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Introduction 

Quand est-ce que vous allez 
demontrer un vrai theoreme? 
— Bruno Poizat, printemps 2000 

We will be concerned here with the following conjecture. 

ALGEBRAICITY CONJECTURE. An infinite simple group of finite Morley 
rank is algebraic, over an algebraically closed field. 

This conjecture arises in Model Theory, where Morley rank is an ab­
stract notion of dimension which generalizes the notion of the dimension 
of an algebraic variety in some of its usual formulations. The conjecture 
asserts that any infinite simple group which can be equipped with such a 
dimension function must be isomorphic, as an abstract group, to a Cheval-
ley group: the group of F-rational points of a simple algebraic group, over 
some algebraically closed field F. It remains open. 

The main result to be proved here can be stated as follows. 

MAIN THEOREM. Let G be a simple group of finite Morley rank. Then 
G satisfies one of the following two conditions. 

(1) G is algebraic over an algebraically closed field of characteristic 2. 
(2) G has finite 2-rank. 

The 2-rank of G, denoted ra2(G), is the dimension of the largest elementary 
abelian 2-subgroup of G. 

The condition that the 2-rank is finite can be reformulated in more 
useful but somewhat more technical ways, notably as follows: the Sylow 
2-subgroups contain divisible abelian subgroups of finite index and finite 2-
rank. Such groups are said to be of "odd type", when the divisible abelian 
subgroup is nontrivial, and of "degenerate type" when it is trivial. We 
therefore prefer the following formulation. 

MAIN THEOREM. Let G be a simple group of finite Morley rank, and 
nonalgebraic. Then G is of odd or degenerate type. 

This is somewhat more than we had set out to do here. We had ex­
pected to confine our results to the analysis of minimal counterexamples to 

ix 



X INTRODUCTION 

the Algebraicity Conjecture. The turning point came in [2], when it became 
clear that methods for achieving "absolute" results like the foregoing could 
be envisioned using many of the techniques already developed for the treat­
ment of minimal cases. This is startling, as it is the analog in our subject 
of a classification of finite simple groups of characteristic 2 type without the 
Feit-Thompson (Odd Order) theorem. Indeed, groups without involutions 
fall in the degenerate class—and conversely, simple groups of degenerate 
type contain no involutions, as the Algebraicity Conjecture predicts (The­
orem IV 4.1). About such groups we say nothing, and of course they may 
occur, in principle, as subgroups or sections of the groups we do study. We 
work around them. 

Much of our approach will be modeled closely on the methods of finite 
group theory. The Algebraicity Conjecture is analogous to the classification 
of the finite simple groups as Chevalley groups, possibly twisted, together 
with the alternating groups and 26 "sporadic" finite simple groups. The 
methods we use are largely those which were involved in the two proofs of 
that classification discussed above, combined with certain additional ingre­
dients, namely: (1) the amalgam method, which is part of a proposed third 
generation approach to the classification of the finite simple groups, and is 
very effective in our context; (2) more elementary ideas modeled on the the­
ory of algebraic groups and lacking a finite analog; (3) specific properties of 
algebraic groups. To this list, a fourth category must be appended, relating 
to the body of techniques which enables us to work around the presence 
of degenerate sections. This is a very geometrical theory, based ultimately 
on dimension computations, and which is developed in Chapter IV. Every­
thing we do there could be done in the category of algebraic groups, but 
is not—primarily, it seems, because stronger results based on properties of 
complete varieties are available. In our category, there is no coherent no­
tion of complete variety, and we see no obvious parallel with the methods of 
Chapter IV, but we observe that the results go in the same general direction. 
Both model theorists and algebraists may find this chapter of particular in­
terest (though it really has to be seen in action, as in Chapter VI, to be 
appreciated)—model theorists because the material is model theoretic in 
character, and group theorists because the line of argument varies consider­
ably from the accustomed lines of group theory, both finite and algebraic, 
while at the same time having a clear meaning within the algebraic category. 
The closest model for this kind of analysis is found in the so-called black box 
group theory (randomized finite group theory), where properties of "most" 
elements play an important role. 

The Main Theorem and some additional results which will be detailed in 
the final chapter, relating to groups of odd type, impose sharp limitations on 
the structure of a possible counterexample to the Algebraicity Conjecture, 
and suggest that such a group is unlikely to contain any involutions at all. 
When we first began this project, it seemed entirely possible that exceptions 
to the conjecture do occur in nature, or not far removed from nature; in the 
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finite case one has both the "twisted" Chevalley groups and the sporadic 
ones to deal with, and possible analogs of both could be envisioned in our 
case. This possibility now appears to be rapidly receding. On the other 
hand, one can imagine various model theoretic constructions which would 
most naturally produce torsion free examples, and our results say nothing 
about that possibility, except to suggest that the groups so constructed 
would look more like free groups than like conventional matrix groups. 

