Ordering Braids

Patrick Dehornoy

with

Ivan Dynnikov

Dale Rolfsen
Bert Wiest

Ordering Braids

Ordering Braids

Patrick Dehornoy

with
Ivan Dynnikov
Dale Rolfsen
Bert Wiest

American Mathematical Society Providence, Rhode Island

Editorial Committee

Jerry L. Bona
Ralph L. Cohen
Michael G. Eastwood
Benjamin Sudakov
J. T. Stafford, Chair

The original edition of this work was published under the title Why Are Braids Orderable? by Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, 2002, by the Société Mathématique de France, Paris, France.

2000 Mathematics Subject Classification. Primary 20F36;
Secondary 06F05, 06F15, 20B30, 20F34, 20F38, 57M25, 57M50, 68Q25, 68Q70.

For additional information and updates on this book, visit
www.ams.org/bookpages/surv-148

Library of Congress Cataloging-in-Publication Data

Dehornoy, Patrick.
Ordering braids / Patrick Dehornoy ; with Ivan Dynnikov, Dale Rolfsen, Bert Wiest. p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 148)

Includes bibliographical references and index.
ISBN 978-0-8218-4431-1 (alk. paper)

1. Braid theory. 2. Linear orderings. I. Dynnikov, Ivan, 1971- II. Rolfsen, Dale. III. Wiest, Bert. IV. Title.
QA612.23.D445 2008
$514^{\prime} .224$-dc 22
2008009859

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2008 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
(@) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10987654321131211100908

Contents

Preface ix
Introduction 1
A meeting of two classical subjects 1
A convergence of approaches 3
Organization of the text 5
Guidelines to the reader 7
Acknowledgements 8
Chapter I. Braid Groups 9

1. The Artin presentation 9
2. Isotopy classes of braid diagrams 10
3. Mapping class groups 12
4. Positive braids 14
Chapter II. A Linear Ordering of Braids 19
5. The σ-ordering of B_{n} 19
6. Local properties of the σ-ordering 26
7. Global properties of the σ-ordering 29
8. The σ-ordering of positive braids 35
Chapter III. Applications of the Braid Ordering 43
9. Consequences of orderability 44
10. Applications of more specific properties 46
11. Application of well-orderability 50
Chapter IV. Self-distributivity 55
12. Colouring positive braids 56
13. Colouring arbitrary braids 66
14. The group of left self-distributivity 76
15. Normal forms in free LD-systems 81
16. Appendix: Iterations of elementary embeddings in set theory 84
Chapter V. Handle Reduction 87
17. Description of handle reduction 87
18. Convergence of handle reduction 92
19. Special cases and variants 102
Chapter VI. Connection with the Garside Structure 107
20. The degree of a positive braid 108
21. Proving Property C using a counting argument 113
22. The increasing enumeration of $\operatorname{Div}\left(\Delta_{n}^{d}\right)$ 117
Chapter VII. Alternating Decompositions 129
23. The Φ_{n}-splitting of a braid in B_{n}^{+} 130
24. The Φ-normal form 135
25. Burckel's approach 143
26. Applications 148
Chapter VIII. Dual Braid Monoids 153
27. Dual braid monoids 154
28. The ϕ-normal form on B_{n}^{+*} 159
29. Connection between orders 163
Chapter IX. Automorphisms of a Free Group 173
30. Artin representation of σ-positive braids 173
31. From an automorphism back to a braid 178
32. Pulling back orderings of free groups 182
Chapter X. Curve Diagrams 185
33. A braid ordering using curve diagrams 185
34. Proof of Properties \mathbf{A}, \mathbf{C}, and \mathbf{S} 189
Chapter XI. Relaxation Algorithms 195
35. Bressaud's regular language of relaxation braids 196
36. The transmission-relaxation normal form of braids 204
Chapter XII. Triangulations 221
37. The coordinates of a braid 222
38. Triangulations and laminations 225
39. The Mosher normal form 236
Chapter XIII. Hyperbolic Geometry 247
40. Uncountably many orderings of the braid group 248
41. The classification of orderings induced by the action on \mathbb{R} 256
42. The subword property for all Nielsen-Thurston type orderings 263
Chapter XIV. The Space of all Braid Orderings 265
43. The spaces of orderings on a group 265
44. The space of left-orderings of the braid groups 268
Chapter XV. Bi-ordering the Pure Braid Groups 273
45. Lower central series 273
46. Artin coordinates and Magnus expansion 274
47. The Magnus ordering of $P B_{n}$ 279
48. The ordering of positive pure braids 283
49. Incompatibility of the orderings 286
Chapter XVI. Open Questions and Extensions 291
50. General questions 291
51. More specific questions 293
52. Generalizations and extensions 301

Key Definitions 309
Bibliography 311
Index of Notation 319
Index 321

Preface

The present volume follows a book, "Why are braids orderable?", written by the same authors and published in 2002 by the Société Mathématique de France in the series Panoramas et Synthèses. We emphasize that this is not a new edition of that book. Although this book contains most of the material in the previous book, it also contains a considerable amount of new material. In addition, much of the original text has been completely rewritten, with a view to making it more readable and up-to-date. We have been able not only to include ideas that were unknown in 2002, but we have also benefitted from helpful comments by colleagues and students regarding the contents of the SMF book, and we have taken their advice to heart in writing this book.

The reader is assumed to have some basic background in group theory and topology. However, we have attempted to make the ideas in this volume accessible and interesting to students and seasoned professionals alike.

In fact, the question "Why are braids orderable?" has not been answered to our satisfaction, either in the book with that title or the present volume. That is, we do not understand precisely what makes the braid groups so special that they enjoy an ordering so easy to describe, so challenging to construct and with such subtle properties as are described in these pages. The best we can offer is some insight into the easier question, "How are braids orderable?"

