Finite Dimensional Algebras and Quantum Groups

Bangming Deng
Jie Du
Brian Parshall
Jianpan Wang

Finite Dimensional Algebras and Quantum Groups

Finite Dimensional Algebras and Quantum Groups

Bangming Deng
Jie Du
Brian Parshall
Jianpan Wang

American Mathematical Society
Providence, Rhode Island

Editorial Committee

Jerry L. Bona
Ralph L. Cohen

Michael G. Eastwood
J. T. Stafford, Chair

Benjamin Sudakov
2000 Mathematics Subject Classification. Primary 05E10, 16G20, 16W35, 17B37, 20C08;
Secondary 16G70, 20C30, 20G05, 20 G 42.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-150

Library of Congress Cataloging-in-Publication Data

Finite dimensional algebras and quantum groups / Bangming Deng... [et al.].
p. cm. - (Mathematical surveys and monographs ; v. 150)

Includes bibliographical references and indexes.
ISBN 978-0-8218-4186-0 (alk. paper)

1. Finite fields (Algebra) 2. Quantum groups. I. Deng, Bangming.

QA247.3.F52 2008
$512^{\prime} .3-\mathrm{dc} 22$
2008028975

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2008 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Forall theirfelp, encouragement, and infinite patience, we dedicate this book to our wives and children:

Wenlian Guo and Zfiuoran Deng
Chunli Yu and $\mathcal{A n d y} \mathcal{D} u$
Karen Parsfiall
Huiqing Xu, Xin Wang, and Yun Wang

Contents

Preface xiii
Notational conventions xxiii
Leitfaden xxv
Chapter 0. Getting started 1
§0.1. Cartan matrices and their two realizations 1
§0.2. Free algebras and presentations with generators and relations 6
§0.3. Examples: the realization problem 12
§0.4. Counting over finite fields: Gaussian polynomials 17
§0.5. Canonical bases: the matrix construction 22
§0.6. Finite dimensional semisimple Lie algebras 25
Exercises and notes 34
Part 1. Quivers and Their Representations
Chapter 1. Representations of quivers 43
§1.1. Quivers and their representations 44
§1.2. Euler forms, Cartan matrices, and the classification of quivers 49
$\S 1.3$. Weyl groups and root systems 55
§1.4. Bernstein-Gelfand-Ponomarev reflection functors 60
§1.5. Gabriel's theorem 65
§1.6. Representation varieties and generic extensions 70
Exercises and notes 74
Chapter 2. Algebras with Frobenius morphisms 83
§2.1. \mathbb{F}_{q}-structures on vector spaces 84
§2.2. Algebras with Frobenius morphisms and Frobenius twists 86
§2.3. $\quad F$-stable A-modules 91
$\S 2.4$. A construction of indecomposable F-stable modules 94
§2.5. A functorial approach to the representation theory 98
§2.6. Almost split sequences 105
§2.7. Irreducible morphisms 112
§2.8. Frobenius folding of almost split sequences 117
Exercises and notes 121
Chapter 3. Quivers with automorphisms 127
§3.1. Quivers with automorphisms and valued quivers 128
§3.2. Automorphisms of Dynkin and tame quivers 135
§3.3. Modulated quivers and Auslander-Reiten quivers 140
§3.4. Preprojective and preinjective components 145
§3.5. Modulated quivers attached to quivers with automorphisms 150
$\S 3.6$. Frobenius folding of Auslander-Reiten quivers 156
§3.7. Finite dimensional algebras over a finite field 164
§3.8. Representations of tame quivers with automorphisms 170
Exercises and notes 174
Part 2. Some Quantized Algebras
Chapter 4. Coxeter groups and Hecke algebras 183
§4.1. Coxeter groups 184
§4.2. An example: symmetric groups 193
§4.3. Parabolic subgroups and affine Weyl groups 197
§4.4. Hecke algebras 203
§4.5. Hecke monoids 208
$\S 4.6$. Counting with finite general linear groups 212
§4.7. Integral Hecke algebras associated with $\mathrm{GL}_{n}(q)$ 218
Exercises and notes 223
Chapter 5. Hopf algebras and universal enveloping algebras 229
§5.1. Coalgebras, bialgebras, and Hopf algebras 230
§5.2. Universal enveloping algebras and PBW bases 239
§5.3. Universal enveloping algebras of Kac-Moody Lie algebras 244
§5.4. Symmetry structures of Kac-Moody Lie algebras 247
§5.5. Braid group actions 252
§5.6. Quantum $\mathfrak{s l}_{2}$ 256
Exercises and notes 263
Chapter 6. Quantum enveloping algebras 271
§6.1. Quantum enveloping algebras 271
$\S 6.2$. The elementary structure of \mathbf{U} 275
§6.3. The Hopf algebra structure of \mathbf{U} 278
§6.4. The adjoint action and triangular decomposition 283
§6.5. Annihilators of integrable U-modules 289
§6.6. Integrable $\mathbf{U}_{v}\left(\mathfrak{s l}_{2}\right)$-modules and their symmetries 295
§6.7. Symmetries of integrable U-modules 302
§6.8. Symmetry of \mathbf{U} and braid group actions 305
§6.9. An integral structure 308
§6.10. A PBW theorem for finite type 315
Exercises and notes 318
Part 3. Representations of Symmetric Groups
Chapter 7. Kazhdan-Lusztig combinatorics for Hecke algebras 325
§7.1. $\quad R$-polynomials and Kazhdan-Lusztig bases 326
§7.2. Multiplication formulas and Kazhdan-Lusztig polynomials 328
§7.3. Inverse Kazhdan-Lusztig polynomials and dual bases 332
§7.4. Cells 335
§7.5. Knuth and Vogan classes 338
§7.6. q-permutation modules and their canonical bases 342
§7.7. Cell modules and the Ext ${ }^{1}$-vanishing property 349
$\S 7.8$. The positivity property 353
Exercises and notes 361
Chapter 8. Cells and representations of symmetric groups 367
§8.1. The row-insertion algorithm 368
§8.2. The RSK correspondence 370
§8.3. The symmetry of the RSK correspondence 375
§8.4. Knuth equivalence classes in \mathfrak{S}_{r} 379
§8.5. Left cells in symmetric groups 382
§8.6. The irreducibility of cell modules 388
§8.7. An Artin-Wedderburn decomposition for $\mathcal{H}\left(\mathfrak{S}_{r}\right)_{\mathbb{Q}(v)}$ 392
§8.8. A poset isomorphism 395
Exercises and notes 399
Chapter 9. The integral theory of quantum Schur algebras 405
§9.1. The quantum Schur algebra 406
§9.2. Specht modules and Specht data 412
§9.3. Canonical bases for quantum Schur algebras 415
§9.4. The cellular property of quantum Schur algebras 418
§9.5. Standard modules: canonical bases, duality, and beyond 423
§9.6. The integral double centralizer property 427
Exercises and notes 431
Part 4. Ringel-Hall Algebras: A Realization for the \pm-Parts
Chapter 10. Ringel-Hall algebras 437
§10.1. Integral Hall algebras 438
§10.2. Ringel's fundamental relations 441
§10.3. Ringel-Hall algebras 444
§10.4. Hall polynomials 449
§10.5. Generic Ringel-Hall algebras of finite type 456
Exercises and notes 461
Chapter 11. Bases of quantum enveloping algebras of finite type 467
§11.1. Generic extension monoids 468
§11.2. Reduced filtrations and distinguished words 472
§11.3. Monomial bases 478
§11.4. Reflection functors and subalgebras of Ringel-Hall algebras 483
§11.5. The Lusztig symmetries and PBW-type bases 488
§11.6. An elementary algebraic construction of canonical bases 494
§11.7. An example: canonical basis of $\mathbf{U}_{v}^{+}\left(\mathfrak{s l}_{3}\right)$ 497
Exercises and notes 500
Chapter 12. Green's theorem 505
§12.1. Comultiplication on Ringel-Hall algebras 505
§12.2. Some counting lemmas 511
§12.3. Proof of Green's formula 516
§12.4. Green algebras and Lusztig's theorem 523
§12.5. Green's theorem 527
Exercises and notes 532
Part 5. The BLM Algebra: A Realization for Quantum $\mathfrak{g l}_{n}$
Chapter 13. Serre relations in quantum Schur algebras 537
§13.1. n-step flags and the orbit-matrix correspondence 538
§13.2. Dimensions of orbits 541
§13.3. Orbits corresponding to almost diagonal matrices 544
§13.4. A quantumization for quantum Schur algebras 546
§13.5. The fundamental multiplication formulas 550
§13.6. Some partial orderings on $\Xi(n)$ and $\tilde{\Xi}(n)$ 558
§13.7. The BLM triangular relations 560
§13.8. Extending the fundamental multiplication formulas 567
§13.9. Generators and relations 572
§13.10. Presentations for quantum Schur algebras 577
Exercises and notes 587
Chapter 14. Constructing quantum $\mathfrak{g l}_{n}$ via quantum Schur algebras 591
§14.1. A stabilization property 592
§14.2. The BLM algebra \mathbf{K} and its canonical basis 595
§14.3. The completion $\widehat{\mathbf{K}}$ of \mathbf{K} and multiplication formulas 598
§14.4. Embedding $\mathbf{U}_{v}\left(\mathfrak{g l}_{n}\right)$ into $\widehat{\mathbf{K}}$ 602
§14.5. Z-forms of $\mathbf{U}_{v}\left(\mathfrak{g l}_{n}\right)$ 606
§14.6. Integral quantum Schur-Weyl reciprocity 609
§14.7. A connection with Ringel-Hall algebras 614
Exercises and notes 617
Appendices
Appendix A. Varieties and affine algebraic groups 623
§A.1. Affine varieties 624
§A.2. Varieties 630
§A.3. Affine algebraic groups 633
§A.4. Parabolic subgroups and the Chevalley-Bruhat ordering 643
§A.5. Representation theory: a first view 645
§A.6. Representations in positive characteristic; Frobenius morphisms 649
§A.7. Induced representations and the Weyl character formula 654
§A.8. Higher Ext functors; Δ - and ∇-filtrations 658
Exercises and notes 660
Appendix B. Quantum linear groups through coordinate algebras 669
§B.1. Quantum linear algebra 670
§B.2. Quantum linear groups 677
§B.3. Multiparameter quantum matrix spaces 683
§B.4. An application: quantum Schur algebras 691
Exercises and notes 695
Appendix C. Quasi-hereditary and cellular algebras 699
§C.1. Heredity ideals 700
§C.2. Quasi-hereditary algebras and highest weight categories 704
§C.3. Regular rings of Krull dimension at most 2 709
§C.4. Integral quasi-hereditary algebras 715
§C.5. Algebras with a Specht datum 719
§C.6. Cellular algebras 720
Exercises and notes 726
Bibliography 733
Index of notation 749
Index of terminology 755

