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Preface

This book is an attempt to present the rudiments of quantum field theory
in general and quantum electrodynamics in particular, as actually practiced by
physicists for the purpose of understanding the behavior of subatomic particles, in
a way that will be comprehensible to mathematicians.

It is, therefore, not an attempt to develop quantum field theory in a mathe-
matically rigorous fashion. Sixty years after the growth of quantum electrodynam-
ics (QED) and forty years after the discovery of the other gauge field theories on
which the current understanding of the fundamental interactions of physics is based,
putting these theories on a sound mathematical foundation remains an outstanding
open problem — one of the Millennium prize problems, in fact (see [67]). I have no
idea how to solve this problem. In this book, then, I give mathematically precise
definitions and arguments when they are available and proceed on a more informal
level when they are not, taking some care to be honest about where the problems
lie. Moreover, I do not hesitate to use the informal language of distributions, with
its blurring of the distinction between functions and generalized functions, when
that is the easiest and clearest way to present the ideas (as it often is).

So: why would a self-respecting mathematician risk the scorn of his peers by
undertaking a project of such dubious propriety, and why would he expect any of
them to read the result?

In spite of its mathematical incompleteness, quantum field theory has been an
enormous success for physics. It has yielded profound advances in our understand-
ing of how the universe works at the submicroscopic level, and QED in particular
has stood up to extremely stringent experimental tests of its validity. Anyone with
an interest in the physical sciences must be curious about these achievements, and
it is not hard to obtain information about them at the level of, say, Scientific Amer-
ican articles. In such popular accounts, one finds that (1) interaction processes are
described pictorially by diagrams that represent particles colliding, being emitted
and absorbed, and being created and destroyed, although the relevance of these dia-
grams to actual computations is usually not explained; (2) some of the lines in these
diagrams represent real particles, but others represent some shadowy entities called
“virtual particles” that cannot be observed although their effects can be measured;
(3) quantum field theories are plagued with infinities that must be systematically
subtracted off to yield meaningful answers; (4) in spite of the impression given by
(1)–(3) that one has blundered into some sort of twilight zone, these ingredients
can be combined to yield precise answers that agree exquisitely with experiment.
(For example, the theoretical and experimental values of the magnetic moment of
the electron agree to within one part in 1010, which is like determining the distance
from the Empire State Building to the Eiffel Tower to within a millimeter.)

v
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People with mathematical training are entitled to ask for a deeper and more
quantitative understanding of what is going on here. They may feel optimistic about
attaining it from their experience with the older areas of fundamental physics that
have proved very congenial to mathematical study: the differential equations of
classical mechanics, the geometry of Hamiltonian mechanics, and the functional
analysis of quantum mechanics. But when they attempt to learn quantum field
theory, they are likely to feel that they have run up against a solid wall. There are
several reasons for this.

In the first place, quantum field theory is hard. A mathematician is no more
likely to be able to pick up a text on quantum fields such as Peskin and Schroeder
[89] and understand its contents on a first reading than a physicist hoping to do the
same with, say, Hartshorne’s Algebraic Geometry. At the deep conceptual level, the
absence of firm mathematical foundations gives a warning that some struggle is to
be expected. Moreover, quantum field theory draws on ideas and techniques from
many different areas of physics and mathematics. (Despite the fact that subatomic
particles behave in ways that seem completely bizarre from the human perspective,
our understanding of that behavior is built to a remarkable extent on classical
physics!) At the more pedestrian level, the fact that the universe seems to be
made out of vectors and spinors rather than scalars means that even the simplest
calculations tend to involve a certain amount of algebraic messiness that increases
the effort needed to understand the essential points. And at the mosquito-bite level
of annoyance, there are numerous factors of −1, i, and 2π that are easy to misplace,
as well as numerous disagreements among different authors as to how to arrange
various normalization constants.

But there is another difficulty of a more cultural and linguistic nature: physics
texts are usually written by physicists for physicists. They speak a different dialect,
use different notation, emphasize different points, and worry about different things
than mathematicians do, and this makes their books hard for mathematicians to
read. (Physicists have exactly the same complaint about mathematics books!) In
the mathematically better established areas of physics, there are books written from
a more mathematical perspective that help to solve this problem, but the lack of
a completely rigorous theory has largely prevented such books from being written
about quantum field theory.

