 < t\ <t2-

Note that, taking k = 0 and a —>• 1, we obtain (16.10): 

(E.42) !4^>fM"n/2
e-^*. 

v J u{x1,t1)~ \tj 
In the case of a fundamental solution for k = 0 we have 

/ t \~n/2 d(x,y)2 

H{x,y,t)>H{x,x,t1){-j e 4«-<i>. 
Since lim t l-o+ (47r£i)n/2 if (x,x,ti) = 1, we obtain (16.12): 

H(x,y,t) > ( 4 7 r t ) - n / 2 e - ^ ! . 

EXERCISE E.29 (Heat equation under Cheeger-Gromov convergence). 
Suppose that {{Mf^gi^Xi)} is a sequence of pointed complete Riemannian 
manifolds with Re (gi) > 0 which converges in the pointed C°° Cheeger-
Gromov sense to a complete Riemannian manifold (M1^, #oo> #oo) (note that 
this limit has Re {goo) > 0 but may not have bounded curvature even if each 
manifold in the sequence does). That is, there exist an exhaustion {Ui} of 
A^oo by open sets with XQQ G Ui and a sequence of diffeomorphisms $; : Ui —> 
Vi = $i {Ui) C Mi with &i {XQQ) = Xi such that ({/;, 5>* [#i|y.]) converges in 
C°° to {Moo, goo) uniformly on compact sets in .Moo- Under what conditions 
does a sequence {ui : Mi x (0, T) —> (0, oo)} of positive solutions of the heat 
equation admit a subsequence for which the functions Ui o <3>j : Ui —> (0, oo) 
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converge to a positive solution UOQ : Moo —> (0, oo) of the heat equation? 
One may ask the same question assuming a uniform lower bound for the 
Ricci curvatures. 

4. Gradient es t imates for t he heat equat ion 

The following is Hamilton's Theorem 1.1 of [249]. 

THEOREM E.30 (Gradient estimate for bounded solutions). Let (Mn,g) 
be a closed Riemannian manifold with Re > —k\, where k\ > 0. If u is a 
positive solution to the heat equation with u < A, then 

(E.43) t ] ^ L < ( i + 2 fc 1 t ) logf-

PROOF. Since % = Au, we have 

— - A ) l o g u = | V l o g u | 2 

and 

^ - A j l V l o g n l 2 

= - 2 |VV log u\2 - 2 Re (V log u, V log u) + 2 / V log u, V |V log u\ 

Hence, using Re > —k±, we obtain 

(E.44) ^ - A ) ( i | V l o g n | 2 ) 

< (1 + 2 M ) IVlogu\2 + 2 / v \ o g u , V (t |V logu | 2 ) \ . 

On the other hand, 

| - A ) l 0 g ( ^ ) = - | V 1 ° g W | 2 

= 2 / v i o g u , V l o g f - j \ + |Vlogu|2 , 

where we rewrote the equation so as to match the gradient term in (E.44), 
and then 
(E.45) 

£ - A] ((1 + 2M)log (-\)=2(vlogu, V ((1 + 2kxt)log (-
dt ) \ \u J J \ \ \u 

+ (1 + 2kit) IV log u\2 + 2ki log ( -
\u 

Since log (£) > 0 and fci > 0, we conclude from (E.44) and (E.45) that 

d . „ _ , _ \ / . , _ , ,2 ,. „, . , , (A — - A - 2 V l o g u - V ) l t | V l o g « r - ( l + 2fcit)logl - ) ) < 0 . 
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Now 11V logu\ — (1 + 2k\t) log (^) < 0 at t = 0. Hence the weak maximum 
principle implies 

t | V l o g u | 2 - ( l + 2 M ) l o g ( - J < 0 

for all t > 0. • 

EXERCISE E.31 (An extension of the gradient estimate). Let (Mn,g (t)) 
be a closed Riemannian manifold evolving by 

d_ 
dr 

with Rij > —kigij, hij < k\gij, V < fci, and \W\ < k\, where k\ > 0. 

,9ij — ^ "ij 

Show that if u is a positive solution to the heat-type equation 
du 
—- = Au + Vu 
at 

with u < A, then 

(E.46) t\Vlogu\z < 2 ( l + 4fcit)log( - 1 + ( j + 2 ( l + 4M)fei )t |2 - - , - iA\ (T 

f o r t e [0,T] 

dt SOLUTION TO EXERCISE E.31. Since % = Au + Fu, 

3 . A , . _ , .2 — - A ) logu = |Vlogur + V 

and, using J ^ j = —2hij, we compute 

— - A J |Vlogu|2 = - 2 |VVlogu|2 - 2 (Rc-h) (Vlogu, Vlogu) 

+ 2 / V logit, V | V log u\2\ + 2 (V logu, W ) . 

Since R^ > —k\gij and h^ < k\gij, this implies 

(E.47) ( — - A J ( i |Vlogu | 2 ) < (1 + 4 M ) |Vlogu|2 

+ 2 / v i o g n , v ( i | V l o g u | 2 ) 

+ 2 £ < V l o g u , W ) . 

Hence, using | W | 2 < fci, we have 

( | - - A - 2V\ogu • V J (t |Vlogu|2) 

4-2 

< 2 (1 + 4 M ) |Vlogu|2 + — - \VV\2 

1 + 4/cic 
2 T < 2 ( l + 4fciT)|Vlogur + 
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provided t <T. On the other hand 
'd_ 
dt 
3 \\\og(^\ = -\\7\ogu\2-V 

> 2 / V log u, V log ( - J \ + | V log u|2 - fei, 

where we used V < k\, and then 

(E.48) (^- - A - 2V log w • V J (2 (1 + 4 M ) log ( -

> 2 (1 + 4feit) |Vlogu|2 - 2 (1 + 4feit) A*. 

Combining (E.47) and (E.48), we obtain 

— - A - 2V log u • V J ft | V log tx|2 - 2 (1 + 4 M ) log ( -

< - + 2( l + 4M)fci = C7i. 

The weak maximum principle implies 

t |Vlog^|2 < 2 (1 + 4 M ) log ( - J + C i t 

for all t > 0. 
As an application of the gradient estimate we may bound the maximum 

of a positive solution by its integral (where the bound gets worse as t —> 0). 
The following is Corollary 1.2 of [249]. 

COROLLARY E.32. Let {M,n,g) be a closed Riemannian manifold. There 
exists a constant C < oo depending only on (Mn,g) and T < oo such that 
if u is a positive solution to the heat equation, then 

u (y, t) < Ct~n/2 J u (x, t) dfi (x) 
JM 

for ally G M and t G [0, T]. 

REMARK E.33. Qualitatively, this estimate is sharp as can be seen by 
considering the fundamental solution to the heat equation. 