Patrick Dehornoy, Caen
Ivan Dynnikov, Moscow
Dale Rolfsen, Vancouver
Bert Wiest, Rennes
December 2007

Key Definitions

Sigma-ordering:

- For β, β^{\prime} in B_{∞}, the relation $\beta<\beta^{\prime}$ is true if $\beta^{-1} \beta^{\prime}$ is σ-positive.
- For β, β^{\prime} in B_{∞}, the relation $\beta<^{\Phi} \beta^{\prime}$ is true if $\beta^{-1} \beta^{\prime}$ is σ^{Φ}-positive.

Sigma-positive braid word:

- A braid word is σ-positive if the σ_{i} with lowest index occurs positively only.
- A braid word is σ^{Φ}-positive if the σ_{i} with highest index occurs positively only.

Sigma-positive braid:

- A braid is σ-positive if it admits a σ-positive representative word.
- A braid is σ^{Φ}-positive if it admits a σ^{Φ}-positive representative word.

Property A (Acyclicity):

- A σ-positive braid is nontrivial.

Property C (Comparison):

- Every nontrivial braid of B_{n} can be represented by an n-strand braid word that is σ-positive or σ-negative.

Property S (Subword):

- Every braid of the form $\beta^{-1} \sigma_{i} \beta$ is σ-positive.

Complementary Definitions

- A braid word is σ_{i}-positive if it contains at least one σ_{i}, no σ_{i}^{-1}, no $\sigma_{j}^{ \pm 1}$ with $j<i$.
- ... id.... σ_{i}-negative if \ldots at least one σ_{i}^{-1}, no σ_{i}, no $\sigma_{j}^{ \pm 1}$ with $j<i$.
- ... id. ... σ_{i}-free if...\quad no $\sigma_{j}^{ \pm 1}$ with $j \leqslant i$.
- A braid is called σ_{i}-positive if it admits a σ_{i}-positive expression, etc.

Property A (second, equivalent form): A σ_{1}-positive braid is nontrivial.
Property C (second, equivalent form): Every braid of B_{n} can be represented by an n-strand braid word that is σ_{1}-positive, σ_{1}-negative, or σ_{1}-free.

Bibliography

1. S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Zametki Acad. Sci. SSSR 36 (1984), no. 1, 25-34, (Russian); English translation in Math. Notes of the Acad. Sci. USSR 36 (1984), no. 1, p. 505-510.
2. I. Agol, J. Hass, and W.P. Thurston, The computational complexity of knot genus and spanning area, Trans. Amer. Math. Soc. 358 (2006), no. 9, 3821-3850, (electronic).
3. I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett. 6 (1999), 287-291.
4. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
5. , Theory of braids, Ann. of Math. 48 (1947), 101-126.
6. S. Arworn and Y. Kim, On finitely-determined total orders, preprint.
7. L. Bacardit and W. Dicks, Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue, arXiv: math.GR/0705.0587.
8. V.G. Bardakov, On the theory of braid groups, Mat. Sb. 183 (1992), no. 6, 3-42, (Russian. English summary); English translation in Acad. Sci. Sb. Math. 76 (1993), no. 1, p. 123-153.
9. H. Bass and A. Lubotzky, Linear-central filtrations on groups, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992), Contemp. Math., vol. 169, American Mathematical Society, 1994, pp. 45-98.
10. D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003), 647-683.
11. M. Bestvina and K. Fujiwara, Quasi-homomorphisms on mapping class groups, preprint; arXiv:math.GR/0702273, 2007.
12. S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), no. 2, 471-486.
13. J. Birman, On braid groups, Comm. Pure Appl. Math. 22 (1969), 41-72.
14. \qquad , Braids, Links, and Mapping Class Groups, Ann. of Math. Stud., vol. 82, Princeton Univ. Press, 1974.
15. J. Birman, K.H. Ko, and S.J. Lee, A new approach to the word problem in the braid groups, Adv. Math. 139 (1998), no. 2, 322-353.
16. J. Birman and W. Menasco, Studying links via closed braids III: classifying links which are closed 3-braids, Pacific J. Math. 161 (1993), 23-113.
17. N. Bourbaki, Algèbre, chapitres I-III, Hermann, Paris, 1970.
18. S. Boyer, D. Rolfsen, and B. Wiest, Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005), 243-288.
19. X. Bressaud, A normal form for braids, J. Knot Theory Ramifications 17 (2008), no. 6, 697-732.
20. E. Brieskorn, Automorphic sets and braids and singularities, Braids, Contemp. Math., vol. 78, American Mathematical Society, 1988, pp. 45-117.
21. E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271.
22. M. Brin, The algebra of strand splitting I. A braided version of Thompson's group V, J. Group Theory, to appear; arXiv math.GR/040642.
23. \qquad , The algebra of strand splitting II. A Presentation for the braid group on one strand, Int. J. Algebra and Computation 16 (2006), 203-219.
24. J. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), 495-535.
25. S. D. Brodskii, Equations over groups, and groups with one defining relation, Sibirsk. Mat. Zh. 25 (1984), 84-103.
26. S. Burckel, L'ordre total sur les tresses positives, PhD. Thesis, Université de Caen, 1994.
27. \qquad The well-ordering on positive braids, J. Pure Appl. Algebra 120 (1997), no. 1, 1-17.
28. _ , Computation of the ordinal of braids, Order 16 (1999), 291-304.
29. \qquad , Syntactical methods for braids of three strands, J. Symbolic Comput. 31 (2001), 557-564.
30. J. Burillo and J. González-Meneses, Biorderings on pure braided Thompson's groups, Quarterly J. Math., to appear.
31. R. Burns and V. Hale, A note on group rings of certain torsion-free groups, Canad. Math. Bull. 15 (1972), 441-445.
32. J.W. Cannon, W.J. Floyd, and W.R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. 42 (1996), 215-257.
33. L. Carlucci, P. Dehornoy, and A. Weiermann, Unprovability statements involving braids, preprint; arXiv:math.LO/0711.3785, 2007.
34. A. Casson and S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts, vol. 9, Cambridge University Press, 1988.
35. J. Chamboredon, Tresses, relaxation de lacet et forme normale de Bressaud, Master Memoir, University de Caen, 2007, http://www.eleves.ens.fr/home/chambore/maths.en.html.
36. W.L. Chow, On the algebraic braid group, Ann. of Math. 49 (1948), 654-658.
37. A. Clay and D. Rolfsen, Densely ordered braid subgroups, J. Knot Theory Ramifications 16 (2007), no. 7, 869-878.
38. P.F. Conrad, Right-ordered groups, Michigan Math. J. 6 (1959), 267-275.
39. J. Crisp and B. Wiest, Quasi-isometrically embedded subgroups of braid and diffeomorphism groups, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5485-5503, (electronic).
40. R.H. Crowell and R.H. Fox, Introduction to Knot Theory, Grad. Texts in Math., vol. 57, Springer-Verlag, 1977.
41. M. Dabkovska, M. Dabkowski, V. Harizanov, J. Przytycki, and M. Veve, Compactness of the space of left orders, J. Knot Theory Ramifications 16 (2007), 267-256.
42. P. Dehornoy, Infinite products in monoids, Semigroup Forum 34 (1986), 21-68.
43. \qquad , Free distributive groupoids, J. Pure Appl. Algebra 61 (1989), 123-146.
44. \qquad
45. \qquad (1992), 633-638.
46. \qquad , Structural monoids associated to equational varieties, Proc. Amer. Math. Soc. 117 (1993), no. 2, 293-304.
47. \qquad Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), no. 1, 115-151.
48. \qquad 59-82.
49. \qquad , A fast method for comparing braids, Adv. Math. 125 (1997), 200-235.
50. 137.
1. \qquad 620.
2.
3.
4.