There have been some attempts at cross-cultural communication. Mathemati-
cal interest in theoretical physics was rekindled in the 1980s, after a period in which
the long marriage of the two subjects seemed to be disintegrating, when ideas from
gauge field theory turned out to have striking applications in differential geometry.
But the gauge fields of interest to the geometers are not quantum fields at all, but
rather their “classical” (unquantized) analogues, so the mathematicians were not
forced to come to grips with quantum issues. More recently, motivated by the de-
velopment of string theory, in 1996–97 a special year in quantum field theory at the
Institute for Advanced Study brought together a group of eminent mathematicians
and physicists to learn from each other, and it resulted in the two-volume collection
of expository essays Quantum Fields and Strings [21]. These books contain a lot
of interesting material, but as an introduction to quantum fields for ordinary mor-
tals they leave a lot to be desired. One drawback is that the multiple authorships
do not lead to a consistent and cohesively structured development of the subject.
Another is that the physics is mostly on a rather formal and abstract level; the
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down-to-earth calculations that lead to experimentally verifiable results are given
scant attention. Actually, I would suggest that the reader might study Quantum
Fields and Strings more profitably after reading the present book, as the real focus
there is on more advanced topics.

There is another book about quantum fields written by a mathematician, Tic-
ciati’s Quantum Field Theory for Mathematicians [121]. In its general purpose it
has some similarity to the present book, but in its organization, scope, and style it
is quite different. It turned out not to be the book I needed in order to understand
the subject, but it may be a useful reference for others.

The foregoing paragraphs should explain why I thought there was a gap in the
literature that needed filling. Now I shall say a few words about what this book
does to fill it.

First of all, what are the prerequisites? On the mathematical side, the reader
needs to be familiar with the basics of Fourier analysis, distributions (generalized
functions), and linear operators on Hilbert spaces, together with a couple of more
advanced results in the latter subject — most notably, the spectral theorem. This
material can all be found in the union of Folland [48] and Reed and Simon [94],
for example. In addition, a little Lie theory is needed now and then, mostly in
the context of the specific groups of space-time symmetries, but in a more general
way in the last chapter; Hall [62] is a good reference for this. The language of
differential geometry is employed only in a few places that can safely be skimmed by
readers who are not fluent in it. On the physical side, the reader should have some
familiarity with the Hamiltonian and Lagrangian versions of classical mechanics,
as well as special relativity, the Maxwell theory of electromagnetism, and basic
quantum mechanics. The relevant material is summarized in Chapters 2 and 3, but
these brief accounts are meant for review and reference rather than as texts for the
novice.

As I mentioned earlier, quantum field theory is built on a very broad base of
earlier physics, so the first four chapters of this book are devoted to setting the stage.
Chapter 5 introduces free fields, which are already mathematically quite nontrivial
although physically uninteresting. The aim here is not only to present the rigorous
mathematical construction but also to introduce the more informal way of treating
such objects that is common in the physics literature, which offers both practical
and conceptual advantages once one gets used to it. The plunge into the deep waters
of interacting field theory takes place in Chapter 6, which along with Chapter 7
on renormalization contains most of the really hard work in the book. I use some
imagery derived from the Faust legend to describe the necessary departures from
mathematical rectitude; its significance is meant to be purely literary rather than
theological. Chapter 8 sketches the attractive alternative approach to quantum
fields through Feynman’s sum-over-histories view of quantum mechanics, and the
final chapter presents the rudiments of gauge field theory, skirting most of the
quantum issues but managing to derive some very interesting physics nonetheless.

There are several ways to get from the starting line to the goal of calculating
quantities with direct physical meaning such as scattering cross-sections. The path
I follow here, essentially the one pioneered by Dyson [25], [26], is to start with free
fields, apply perturbation theory to arrive at the integrals associated to Feynman
diagrams, and renormalize as necessary. This has the advantages of directness and
of minimizing the amount of time spent dealing with mathematically ill-defined
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objects. Its drawback is that it tethers one to perturbation theory, whereas non-
perturbative arguments would be more satisfying in some situations. Physicists
may also object to it on the grounds that free fields, although mathematically
meaningful, are physically fictitious.