P R O O F . Let k\ = max {0, — min^ Re} so that Re > —k\ and k\ > 0. 
Since M is compact, there exists (x,i) G M x [0,T] such that 

t n/2u (x, i) = max tn/2u (x, t) = J. 
Mx[0,T] 

For t G [t/2,t], we have 
- n / 2 

,{x,t)<t-n'2j<[yj J 
Note that 
(E.49) u (x, t) = i~n/2J = 2~n'2A. 
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Let L (x, t) = log f u/£t\) • We may apply Theorem E.30 to the solution 

u(t+±) for t G [0,t/2] to obtain 

| | V L ( x , t ) | 2 < ( l + fcit)L(x,t; 

for all x G M. In other words, 

V\/L(x,t)| < y a + M < d 
2i - y/t' 

where C\ = ^l\ 1 . By integrating this estimate along minimal geodesies, 
we obtain for any x, x G M and t G (0, T] 

v L (x, t ) — v L (x, £) < —=d(x,x). 

Hence, if d(x,x) < v t , then 

\/Z(x,t) < VL(x,t) + d = w | l o g 2 + C i # C 2 , 

where we used (E.49). 
In terms of the original solution u, this says that if d (x, x) < Vt, then 

u(x,t) = Ae~L{x^ > Ae-C* = c3A, 
where cs > 0 depends only on (Mn,g) and T. Since i < T, we have 

VolB(x, \ /F) > C 4 P / 2 , 

where C4 > 0 depends only on (M.n,g) and T. Prom all of this we conclude 
that 

/ u(x,i)dii{x) > / u(x,i)dti(x) 
JM JB(x,Vt) 

>c3AVo\B(x,Vt) 

>C3C±Atn/2, 

that is, 

tn/2u (1/, t) < in'2u (x, t ) < 2-n>2Ain'2 

< C$ u (x, t) dfi (x) 

= C5 / i£ (x, i) d/x (x) 

for all ?/ G .M and £ G [0, T], where we used fM u (x, i) d/x (x) = const. This 
completes the proof of the corollary. • 

By Corollary E.32 we may prove a version of Theorem E.30 which does 
not assume a pointwise bound on u. The following is Corollary 1.3 of [249]. 
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COROLLARY E.34. If u is a positive solution to the heat equation on 
M x [0,T] with 

u(y,t)d^{y) = 1, / 
JM IM 

then 
,2 - ~ ( B t |Vlogu | z < Clog 

on M x (0,T], w/iere C and B depend only on (M,g) and T. 

PROOF. Given any to G (0,T], consider the time interval [^,*o]- By 
Corollary E.32 we have for every x E M and t G [^,to], 

u (x, t) < Ct" n / 2 < 2n /2Ct~n / 2 = A. 

We now can apply Theorem E.30 on this same time interval [̂ -, to] to obtain 
that for all x o G M 

f /on/2fif-n/2\ 

| |V lo g t .P (x„ , t „ )<( l + W„) log^^J o r j . 

D 

EXERCISE E.35 (Heat operator of ratios). Show that for any function F 
and positive function G, we have 

! -A -W* 0 .v)®-I(!-A),-£(!-A )a 
THEOREM E.36 (Laplacian estimate for bounded solutions). Let (Mn, g) 

be a closed Riemannian manifold with Re > —k\, where k\ > 0. If u is a 
positive solution to the heat equation with u < A, then 

kieklt ( (A\ 

Alogu + 2 | V l o g < < Jit _ 1 ( n + 41og ( - J 

PROOF. By the exercise we have 

- - A - 2 V l o g „ . v ] ( -
and 

d \ 2 
— - A - 2Vlogu • V IVlogd2 < —(Alog 'u ) 2 + 2fci IVlogd 2 , 
ot J n 

where we used |VVlog^| > ^ (A log it) . Hence for any function 0(t) we 
have 

|_ _ A - 2Vlogu • V J U(t) (— + |Vlog^|2 

< —(/>(t)(Alog^)2 + 2fci0(t)|Vlog^|2 + ^ ( t ) fAlogu + 2 |Vlog^ | 2 ) 

- ~<l>(t) (Alogu)2 + </>' (t)A\ogu + 2 U' {t) + fci0(t)) |Vlog^|2 , 
n 
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where we used ^ + |Vlogix| = A \ogu + 2 |Vlogu| . On the other hand, 

— - A - 2 V l o g ? i - V J log ( - J = \V\ogu\2 . 

Hence 
d_ 
dt 

A - 2Vlog?i • V J (</> (Alogu + 2 |Vlog?i|2) - B - 41og ( — ) ) 

< —</)(AlogM)2 + (?!)/Alogu + 2 (^ ' + A;i^-2) |Vlogu|2 . 

A - 2 V l o g u - V ] (</>(Alogu + 2 |Vlogu| 2) - n - 4 1 o g ( —) ) 

n 
Now choose cj> (t) = e, ' z \ so that <f>' (t) — -j^j and <f>' + k\(j> = 1; note also 
that <f>(t) € [0,1/ifei). Then 

d_ 

o 
< — 0 ( A l o g n ) 2 + ^ ' A l o g ? i - 2 | V l o g d 2 = J. 

n 
At any point where 

0(Alog?i + 2 |Vlogu| 2) > n + 41og (— J , 

we have either ^Alogiz, > n/2 or 2(f)\Vlogu\ > n/2. If (f)A\ogu > n/2, 
then 

J < ( 0 ; - l ) A l o g ^ - 2 | V l o g ^ | 2 < 0 . 
On the other hand, if 20 |Vlog^|2 > n/2, then 

J < 0(Alogu) 2 + <//Alogu- ^7 
n 2(p 

- 2<j> \ 4 J " 

Let $ = <p (Alogw + 2 |Vlog«|2 J — n — 41og (^ ) . We have shown that at 
any point where $ > 0 we have 

a A - 2 V log it- V 1 $ < 0 . 

On the other hand, $ < 0 at t = 0. Hence by the maximum principle we 
conclude that $ < 0 for t > 0. • 



APPENDIX F 

Tensor Calculus on the Frame Bundle 

Tell it to me slowly. 

- Prom "Time of the Season" by The Zombies 

1. Introduction 

In this appendix we describe a formalism for performing tensor calcu
lations on both fixed and evolving (by Ricci flow) Riemannian manifolds. 
We use this formalism in computing the evolution equation satisfied by the 
differential Harnack quadratic for the Ricci flow in Chapter 15. 

In particular we shall view tensors on a differentiable manifold Mn as 
vector-valued (Wk) functions on the frame bundle by evaluating the tensors 
on the vectors in the frames. We define natural, globally defined frame fields 
on the frame bundle FM of a Riemannian manifold (Mn,g) consisting of 
vertical and horizontal vector fields. These frame fields are orthonormal 
when restricted/projected to the orthonormal frame bundle OM.1 Via the 
correspondence between tensors and vector-valued functions, the covariant 
derivatives of tensors on (Mn,g) become the directional derivatives of the 
corresponding functions on FM. with respect to the horizontal vectors in 
the globally defined frame fields.2 

The directional derivatives with respect to the vertical vectors act alge
braically on the functions on FM corresponding to tensors on M because 
the functions are invariant under the action of GL (n,R). 