\qquad ,
54. \qquad Study of an identity, Algebra Universalis 48 (2002), 223-248. Math., vol. 296, American Mathematical Society, 2002, pp. 95-128.
56. \qquad , Braid-based cryptography, Group Theory, Statistics, and Cryptography, Contemp. Math., vol. 360, American Mathematical Society, 2004, pp. 5-33.
57. , The group of fractions of a torsion free lcm monoid is torsion free, J. Algebra 281 (2004), 303-305;.
58. , Geometric presentations of Thompson's groups, J. Pure Appl. Algebra 203 (2005), $1-44$.
59. _, The group of parenthesized braids, Adv. Math. 205 (2006), 354-409.
60. , Combinatorics of normal sequences of braids, J. Combin. Theory Ser. A 114 (2007), 389-409.
61. , Still another approach to the braid ordering, Pacific J. Math. 232 (2007), no. 1, 139-176.
62._, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008), no. 1, 2416-2439.
63. P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. 79 (1999), no. 3, 569-604.
64. P. Dehornoy and B. Wiest, On word reversing in braid groups, Internat. J. Algebra Comput. 16 (2006), no. 5, 941-957.
65. P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273302.
66. F. Deloup, Palindromes and orderings in Artin groups, Algebr. Geom. Topol. 5 (2005), 419-442.
67. F. Digne and J. Michel, Garside and locally Garside categories, arXiv: math.GR/0612652.
68. R. Dougherty, Critical points in an algebra of elementary embeddings, Ann. Pure Appl. Logic 65 (1993), 211-241.
69. R. Dougherty and T. Jech, Finite left-distributive algebras and embedding algebras, Adv. Math. 130 (1997), 201-241.
70. A. Drápal, Persistence of cyclic left-distributive algebras, J. Pure Appl. Algebra 105 (1995), 137-165.
71. T. Dubrovina and N. Dubrovin, On braid groups, Sb. Math. 192 (2001), 693-703.
72. G. Duchamp and J.-Y. Thibon, Simple orderings for free partially commutative groups, Internat. J. Algebra Comput. 2 (1992), no. 3, 351-355.
73. I. Dynnikov, On a Yang-Baxter mapping and the Dehornoy ordering, Uspekhi Mat. Nauk 57 (2002), no. 3, 151-152, (Russian); English translation in Russian Math. Surveys 57 (2002), no. 3 .
74. I. Dynnikov and B. Wiest, On the complexity of braids, J. Europ. Math. Soc. 9 (2007), no. 4, 801-840.
75. E.A. El-Rifai and H.R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. 45 (1994), no. 2, 479-497.
76. D. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
77. D. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston, Word Processing in Groups, Jones and Bartlett Publ., 1992.
78. P. Etingof, T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum YangBaxter equation, Duke Math. J. 100 (1999), no. 2, 169-209.
79. P. Fabel, The mapping class group of a disk with infinitely many holes, preprint, 2007.
80. M. Falk and R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88.
81. B. Farb, Some problems on mapping class groups and moduli space, Problems on Mapping Class Groups and Related Topics, Proc. Sympos. Pure Math., vol. 74, 2006, pp. 11-55.
82. A. Fathi, F. Laudenbach, and V. Poenatu, Travaux de Thurston sur les surfaces, Astérisque, vol. 66-67, Soc. Math. de France, 1979.
83. R. Fenn, M.T. Greene, D. Rolfsen, C. Rourke, and B. Wiest, Ordering the braid groups, Pacific J. Math. 191 (1999), 49-74.
84. R. Fenn, D. Rolfsen, and J. Zhu, Centralisers in braid groups and singular braid monoids, Enseign. Math. 42 (1996), 75-96.
85. R. Fenn and C.P. Rourke, Racks and links in codimension 2, J. Knot Theory Ramifications 1 (1992), 343-406.
86. V.V. Fock, Dual Teichmüller spaces, http://front.math.ucdavis.edu/dg-ga/9702018.
87. V.V. Fock and A.B. Goncharov, Dual Teichmuller and lamination spaces, to appear in the Handbook on Teichmuller theory; arXiv:math/0510312.
88. H. Friedman, Higher set theory and mathematical practice, Ann. Math. Logic 2 (1971), 325-357.
89. On the necessary use of abstract set theory, Adv. Math. 41 (1981), 209-280.
90. J. Fromentin, The cycling normal form on dual braid monoids, arXiv: math.GR/0712.3836.
91._, A well-ordering of dual braid monoids, Comptes Rendus Mathematique 346 (2008), no. 13-14, 729-734.
92. L. Funar and C. Kapoudjian, On a universal mapping class group in genus zero, Geom. Funct. Anal. 14 (2004), 965-1012.
93. J. Funk, The Hurwitz action and braid group orderings, Theory Appl. Categ. 9 (2001), no. 7, 121-150.
94. F.A. Gambaudo and E. Ghys, Braids and signatures, Bull. Soc. Math. France 133 (2005), no. 4, 541-579.
95. F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969), 235-254.
96. B.J. Gassner, On braid groups, Abh. Math. Sem. Univ. Hamburg 25 (1961), 10-22.
97. K.F. Gauss, Handbuch 7, Univ. Göttingen collection.
98. E. Ghys, Groups acting on the circle, Enseign. Math. 47 (2001), no. 2, 329-407.
99. D. Goldsmith, Homotopy of braids - in answer to a question of E. Artin, Topology Conference, Lecture Notes in Math., vol. 375, Springer, Berlin, 1974, Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973, pp. 91-96.
100. J. González-Meneses, Ordering pure braid groups on compact, connected surfaces, Pacific J. Math. 203 (2002), 369-378.
101. J. González-Meneses and L. Paris, Vassiliev invariants for braids on surfaces, Trans. Amer. Math. Soc. 356 (2004), no. 1, 219-243.
102. E.A. Gorin and V.Ya. Lin, Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids, Sb. Math. 7 (1969), 569-596.
103. R. Hain, Torelli groups and geometry of moduli spaces of curves, Current topics in complex algebraic geometry, MSRI Publ., Berkeley, vol. 28, 1995, pp. 97-143.