The problem with interacting fields, on the other hand, is exactly the reverse.
Hence, although some might prefer to give them a more prominent role, I sequester
them in the last section of Chapter 6, where the mathematical soundness of the
narrative reaches its nadir, and do not use them at all in Chapter 7 except for a
couple of passing mentions. Their credibility is somewhat enhanced, however, by the
arguments in Chapter 8 using functional integrals, which are also mathematically ill-
defined but intuitively more accessible and seductively close to honest mathematics.
Some physicists like to use functional integrals as the principal route to the main
results, but despite their appeal, I find them a bit too much like sorcery to be relied
on until one already knows where one is going.

This book is meant to be only an introduction to quantum field theory, and it
focuses on the goal of explaining actual physical phenomena rather than studying
formal structures for their own sake. This means that I have largely (though not
entirely) resisted the temptation to pursue mathematical issues when they do not
add to the illumination of the physics, and also that I have nothing to say about the
more speculative areas of present-day theoretical physics such as supersymmetry
and string theory. Even within these restrictions, there are many important topics
that are mentioned only briefly or omitted entirely — most notably, the renor-
malization group. My hope is that this book will better prepare those who wish
to go further to tackle the physics literature. References to sources where further
information can be obtained on various topics are scattered throughout the book.
Here, however, I wish to draw the reader’s attention to three physics books whose
quality of writing I find exceptional.

First, everyone with any interest in quantum electrodynamics should treat
themselves to a perusal of Feynman’s QED [38], an amazingly fine piece of pop-
ular exposition. On a much more sophisticated level, but still with a high ratio
of physical insight to technical detail, Zee’s Quantum Field Theory in a Nutshell
[138] makes very good reading. (Both of these books adopt the functional integral
approach.) And finally, for a full-dress treatment of the subject, Weinberg’s The
Quantum Theory of Fields [131], [132], [133] is the sort of book for which the
overworked adjective “magisterial” is truly appropriate. Weinberg does not aim for
a mathematician’s level of rigor, but he has a mathematician’s respect for careful
reasoning and for appropriate levels of generality, and his approach has influenced
mine considerably. I will warn the reader, however, that Weinberg’s notation is at
variance with standard usage in some respects. Most notably, he takes the Lorentz
metric (which he denotes by ημν) to have signature −+++ rather than the usual
+−−−, and since he wants his Dirac matrices γμ to satisfy {γμ, γν} = 2ημν , what
he calls γμ is what most people call −iγμ.1

I call this book a tourist guide for mathematicians. This is meant to give the
impression not that it is easy reading (it’s not) but that the intended audience
consists of people who approach physics as tourists approach a foreign country, as
a place to enjoy and learn from but not to settle in permanently. It is also meant to

1There is yet a third convention for defining Dirac matrices, found in Sakurai [103] among
other places.



PREFACE ix

free me and my readers from guilt about omitting various important but technical
topics, viewing others from a point of view that physicists may find perverse, failing
to acquire a scholarly knowledge of the literature, and skipping the gruesome details
of certain necessary but boring calculations.

I wish to state emphatically that I am a tourist in the realm of physics myself.
I hope that my foreigner’s perceptions do not do violence to the native culture
and that my lack of expertise has not led to the perpetration of many outright
falsehoods. Given what usually happens when physicists write about mathemat-
ics, however, I dare not hope that there are none. Corrections will be gratefully
received at folland@math.washington.edu and recorded on a web page accessible
from www.math.washington.edu/~folland/Homepage/index.html. (Note added
for the second printing : Numerous small misprints and other errors have been cor-
rected for this printing, and two items have been added to the bibliography. As a
result, the page breaks are different in a few places, and many references have been
renumbered.) The American Mathematical Society will also host a web page for
this book, the URL for which can be found on the back cover above the barcode.

Acknowledgments. I am grateful to the students and colleagues who sat through
the course I offered in 2001 in which I made my rather inept first attempt to
put this material together. Several physicists, particularly David Boulware, have
patiently answered many questions for me, and they are not to blame if their
answers have become distorted in passing through my brain. Finally, an unnamed
referee provided several helpful suggestions and useful references.

The Feynman diagrams in this book were created with JaxoDraw, available at
jaxodraw.sourceforge.net/sitemap.html.