We find it convenient to confirm these formulas by using local coordi
nates {x1} on M, which induce local coordinates on FM. The brackets 
of the horizontal vector fields in the frame fields on FM are curvatures 
contracted with the vertical vector fields; this corresponds to commuting 
covariant derivatives. The brackets of the vertical vector fields are again 
vertical, and the bracket of a horizontal and a vertical vector field is hori
zontal; in both of these cases the bracket operation is algebraic. 

The above considerations also apply to the subbundle of orthonormal 
frames OM. Since we are most interested in a time-dependent metric g (£), 
which is a solution to Ricci flow on some interval X, we consider the corre
sponding time-dependent bundles OM (t). In general, for solutions to the 

See L e m m a F.12 below. 
!See L e m m a F.14 below. 

411 
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Ricci flow, we consider the time-derivatives of various tensors, usually ten
sors in the curvature and its covariant derivatives. These time derivatives 
correspond to directional derivatives with respect to a 'time' vector field 
defined on FM x X. This time vector field is tangent to the submanifold 

OM = (J OM («) x {t} c FM x I. 
tei 

With this setup, we can compute the commutator formulas for the heat 
operator and the covariant derivatives, which we use to carry out the cal
culations for the proof of the Harnack estimate in Section 4 of Chapter 
15 of this volume. Calculations in these frames on OM are equivalent to 
those with respect to a moving orthonormal frame (or more generally, using 
Uhlenbeck's trick), as described in Section 2 of Chapter 6 in Volume One. 

The interested reader may wish to keep the following in mind while 
reading this appendix. 

PROBLEM F.l . Derive the main formulas (F.2), (F.8), (F.9), (F.12), 
(F.13), and (F.14) on FM invariantly (without using local coordinates). 
Do the same for OM and the time-dependent case. 

2. Tensors as vector-valued functions on the frame bundle 

Let Mn be a differentiable manifold and let TT : FM —•> Mn denote 
the general linear frame bundle, which is a GL (n, R)-principal bundle over 
Mn with fibers FMX = /TT~1 (X) consisting of ordered bases (frames) for the 
tangent space TMX. Our convention shall be that GL (n,R) acts on the left 
on FM, As described below, a tensor of degree r on Mn is equivalent to a 
GL (n, R)-equivariant function on FM with values in Rn" ^ (g)r Rn. 

Given a tensor and a frame at a point in Mn, we obtain a Euclidean 
vector whose components are the coefficients of the tensor with respect to 
that frame. Let U be a tensor of type (p, q), and consider a frame Y = 
{Ya}2=i at a point x G Mn. Let F* = {(F*)6}™ denote the dual coframe 
of 1-forms at x defined by 

(Y*)b (Ya) = 5b
a. 

Then ( r o i ® • • • ® Ya- ® (Y*)h ® • • • ® (Y*)bp V is a basis for 
I J a i , . . . , a q , 6 i , . . . , 6 p = l 

{(&qTMx) <g> ((&PT*MX). Using this basis, the components 

are defined by 

K-'Zq (y) * v ((Y*r ,...,(Y*r,Ybl,...,Ybp). 
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Note that U can be written 

u = E Kv-lq (Y) • Yai ® • • • ® Yaq ® ( n 6 1 ®... ® (y*)6* 
a i , . . . , a q , 6 i , . . . , 6 p = l 

(®9TA4a;)®(®pr*Ma!) 
for any Y G F.M and where at a point x E M the LHS (and hence the RHS) 
is independent of Y G FMX-

DEFINITION F.2. Every tensor U of type (p,q) has a corresponding 
vector-valued function U^ on the frame bundle 

U*:FM^> RnP+q 

defined by 

tf(Y)= (u^q{Y)Y 

We shall often abuse notation and write U^ as U. 

Note that if Y = {Ya}™=1 is a frame, then 
n 

u{Ybl,...,Ybp)= Yl ^v:.joo-i r«1®---®iv 
ai,...,aq=l 

(Here we are not abusing notation since we are considering U as a tensor on 
M.) For example, if V is a (p, 0)-tensor, the components V^...^ : FA1 —> E 
satisfy 

H ^ m ^ o o l „ =^(n1,...,nP). 
L J 01 •••Op 

We emphasize that V^...^ is a real-valued function on FM (we have one for 
each choice of fei,..., bp) while V is a tensor on M. 

The effect of a change of frame on the components of a tensor U is given 
by the following: 

LEMMA F.3 (GL (n, R)-invariance of C/t). / / y and Z = {Zb}^=1 are 
frames with 

Zb = Ga
bYa, where G = (Ga

b)n
ah=l G GL (n,R), 

C"? (*) = (G_1)c; • • • (G-x °i •••<:• u z z (y)> 
where we sum over repeated indices. 

For example, if V is a 1-form on M, then Vj, (Z) = G% Va (Y). On the 
other hand, if W is a vector field on M, then Wb (Z) = {G~l)h

aWa (Y). 



414 F. TENSOR CALCULUS ON THE FRAME BUNDLE 

3. Local coordinates on the frame bundle 

In carrying out the various computations, we shall find it convenient to 
use local coordinates. Let {xl}i=1 be a local coordinate system defined on 
an open set O CM. Then {gfi}™ is a frame field on O, so it is a section 
of TTQ : FM\Q —> (9, where TTQ is the restriction of the natural projection 
7T : FM —• M. We define functions 

yl-.FM\0^R 
by 

The function yl
a assigns to a frame Y the i-th component of the a-th vector. 

The vector- (or matrix-) valued function 

V ± (yi)la=i •• FM\o ~+ GL(n,R) C R"2 

describes the transition of the frame j ^ } . . to the frame Y = {Ya}™=1. 
That is, {yl

a} are the components of the frame { ^ } with respect to the 
frame {Ya}. 

REMARK F.4. Note that if Zb = G$Ya, then y\ (Z) = Ggy* (Y). The 
image is in GL (n, R) because the transition is nondegenerate. For the dual 
coframes, we have 

( n 6 = E[»_1]i(y) dxi> 

where \y~l\ • ' FM\Q —> R are the entries of the inverse matrix of (yl
a)n _ r 

Let x* = xi o 7T : F X | 0 - • R. The collection U&}n
j=1, ( ^ ) " a = 1 ) is 

a coordinate system defined on the open set FM\Q C FM. In particular, 

l {wh} - i ' 1 IT7 i Ms a basis for the tangent spaces of FM at points 

in FM\Q . Note that < -A- > is a basis for the tangent spaces of the 
I °y<i ) i,a=l 

fibers FMX for x £ O (the functions x-7 are constant on each FMX), i-e., 
A are vertical, whereas the {§§y} •_-, are transverse to the fibers. Also, we 
have7r*(J J ) = 5 | J . 