104. U. Hamenstädt, Geometry of the mapping class groups II: (Quasi)-geodesics, preprint, arXiv: math.GR/0511.349, 2005.
105. A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), no. 3, 221-237.
106. M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. of Math. 154 (2001), 115-136.
107. G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940), no. 2, 231-248.
108. \qquad , Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 2 (1952), 326-336
109. F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Sur une conjecture de Dehornoy, Comptes Rendus Mathematique 346 (2008), no. 7-8, 375-378.
110. J.G. Hocking and G.S. Young, Topology, Addison-Wesley, Reading MA, 1961.
111. O. Hölder, Die Axiome der Quantität und die Lehre vom Mass, Math.-Phys. Kl 53 (1901), 1-64.
112. J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., vol. 29, Cambridge University Press, Cambridge, 1990.
113. S. Ivanov, Subgroups of Teichmüller modular groups, Transl. Math. Monogr., vol. 115, American Mathematical Society, Providence, RI, 1992.
114. D. Johnson, A survey of the Torelli group, Contemp. Math., vol. 20, American Mathematical Society, 1983, pp. 165-178.
115. V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
116. D. Joyce, A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.
117. V. Kaimanovich and H. Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), no. 2, 221-264.
118. S. Kamada, Braid and Knot Theory in Dimension Four, Math. Surveys Monogr., vol. 95, American Mathematical Society, 2002.
119. A. Kanamori, The Higher Infinite, Perspect. Math. Logic, Springer Verlag, 1994.
120. C. Kapoudjian and V. Sergiescu, An extension of the Burau representation to a mapping class group associated to Thompson's group T, Geometry and Dynamics, Contemp. Math., vol. 389, American Mathematical Society, 2005, pp. 141-164.
121. C. Kassel, L'ordre de Dehornoy sur les tresses, Séminaire Bourbaki, Astérisque, vol. 276, Soc. Math. France, 2002, exposé 865 (novembre 1999), pp. 7-28.
122. C. Kassel and C. Reutenauer, Sturmian morphisms, the braid group B4, Christoffel words and bases of F_{2}, Ann. Mat. Pura Appl. (4) 186 (2007), no. 2, 317-339.
123. C. Kassel and V. Turaev, Braid groups, Springer Verlag, 2007.
124. D.M. Kim and D. Rolfsen, An ordering for groups of pure braids and fibre-type hyperplane arrangements, Canad. J. Math. 55 (2002), 822-838.
125. L. Kirby and J. Paris, Accessible independence results for Peano Arithmetic, Bull. London Math. Soc. 14 (1982), 285-293.
126. K.H. Ko, S. Lee, J.H. Cheon, J.W. Han, J. Kang, and C. Park, New public-key cryptosystem using braid groups, Proc. Crypto 2000, Lecture Notes in Comput. Sci., vol. 1880, Springer Verlag, 2000, pp. 166-184.
127. A.I. Kokorin, V.M. Kopyutov, and N.Ya. Medvedev, Right-Ordered Groups, Plenum Publishing Corporation, 1996.
128. D. Krammer, The braid group B_{4} is linear, Invent. Math. 142 (2000), 451-486.
129. \quad _ A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc. 360 (2008), 4029-4061.
130. R.H. La Grange and A.H. Rhemtulla, A remark on the group rings of order preserving permutation groups, Canad. Math. Bull. 11 (1968), 679-680.
131. D.M. Larue, Left-distributive and left-distributive idempotent algebras, PhD. Thesis, University of Colorado, Boulder, 1994.
132. _ On braid words and irreflexivity, Algebra Universalis 31 (1994), 104-112.
133. R. Laver, Elementary embeddings of a rank into itself, Abstracts Amer. Math. Soc. 7 (1986), 6.
134. _._The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math. 91 (1992), no. 2, 209-231.
135. __, A division algorithm for the free left distributive algebra, Logic Colloquium '90 (Oikkonen and al, eds.), Lect. Notes in Logic, vol. 2, Springer Verlag, 1993, pp. 155-162.
136. , On the algebra of elementary embeddings of a rank into itself, Adv. Math. 110 (1995), 334-346.
137. _, Braid group actions on left distributive structures and well-orderings in the braid group, J. Pure Appl. Algebra 108 (1996), no. 1, 81-98.
138. A. Levy, Basic Set Theory, Springer Verlag, 1979.
139. P. Linnell, The topology on the space of left orderings of a group, preprint; arXiv math.GR/0607470.
140., Zero divisors and $L^{2}(G)$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 1, 49-53.
141. P.A. Linnell and T. Schick, Finite group extensions and the Atiyah conjecture, J. Amer. Math. Soc. 20 (2007), 1003-1051.
142. J. Longrigg and A. Ushakov, Cryptanalysis of shifted conjugacy authentication protocol, preprint; arXiv:math.GR/0708.1768.
143. J.H. Lu, M. Yan, and Y.C. Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J. 104 (2000), no. 1, 1-18.
144. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, J. Wiley and Sons, New York, 1966.
145. A.I. Malcev, On the embedding of group algebras in division algebras, Dokl. Akad. Nauk SSSR (N.S.) 60 (1948), 1499-1501.
146. A.V. Malyutin, Fast algorithms for the recognition and comparison of braids, Zap. Nauchn. Sem. POMI 279 (2001), 197-217, (Russian).
147. ——, Twist number of (closed) braids, St. Peterburg Math. J. 16 (2005), no. 5, 791-813.
148. \qquad , Pseudo-characters of braid groups and primeness of links, preprint, 2006.
149. A.V. Malyutin and A.M.Vershik, Poisson-Furstenberg boundary of the braid groups and Markov-Ivanovsky normal form, arXiv:math.GT/0707.1109.
150. A.V. Malyutin and N.Yu. Netstvetaev, Dehornoy's ordering on the braid group and braid moves, St. Peterburg Math. J. 15 (2004), no. 3, 437-448.