Gerald B. Folland
Seattle, April 2008
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[28] A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956.
[29] L. D. Faddeev and V. N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett.

25B (1967), 29–30.
[30] F. J. M. Farley and E. Picasso, The muon g − 2 experiments, pp. 479–559 in [72].
[31] G. Farmelo (ed.), It Must Be Beautiful: Great Equations of Modern Science, Granta, Lon-

don, 2002.
[32] P. Federbush, Quantum field theory in ninety minutes, Bull. Amer. Math. Soc. (N.S.) 17

(1987), 93–103.
[33] J. S. Feldman, T. R. Hurd, L. Rosen, and J. D. Wright, QED: A Proof of Renormalizability,

Springer, Berlin, 1988.
[34] E. Fermi, Versuch einer Theorie der β-Strahlen I, Zeit. für Phys. 88 (1934), 161–177.
[35] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod.

Phys. 20 (1948), 367–387; reprinted in [109], pp. 321–341, and in Feynman’s Selected Papers,
World Scientific, Singapore, 2000, pp. 177–197.

[36] R. P. Feynman, The development of the space-time view of quantum electrodynamics (No-
bel lecture), Science 153 (1966), 699–708; reprinted in Feynman’s Selected Papers, World
Scientific, Singapore, 2000, pp. 9–32.

[37] R. P. Feynman, The Character of Physical Law, MIT Press, Cambridge, MA, 1967.
[38] R. P. Feynman, QED: The Strange Theory of Light and Matter, Princeton University Press,

Princeton, NJ, 1985.
[39] R. P. Feynman, “Surely You’re Joking, Mr. Feynman”: Adventures of a Curious Character,

W. W. Norton, New York, 1985.
[40] R. P. Feynman and M. Gell-Mann, Theory of the Fermi interaction, Phys. Rev. 109 (1958),

193–198; reprinted in Feynman’s Selected Papers, World Scientific, Singapore, 2000, pp. 417–
422.

[41] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill,
New York, 1965.

[42] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (3 vols.),
Addison-Wesley, Reading, MA, 1963–5.

[43] G. B. Folland, Weyl manifolds, J. Diff. Geom. 4 (1970), 145–153.
[44] G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton,

NJ, 1989.
[45] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
[46] G. B. Folland, Introduction to Partial Differential Equations (2nd ed.), Princeton University

Press, Princeton, NJ, 1995.
[47] G. B. Folland, Fundamental solutions for the wave operator, Expos. Math. 15 (1997), 25–52.
[48] G. B. Folland, Real Analysis (2nd ed.), John Wiley, New York, 1999.
[49] G. B. Folland, How to integrate a polynomial over a sphere, Amer. Math. Monthly 108

(2001) 446–448.
[50] G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier

Anal. Appl. 3 (1997), 207–238.

[51] A. Franklin, Are There Really Neutrinos?, Westview Press, Boulder, CO, 2004.
[52] I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions, Volume 4: Applications of Har-

monic Analysis, Academic Press, New York, 1964.
[53] M. Gell-Mann and F. Low, Bound states in quantum field theory, Phys. Rev. 84 (1951),

350–354.
[54] S. L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961), 579–588.



BIBLIOGRAPHY 319

[55] J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View (2nd ed.),
Springer, New York, 1987.

[56] H. Goldstein, Classical Mechanics (2nd ed.), Addison-Wesley, Reading, MA, 1980.
[57] J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962), 965–

970.
[58] W. Greiner, S. Schramm, and E. Stein, Quantum Chromodynamics (2nd ed.), Springer,

Berlin, 2002.

[59] D. Griffiths, Introduction to Elementary Particles, John Wiley, New York, 1987.
[60] R. Haag, Local Quantum Physics: Fields, Particles, Algebras (2nd ed.), Springer, Berlin,

1996.
[61] G. A. Hagedorn, Semiclassical quantum mechanics I: the � → 0 limit for coherent states,

Comm. Math. Phys. 71 (1980), 77–93.
[62] B. C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, New York, 2003.
[63] Y. Hahn and W. Zimmermann, An elementary proof of Dyson’s power counting theorem,

Comm. Math. Phys. 10 (1968), 330–342.
[64] K. Hepp, Proof of the Bogoliubov-Parasiuk theorem on renormalization, Comm. Math. Phys.