Preface

The quantum groups investigated in this book are quantum enveloping algebras defined by their Drinfeld-Jimbo presentation once a symmetrizable (generalized) Cartan matrix is specified. This presentation is essentially a q-deformation or "quantization" of the familiar presentation (by Chevalley generators and Serre relations) of the universal enveloping algebra of a KacMoody Lie algebra associated with a symmetrizable Cartan matrix. Thus, one approach to quantum enveloping algebras closely follows the study of universal enveloping algebras of Lie algebras, the results often amounting to quantizations of their classical counterparts.

There is a well-known procedure for obtaining symmetrizable Cartan matrices from finite (possibly valued) graphs. About two decades before the birth of quantum groups, representations of quivers (i.e., directed graphs) were introduced and developed as part of both a new approach to the representation theory of finite dimensional algebras and a method to deal with problems in linear algebra. P. Gabriel [118] showed, for example, that if the underlying graph of a quiver is a (simply laced) Dynkin graph, then the indecomposable representations correspond naturally to the positive roots of the finite dimensional complex semisimple Lie algebra associated with the same Dynkin graph. Over a decade later, V. Kac [170] generalized Gabriel's result to an arbitrary quiver, obtaining a one-to-one correspondence between the positive real roots of the associated Lie algebra and certain indecomposable quiver representations, as well as a one-to-many correspondence from the positive imaginary roots to the remaining indecomposable representations. Thus, an essential feature of the structure of a symmetrizable Kac-Moody Lie algebra - namely, its root space decomposition - has an interpretation in terms of representations of finite dimensional algebras.

The birth of quantum groups in the 1980s provided an opportunity for quantizing and deepening the finite dimensional algebra results described above. In 1990, C. M. Ringel [247] introduced an algebra, which he called the Hall algebra, but which is now commonly known as the Ringel-Hall algebra, associated with the representation category of a finite dimensional algebra over the finite field \mathbb{F}_{q}. In this work, Ringel established some fundamental relations that turned out to be specializations of the modified quantum Serre relations. Ringel then proved, in the finite type case, that the structure constants of the Ringel-Hall algebra are polynomials in q; the resulting generic Ringel-Hall algebra is isomorphic to the "positive part" of the corresponding quantum enveloping algebra.