151. H. Masur and Y. Minsky, Geometry of the complex of curves II: hierarchical structure, GAFA, Geom. Funct. Anal. 10 (2000), 902-974.
152. S.V. Matveev, Distributive groupoids in knot theory, Sb. Math. 119 (1982), no. 1-2, 78-88.
153. J.D. McCarthy, On the first cohomology group of cofinite subgroups in surface mapping class groups, Topology 40 (2001), no. 2, 401-418.
154. S. McCleary, Free lattice ordered groups represented as o-2-transitive l-permutation groups, Trans. Amer. Math. Soc. 290 (1985), no. 1, 81-100.
155. R. McKenzie and R.J. Thompson, An elementary construction of unsolvable word problems in group theory, Word Problems (Boone and al, eds.), Stud. Logic Found. Math., vol. 71, North Holland, 1973, pp. 457-478.
156. D. Morris, Amenable groups that act on the line, Algebr. Geom. Topol. 6 (2006), 2509-2518.
157. L. Mosher, Train track expansions of measured foliations, unpublished notes available on http://andromeda.rutgers.edu/ ~mosher.
158. \qquad , Mapping class groups are automatic, Ann. of Math. 142 (1995), 303-384.
159. J. Mulholland and D. Rolfsen, Local indicability and commutator subgroups of Artin groups, preprint; arXiv: math.GR/0606116, 2006.
160. E. Munarini, Sequence number A080635 in Sloane's "On-Line Encyclopedia of Integer Sequences", http://www.research.att.com/projects/OEIS?Anum=3DA080635.
161. A.G. Myasnikov, V. Shpilrain, and A.Ushakov, A practical attack on some braid group based cryptographic protocols, CRYPTO 2005, Lecture Notes in Comput. Sci., vol. 3621, Springer, 2005, pp. 86-96.
162. A. Navas, On the dynamics of (left) orderable groups, preprint; arXiv: math.GR/0710.2466, 2007.
163. B.H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252.
164. J. Nielsen, Untersuchungen zur Topologie des geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), 189-358.
165. , Collected Mathematical Papers, edited by V.L. Hansen, Birkhäuser, Boston-BaselStuttgart, 1986.
166. S.Yu. Orevkov, Strong positivity in the right-invariant order on a braid group and quasipositivity, Mat. Zametki 68 (2000), no. 5, 692-698, (Russian); English translation in Math. Notes 68 (2000), no. 5-6, 588-593.
167. L. Paris, On the fundamental group of the complement of a complex hyperplane arrangement, Singularities and Arrangements, Sapporo and Tokyo, 1998, Adv. Stud. Pure Math., vol. 27, Kinokuniya, 2000, pp. 257-272.
168. D.S. Passman, The Algebraic Structure of Group Rings, Pure Appl. Math, Wiley Interscience, 1977.
169. M.S. Paterson and A.A. Razborov, The set of minimal braids is co-NP-complete, J. Algorithms 12 (1991), 393-408.
170. R.C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299-339.
171. R.C. Penner and J.L. Harer, Combinatorics of train tracks, Ann. Math. Stud., vol. 125, Princeton Univerity Press, 1992.
172. B. Perron and D. Rolfsen, On orderability of fibred knot groups, Math. Proc. Cambridge Philos. Soc. 135 (2003), 147-153.
173. B. Perron and J.P. Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann. 306 (1996), no. 2, 231-245.
174. M. Picantin, The center of thin Gaussian groups, J. Algebra 245 (2001), no. 1, 92-122.
175. \qquad , The conjugacy problem in small Gaussian groups, Comm. Algebra 29 (2001), no. 3, 1021-1038.
176. V.V. Prasolov and A.B. Sossinsky, Knots, links, braids, and 3-manifolds, Transl. Math. Monogr., vol. 154, American Mathematical Society, 1997.
177. J. Przytycki, Classical roots of knot theory, Chaos Solitons Fractals 9 (1998), no. 4, 5, 531545.
178. K. Rafi, A combinatorial model for the Teichmller metric, Geom. Funct. Anal., to appear.
179. K. Reidemeister, Knotentheorie, Ergeb. Math. Grenzgeb., vol. 1, Julius Springer, Berlin, 1932, English translation: Knot theory, BCS Associates, Moscow, Idaho (1983).
180. A. Rhemtulla and D. Rolfsen, Local indicability in ordered groups: braids and elementary amenable groups, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2569-2577.
181. D. Rolfsen and B. Wiest, Free group automorphisms, invariant orderings and applications, Algebr. Geom. Topol. 1 (2001), 311-320 (electronic).
182. C. Rourke and B. Wiest, Order automatic mapping class groups, Pacific J. Math. 194 (2000), no. 1, 209-227.
183. H. Short and B. Wiest, Orderings of mapping class groups after Thurston, Enseign. Math. 46 (2000), 279-312.
184. W. Shpilrain, Representing braids by automorphisms, Internat. J. Algebra Comput. 11 (2001), no. 6, 773-777.
185. H. Sibert, Extraction of roots in Garside groups, Comm. Algebra 30 (2002), no. 6, 2915-2927
186. \qquad , Algorithmique des tresses, PhD. Thesis, Université de Caen, 2003.
187. A.S. Sikora, Topology on the spaces of orderings of groups, Bull. London Math. Soc. 36 (2004), 519-526.
188. L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), 255-268.
189. W. Thurston, Finite state algorithms for the braid group, circulated notes, 1988.
190. \qquad , On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), no. 2, 417-431.
191. K. Vogtmann, Automorphisms of free groups and outer space, Geom. Dedicata 94 (2002), 1-31.
192. M. Wada, Group invariants of links, Topology 31 (1992), no. 2, 399-406.
193. B. Wajnryb, An elementary approach to the mapping class group of a surface, Geom. Topol. 3 (1999), 405-466.
194. B. Wiest, Dehornoy's ordering of the braid groups extends the subword ordering, Pacific J. Math. 191 (1999), 183-188.
195. H. Wilf, generatingfunctionology, Academic Press, Inc., Boston, MA, 1990, available at http://www.math.upenn.edu/~wilf/DownldGF.html.