2 (1966), 301–326.
[65] T. R. Hurd, A renormalization group proof of perturbative renormalizability, Comm. Math.

Phys. 124 (1989), 153–168.
[66] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980.
[67] A. Jaffe and E. Witten, Quantum Yang-Mills theory, in J. Carlson, A. Jaffe, and A. Wiles

(eds.), The Millennium Prize Problems, American Mathematical Society, Providence, RI,
2006, pp. 129–152.

[68] J. M. Jauch, Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA, 1968.
[69] J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (2nd ed.), Springer,

Berlin, 1976.
[70] R. Jost, The General Theory of Quantized Fields, American Mathematical Society, Provi-

dence, RI, 1965.
[71] G. Keller and C. Kopper, Renormalizability proof for QED based on flow equations, Comm.

Math. Phys. 176 (1996), 193–226.

[72] T. Kinoshita (ed.), Quantum Electrodynamics, World Scientific, Singapore, 1990.
[73] T. Kinoshita, Theory of the Anomalous magnetic moment of the electron—numerical ap-

proach, pp. 218–321 in [72].
[74] T. Kinoshita and W. J. Marciano, Theory of the muon anomalous magnetic moment,

pp. 419–478 in [72].
[75] A. A. Kirillov, Lectures on the Orbit Method, American Mathematical Society, Providence,

RI, 2004.
[76] D. Kreimer, Knots and Feynman Diagrams, Cambrige University Press, Cambridge, 2000.
[77] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) (3rd ed.),

Pergamon, Oxford, 1977.
[78] E. H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.) 22

(1990), 1–49.
[79] G. W. Mackey, Mathematical Foundations of Quantum Mechanics, Benjamin, New York,

1963; reprinted by Dover Books, New York, 2004.
[80] E. B. Manoukian, Renormalization, Academic Press, New York, 1983.
[81] P. T. Matthews and A. Salam, The renormalization of meson theories, Rev. Mod. Phys. 23

(1951), 311-314.
[82] R. D. Mattuck, A Guide to Feynman Diagrams in the Many-body Problem (2nd ed.),

McGraw-Hill, New York, 1976; reprinted by Dover Books, New York, 1992.
[83] A. Messiah, Quantum Mechanics (2 vols.), Wiley-Interscience, New York, 1961–2; reprinted

by Dover Books, New York, 1999.
[84] R. Montgomery, Review of Symmetry in Mechanics by S. F. Singer, Amer. Math. Monthly

110 (2003), 348–353.
[85] J. W. Morgan, An introduction to gauge theory, in R. Friedman and J. W. Morgan (eds.),

Gauge Theory and the Topology of Four-Manifolds, American Mathematical Society, Prov-
idence, RI, 1998, pp. 51–143.

[86] E. Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), 332–
343.



320 BIBLIOGRAPHY

[87] E. Nelson, Quantum fields and Markoff fields, in D. C. Spencer (ed.), Partial Differential
Equations (Proc, Symp. Pure Math., vol. XXIII), American Mathematical Society, Provi-
dence, RI, 1973, pp. 413–420.

[88] A. Pais, Einstein on particles, fields, and the quantum theory, pp. 197–251 in [136].
[89] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Perseus

Books, Cambridge, MA, 1995.
[90] F. M. Pipkin, Lamb shift measurements, pp. 696–773 in [72].

[91] E. M. Purcell, Electricity and Magnetism (2nd ed.), McGraw-Hill, New York, 1985.
[92] P. Ramond, Field Theory: A Modern Primer (2nd ed.), Addison-Wesley, Redwood City,

CA, 1989.
[93] P. Ramond, Journeys Beyond the Standard Model, Westview Press, Boulder, CO, 2004.
[94] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis,

Academic Press, New York, 1972.
[95] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis,

Self-Adjointness, Academic Press, New York, 1975.
[96] M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory,

Academic Press, New York, 1979.
[97] M. Reed and B. Simon,Methods of Modern Mathematical Physics IV: Analysis of Operators,

Academic Press, New York, 1978.
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field theory, with the goal of understanding the behavior of 
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The book begins with a review of classical physics and quantum mechanics, then 
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