The final chapter is where we expose a detailed summary of concrete 
applications of the main theorem of this book. The analysis of permuta­
tion groups of finite Morley rank outlined in that chapter illustrates, in a 
way reminiscent of the applications of the classification of the finite simple 
groups, how the main result of this book can be put into action to obtain 
results not directly related to classification issues. It is worth noting that the 
proofs of some results (e.g. generic equations) in Chapter IV, in their first 
incarnations, used the classification of simple groups of even type. It later 
turned out that the full classification was not necessary for these results. 

When we set out on this project, we looked forward to the possibility 
of extracting from it, as a byproduct, a "skeletal" version of the classifica­
tion of the finite simple groups, showing roughly what the core of that proof 
would look like in the absence of such complications as sporadic groups, very 
small base fields, and wreath products. In other words, we aimed to give a 
reading of the very long classification proof of the finite simple groups that 
imparts some particular structure to it, while providing a rigorous proof in 
a different context. What we do here, supplemented by the other material 
to be described below, could be taken as such a reading, but that is not how 
we see it after the fact. Rather, what emerges from this analysis is that the 
methods used to prove the classification of the finite simple groups are more 
than adequate to the task, and there is an embarrassment of riches. At vari­
ous points, and indeed at the level of global strategy, one is confronted with 
several approaches, all apparently adequate, though differing in their effi­
ciency. The theory in the finite case, and the fragment given here, sufficient 
for our purposes, can be read as involving a number of large and not very 
intimately connected theories, which have been developed simultaneously, 
and in some cases, it seems, only as far as a particular approach to the clas­
sification requires. We have made a selection from among these theories, 
which works particularly efficiently in the case of groups of finite Morley 
rank, but which might not represent a particularly efficient, or even viable, 
way of handling the finite case. Most strikingly, the theme of "standard 
components", which plays a large role in the finite case, almost disappears 
from view in our work, simply because at a key point more efficient meth­
ods appear on the scene. We welcomed this—we had no desire to pursue 
standard components, and a lingering suspicion that a lifetime (or three) 
might not be sufficient, though it is in fact likely the theory would collapse 
to reasonable proportions, adapted to the finite Morley rank context. Had 
we taken the conventional route, what we do here would look very much like 
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the two proofs known in the finite case—whether it would be more difficult 
than the one we give remains unclear, but it would certainly be longer! We 
will suggest at the end that we may be following a different line of proof 
which makes sense in the finite case, not necessarily as a classification of all 
finite simple groups, but as an independent approach to a narrower subclass, 
including the Chevalley groups in characteristic 2. There is an analog with 
work of Timmesfeld in the finite case; while what we do here is not strictly 
parallel to that, the relationship seems real. 

The difference between our problem and the finite problem seems to 
have less to do with sporadic groups than with small fields. Indeed, we 
make considerable use of tori, which over the field F2 reduce to the identity. 
We do have some trouble laying our hands on nontrivial tori sometimes, but 
in the end they can be produced when needed. 

One point which does work out largely as we anticipated is the following: 
the theories that we do develop are applied here in much the same way that 
they are used in finite group theory, but with considerably less "background 
noise", and as a result the connection between methods adapted from the 
finite case, and the situation in algebraic groups, becomes more transpar­
ent. However, even here there is a nuance. The starting point for our main 
analysis (in Part C) is the classical theory of groups with strongly embed­
ded subgroups, and its neo-classical revival, groups with weakly embedded 
subgroups. If one consults the original papers [1, 124] which deal with the 
K*-case, one finds lines of argument which are certainly different from those 
used at the corresponding point in the theory of finite simple groups, but 
which nonetheless have very much the flavor of finite group theory, and in 
particular rely heavily on the theory of solvable groups, which runs in im­
portant respects closely parallel to the theory of finite solvable groups. All 
of the latter goes away when one drops the inductive hypothesis (K*) and it 
is here that our Chapter IV comes into its own. As a result, this particular 
piece of the theory blows up considerably, and the chapter is a long one. 