Index of Notation

\mathbb{N} (nonnegative integers)
\mathbb{Z} (integers)
\mathbb{Q} (rationals)
\mathbb{R} (reals)
\mathbb{C} (complex numbers)

Introduction

B_{n} (braid group), 1
B_{n}^{+}(braid monoid), 1
B_{n}^{+*} (dual braid monoid), 1
\mathfrak{S}_{n} (symmetric group), 1
$P B_{n}$ (pure braid group), 1

Chapter I

B_{n}, B_{∞} (braid group), 9
σ_{i} (braid), 9
\bar{w} (braid word), 9
$\ell(w)$ (length), 9
D^{2} (disk), 10
D_{n} (punctured disk), 12
$\mathcal{M C G}(\mathcal{S}, \mathcal{P})$ (mapping class group), 12
F_{n} (free group), 13
B_{n}^{+}(braid monoid), 14
$\ell(\beta)$ (length of a positive braid), 14
δ_{n}, Δ_{n} (fundamental braids), 14
ϕ_{n} (conjugation by δ_{n}), 14
Φ_{n} (flip automorphism), 14
$\beta^{\prime} \preccurlyeq \beta$ (left divisor), 16
$D_{L}(\beta)$ (left denominator), 17
$N_{L}(\beta)$ (left numerator), 17
$D_{R}(\beta)$ (right denominator), 17
$N_{R}(\beta)$ (right numerator), 17

Chapter II

sh (shift endomorphism), 22
$<_{n},<(\sigma$-ordering $), 21$
A (Property), 21
C (Property), 21
S (Property), 28
\leq^{Φ} (σ^{Φ}-ordering), 24
\bar{w} (equivalence class), 25
[B_{n}, B_{n}] (commutator subgroup), 33
ω (ordinal), 38
$e_{r}^{\min }\left(\Phi_{3}\right.$-normal form $), 40$

Chapter III

$R G$ (group algebra), 44
$L^{2}(G)$ (Hilbert space), 45
$\widehat{\beta}$ (closed braid), 47
$\omega(\beta)$ (twist), 48
$\beta\{t\}$ (braid game), 51
\mathcal{G}_{3} (sequence of braids), 51
I Σ_{k} (logical system), 52
\mathcal{G}_{∞} (sequence of braids), 52
$\operatorname{deg}(\beta)$ (degree of a braid), 53
$\boldsymbol{W O}_{f}$ (combinatorial principle), 53
Ack, Ack_{r} (Ackermann function), 53

Chapter IV

LD (left self-distributivity law), 55
$\boldsymbol{x} \cdot \beta$ (braid action), 56
$\beta * \beta^{\prime}$ (braid operation), 58
$\Pi^{\text {sh }}\left(\beta_{1}, \ldots, \beta_{n}\right)$ (shifted product), 58
$B_{\text {sp }}$ (special braids), 59
\mathbf{C}_{∞} (Property), 60
\sqsubset (iterated left divisor), 60
T_{n} (terms), 63
$=_{L D}$ (LD-equivalence), 63
∂t (term), 65
$x^{[k]}$ (right power), 65
left (t) (left subterm), 65
\mathbf{A}_{i} (Property), 73
$t \sqsubset_{L D} t^{\prime}$ (left subterm), 76
$L D_{\alpha}$ (operator), 77
$\mathcal{G}_{L D}$ (geometry monoid), 77
$G_{L D}$ (geometry monoid), 78
χ_{t} (blueprint), 79
$\llbracket t \rrbracket$ (blueprint), 79
$F_{n}^{L D}$ (free LD-system), 82
$F_{n}^{L D M}$ (free LD-monoid), 82

Chapter V

a, b, \ldots, A, B, \ldots (braids), 89
red w (handle reduction), 90
$\operatorname{Div}(\beta)$ (set of left divisors), 93
$h(w)$ (number of handles), 97
$\pi(w)$ (main prefix), 97
$e(w)$ (sign of main prefix), 97
$c_{1}(\beta)\left(\sigma_{1}\right.$-content $), 101$