With this breakthrough in the realization of quantum enveloping algebras of finite type, the development of the theory reached a new level. First, the geometric approach (via the theory of perverse sheaves) was introduced by G. Lusztig [206]. He obtained not only a geometric realization of the \pm-parts of quantum enveloping algebras associated with symmetrizable Cartan matrices but also canonical bases for these algebras and their representations as an application. Second, J. A. Green [136] established a comultiplication formula for Ringel-Hall algebras of hereditary algebras and extended Ringel's algebraic realization to arbitrary types. Thus, the Gabriel-Kac work at the root system - or skeletal - level can be thought of as having been extended to an actual construction of the full quantum enveloping algebra. Beyond the theory of Ringel-Hall algebras, other developments include Nakajima's quiver varieties [229] and the realization of all symmetrizable Kac-Moody Lie algebras by L. Peng and J. Xiao [238].

At almost the same time as Ringel's work on Hall algebras, A. Beilinson, G. Lusztig, and R. MacPherson investigated a class of finite dimensional algebras, known as quantum Schur algebras, which they used to give a realization of the entire quantum enveloping algebras in the important case of type A, i.e., associated with the general linear Lie algebras $\mathfrak{g l}_{n}$. This work thus provided another finite dimensional algebra approach to quantum enveloping algebras, completely different from the theory of Ringel-Hall algebras. However, the multiplication formulas that played a key role in this approach result from an analysis of quantum Schur algebras over finite fields, using the geometry of flags on a finite dimensional vector space. A stabilization property derived from the multiplication formula permits the definition of an infinite dimensional algebra as a "limit" of all quantum Schur algebras. In turn, this algebra has a completion that naturally contains the quantum enveloping algebra as a subalgebra. As a bonus, this method leads to an explicit basis, called the BLM basis, for the entire quantum enveloping algebra, and it yields explicit multiplication formulas for any basis element by a generator. It has been proved by J. Du and B. Parshall [104] that
a triangular part of the BLM basis coincides with the Ringel-Hall algebra basis.

This book provides an introduction to the two algebraic approaches briefly described above, with an emphasis on the structure and realization of quantum enveloping algebras. The treatment is largely elementary and combinatorial. In so far as possible, we have written the book to be accessible to graduate students and to mathematicians who are not experts in the field. Apart from some standard material (e.g., [BAII], [LAII]), our treatment is entirely self-contained with two notable exceptions: a positivity result for Hecke algebras (in Chapter 7), which requires the use of perverse sheaves, and a theorem of Lusztig used in the proof of Green's theorem (in Chapter 12), which requires the representation theory of Kac-Moody Lie algebras. For the more advanced geometric approach using the theory of perverse sheaves, see Lusztig's book [209].

Although the present book centers on the finite dimensional algebra approach to quantum groups, it also takes up two other, important, related topics. First, following [59], we use Frobenius morphisms on algebras to link representations of a quiver directly to representations of a species (called a modulated quiver in this book) without specifically working with the species. In the language of Lie theory, a quiver determines a symmetric generalized Cartan matrix, while a species corresponds to a symmetrizable one. As Cartan matrices, these two cases are linked by a graph automorphism. A quiver automorphism (i.e., a graph automorphism preserving arrows) gives rise naturally to a Frobenius morphism on the path algebra of the quiver whose fixed-point algebra can be interpreted as the tensor algebra of a species. Thus, the Ringel-Hall algebras associated with the representation categories of quivers with automorphisms cover all the quantum enveloping algebras associated with symmetrizable Kac-Moody Lie algebras.

The second related topic is the Kazhdan-Lusztig theory for (Iwahori-) Hecke algebras and cells. Playing an important role in Chevalley group theory [159], Hecke algebras are quantum deformations of group algebras of Coxeter groups. In 1979, D. Kazhdan and G. Lusztig [177] discovered a remarkable basis for a Hecke algebra, known as the Kazhdan-Lusztig or canonical basis, which has important applications in the representation theory of Hecke algebras, algebraic groups, finite groups of Lie type, and quantum groups. We use the same idea in the construction of canonical bases for quantum enveloping algebras of finite type in Chapter 11. As a noteworthy crown to the whole theory, we present the modern cell approach to the representations of symmetric groups and the structure of quantum Schur algebras. The latter is fundamental in the BLM approach to the realization of the entire quantum enveloping algebra of $\mathfrak{g l} l_{n}$.

The book consists of 14 chapters arranged in 5 parts, complemented by a leading Chapter 0 - that outlines the main features of the book - as well as three appendices. Chapter 0 begins with the two realizations of Cartan matrices: the graph realization and the root datum realization, which lead up to the theories of quiver representations and quantum enveloping algebras, respectively. The main objects discussed in the book are certain algebraic structures - Coxeter groups, associative and Lie algebras, etc. which are often presented with generators and relations. We set down in $\S 0.2$ the relevant notations for presentations. When an algebraic structure is presented by generators and relations, the immediate question arises of a description in some concrete way. For example, Coxeter groups are defined by means of a presentation, but, as J. Tits has shown, have an elegant explicit description as "reflection groups." (See §4.1.) In general, this question is the so-called realization problem. In this book, our main focus will be the two beautiful realizations of quantum enveloping algebras. However, as a first taste, we discuss the problem through some relatively simple examples in $\S 0.3$ and $\S 0.6$. In $\S 0.4$, the so-called quantumization process is introduced to explain the phenomenon that counting over finite fields often leads to certain generic objects over a polynomial ring. We shall see that Hecke algebras, quantum Schur algebras, and Ringel-Hall algebras of finite type can all be produced through this process. Finally, as one of the main topics in the book, the crude model of the canonical basis theory, i.e., the elementary matrix construction of canonical bases, is discussed in $\S 0.5$.

Part 1 (Chapters $1-3$) presents the theory of finite dimensional algebras, with an emphasis on representations of quivers with automorphisms. Chapter 1 begins with the basics of quiver representations and proves the theorem of Gabriel mentioned earlier using Bernstein-Gelfand-Ponomarev (BGP) reflection functors. It also lays out the relations between quivers, Euler forms, root systems, Weyl groups, and representation varieties.

Chapter 2 treats the general theory of representations of algebras with Frobenius morphisms. A Frobenius morphism F on a finite dimensional algebra A defined over the algebraic closure \mathcal{K} of the finite field \mathbb{F}_{q} is a ring automorphism satisfying $F(\lambda a)=\lambda^{q} a$, for all $\lambda \in \mathcal{K}$ and $a \in A$. It induces a functor on the category of finite dimensional A-modules, called the Frobenius twist functor. If the Frobenius twist of a module is isomorphic to itself, then the module is called an F-stable module. We show that the subcategory of F-stable modules with morphisms compatible with F stability is equivalent to the module category of the F-fixed point algebra A^{F}. Thus, the determination of indecomposable A^{F}-modules is equivalent to that of indecomposable F-stable modules. Additionally, this method
provides a relation between almost split sequences for A^{F}-modules and A modules in the Auslander-Reiten theory. In preparation for those results, Chapter 2 contains a brief and self-contained introduction to almost split sequences and irreducible morphisms.