At the opposite extreme, our Chapter IX is a direct adaptation of work of 
Stellmacher to the finite Morley rank context. The subject would be rather 
dull if this chapter were typical. But the bulk of the developments have a 
different character: the main results achieved are closely parallel to results 
in the theory of finite simple groups, and the methods used owe much to the 
theory of finite group theory—but not to the proofs of the corresponding 
results! The dominant theme in these more typical parts of the theory is the 
adaptation to the context of connected groups of the fundamental notions 
of finite group theory, which in many cases brings them much closer to the 
notions of algebraic group theory which inspired them. 

In any case, the pursuit of this classification problem has led those in­
volved to develop a set of theories for groups of finite Morley rank which 
provide useful extensions of the theories developed in the finite case, and the 
specific requirements and challenges of the classification project have sug­
gested some lines of development which were not immediately obvious; we 
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mention particularly work by Corredor, Frecon, Poizat, and Wagner in this 
connection. About half of the present volume is devoted to the treatment 
of general topics of this kind, continuing in the vein of [52], and the other 
half to its applications to classification theorems in the simple case. 

Our Main Theorem contains roughly half, or perhaps somewhat more, 
of what is currently known about the Algebraicity Conjecture (at least, as 
far as 2-local structure is concerned). To explain the present state of affairs 
more fully requires a little more background. 

There is a Sylow theory for groups of finite Morley rank, for the prime 
2. In addition to the conjugacy of the Sylow 2-subgroups, there is a very 
particular structure theory, considerably more reminiscent of the situation 
in algebraic groups than the situation in finite groups, which is summarized 
by the following cryptic formula. 

(*) S° = U * T 

Using the language of algebraic groups, this formula may be read as fol­
lows: "The connected component of a Sylow 2-subgroup is a central product 
of a unipotent 2-group and the 2-torsion from a split torus." For a precise 
interpretation of the statement in our more general context, see §1 6. The 
point to bear in mind is that if we actually were dealing with an algebraic 
group, this result would hold in a considerably sharper form, depending on 
the characteristic of the base field: 

S° = U in characteristic 2; S° = T in all other characteristics. 

In particular the Algebraicity Conjecture predicts that this strong form 
should hold for simple groups of finite Morley rank, and the Main Theorem 
can be reformulated more lucidly as stating that this is, in large measure, 
the case. According to formula (*), there are four possible structures for 5°, 
depending on which of the factors U and T are present, and they correspond 
in some sense to hypotheses on the characteristic of the, as yet, unidentified 
base field: If U ^ 1 and T = 1, we say the group has even type; if U = 1 and 
T y£ 1, we speak of odd type, thereby inadvertently taking 0 to be odd; when 
U and T are both nontrivial we speak of mixed type, and finally when both 
are absent—which means the full Sylow 2-subgroup is finite, and possibly 
trivial—we speak of degenerate type. It will be seen that this terminology is 
consistent with the abbreviated account with which we began. 

The Algebraicity Conjecture therefore breaks up naturally into four 
cases; in mixed and degenerate types we seek a contradiction, and in odd and 
even types we seek an identification of the group as an algebraic group (or, 
to put the matter both more concretely and more accurately, as a Chevalley 
group) over a field of appropriate characteristic. The Main Theorem can 
then be put in a third and very natural form as follows. 

MAIN THEOREM, VERSION II. 

(1) There are no simple groups of finite Morley rank of mixed type. 



X I V INTRODUCTION 

(2) A simple group of finite Morley rank of even type is isomorphic to 
a Chevalley group over a field of characteristic 2. 

In view of the formula (*), this is equivalent to the previous versions, 
and it is in this form that we will prove it. One can see now the sense in 
which we deal with "half" of the problem; but actually the deepest problem 
lies in the degenerate case. Since we know that there are no involutions in 
this case, 2-local analysis ends there, but the problem remains. In odd type 
there is now a substantial theory, which we omit. 

The state of knowledge in odd type was covered until recently by the 
thesis of Jeff Burdges [60]. In odd type one has the following, which is 
limited to the inductive framework of if *-groups, where a K*-group is a 
group of finite Morley rank all of whose proper definable infinite simple 
sections are Chevalley groups, or in practical terms, as we suggested earlier, 
a group which is a putative minimal counterexample to the Algebraicity 
Conjecture. 

ODD T Y P E . A simple K*-group G of finite Morley rank and odd type 
satisfies one of the following conditions, where S° is the connected compo­
nent of a Sylow 2-subgroup. 

(1) G is algebraic. 
(2) m2(S°) < 2. 