Chapter VI

$\operatorname{perm}(\beta)$ (permutation), 108
$b_{n, d}(\beta)$ (number of braids), 110
M_{n} (adjacency matrix), 110
\widehat{M}_{n} (adjacency matrix), 111
$p(n)$ (number of partitions), 111
θ_{d} (braid), 113
$\sigma_{2}^{[d]}$ (braid sequence), 114
Σ_{d} (braid sequence), 114
$\left(\sigma_{2}\right)^{d}$ (word sequence), 115
W_{d} (word sequence), 115
$\underline{\Sigma}_{d}$ (word sequence), 115
$S_{n, d}$ (braid sequence), 119
$\beta<{ }_{i} \beta^{\prime}$ (braid ordering), 120
$h_{i}(\beta)$ (height), 121
$\beta \equiv_{i} \beta^{\prime}$ (equivalence), 121

Chapter VII

$B_{I}^{+}, 131$
$\Delta_{I}, 131$
[p] (parity of p), 136
$\beta<{ }_{n}^{+} \beta^{\prime}$ (ordering), 139
$\widehat{\Delta}_{n, d}$ (braid), 141
\underline{B}_{n}^{+}(positive braid words), 143
$w \sqsubset_{2} w^{\prime}$ (word ordering), 144
$\left(\mathcal{S}_{\rho}\right)$ (assertion), 146

Chapter VIII

$a_{i, j}$ (Birman-Ko-Lee generators), 154
$\mathrm{b}^{\prime}, \mathrm{c}^{\prime}, \mathrm{c}^{\prime \prime}, \ldots$ (braids), 155
B_{n}^{+*} (dual braid monoid), 156
\leq_{n}^{*} (ordering), 162
$\widehat{\delta}_{n, d}$ (braid), 165

Chapter IX

F_{n}, F_{∞} (free group), 174
$\widehat{\sigma}_{i}, \widehat{\beta}$ (automorphism of F_{n}), 174
$S(x)$ (words in free group), 174
sh (shifted automorphism), 174
$w_{r, s, t}, w_{r, s, t}^{\prime}$ (braid word), 179
$\widehat{F_{\infty}}$ (closure of free group), 183
\rightarrow (circular list), 183
$w_{1} \triangleleft w_{2}$ (ordering), 183

Chapter X

D_{n} (punctured disk), 185
P_{1}, \ldots, P_{n} (punctures), 185
e_{0}, \ldots, e_{n} (segments), 185
E (main diameter), 185
$<_{\text {CD }}$ (braid ordering), 189

Chapter XI

$\sigma_{i, j, p}$ (braid), 196
A^{*} (language), 198
Γ^{\downarrow} (mirror image), 201
$\Delta_{i, j}$ (braid), 205
$\ell_{\Delta}(w)$ (Δ-length), 205
E (base curve diagram), 206
$c(\beta)$ (geometrical complexity), 206
$\|E\|$ (number of intersections), 206
$c_{\text {AHT }}\left(\Gamma,\left\{s_{1}, \ldots, s_{r}\right\}\right)$ (complexity), 212
$\mathrm{NF}_{\text {t.r. }}^{+}(\beta), \mathrm{NF}_{\text {t.r. }}^{-}(\beta)$ (normal form), 218

Chapter XII

$x^{+}, x^{-}, 222$
$F^{+}, F^{-}, 222$
$\boldsymbol{x}^{\#}$ (sequence), 223
$\ell_{\Delta}^{\prime}(w)$ (length), 225
S^{2} (sphere), 226
S_{n+3}^{2} (punctured sphere), 227
T_{*} (triangulation), 227
\mathcal{L}_{n} (set of laminations), 229
L_{*} (lamination), 230
ι (embedding), 231
$\beta(L)$ (braid action), 231
[T] (combinatorial type), 236
$d\left(T, T^{\prime}\right)$ (distance), 240

Chapter XIII

$<_{x}$ (ordering), 248
$\widetilde{D_{n}}$ (universal cover), 249
\mathbb{H}^{2} (hyperbolic plane), 249
S_{∞}^{1} (circle at infinity), 249
Γ_{x} (geodesic), 249
$<_{\epsilon}$ (variant ordering), 256

Chapter XIV

$\{0,1\}^{X}$ (powerset), 265
$L O(G)$ (space of left-orderings), 266
$O(G)$ (space of bi-orderings), 266
$<_{\phi}$ (action), 267
P_{n} (σ-ordering), 269
P_{DD} (Dubrovina-Dubrovin), 270
Z_{n} (σ-ordering), 271

Chapter XV

$P B_{n}$ (pure braid group), 273
r_{n} (retraction), 274
F_{n-1} (free subgroup), 274
$x_{i, j}$ (generators), 275
$\mathbb{Z}\left\langle\left\langle X_{1}, \ldots, X_{n}\right\rangle\right\rangle$ (formal power series), 276
$O\left(X^{k}\right)$ (ideal), 277
$\mu(w)$ (Magnus expansion), 277
$C_{d}(f), c_{d}(f)$ (coefficients), 278
$f \ll^{\text {SumLex }} g$ (ordering), 278
$w<_{\mu} w^{\prime}$ (Magnus ordering), 279
$\beta<_{\mathrm{M}, n} \beta^{\prime}, \beta<_{\mathrm{M}} \beta^{\prime}$ (Magnus ordering), 281
$\epsilon(\beta)$ (exponent sum), 283
$P B_{n}^{+}$(positive pure braids), 284

Chapter XVI

$\ell_{\sigma}(\beta)$ (σ-length), 293
$D_{S}(\boldsymbol{x})$ (partial action), 294
B_{n}^{++}(braid monoid), 297
$B_{n}(\mathcal{S}), P B_{n}(\mathcal{S})$ (surface braid group), 302
$M\left(H_{\infty}\right)$ (mapping class group), 306
$B \bullet$ (parenthesized braids), 306