Let V be a 1-form on M. In local coordinates, V = Vjdx^, where Vj : 
O —> R are functions. It is easy to compute that as functions on FM\0 

n 
VC(Y)=\VHY)} = J > C ( F ) Vj(Y), 1 ic U 
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where Vj = V3; o TT : FM\a —• R. Thus the functions V} and 14 on FM\G 
are related by 

VJ-(y) yi(Y) = Va(Y). 
Note that Vj is constant on each fiber FMX. Later, we shall sometimes 
denote Vj simply by Vj. 

NOTATION F.5. Throughout this appendix we shall use the indices i,j, k 
for coordinates on Mn and a, 6, c for components of the frame; for instance 
the metric in local coordinates is gij = # ( ^>g~ j )> whereas gab{Y) = 
g (Ya,Yb) for a given frame Y. IfYa = yl

a-^, then gab = gijyl
ayJ

b. We shall 
also use the extended Einstein convention where repeated indices are summed 
independently of whether they are up or down. 

4. The metric on the frame bundle 

Now let g be a Riemannian metric on Mn. We proceed to define the 
induced Riemannian metric on the principal GL (n, R)-bundle FM. Let p : 
GL (n,R) x FM -> FM denote the left action. Given Y G FM, define 

pY :GL(n,R)-> FM 

by 
pY (G) = p (G, Y) for G G GL (n, R) . 

We have 
n 

PY{G)a = YJGh
aYh. 

6=1 

The derivative 
(pY),:gl(n,R)^TY(FMx) 

is a vector space isomorphism, where x — TT(Y). Given G E GL(n,R) , 
left multiplication LG : FM - • FM is defined by LG (Y) = p (G, Y). The 
vertical spaces are the tangent spaces to the fibers: 

VY = TY (FMX) = image [(pY) J , 
where x = n (Y). 

The Levi-Civita connection V on the associated tangent bundle TM 
induces a connection on the principal GL (n, R)-bundle FM, which is a 
GL (n, R)-invariant 1-form u on FM with values in g[(n,R), called the 
connection 1-form. Defining uo is equivalent to defining GL (n, R)-invariant 
horizontal subspaces of the tangent spaces of FM (the null spaces of u). 
The horizontal spaces in FM have the following property. Given a path 7 (t) 
in M, a parallel frame Y (t) along 7 (t) is tangent to the horizontal spaces. 
The horizontal spaces HY = keru; are the kernels of u : TY (FMX) —* R, 
which are GL (n,R)-invariant: 

(LG)* (HY) = HLG{X) 

for all G E GL (n, R) and Y G FM. 
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Given an inner product h on the Lie algebra gl (n, R) , the frame bundle 
has an induced Riemannian metric gF defined uniquely by the following 
conditions: 

(1) (py)* : (flI(n,R) ,h) -> (TY (FMx),gF) is an isometry, i.e., 

(py)*{9F\TYiFMx))=h 

for all Y G FMX and x e M; 
(2) the horizontal subspaces induced by the Levi-Civita connection are 

the orthogonal complements of the tangent spaces to the fibers with 
respect to the metric gF\ and 

(3) 7r : (FM,gF) —> (M,g) is a Riemannian submersion, i.e., 

(n*g)(V,W)=gF(V,W) 

for all horizontal vectors V, W G Hy C TYFM. 
Consider the standard basis {e (a, 6)}™6=1 of g[ (n, R) defined by 

e(o,6)J = ^ . 

We choose the metric h on gl(n,R) by taking this basis to be orthonormal 
with respect to h — ( , ) , namely 

{e(a,b) ,e(c,d)) = 6a
f6e

b6c
e6f

d = 6a
d5c

b. 

The Lie brackets of these basis elements are given by 

[e (a, b), e (c, d)} = < ê (a, d) - ^ e (c, 6). 

5. A natural frame field on FM 

5.1. Vertical vector fields on FM.. We now define linearly indepen
dent vertical tangent vector fields on FM which, together with the hori
zontal vector fields Va (defined in the next subsection), will form a global 
frame field (see Lemma F.12) which is orthonormal when restricted to OM. 

DEFINITION F.6. For each a and 6, the vertical vector field A£ on FM 
is defined by 

(F.l) A£ (Y) = (PY\ e (a, b) for all Y G FM. 

The {A£}^6:=1 are linearly independent and infinitesimally represent the 
left action of GL(n,R) on FM. 

LEMMA F.7. At each point, the vectors {A£}^fe=1 are orthonormal with 
respect to gF. In local coordinates, they are given by 

K(Y) = ±yi{Y)^-\ . 
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PROOF. The {Ab}™b=1 are orthonormal since they are the push forwards 
of {e (a, 6)}™b=1 by the isometry py and {e (a, 6)}™b=1 are orthonormal with 
respect to h on g[(n, R). S'mce{yl

a (Y) , 5 J ( X ) } ^ = 1 are the local coordi
nates of Y, if we let 

7 (i) = exp [te (a, 6)] G GL(n, R) 

and 7 (f) y == py (7 (£)), we can easily compute 

d 
[ ( p y ) , ( c ( a , 6 ) ) ] = ( | 

+ 

, ^ ( 7 ( t ) r v < * . 
t=0 dt dxi 

= 5a
d5tvl (X) 4l 

d 
Y 

vl(Y) dyi Y 

• 
The action of the frame bundle vector fields Ab on tensors by directional 

differentiation is given by the next lemma. Since Ab are vertical and tensors 
on M correspond to GL(n,R)-invariant functions on FM (Lemma F.3), 
their directional derivatives act algebraically. 

LEMMA F.8. If U is a (p,q)-tensor, then 

(F-2) ( W £ ) (y) = E ^K'-Z^^ (y) 
e=i 

E« r: ak-\cak+i---aq (Y). 
k=l 

In particular, ifVc = yJ
cVj is a 1-form, then 

(Aa
bVc)(Y) = 5a

cVb(Y); 

tfVab = yl
ay3

bVij is a covariant 2-tensor, then 

(F.3) (AtV^) (Y) = 6a
cVbd (Y) + 5a

dVcb (Y). 