In Chapter 3, we apply the general theory to the path algebra A of a quiver Q with automorphism σ. If F is the Frobenius morphism on A induced from σ, the F-fixed point algebra A^{F} is a hereditary algebra over the finite field \mathbb{F}_{q} and is the tensor algebra of the species associated with (Q, σ). Up to Morita equivalence, every finite hereditary algebra arises in this way. We further extend the folding relation associated with the quiver automorphism to a folding relation between the Auslander-Reiten quivers of A and A^{F}. Finally, we study representations of affine quivers with automorphisms and describe their Frobenius twists explicitly as an example of the applications of the theory. The formulas for the number of indecomposable representations of the associated F-fixed point algebra are also presented.

Part 2 (Chapters 4-6) constructs, via generators and relations, the algebras that play an important role throughout the book. It opens in Chapter 4 with the basic theory of Coxeter groups. Symmetric groups and affine Weyl groups provide important examples, which we look at in some detail. A modification of the defining relations for a Coxeter group leads naturally to the construction of the associated Hecke algebra, the properties of which are also rather fully explored. Chapter 4 concludes with a further example showing that Hecke algebras for the symmetric groups arise in a quantumization process that starts with the endomorphism algebra of the complete flag variety of a finite general linear group.

Chapter 5 begins with a brief tour of the basics of Hopf algebras. It continues with the fundamental example of universal enveloping algebras, emphasizing Kac-Moody Lie algebras and their symmetry structure. These results serve as a template for quantum enveloping algebras. The chapter ends with a discussion of the simplest quantum enveloping algebra, quantum $\mathfrak{s l}_{2}$.

Chapter 6 is devoted to quantum enveloping algebras - defined by means of the Drinfeld-Jimbo presentation - associated with symmetrizable Cartan matrices. There, we first show that these algebras are infinite dimensional and carry Hopf algebra structures. Actions of suitable braid groups on these algebras lead to the definition of root vectors for arbitrary roots as well as to the construction of PBW-type bases in the finite type case.

Part 3 (Chapters 7-9) presents a modern approach to the ordinary representation theory of symmetric groups and the associated Hecke algebras. Chapter 7 is concerned with the combinatorial part of Kazhdan-Lusztig
theory - the calculus of Hecke algebras and cells. After introducing the canonical bases for Hecke algebras, we develop Kazhdan-Lusztig polynomials, dual bases, inverse Kazhdan--Lusztig polynomials, and Knuth, cell, and Vogan equivalence relations. We prove that the Knuth equivalence is finer than the left cell equivalence which is, in turn, finer than Vogan equivalence. We conclude with a brief explanation of the geometric meaning of the Kazhdan-Lusztig polynomials, including the positivity property and its applications.

Chapter 8 explicitly determines the cells for the symmetric groups and constructs the simple representations of symmetric groups and their associated Hecke algebras. A main tool is the Robinson-Schensted algorithm. For later application to quantum Schur algebras, we adopt a generalized version, known as the Robinson-Schensted-Knuth (RSK) correspondence which associates with each square matrix over \mathbb{N} a pair of semistandard tableaux - the insertion tableau and the recording tableau. Given two elements in a symmetric group, if they are Vogan equivalent, then they have the same recording tableau; hence, they are Knuth equivalent. This completes the decomposition of a symmetric group into left (or right) cells. As a further application of the positivity property, we introduce the asymptotic Hecke algebras and an Artin-Wedderburn decomposition for the type A Hecke algebras.

Chapter 9 takes up the Kazhdan-Lusztig calculus for quantum Schur algebras, or q-Schur algebras, as a natural extension of the theory of Hecke algebras. Beginning with the Dipper-James definition of a quantum Schur algebra as the endomorphism algebra of tensor space, we immediately establish its integral quasi-heredity by showing the existence of a Specht datum in the sense of $[\mathbf{1 0 6}]$. We then construct canonical bases for these algebras as a natural extension of the counterpart for Hecke algebras. These bases are, in fact, cellular bases in the sense of Graham-Lehrer [134] and can be used to establish the integral quasi-hereditary property for quantum Schur algebras. In addition, the duality between Specht and Δ-filtrations is discussed, and tilting module theory is developed. As an application, we establish the integral double centralizer property which will be further extended in Chapter 14 to the integral quantum Schur-Weyl reciprocity.

Part 4 (Chapters 10-12) presents Ringel's Hall algebra approach to quantum enveloping algebras. The story begins in Chapter 10 with the basic definition of the (integral) Hall algebra of a finitely generated algebra over a finite field. We establish that Hall algebras satisfy certain fundamental relations. These become the quantum Serre relations in a Ringel-Hall algebra which is defined in this book as the twisted Hall algebra associated with a quiver with automorphism (and a finite field). It turns out that there is a
surjective algebra homomorphism from a triangular part of a quantum enveloping algebra to the generic composition algebra associated with a quiver with automorphism. In the Dynkin quiver case, the existence of Hall polynomials provides a direct definition of the generic Ringel-Hall algebra. In this case, a dimension comparison shows that the algebra homomorphism above is an isomorphism.

Chapter 11 focuses on Ringel-Hall algebras of Dynkin quivers with automorphisms and the construction of bases for the corresponding quantum enveloping algebras of finite type. Starting from a monoid structure and a poset structure on the set of isomorphism classes of representations, we first obtain a systematic construction of monomial bases for quantum enveloping algebras. We then show that BGP reflection functors induce certain isomorphisms of the subalgebras of Ringel-Hall algebras, which are the restrictions of the Lusztig symmetries defined in Chapter 6. This gives a construction of PBW-type bases, which was mentioned in Chapter 6 without proof. Finally, by relating monomial and PBW-type bases, we present an elementary algebraic construction of Lusztig canonical bases for quantum enveloping algebras of finite type.

Chapter 12 deals with a comultiplication defined by Green [136] on the Ringel-Hall algebras. The compatibility of multiplication and comultiplication is based on what is called Green's formula. This result, together with a theorem of Lusztig, shows that the surjective algebra homomorphism defined in Chapter 10 is actually an isomorphism. Hence, the Ringel-Hall algebras provide a realization of the triangular parts of all quantum enveloping algebras.

Part 5 (Chapters 13-14) gives a full account of the Beilinson-LusztigMacPherson (BLM) construction for the quantum enveloping algebra associated with $\mathfrak{g l}_{n}$. Chapter 13 derives in an elementary geometric setting some fundamental multiplication formulas for the natural basis elements in quantum Schur algebras. This leads to a new basis for a quantum Schur algebra - the BLM basis - and to the derivation of some multiplication formulas among the new basis elements. The quantum Serre relations in a quantum Schur algebra result from these multiplication formulas. As a byproduct, a certain monomial basis, which is triangularly related to the natural basis, is constructed in order to give a presentation of a quantum Schur algebra.