Index

reducible, 88
representative, 9
Breadth
ϕ_{n}-breadth, 159
Φ_{n}-breadth, 134
Cantor set, 266
Cayley graph, 93
Class (sh ${ }^{i}$-class), 121
Code (of a 3 -strand braid), 136
Colouring (braid diagram), 56
Combinatorial type of a triangulation, 236
of a flip, 242
Combing,
of a pure braid, 275
of a triangulation, 241
Comparison (Property), 60
Complexity
(ATH), 212
(braid), 206
(curve diagram), 199
Cone (positive), 20
Conradian (group), 27
Content, 101
Convex (subgroup), 34
Coordinates
of a braid, 222, 223 unreduced, 232 reduced, 234
of a lamination, 230
Curve diagram, 186
isotopic, 186
positive, 201
Curve system, 228
normal, 228
Cycling (automorphism), 14
D-disk (of a pair of triangulations), 237
Decomposition, 133
Defect (pseudo-character), 48
Degree (of a braid), 109
Dehn half-twist, 192
Denominator (of a transmission), 209
Dense (ordered group), 31

Descent (permutation), 112
Discrete (ordered group), 31
Distance (triangulation), 240
Divisor, 16
iterated left -, 60
Essential (arc), 214
Euclidean algorithm, 204
Exponent sequence, 136
Exponent sum, 283
Expression (braid word), 9
Factor (greedy normal form), 109
Factorization, 148
Flip (automorphism), 14
Flip (of an edge), 227
Garside
category, 66
group, 302
Geodesic
filling, 257
finite type, 257
infinite type, 257
Handle, 87
coarse, 295
generalized, 105
leftmost, 90
permitted, 88
reduction, 88
left - reduction, 90
Head, 130
Height (braid), 121
Higman's subword lemma, 36
Indicable (group), 287
locally -, 287
Intersection number, 188
Irreducible (in the sense of Burckel), 145
Isolated (subgroup), 49
Isotopic (geometric braids), 10
Jump, 120
Knot group, 304
Lamination,
geodesic, 262
integral, 229 decorated, 235
LD-expansion, 64
LD-monoid, 82
LD-system, 55
free, 62
left-cancellative, 69
ordered, 68
Leading part (of a triangulation), 240
Left-ordering, see ordering
Left-orderable (group), 20
Length (word), 9 Δ-length, 205

Magnus
expansion, 277
ordering (of a free group), 279
ordering (or $P B_{n}$), 281
Mapping class group, 12
Nested (interval), 155
Next-to-be-flipped (edge), 240
Normal word
division, 82
greedy, 109
ϕ-normal, 161, 162
Φ-normal, 136, 137
in the sense of Bressaud, 197
in the sense of Burckel, 144
in the sense of Mosher, 242
Numerator (of a transmission), 209
Obstructing (puncture), 214
Ordering
bi-ordering, 20
conjugate, 251
of Nielsen-Thurston type, 250
left-ordering, 20
linear (or total), 19
σ-ordering (braids), 21
σ^{Φ}-ordering (braids), 24
strict, 19
Peano system, 52
Prefix (main), 97
Product (of orderings), 285
Property A, 21
proofs of -: 73, 175, 190, 224
Property $\mathbf{A}_{i}, 73$
Property C, 21
proofs of -: 60, 89, 116, 148, 164, 201, 205 181, 190
Property $\mathbf{C}_{\infty}, 60$
Property S, 28
proofs of -: 83, 152, 193, 263
Pseudo-character, 48
Puncture, 226
Quasi-geodesic (length), 293
Rack, 68
Reducible (in the sense of Burckel), 145
Regular language, 198
Relaxation, 210
Shift endomorphism, 22
ShortLex-extension, 139
Space of orderings, 266
Special transformation, 94
Splitting,
Φ_{n}-splitting of a braid, 37,134
Φ_{n}-splitting of a word, 144
ϕ_{n}-splitting of a braid, 159

Stair, 169

State (of an automaton), 198
Strand (of a braid), 10
Strip, 209
decomposition, 209
simple, 207
Subsurface sequence, 257
conjugated, 258 of infinite type, 262
Subword reversing
left reversing, 70
right reversing, 72
SumLex-extension, 278
Surface group, 304

Tail

of a braid, 130
of a braid word, 144
Teichmüller space, 299
Term, 63
LD-equivalent, 63
Tetris (diagram), 197
Thompson groups, 78 Thompson's group $F, 306$
Tight (position), 188
Torelli group, 304
Transmission, 209
spiralling, 210
Triangulation, 226
ordered oriented, 240
singular, 226
tight, 237
transverse, 237
Twist, 48
Useful arc, 191
Width (of a simple strip), 207
Zero-divisor Conjecture, 44

Titles in This Series

148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
144 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part II: Analytic aspects, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz'ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
135 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part I: Geometric aspects, 2007
134 Dana P. Williams, Crossed products of C^{*}-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
128 Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlevé transcendents, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
125 Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy Transform, 2006

124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005

121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005

TITLES IN THIS SERIES

115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004

111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
97 V. A. Vassiliev, Applied Picard-Lefschetz theory, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002
92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second edition, 2004
87 Bruno Poizat, Stable groups, 2001
86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001

In the fifteen years since the discovery that Artin's braid groups enjoy a leftinvariant linear ordering, several quite different approaches have been used to understand this phenomenon. This book is an account of those approaches, which involve such varied objects and domains as combinatorial group theory, self-distributive algebra, finite combinatorics, automata, lowdimensional topology, mapping class groups, and hyperbolic geometry. The remarkable point is that all these approaches lead to the same ordering, making the latter rather canonical.

We have attempted to make the ideas in this volume accessible and interesting to students and seasoned professionals alike. Although the text touches upon many different areas, we only assume that the reader has some basic background in group theory and topology, and we include detailed introductions wherever they may be needed, so as to make the book as self-contained as possible.

The present volume follows the book, Why are braids orderable?, written by the same authors and published in 2002 by the Sociéte Mathématique de France. The current text contains a considerable amount of new material, including ideas that were unknown in 2002. In addition, much of the original text has been completely rewritten, with a view to making it more readable and up-to-date.