Can this approach actually prove the Algebraicity Conjecture in full? 
This seems very unlikely, for reasons well known to model theorists. The 
critical case is that in which there are no involutions, the most degenerate 
case in our taxonomy. Here the methods of the present text are not helpful, 
though the methods used in odd type have a certain force even in the ab­
sence of involutions, and we hope that further exploration of the degenerate 
case will lead to the further development of such methods. The focus of 
attention in the degenerate case is on Borel subgroups (maximal connected 
solvable subgroups) and the pattern of their intersections; they may, how­
ever, intersect trivially, at which point group theoretic analysis appears to 
come to a final halt. In any case, we are not yet this far. 

The conjecture antipodal to the Algebraicity Conjecture runs as follows. 

ANTI-ALGEBRAICITY CONJECTURE. There is a simple torsion free group 
of finite Morley rank. 

The conventional wisdom at present is Manichaean: one of the two ex­
tremes ought to be correct. Beyond that, there seem to be few strong 
opinions as to how the matter should stand, though model theory has cer­
tainly clarified the issues involved over time. In particular, our work here 
relies crucially on some clarification of the model theoretic issues by Frank 
Wagner, as will be seen in Chapter IV at a preparatory level, and in Chapter 
VI in the context of a concrete application. 

One striking difference between our subject and the theory of finite 
groups is our ability to prove a general result on groups of even type without 
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first disposing of the case of degenerate groups. This would be analogous to 
disposing of characteristic 2 type finite simple groups without first proving 
the Feit-Thompson theorem. Evidently, the two situations differ substan­
tially. 

The proof of the Main Theorem evolved gradually, as we have men­
tioned. At first, we dealt with if*-groups, that is, with minimal potential 
counterexamples, under the additional assumption (called tameness) of the 
noninvolvement of "bad fields" (cf. §1 4), though with the intention of reex­
amining the latter hypothesis at a later stage. After Jaligot's thesis [125] 
(cf. also [123, 124]), it became clear that the time had already come to pro­
ceed in the mixed and even type cases without reliance on this simplifying 
hypothesis (and to a large extent Burdges' thesis [60] has performed a com­
parable service for odd type). At this stage the if*-hypothesis remained an 
integral part of the project. The program aiming at the full classification by 
adjusting the inductive framework was initiated in [2]. In this connection, 
methods derived from Wagner's work on the model theory of fields of finite 
rank have been essential. 

Finally, one should not lose sight of two trivial but important points: 

• The class of algebraic groups over algebraically closed fields of char­
acteristic 2 is already a rich class, in the sense that the classification 
of Dynkin diagrams is an interesting, though relatively direct, clas­
sification, with its own "sporadic" (non-classical) members. 

• At a deeper level, there are many nonalgebraic simple groups of 
finite Morley rank, because there are many fields of finite Mor-
ley rank with pathological structure, furnished by the Hrushovski 
construction—and all of this structure is visible in the associated 
groups. This is an important point, and more than once we have 
been confronted with the fact that we do not actually know the 
properties of "algebraic groups" when they are endowed with a fi­
nite Morley rank different from the usual dimension theory. Strictly 
speaking, algebraic groups (in this broad sense) are not even known 
to be K-groups!; though this does hold in positive characteristic, 
via work of Poizat. 

Our main theorem says that in the presence of a fairly strong dimension 
concept—and nothing further—the underlying group structure is governed 
by the same finite combinatorics as in the algebraic case (Coxeter groups), 
at least in the case which corresponds to characteristic 2 in the algebraic 
setting; furthermore, this holds regardless of what pathology is allowed a 
priori in definable sections. We do not actually show that our groups are 
algebraic; we show that, like simple algebraic groups, they are Chevalley 
groups, which from our point of view means that they are amalgams of 
copies of SL2 governed by the "recipe" encoded in a Dynkin diagram. 

From this point of view, the reader should not be surprised to see con­
siderable space devoted to the "tiny" group SL2: all of Chapters VI and 
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VII, and much of Chapters V and VIII. On the other hand, the finite group 
theorist may be surprised to see that so little space is taken up with the 
remaining groups. By the standards of finite group theory, our inductive 
analysis is instantaneous. 