Finally, in Chapter 14, a further analysis of the fundamental multiplication formulas gives a stabilization property. This prompts the definition of the BLM algebra \mathbf{K} - an infinite dimensional algebra without identity - and some modified fundamental multiplication formulas. By taking a completion of \mathbf{K}, we obtain an algebra $\widehat{\mathbf{K}}$ with identity and derive some multiplication formulas from the modified ones. With these formulas, we prove that a certain subspace \mathbf{V} of $\widehat{\mathbf{K}}$ is a subalgebra with quantum Serre
relations. We then prove the isomorphism between \mathbf{V} and the entire quantum $\mathfrak{g l}_{n}$ before closing with the establishment of the integral Schur-Weyl reciprocity. This basic result is obtained by combining the double centralizer property with the surjection from a type of integral Lusztig form to the integral quantum Schur algebras.

In addition to the chapters described above, this book contains three chapter-long appendices. Appendix A outlines basic ideas from algebraic geometry and algebraic group theory that are required in the book and concludes with a brief discussion of some more advanced topics in the representation theory of semisimple groups. Appendix B gives a largely selfcontained discussion of quantum matrix spaces and quantum general linear groups - both including standard and multiparametered - and ties them with the theory of quantum Schur algebras given in Chapter 9. Finally, Appendix C provides a short and self-contained account of the theories of quasi-hereditary algebras and cellular algebras which are needed in Part 3. Making use of the results in Appendices B and C, we discuss several of the standard examples of quasi-hereditary algebras and highest weight categories that arise in representation theory.

As evidenced by the bibliography, this book clearly could not have been written without the work of the many mathematicians who have contributed over the years to this evolving theory. It also draws, at a number of critical points, from previous book-length treatments. For example, Chapters 4 and 6 reflect the influence of Humphreys [157], Carter [35, 36], Jantzen [165], and Lusztig [209, 213], while Chapter 8 incorporates and builds on Stanley's development of the Robinson-Schensted-Knuth correspondence in [281]. The Notes at the end of each chapter record our indebtedness to this and other work and form a critical part of our exposition.

Each chapter also closes with a series of exercises, some of which are routine, some of which serve to fill in steps in the various arguments, and some of which call attention to the literature by sketching proofs of results to be found there.

Despite its length, there are many important topics that have not been included in this book. The chosen material reflects our own interests and forms what we hope is a coherent whole. Other topics are sometimes briefly mentioned in the Notes (and references).

Historical notes and acknowledgments: Although the theoretical interrelations between the representation theory of finite dimensional algebras and Lie theory date at least to the 1970s, the interrelations between
finite dimensional algebras and the representation theory of Lie algebras and algebraic groups became truly apparent at the Ottawa-Moosonee Algebra Workshop in 1987. First, Claus Ringel presented his ideas, which led to the development of Ringel-Hall algebras as realizations of the \pm-parts of quantum enveloping algebras. Second, the third author of the book and Leonard Scott presented their discovery (with Edward Cline) of quasi-hereditary algebras and highest weight categories. Since then a number of conferences touching on the same theme have been held in Ottawa (1992), Shanghai (1998), Kunming (2001), Toronto (2002), Chengdu and Banff (2004), and Lhasa (2007). The authors would like to thank the organizers of these conferences for the opportunity to observe and participate in the exciting developments in this area. The idea to write a book originated with the second and third authors 15 years ago at the Ottawa meeting. Then the last three authors made an early effort in this direction, but as the project has evolved and the subject matter developed, the first author became a member of the team.

In writing this book, we have profited from comments on several chapters by a number of graduate students, among them, Liping Wang at Chinese Academy of Sciences; Jiangrong Chen, Lingyan Guo, Baolin Xiong, Guiyu Yang, Jie Zhang, and Zhonghua Zhao at Beijing Normal University; and Wes Cramer, Chris Drupieski, and Jill Tysse at the University of Virginia. We are also grateful to colleagues Qiang Fu (Tongji University), Terrell Hodge (Western Michigan University), Paramasamy Karuppuchamy (University of Virginia), Chi Mak (University of New South Wales), and Hebing Rui (East China Normal University) for critiquing parts of the book. We thank Karen Parshall (University of Virginia) for reading the entire manuscript and making many helpful suggestions. Ms. Jing Yu provided secretarial support on an early version. We extend special thanks to Xiaoming Yu (University of Virginia) for special assistance over the years. Last, but certainly not least, we thank Leonard Scott for his friendship and collaboration over many years. Some of the results in Part 3 were discovered in collaboration by the second and third authors with him.

We acknowledge here the Department of Mathematics at East China Normal University, the School of Mathematics and Statistics at the University of New South Wales, and the Department of Mathematics at the University of Virginia for providing resources that enabled the authors to work collaboratively. We also thank our respective funding agencies for their financial help throughout this project: the Australian Research Council (Du), the National Science Foundation (Parshall), the Chinese National Natural Science Foundation (Deng and Wang), and the Shanghai Municipal Science Foundation (Wang).

The American Mathematical Society provided us with four anonymous referee reports on a preliminary version of the book. We thank these (unknown to us) mathematicians for their many useful comments. Finally, we heartily thank E. Dunne and his staff at the AMS publications office for their patience and help during the completion of this project.

Bangming Deng Jie Du
Brian Parshall
Jianpan Wang

Charlottesville
December 4, 2007

Notational conventions

We adopt the following conventional notation:
$\mathbb{C} \quad$ field of complex numbers
$\mathbb{F}_{q} \quad$ finite field with q elements, $q(\neq 1)$ being a prime power (thus, by a prime power we always mean a prime to a positive integer power)
$\mathbb{N} \quad$ set of nonnegative integers $0,1,2, \ldots$
$\mathbb{Q} \quad$ field of rational numbers
$\mathbb{R} \quad$ field of real numbers
$\mathbb{Z} \quad$ ring of integers
$\mathbb{Z}^{+} \quad$ set of positive integers $1,2, \ldots$
A ground field or (commutative) ring over which algebras and representations are defined is usually written in Zapf Chancery fonts. In particular, we use the following notation throughout the book:
$\mathcal{K}, \mathcal{K} \quad$ ground fields, with \mathcal{K} often algebraically closed
$\mathcal{R} \quad$ a (commutative) ground ring
$Z \quad:=\mathbb{Z}\left[v, v^{-1}\right]$, the ring of Laurent polynomials over \mathbb{Z} in an indeterminate v
$\mathcal{A} \quad:=\mathbb{Z}[q]$, where $q=v^{2}$

We also make the following conventions:

- $A \subseteq B$ means A is a subset of B, while $A \subset B$ means A is a proper subset of B; and
- for a module M over a ring, $n M$, where $n \in \mathbb{N}$, stands for the direct sum of n copies of M, i.e.,

$$
n M=\underbrace{M \oplus \cdots \oplus M}_{n},
$$

with the exceptions that

- a free module of rank n over the ground ring \mathcal{R} is denoted by \mathbb{R}^{n}, e.g., $\mathbb{R}^{n}, \mathbb{C}^{n}, \mathbb{Z}^{n}$, etc.; and
- $\mathrm{M}_{m \times n}(\mathcal{K})$ denotes the space of $m \times n$ matrices over \mathcal{K}, and, if $m=n$, this space is simply denoted $\mathrm{M}_{n}(\mathcal{K})$. (The notation $\mathrm{M}_{n}(-)$ is also used over other rings or their subsets, e.g., $\mathrm{M}_{n}(\mathcal{D})$, for a division ring \mathcal{D}, or $\mathrm{M}_{n}(\mathbb{N})$.)