PROOF. If V is a 1-form, then we compute 
d 

(Aa
bVc) (Y) = yl (Y) 

dyi Y 
{yiVj)=yl(Y)5t8a

cVj = 6a
cVb(Y) 

since Vj = Vj is constant on FMn(y)- In general, if U is a (p, g)-tensor, then 
we use 

d 

dy\ (y~X = - (y-V (^vl) {v~% = - (y~r: (tr1) 
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and y™ (y x)afc = 8^k to compute 

d 
(AsCT;)(y)==^(y) 

dyr
c Y L (v-1):l---(y-1K<"< J? 

bp K-Z (y) 
— Sc TTai'"a(i (V\ — SakTTai---a} 

— ObeVb^-be-idbi+x-bp v2 / °d ub1-bp 

•ai...afc_icafe_|_i---aq (n-
a 

5.2. Horizontal vector fields on FM—the connection. We shall 
describe the components of the covariant derivatives of tensors on M with 
respect to arbitrary frames {1^} as directional derivatives of the correspond
ing vector-valued functions with respect to a natural basis {Va}™=1 of hori
zontal vector fields on FM. The vector field V a at Y corresponds to parallel 
translating a frame along a path in Mn with initial velocity Ya. Let x G Ai, 
X G TXM, and Y = {Ya} G FMX. We start with any path a{t) in M such 
that cr(0) = x and cr'(O) = X. Now we choose the path 

(F.4) lx(t) = (Pa{t)Y1,...,Pa(t)Yn), 

where Pa(t) is parallel transport along a(t). Any such path 7 (t) is tangent 
to the horizontal spaces; this property characterizes the horizontal spaces. 

DEFINITION F.9. The vector field V a on FM is defined by 

d 
V a y = dt lYa (t) 

t=0 

at Y G FM. 

The following lemma is immediate. 

LEMMA F.10. The vector fields V a on FM are horizontal. In particular, 
V a |y G TY (FM) is the horizontal lift ofYa G TMX atY G F A ^ . 

Next we express the vector fields V a on FM in terms of local coordi
nates, recalling that a is a path on M starting at x in the direction of Ya. 
First note that Pa(t) (Yb) = v\ (Y) Pa(t) ( Tjffc | ) • So we need to compute 
the parallel transport, 

P„ 
d 

* im 
d 

dxl *(*) y dxk 

which is the solution to the differential equation 

d 

a(t) 

0 = vCT, ( t ) fl(t) dxi 
a{t), dt{) dx* a(t) 

+ /fc(*)V <r'(4) 
ait), 

ft(o) = sl 
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Taking t = 0, we have 

419 

0 dfl 
(0) 

d 
dt v ' dxi 

dfl 

+ Vya 
a 

dxk 

d 

which implies 

The path 
dt(0) = -yi(X)T%(x). dfl 

lYa it) = {Pad) (Yb)}n
b=1 = y" (Y) M) 

d 
~dxi »(*). 6=1 

in FM is tangent to V a at t = 0. Since Pa{t) (Yb) = y\ (•yYa (t)) -^i\a(t), we 
have 

yi(iYa(t)) = yUY)fm 
Hence 

— I 
Since ^ | t = Q xJ {-fYa (t)) = yi (Y), we have 

d 

t=o 
y\ (lYa (*)) = yk

b (Y) | * ( 0 ) = - j £ (Y) yi (Y) T% (x) 

Va|y = lYa (t) 
t=0 

X3 {lYa (t)) 
t=0 

d 

dxi + Y 

— nP yi (Y) 
d 

dxi 

t=o °yb 
d 

-yk
b{Y)yi{Y)Tlj(x)~-

\Y Qy\\ 
That is, 

LEMMA F . l l . The horizontal vector fields V a on FM are given in local 
coordinates by the formula 

Va\Y = yl(Y) 

or more succinctly as 

(F.5) V a = yi 

d - i £ ( y ) I * (*) * 
Y dyl dxi ti 

— - vkr 
\dxi Ub kjdyl 

Y t 

-j(±.&i.±. 
The frame field on FM that we use to carry out our tensor calculations 

is given by the following. 

LEMMA F.12. The globally defined vector fields \ya}a>nd {A^} form a 
basis on FM which, when restricted to the subbundle OM, is orthonormal 
with respect to the metric gF. 
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PROOF. The Va are the horizontal lifts of Ya and the Ab
c are vertical. 

Since 7r : (FM, gF) —> (M,g) is a Riemannian submersion, this implies that 
gF (Va, Vc) = g (Ya, Yc) and gF (Va, Aj!) = 0. We have already observed that 
{A^} is orthonormal since e (a, b) is orthonormal in g[(n,M). If Y G OM, 
then g (Ya, Yc) = 5ac implies # F (Va, Vc) = 8ac. D 

6. Covariant differentiation 

We now describe covariant differentiation from the point of view of ten
sors as Euclidean vector-valued functions on the frame bundle. We start 
with the case of the covariant derivative VV of a 1-form V. Now, W is a 
2-tensor which we consider as a function 

W :FM-*Rn\ 

Given Y = {Ya}n
a=1 G FM, let 

(VaV)c = ( W ) a c (Y) = ( W ) (Ya, Yc), 

where the first term is the c-component of the function VaV : FM —> Mn, 
the second term is the ac-component of the function W : FM —» Mn , and 
the third term is the 2-tensor V F applied to the vectors Ya and Yc. In local 
coordinates, we compute 

(VaV)c = yiy>c(ViV)j, 

where (S/iV) • = (VF) (g|?>§fj) is the r/'-th component of the 2-tensor 
V y on .M with respect to the coordinate system {x2} . Note that (VaV)c 

is a function on FM, yl
a and yJ

c are functions on FM\0, and, by abuse of 
notation, we are considering (V^F) as a function on FM\Q by composition 
with 7r : FM\Q —> (9 (so that (V^F) • is constant on the fibers). 

Since 
d 

( V ^ = ^ ' - r ^ ' 
we have 

(F.6) (VaV)c = ylyi (±Vj _ r* yfc) . 

Differentiating V̂  — yJ
cVj, which is a function on FM\0 , we obtain 

mv'=i?tev>)=*&'=*&>• 
We also compute 

A ^ c = - ^ r (yi Vj) = (-^ryi) Vj = <5^K- = <J*Vfc. 
%£ dyt yy° 3> \dyk

h
yc) 3 ck 3 c 
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Thus (F.6) implies that 
d 

_ i ( d k j d \ 

Recall from (F.5) that for each a = 1 , . . . , n, using a local coordinate system 
{xl, O) , the vector field V a on FM is given in FM\G by 

7a=^{l^-r- (^4}-
Hence (VaV)c = V a (Vc). Since this is a coordinate-independent formula, 
we have the following. 

LEMMA F.13. The globally defined vector fields V a on FM acting on a 
1-form V by directional differentiation are given by the formula 

(F.7) Va(Vc) = (VV)ac. 

The left-hand side is interpreted as a directional derivative of the func
tion Vc on FM in the direction Va , whereas the right-hand side is inter-

2 

preted as the ac-component of the Rn -valued function W on FM. One 
can think of Va as telling us at each frame {Yb}b=1 G FM at x G Mn how 
to (infinitesimally) parallel translate the frame Y = {Yb}b=1 in the direction 
of Ya G TMX. We define V = ( V i , . . . , V n ) . 