The proof of the classification of the finite simple groups has given rise 
to a polemic between some who feel that the complexity of the proof must 
be due more to a poor choice of methods than to the nature of the problem, 
and those who feel that this is not at all the case—including, of course, most 
of those who have worked on the proof. This is not a polemic into which 
we feel a need to enter. We find the methods used extremely attractive. 
We also feel largely fortunate that we are not obliged to follow them too 
closely, and at the same time a bit unfortunate that we have no access 
to character theory or transfer methods—either one would be enormously 
helpful. Possibly our present work can make a modest contribution to the 
discussion underlying the polemic, by giving a demonstration of the flavor 
of a substantial portion of the finitistic methods in a context which lies 
somewhere in between the conceptual theory of algebraic groups and the 
more combinatorial theory of finite simple groups, and whose complexity in 
the primitive measure theoretic sense of length (or volume) is in the vicinity 
of the geometric mean of the two. 
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be§ yil gegti. Sanirim aym mektupta da yazmi§tim, amacim ba§kalarmdan 
hirsizlamadigim bir oykiiyii gonderebilmek oldu hep. Bu kitap, bu amacima 
en yakm oldugum nokta. Yazilmasma katkim olmadi. I§ bolumu(!) boyle 
gerektirdi. Ama, iginde anlatilan oykiiye bir katkim oldu. Ne ilgingtir ki, 
katkimm matematige olan herhangi bir yetenekle ilgisi yok. Yalmzca inat... 
Bolca da §ans... Pilavdan donmedim, ka§igi kirdirmadim. 

In a historical vein 
The history of the subject is bound up not only with the history of the 

theory of finite simple groups, but much of the history of pure model theory, 
which underwent a revolution beginning in the late sixties, and even (or 
perhaps, particularly) for those who lived through much of the latter, is not 
easy to reconstruct in a balanced way. We offer just a few scattered remarks, 
first from the second author: 

Vladimir Nikanorovich Remeslennikov in 1982 drew my 
attention to Gregory Cherlin's paper [68] on groups of fi­
nite Morley rank and conjectured that some ideas from 
my work [on periodic linear groups] could be used in this 
then new area of algebra. A year later Simon Thomas 
sent to me the manuscripts of his work on locally finite 
groups of finite Morley rank. Besides many interesting 
results and observations his manuscripts contained also 
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an exposition of Boris Zilber's fundamental results on Ki-
categorical structures which were made known to many 
western model theorists in Wilfrid Hodges' translation of 
Zilber's paper [196] but which, because of the regrettably 
restricted form of publication of the Russian original, re­
mained unknown to me. 

The third author came to the subject by a rather different route, the 
common point of origin being the work of Zilber, which seems to have become 
more rapidly known in the West than in his country of origin, and in the 
original Russian. This was the subject of considerable interest (notably in 
Paris and Jerusalem) in the summer and fall of 1980, where as a result of 
their relationships with a notorious open problem in pure model theory, the 
broader conjectures of Zilber began to reach a wide audience. At the outset, 
work on the algebraic content of stability theory was stimulated in the West 
by Macintyre's work on ^i-categorical fields [137], and in the East by a 
suggestion of Taitslin. For the third author, coming into model theory via 
the Robinson school, the question of the algebraic content of stability theory 
was both natural and inevitable. The notions of Ki-categoricity and model 
completeness, characteristic of the two main schools of model theory at that 
time, had both arisen from considerations of the double-edged question: 
What is so special about the theory of algebraically closed fields, and is 
anything in fact special about this theory? The text [128] also arrived at a 
timely moment; in particular, this text made use of a notion of connectivity 
close to the one adopted in the present text, and for similar reasons. 

The first author came to the subject from Mecidiyekoy, Istanbul. 
The complex and provocative Poizat has played a complex and provoca­

tive role in the development of this theory. In particular, his early inter­
vention brought the more "algebraic" formulation of the rank notion into 
its proper form, and generally he has been very attentive to foundational 
issues, some of great practical importance. 

The complex and vigorous Nesin has played a complex and vigorous 
role in the development of this theory, entering at an early phase and, with 
his collaborators, treating a number of key configurations. In a historical 
vein, we remark that a period of forced confinement gave him the necessary 
leisure to familiarize himself with the contents of [183]; whether he wishes 
to convey his thanks for this we do not know, but it may be doubted. ("Si 
j'avais quelque chose a adresser aux grands de ce monde, je jure, ga ne serait 
pas des remerciements!" - Galois) 

Model theorists will be aware that the subject has also grown in other 
directions—geometrical stability theory, applications to number theory in 
the hands of Hrushovski and several others, and that in these developments 
the structure of abelian groups turns out to be central, and not at all as 
trivial as might appear at first glance. We have also found close attention to 
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the structure of abelian subgroups and their definable subgroups valuable, 
notably in connection with the theory of "good tori". 
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pushing up, 415 
quadrangle, 54, 213, 487 

indifferent, 217 
reduced, 217 
wide, 217 

radical 
solvable, 81 
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rank 
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Thompson Rank Formula, 378 
Thompson Rank formula, 394 
Three Subgroups Lemma, 14, 100, 145, 

154, 464 
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