Leitfaden

Chapter 0

Cartan matrices, etc.

Part 1

Quivers with automorphisms, algebras with Frobenius morphisms,
their representations

Part 2

Hecke algebras,
Hopf algebras,
quantum enveloping algebras (QEAs)

Part 3
Symmetric groups, cells and cell modules, quantum Schur algebras

Ringel-Hall algebras,
bases of QEAs of finite type,
realization of positive parts of QEAs

Part 5
Geometric approach to quantum Schur algebras, presentations of quantum Schur algebras, $B L M$ realization of quantum $\mathfrak{g l}_{n}$

Appendices

Varieties and affine algebraic groups

This appendix provides a brief outline of some material from algebraic geometry and algebraic groups needed in this book. Occasionally, we sketch (sometimes in exercises) details, but the reader is referred to the Notes at the end of the appendix for references to complete proofs in the literature. The final four sections (§§A.5-A.8) are more sophisticated, sketching several basic ideas from the representation theory of semisimple groups. These results are used in Appendix C to construct some important highest weight categories.

A topological space X is called irreducible if it cannot be written as a union of two proper closed subspaces. A subspace Z of X is irreducible if it is irreducible in its subspace topology. The dimension, $\operatorname{dim} X$, of X is the maximal length (possibly ∞) t of a proper chain $X_{0} \subset X_{1} \subset X_{2} \subset \cdots \subset X_{t}$ of closed, nonempty, irreducible subsets X_{i} of X. Recall that $Z \subseteq X$ is locally closed if it is the intersection of an open subset with a closed subset of X or, equivalently, if Z is open in its closure \bar{Z}.

Let \mathcal{K} be a fixed field. If X is a set, the set $\operatorname{Map}(X, \mathcal{K})$ of functions $f: X$ $\rightarrow K$ is a commutative algebra over \mathcal{K}, using pointwise addition and multiplication of functions. If $X=\emptyset, \operatorname{Map}(X, \mathcal{K})$ is the "zero algebra" consisting of just one element $0=1$. If $\varphi: X \rightarrow Y$ is a map, let $\varphi^{*}: \operatorname{Map}(Y, \mathcal{K}) \rightarrow$ $\operatorname{Map}(X, \mathcal{K})$ be the corresponding comorphism, defined by putting $\varphi^{*}(f)=$ $f \circ \varphi$.

We now introduce a category Shv $_{k}$. An object in this category is a topological space together with a certain sheaf of \mathcal{K}-algebras. Explicitly,
an object in Shv_{k} is a pair $\left(X, \mathcal{O}_{X}\right)$ consisting of a topological space X and a rule \mathcal{O}_{X} which assigns to each open subset U of X a subalgebra $\mathcal{O}_{X}(U) \subseteq \operatorname{Map}(U, \mathcal{K})$ satisfying the following two conditions:
(1) Let $V \stackrel{\iota}{\hookrightarrow} U$ be open subsets of X, and, for $f \in \operatorname{Map}(U, \mathcal{K})$, let $\left.f\right|_{V}=$ $\iota^{*}(f) \in \operatorname{Map}(V, \mathcal{K})$ be the restriction of f to V. Then if $f \in \mathcal{O}_{X}(U)$, we require that $\left.f\right|_{V} \in \mathcal{O}_{X}(V)$. Thus, $\left.\right|_{V}: \mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{X}(V)$ is an algebra homomorphism.
(2) Let U be an open subset of X, written as a union $U=\bigcup_{i} U_{i}$ of open subsets U_{i}. Let $f \in \operatorname{Map}(U, \mathcal{K})$ be such that $\left.f\right|_{U_{i}} \in \mathcal{O}_{X}\left(U_{i}\right)$, for each i. Then we require that $f \in \mathcal{O}_{X}(U)$.

A morphism $\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ of objects in Shv_{k} is a continuous map $\varphi: X \rightarrow Y$ such that, for any open subset $V \subseteq Y, \varphi^{*} \mathcal{O}_{Y}(V) \subseteq \mathcal{O}_{X}\left(\varphi^{-1}(V)\right)$. In this way, Shv $_{k}$ becomes a category.

If $\left(X, \mathcal{O}_{X}\right)$ belongs to Shv_{k} and if U is an open subset of X, let \mathcal{O}_{U} be the "restriction" of \mathcal{O}_{X} to U; if $V \subseteq U$ is open, put $\mathcal{O}_{U}(V):=\mathcal{O}_{X}(V)$. Then $\left(U, \mathcal{O}_{U}\right)$ also belongs to Shv_{k}.

All the varieties considered below will be objects in Shv ${ }_{k}$ which satisfy additional conditions. If $\left(X, \mathcal{O}_{X}\right)$ is a variety and if U is an open subset of X, then $\left(U, \mathcal{O}_{U}\right)$ will also be a variety. Similarly, if Y is a closed subset of X, we will see there is a naturally induced variety $\left(Y, \mathcal{O}_{Y}\right)$. In this way, any locally closed subspace of a variety carries a natural variety structure. For our purposes, the varieties of interest all arise as subvarieties of affine space \mathbb{A}^{n} or projective space \mathbb{P}^{n}.

From now on, we will work over a fixed algebraically closed field \mathcal{K} instead of an arbitrary field \mathcal{K}. (Some remarks about the nonalgebraically closed case are given in Remarks A. 10 and A.16.) At a primitive level, a variety is a set consisting of the solutions of a collection of polynomial equations $f\left(x_{1}, \ldots, x_{n}\right)=0$ in some set of fixed variables x_{1}, \ldots, x_{n}. These solutions can be taken in affine n-space \mathbb{A}^{n} (which we view as \mathcal{K}^{n} stripped of its vector space structure) or, if the polynomials f are homogeneous, the solutions can be taken in projective $(n-1)$-space \mathbb{P}^{n-1}. Part of our task is to provide these "varieties" with additional structure, so that notions of "dimension," "morphism," "local structure," etc., make sense.