Taking the covariant derivative VU of a (p, g)-tensor U is similar, albeit 
more tedious to write down, so we just state the results. The covariant 
derivative Vf7 is a (p + 1, g)-tensor which we consider as a function 

VU:FM^Rn(P+1)q. 
We can compute 

m)XX = (VcCOK = i6£ • • • < (y~X • • • (y~X (v*tf )£:::£, 
and so using 

. . * . . p n 

(\71TTY1'"lq — -—TJll'"lq -X^X^T£ TJn""lq 

\VkU )h...jv - QxkUjl-jp Z^ Z ^ 1 kjrUji...jr-i£jr+l-jp 
r=l £=1 q 

" ^ ^ T (7 

km^ji—jp 
• V~^ Y~^ -pis TTii—is-imis+i'-iq 

/ J / J km j \ 
s=l m—\ 

we have 
(\7 u\ai'"aq - i,k (— r£ i , m — \ TTai"'a(i 
(vcU)bl...bp - yc l^d„k Lkmye d^J ubi,mmbp , 

where T£
km (Y) = Te

k (TC (Y)) in a slight abuse of notation. Hence 
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LEMMA F.14. The vector fields V a on FM acting on a (p,q)-tensor U 
by directional differentiation are given by 
(F.8) v c ( c / ^ ; ) = (vc[/)-:6

a;. 
EXERCISE F.15. Complete the proof of Lemma F.14 started in the pre

vious paragraph. 

7. Curvature and commuting covariant derivatives 

We shall next compute the commutators of the global horizontal vector 
fields {Va} and vertical vector fields {A.bc} on FM. Let 

[Va,V6] = V a V 6 - V 6 V a . 

LEMMA F.16. On FM, 

(F.9) [VaiVb] = -Rd
abcAc

d, 
where 

n 
R(Ya,Yb)Yc = J2Rd

abc(Y)'Yd. 
d=i 

PROOF. We have 

v« = , :{; | -r^} 
and 

^ 4 = ^ ( y _ 1 ) C f e A " ' 
(where in the sequel we shall use {p, q,r} in the same manner as {i , j , k}) 
which follows from 

Using 

— y J = o foralH,j,6, 

we compute 

vav6 - v6va = rf { A - r f o ^ } (tf { A - « A } ) 

- 7;»»/P i —r f c + _ r f c + r j rfc - rj rfc 1 ? / 7 — 
— i/ai/6 l ^ j x pq ^ ^ p x *q ^ ± i q 1 p.? L pqL i] J y<l g k 

- uiiipvq drlY ( —rfc 4- — rk + vj vk - rj rk i Ad 

-yaybyd\y )k\ QxiLP<l^ QxP
Li<l^LiqLP3 LpqLij)^c 

= -wi«(y-1)fc<A-
= ~Rabd^c • 
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Together with Lemma F.8, this describes how commuting covariant 
derivatives act on tensors. For example, if Vc is a 1-form, then 

(F.10) [V0, V6] Vc = -Rd
abeKVc = -Rd

abcVd, 
and if Vab is a covariant 2-tensor, then 

(F.ll) [V0, V6] Vcd = -Re
abfHvcd = -Re

ahcVed - BfaVce. 

More generally, if U is a (p, g)-tensor, then 

(F.i2) [vc, v j u ^ = -J2 RLut:::b
ailfbl+1...bp 

£=1 
q 

i \ ^ r>ak jTai—ak-ieak+i—aq 
"•" Z- / ricdeUb1-bp 

fe=l 

One proves the following lemma similarly: 

LEMMA F.17. On FM, 

(F.13) [A%, Vc] = A£VC - VCA£ = 5a
cS/b 

and 
(F.14) [Al Ac

d] = A£AS - A^A? = tfJAg - 8c
bAa

d . 
EXERCISE F.18. Prove Lemma F.17. 

Note that there is a sign difference between this and the Lie brackets for 
e (a, b) G fll (n, R) . It is a general fact for homogeneous spaces that if G acts 
on M, g is the Lie algebra of G, and the vector field X* on M is defined by 
* * (P) =N I U [ ( < * P * * ) P 1 for X G S , p G M , then 

[x,y]* = -[x*,y*] 
for any X, Y G fl, which can be seen by simple computation. 

8. Reduction to the orthonormal frame bundle 

It will simplify our calculations considerably to work on the orthonormal 
frame bundle OM, which is the subbundle of FM with gab — Sab; i.e., 

OM = {YeFM: gab (Y) = 6ab for all a, b} . 
The metric g may be considered as a function 

9 = (9ah)lb=l : FM - S^x" C R»(«+D/2, 

where §™xn denotes the set of symmetric, positive-definite n x n matrices. 
In particular, OM = g~x (I), where / G S+Xn is the identity matrix. Note 
that given a point x G M, a tensor U at x, as a function on FMT, is 
determined by its value U (Y) at one frame Y G FA^x because GL (n, M) 
acts transitively on the frames. In particular, tensors, as functions on FM, 
are determined by their restrictions to OM. 
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Since OM is the set of frames with gab = 8ab, to be tangent to OM a 
vector field V on FM must satisfy 

V (gab) = 0 
on OM. We compute this condition in local coordinates. Let c/ij — gij o TT : 
FM -+ R. If V = a ^ + & J j , then 

d 
= al

c5?5c
ayigke + a^[bc

hyk
agu + PJ^j9k£ 

where in the last line we have dropped the tildes from the notation. Thus 
the tangency condition is 

d 
(F.15) uk

aylgki + a[yk
aQu + ff> —j9M = 0. 

In the case of vertical vectors fields, we shall use V = ad
cKc

d and from (F.3) 
we find the tangency condition is 

(F.16) a£ 5 M + c*g0oc = 0. 
The vertical vector fields A£ on FM are not tangent to OM. Therefore 

we project by antisymmetrizing to obtain vector fields tangent to OM: 

DEFINITION F.19. Let 
n 

(F.17) pab = J2 (9acK - 9bcK) > 
c = l 

which is a vertical vector field on FM. Restricting to OM, we have 

Pab = Aa
b-Ab

a. 

REMARK F.20. The reader who prefers to be consistent with up and 
down indices may wish to write this as pab = 5acA£ — S^A.^ and similarly for 
some of the formulas below. 

Note that on OM we have pba = —pab- We will show in Corollary F.23 
that the restriction of pab to OM is tangent to OM. 

REMARK F.21. As a vector field on OM, pab represents an infinitesimal 
counterclockwise rotation of the a6-plane. In particular, consider the path 

7(£) = ( : r ,y i v . . ,y a _i ,cos^ 
in OM. We have 

dn 
Tt(0) = pablY • 
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Rotating counterclockwise in the a&-plane skews the a-axis into the 6-axis 
and the 6-axis into the negative a-axis. 