A.1. Affine varieties

We begin with the following definition of an affine variety. Later, affine varieties will be interpreted as objects in $\operatorname{Sh}_{\mathcal{K}}$.
Definition A.1. An affine variety over \mathcal{K} is a pair (X, A) consisting of a set X and a subalgebra A of $\operatorname{Map}(X, \mathcal{K})$ which satisfies the following conditions:
(1) A is a finitely generated \mathcal{K}-algebra.
(2) Given distinct $x, y \in X$, there exists $f \in A$ such that $f(x) \neq f(y)$.
(3) Given any \mathcal{K}-algebra homomorphism $\alpha: A \rightarrow \mathcal{K}$, there exists $x \in X$ such that $\alpha(f)=f(x)$, for all $f \in A$.

Usually, we relax the formality and refer to X as an affine variety, keeping A in the background. The algebra A is called the coordinate algebra of X and is often denoted $\mathcal{O}(X)$. (After identifying an affine variety X as an object of $\operatorname{Shv}_{\mathcal{K}}$, the notation $\mathcal{O}(X)$ will become reasonable.)

Condition (1) simply means that there exist a positive integer n and a surjective algebra homomorphism $\theta: \mathcal{K}\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ from the algebra $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials over \mathcal{K} in indeterminates x_{1}, \ldots, x_{n} to the algebra A. If $\mathfrak{a}=\operatorname{Ker}(\theta)$, then $A \cong \mathcal{K}\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a}$. Of course, the polynomial algebra $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$ is not uniquely determined by (X, A). Because $A \subseteq \operatorname{Map}(X, \mathcal{K}), A$ contains no nonzero nilpotent elements, i.e., A is reduced. Thus, the ideal \mathfrak{a} above is a radical ideal in the sense that

$$
\mathfrak{a}=\sqrt{\mathfrak{a}}:=\left\{f \in \mathcal{K}\left[x_{1}, \ldots, x_{n}\right] \mid f^{m} \in \mathfrak{a}, \text { for some } m\right\} .
$$

Also, because $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$ is noetherian (by the Hilbert basis theorem [CA, Th. 7.4]), A is itself noetherian.

Next, define $\varepsilon: X \rightarrow \operatorname{Hom}_{\mathcal{K} \text {-alg }}(A, \mathcal{K})$ by setting $\varepsilon(x)(f)=f(x), x \in X$, $f \in A$. Then conditions (2) and (3) in Definition A. 1 are equivalent to the requirement that the "evaluation" map ε is a bijection of sets. Thus, the variety X can be recovered, as a set, from its coordinate algebra A. A converse result also holds, as we now describe.

Given an ideal \mathfrak{a} in the polynomial algebra $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$, its zero set $\mathscr{V}(\mathfrak{a}) \subseteq \mathbb{A}^{n}$ is defined by

$$
\mathscr{V}(\mathfrak{a})=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{A}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=0, \text { for all } f \in \mathfrak{a}\right\}
$$

Conversely, given a subset $X \subseteq \mathbb{A}^{n}$, let

$$
\mathscr{I}(X)=\left\{f \in \mathcal{K}\left[x_{1}, \ldots, x_{n}\right] \mid f\left(x_{1}, \ldots, x_{n}\right)=0, \text { for all }\left(x_{1}, \ldots, x_{n}\right) \in X\right\}
$$

Clearly, $\mathscr{I}(X)$ is an ideal in $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$.
Theorem A. 2 (Hilbert's Nullstellensatz). Let \mathfrak{a} be an ideal in $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$.
(1) (Weak form) If \mathfrak{a} is a maximal ideal, then $\mathfrak{a}=\left(x_{1}-x_{1}, \ldots, x_{n}-x_{n}\right)$, for some $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{A}^{n}$.
(2) (Strong form) Suppose that $f \in \mathcal{K}\left[x_{1}, \ldots, x_{n}\right]$ vanishes on all points in $\mathscr{V}(\mathfrak{a})$. Then $f \in \sqrt{\mathfrak{a}}$. In other words, $\mathscr{I}(\mathscr{V}(\mathfrak{a}))=\sqrt{\mathfrak{a}}$.

For a proof of (1), see [CA, Ex. 17, p. 69]; (2) is also proved in [CA, Ex. 14, p. 85].

Using this result, we can conclude that any commutative \mathcal{K}-algebra A which is reduced and finitely generated as a \mathcal{K}-algebra has the form $A=$ $\mathcal{O}(X)$, for some affine variety X. Let Affalg $_{\mathcal{K}}$ denote the full subcategory of the category of commutative \mathcal{K}-algebras whose objects are finitely generated reduced \mathcal{K}-algebras.

Corollary A.3. If $A \in \operatorname{Affalg}_{\mathcal{K}}$, and if $X=\operatorname{Hom}_{\mathcal{K}-\operatorname{alg}}(A, \mathcal{K})$ is the set of algebra homomorphisms $A \rightarrow \mathcal{K}$, then (X, A) is an affine variety.

Proof. We can assume that A is not the zero algebra. Write A in the form $\mathcal{K}\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a}$, for some integer n and ideal \mathfrak{a}. Since the kernel of any homomorphism $A \rightarrow \mathcal{K}$ is a maximal ideal, Theorem A.2(1) shows that X is not empty and identifies with $\mathscr{V}(\mathfrak{a})$.

To prove the result, it suffices to show that the obvious map $A \rightarrow$ $\operatorname{Map}(X, \mathcal{K})$ is injective, so that A can be identified with a subalgebra of $\operatorname{Map}(X, \mathcal{K})$. But this fact follows from Theorem A.2(2) since A reduced, so $\sqrt{\mathfrak{a}}=\mathfrak{a}$.

Examples A.4. (1) Affine n-space $\left(\mathbb{A}^{n}, \mathcal{K}\left[x_{1}, \ldots, x_{n}\right]\right)$ is an affine variety.
(2) Let (X, A) be an affine variety, and let $f \in A$. If $X_{f}=\{x \in$ $X \mid f(x) \neq 0\}$ and if A_{f} is the localization of A at the multiplicative set $S=$ $\left\{1, f, f^{2}, \ldots\right\}$, then $\left(X_{f}, A_{f}\right)$ is an affine variety. For example, let $X=\mathbb{A}^{n^{2}}$ be affine n^{2}-space, identified with the set $\mathrm{M}_{n}(\mathcal{K})$ of $n \times n$ matrices over \mathcal{K}. Let $f=\operatorname{det}$ be the determinant polynomial. Then X_{f} identifies with the general linear group $\mathrm{GL}_{n}(\mathcal{K})$ of invertible $n \times n$ matrices.
(3) If B is a finite dimensional \mathcal{K}-algebra (not necessarily commutative), then the set of units B^{\times}in B is an affine variety.