LEMMA F.22. If V is a 1-form, then 

Pab (Vc) = 9acVb - gbcVa 

and if V is a 2-tensor, then 

Pab (Vcd) = QacVbd + 9adVcb ~ 9cbVad ~ 9dbVca' 

More generally, ifU is a (p,q) -tensor, then 
(F.18) 

e=i k=i 
v Q 

Tar~a,k-ifak+r~aq 
yfd"c K-

£=1 fc=l 

PROOF. This follows from the definition of pab and Lemma F.8. • 

COROLLARY F.23. We have pab (gcd) — 0; hence, pab is tangent to the 
suhhundle AM = g~x (A) for each A G GL(n ,R) . In particular, pab is 
tangent to OM. 

PROOF. Using (F.16) along with the definition of A£, we get 

Pab (gcd) = gaCgbd + gadgCb - gbCgad - gbdgca = o. 

• 
LEMMA F.24. The vector fields {Va}and {pbc}(b<c) form an orthogonal 

basis on OM with |Va | = 1 and \pbc\ — V%-

PROOF. Since Vg = 0, we have 

Va (gbc) = 0. 
Thus Va restricts to a vector field on OM. We also calculate 

{Pab, Pod) = (A£ - A*, Ac
d - Af) = 28acSbd 

for a < b and c < d. • 

We saw in Lemma F.16 that [Va, VJ is a linear combination of {A^} , and 
by the symmetry of the curvature tensor it is also a linear combination of 
{pab}- We leave to the reader the proof of the following, which follows from 
Lemma F.16 and the definition of p and the symmetries of Rm. As usual, 
l e t Rabcd — Reabc9de-

LEMMA F.25. On FM, we have 

[Va,Vb] = \Rdabc9CePde-

In particular, on OM, we have [Va, V&] = \RabcdPdc 
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Lowering the indices on Rm in formula (F.12), we have 

COROLLARY F.26. On OM 

[ve, v,] ojv.:? = - £ J W C S W ^ + E Refcakuz::b
arcak+1-aq-

£=1 k=l 

For example, if V is a 1-form, then on OM 

[Va,Vb]Vc = -RabcdVd-

The other commutators are given in the following lemma. 

LEMMA F.27. On FM, we have 

[pab, V c ] = pab^c ~ ^cPab = 9ac^b ~ 9bc^a 

and 

[pab, Pcd] = PabPcd - PcdPab 

= QacPbd + 9bdPac - QadPbc — QbcPad • 

PROOF. These equations follow from the commutators [A^,VC] and 
A|;, A^ (equations (F.13) and (F.14)) and the definition of p^. • 

In dimension 3, we see that the Lie algebra structure on 50 (3, M) is given 
by the cross product. 

COROLLARY F.28. If n = 3, then 

[Pl2, P13] = P23, [Pl3, P23] = P12, [p23, Pl2\ = Pl3-

9. Time dependent orthonormal frame bundle for solutions to 
the Ricci flow 

Now we consider a solution to the Ricci flow (Mn, g (£)), t G [0, T). Let 
Mn x [0, T) be the space-time manifold. We have the principal GL (n, Un
bundle 

it:FM x [ 0 , T ) - > M x [0,T) 
defined by n = n x id^^) • Recall that the time-dependent metric g (t) may 
be considered as a function 

g:FM x [0,T) -* § n x n 

( S n x n are the symmetric n x n matrices). Consider the degenerate metric gF 

on FM x [0, T) given by gF\FMxm ~ 9F &) 5 the metric on FM induced 
by g (t). That is, 

SF\FMX{t} ((*>u)> ^ v)) = 9F (t) (X, Y) 

for X,Y G T(FM) and u , v e l . We have the vector fields {Va}, {A^} , 
and {pab} •> which are all tangent to FM x {t} for each t G [0, T). 
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Consider the subbundle 

OM= | J OMg{t)x{t} = g-1(I)cFMx[0iT). 
*e[o,T) 

The time-like vector field Ĵ  is not always tangent to OM, unless g(t) is 
independent of time; however, there is a canonical way to modify it so that 
it becomes tangent to OM. 

10. The time vector field and its action on tensors 

Given a solution to the Ricci flow (Mn,g(t)), when considering time-
dependent tensors on M, it is natural to consider their time derivatives not 
as the usual time derivative Ĵ  but rather the directional derivative with 
respect to the following vector field. 

DEFINITION F.29. The vector field V* on FM x [0,T) is defined by 

(F.19) Vt = Qi + RabgbcK-

LEMMA F.30. The vector field V* restricted to OM C FM x [0, T) is 
the unique vector field that is tangent to the subbundle OM and such that 
Vt — jft is space-like (tangent to FM x {t}), vertical, and perpendicular to 
each OMg(t) C FM. 

PROOF. On OM we have g^ = <5a&, which we shall use a few times 
below. Now let's look carefully at the conditions. 

(1) Since V* — Ĵ  is space-like and vertical, it is of the form 

V , - ! = o * A 5 , 

where ad are functions on OM. 
(2) Since V* — Ĵ  is perpendicular to the subbundles OMg(t), we need 

0 = (pab, ad
cAc

d^ =ab
a-at 

and hence a is symmetric. 
(3) Now since V* is tangent to OM, we have Vtgab = 0. Thus 

0 = -g-gab + oid
aghd + ac

hgac 

= -2Rab + ab
a + o%. 

Hence ah
a — Rab since a is symmetric. 

Thus we must have that V* — ^ = Rab^t- Conversely, if Vt is defined 
this way, then it satisfies all of the above properties. • 

EXERCISE F.31. Formulate the analogue of the above lemma for AM = 
g'1 (A), where A £ GL (n, R) . 
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REMARK F.32. As we shall see when we consider the space-time ap
proach to the Harnack estimate in Part III of this volume, the time co-
variant derivative of a time-dependent tensor with respect to the evolving 
metric g (t) is the directional derivative of the tensor in the direction V*. 
The formula Vtgab — 0 above is part of the equation that shows that the 
space-time covariant derivative of the space-time degenerate metric is zero. 

LEMMA F.33. If V is a time-dependent 1-form, then 

VtK = -Va + Rab9bcVc; 

and if V is a 2-tensor, then 

VtVab =Q-tVab + Racg^Vdb + RbcgcdVad. 

In general, if U is a time-dependent (p,q) -tensor, then 

rl P n 
Y7 Trai-CLq _ 0^rTai-aq V ^ V ^ Z?, ncdjj"i-o>q 
VtUbv-bp - Qt

Ubi-bp ^2-^2-^ UbJc9 Ub1-bj^1dbj+V"bp 
j=l c,d=l 

(F.20) - E E 9aiCRc
dua

bi::i 
i=l c,d=l 

aic j3CTYal~-ai-ldai+l"-aq 
'p 

PROOF. By Lemma F.8, 

*iVa = yl5d
aV% = Sd

aVc 

and so the first equation follows immediately: 

VtVa = —Va + Rdb9bcAd
c Va = —Va + RabgbcVc. 

Again by Lemma F.8 we have 

Ad
cVab = SiVd, + StVac, 

and so 

VtVab = ^-Vab + RdegecAd
c Vab = jVat, + RaegecVcb + RbegecVac. 

The equation for general tensors follows similarly. • 

In particular, 

(F.21) Vt9ab =g-tgab + Racgcdgdb + RbCgcdgad = 0 . 

This agrees with the fact that V< is tangent to OM. 
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11 . T h e heat operator and c o m m u t a t i o n formulas 

We now define the Laplacian (or Laplace operator) 
n 

(F.22) A = ]Tv e V e 
e = l 

acting on vector-valued functions on OA4. This corresponds to the rough 
Laplacian A = YMJ=I91^^3 a c t i n g on tensors on AA. Using (see Lemma 
6.15 on p. 179 in Volume One) 

d 
(F.23) ~Kf^ijk£ = ARijM + 2 (Bijki - Bij£k + Bikj£ — Bajk) 

lR{ Rpjki + RjRipkt + RkRiJpt + RiRijkp) ? 

(F.20), and (F.19), we can calculate the evolution equations of Rabcd and 
Rab, obtaining 

(F.24) (Vt - A)Rabcd = 2(Babcd - Babdc + Bacbd - Badbc), 

where Babcd = -RaebfRCedf, and 

(F.25) (V* - A)Rab = 2RacdbRcd. 

R E M A R K F.34. Note tha t equation (F.24) matches with equation (6.21) 
of Volume One, which was obtained by Uhlenbeck's trick. In Uhlenbeck's 
trick one evolves a frame by (equation (6.18a) of Volume One) 

(F.26) jYa = Re (Ya) = RabgbcYc. 

Note that in coordinates on the frame bundle, this says 

| « * (Y) = Rabgbcyk
c (Y). 

This is equivalent to equation (6.19a) of Volume One: -^L = Rco^ for a 
bundle isomorphism L : V —• TM. One computes tha t under the Ricci flow 
^ [g(y a , Y^)] = 0. In particular, if a frame is initially orthonormal, then 
it remains so. The path 7 (t) = (Y (t), t) lies in OM so tha t ^ 7 (t) G 
T (OM\ . We claim ^ 7 (t) = V t . To see this, we first note tha t 

^ ( t ) = Rc(mf. 
In coordinates this is 

d |7(*)=W^(y)4 

= Rab9 ° Acl7(t) + -QI 

7(0 + 9 t 

7(0 

lit) 



430 F. TENSOR CALCULUS ON THE FRAME BUNDLE 

Thus the time-derivative V* defined by (F.19) corresponds to taking the 
time-derivative Ĵ  [U (Yai7... ,Yap)] of a tensor where Yai satisfy (F.26). 
For example, the terms in (V* — §i) Rm match with those in Ĵ  (L* Rm) — 
L* (§i ^ m ) a s *n ^ e proof of Lemma 6.22 of Volume One. 

We conclude this section with the following lemma: 

LEMMA F.35. On OM we have the commutators 

[V*, V f l ] = VbRacPbc + RacVc 

and 

[ A , V a ] = Readc^ePcd + RadS'd + ^bRacPbc, 

which imply 

(F.27) (V t - A)V a - Va(Vi - A) = Rabcd^bPcd • 

PROOF. Since 

- 1 ^ - = gu (ViRjt + VjRu ~ VeRi. 

for Ricci flow, we first calculate 

{dt ljWaUbdy^ 
d_ 

k = gke{ViRje - VjRlt - VtRij)yiy>h — 

= yi
cyk

dgcd(VlRji + V3RU - V ^ ) ^ ' - ^ 
°Vb 

= gcdiyaRbc + VbRac - VcRab)Ab
d. 

Together with the commutator for V a and Ag (equation (F.13)), this implies 
that 

[Vt, V„] = gcd(VbRac - VcRab)Ab
d + Rbcgcd8b

aVd 

= VbRac(gcdAb
d - gbdkc

d) + RacgcdVd 

= ^bRacPbc + Rac^c-

We next compute [A, V a ] . Using 

V e V e V a = V e (^ReadcPcd + V a V f 

= xV ' eReadcPcd + ^Readc^ePcd + ( ^ReadcPcd + V a V e ) V e , 
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we obtain 
1 1 1 

[A, V a ] = - V'eReadcPcd + ^Readc^epcd + ^ReadcPcd 

= yReadc^ePcd + ^Readc{9ce^d ~ 9deS'c) 

+ ^eReadcPcd + ^Readc^ePcd 

= Readc^ePcd + Rad^d + ^ eReadcPcd-

By the second Bianchi identity, 
^eReadc = V'eRdcea = V 'cRda ~ V ^ i ? c a . 

Since pcc/ = —p^c, this implies 

(F .28) A V a - V a A = Readc^ePcd + Rad^d + ^ bRacPbc \ 

hence, 

(F.29) (V* - A)V a - V a(V t - A) = Rabdc\7bpcd. 
a 

We may use (F.27) to obtain the following formulas which are used in 
the proof of the Harnack estimate. First, 

(V t " A)V 0H - Va(Vt - A)H = RabdcVbPcdVb 
= Raedc^e(9cbVd ~ 9dbVc) 

= Racdb^cVd - Racbd^cVd 

(F .30) = 2 i ? a c d 6 V c y d . 

Similarly, 

(F.31) (V, - A)VaHc - V a(V t - A)Vbc = 2RadebVdVec + 2i2adecVdHe, 
and 
(F .32) 
(Vt-A)\7aVhcd-Va(\7t-A)Vbcd = RaefbVeVfcd+RaefcVeVbfd+RaefdVeVbcf. 

Analogous formulas hold for higher tensors. We leave it as an exercise for 
the reader to derive these from (F.27). 

12. Notes and commentary 

A nice reference for the theory of principal bundles and their associated 
vector bundles is Kobayashi and Nomizu [311]; see also Poor [413]. The 
exposition in this appendix follows §2 of Hamilton [247]. 
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maximum principles, manifolds with positive curvature, real analyticity of solutions, 
local derivative estimates, differential Harnack estimates, and Perelmans Harnack-type 
estimate. 

Part III: Geometric-Analytic Aspects 
B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, 
R Luo, and L. Ni 
Mathematical Surveys and Monographs, to appear in 2008 

Covers central topics in Ricci flow with an emphasis on aspects which fuse geometry 
and analysis. Topics include aspects of Perelmans theory of ancient solutions, pseu-
dolocality, and Hamilton's nonsingular solutions. 

Hamilton's Ricci Flow 
B. Chow, P. Lu, and L. Ni 
Graduate Studies in Mathematics, Volume 77, 2006 

A textbook to introduce Ricci flow to graduate students and mathematicians interested 
in geometric analysis. Special emphasis is given to singularity analysis. Comparisons are 
made between Ricci flow and other geometric evolution equations. A review of Rieman-
nian geometry is given in the first chapter and exercises are presented throughout the 
text. 