To finish the definition of Affvar $_{\mathcal{K}}$, the category of affine varieties over \mathcal{K}, we define morphisms as follows.

Definition A.5. Let (X, A) and (Y, B) be affine varieties. A morphism from X to Y is a map $\varphi: X \rightarrow Y$ such that $\varphi^{*}(B) \subseteq A$.

A morphism $\varphi: X \rightarrow Y$ is completely determined by the comorphism $\varphi^{*}: B \rightarrow A$, once we identify X (resp., Y) with $\operatorname{Hom}_{\mathcal{K} \text {-alg }}(A, \mathcal{K})$ (resp., $\left.\operatorname{Hom}_{\mathcal{K} \text {-alg }}(B, \mathcal{K})\right)$. That is, given $x \in X, \varphi(x)(b)=x\left(\varphi^{*}(b)\right)$. So, we obtain the following basic fact:

Theorem A.6. The functor

$$
\text { Affvar }_{\mathcal{K}} \longrightarrow \text { Affalg }_{\mathcal{K}}, \quad(X, A) \longmapsto A
$$

is a contravariant equivalence of categories.

Given an affine variety X, there is an important topology - the Zariski topology - defined on it. Let $A=\mathcal{O}(X)$. If \mathfrak{a} is an ideal in A, let $\mathscr{V}(\mathfrak{a}) \subseteq X$ be the set of all $x \in X$ such that $f(x)=0$, for all $f \in \mathfrak{a}$. Then the set $\operatorname{Zar}(X)$ of closed sets in the topology on X are those subsets $\mathscr{V}(\mathfrak{a})$ for ideals $\mathfrak{a} \subseteq A$. Since
(1) $\mathscr{V}(\mathfrak{a}) \cup \mathscr{V}(\mathfrak{b})=\mathscr{V}(\mathfrak{a} \cap \mathfrak{b})$, for ideals $\mathfrak{a}, \mathfrak{b} \subseteq A$,
(2) $\bigcap_{i} \mathscr{V}\left(\mathfrak{a}_{i}\right)=\mathscr{V}\left(\sum_{i} \mathfrak{a}_{i}\right)$, for any set of ideals $\mathfrak{a}_{i} \subseteq A$, i running over an index set I,
(3) $\emptyset=\mathscr{V}(A)$, and
(4) $X=\mathscr{V}(0)$,
$\operatorname{Zar}(X)$ is, in fact, the set of closed sets for a topology. As we have already seen, any closed subset $Z=\mathscr{V}(\mathfrak{a})$ is itself an affine variety with coordinate algebra $A / \sqrt{\mathfrak{a}}$. Generally, we speak of these as closed subvarieties of X. By the discussion above, the closed subsets of X are in one-to-one correspondence with ideals \mathfrak{a} of A satisfying $\sqrt{\mathfrak{a}}=\mathfrak{a}$; also, for two such ideals $\mathfrak{a}, \mathfrak{b}$, $\mathscr{V}(\mathfrak{a}) \subseteq \mathscr{V}(\mathfrak{b}) \Longleftrightarrow \mathfrak{a} \supseteq \mathfrak{b}$.

The following theorem, whose proof is an easy exercise (see Exercise A.2), summarizes some basic properties of the Zariski topology.

Theorem A.7. Let X be an affine variety with coordinate algebra A.
(1) X is irreducible if and only if A is an integral domain. More generally, a closed subset $\mathscr{V}(\mathfrak{a})$ is irreducible if and only if $\sqrt{\mathfrak{a}}$ is a prime ideal in A.
(2) X can be written as a finite union

$$
X=X_{1} \cup X_{2} \cup \cdots \cup X_{m}
$$

of irreducible, closed subvarieties which is irredundant in the sense that there are no containments $X_{i} \subseteq X_{j}$, for $i \neq j$. Furthermore, this decomposition is unique up to order. (The X_{i} are called the irreducible components of X.)
(3) X is a noetherian topological space in the sense that any decreasing chain $X_{1} \supseteq X_{2} \supseteq X_{3} \supseteq \cdots$ of closed subspaces eventually stabilizes, i.e., there exists $n>0$ with $X_{n}=X_{n+1}=\ldots$.
(4) For any nonunit $f \in A$, the subset X_{f} is a nonempty open subset of X. The collection of all such $X_{f}, f \in A$, forms a base for the Zariski topology on X.

Given a commutative ring A, its K rull dimension, $\operatorname{Kdim} A$, is the maximal length (possibly ∞) t of a proper chain $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{t}$ of prime ideals \mathfrak{p}_{i} in A.

Before stating the next theorem, we need to introduce the notion of the tangent space $T_{x}(X)$ of X at a point $x \in X$. Let $A=\mathcal{O}(X)$ and let \mathfrak{m}_{x} be the kernel of the evaluation map $A \rightarrow \mathcal{K}, f \mapsto f(x)$. Let

$$
T_{x}(X):=\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}
$$

the linear dual of the vector space $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$.
Theorem A.8. Suppose X is an affine variety.
(1) $\operatorname{dim} X=\operatorname{Kdim} \mathcal{O}(X)<\infty$. Also, $\operatorname{dim} \mathbb{A}^{n}=n$.
(2) If X_{1}, \ldots, X_{t} are the irreducible components of X, then

$$
\operatorname{dim} X=\max _{i} \operatorname{dim} X_{i} .
$$

(3) Suppose that X is irreducible, so that $\mathcal{O}(X)$ is an integral domain. For $\mathcal{K}(X)$ the fraction field of $\mathcal{O}(X)$,

$$
\operatorname{dim} X=\operatorname{tr} \cdot \operatorname{deg}_{\mathcal{K}} \mathcal{K}(X)
$$

the transcendency degree of $\mathcal{K}(X)$ over \mathcal{K}.
(4) If Y is an irreducible closed subvariety of X, then $\operatorname{dim} Y=\operatorname{dim} X$ if and only if Y is an irreducible component of X of maximal dimension. In particular, if X is irreducible, $\operatorname{dim} Y=\operatorname{dim} X$ if and only if $Y=X$.
(5) For any $x \in X$,

$$
\operatorname{dim} X \leqslant \operatorname{dim} T_{x}(X)<\infty
$$

Furthermore, there exists a nonempty open subset $X_{\text {reg }}$ of X such that for $x \in X_{\text {reg }}, \operatorname{dim} X=\operatorname{dim} T_{x}(X)$. (Points $x \in X$ for which the equality $\operatorname{dim} X=\operatorname{dim} T_{x}(X)$ holds are called smooth or regular points of X.)
(6) For $\varphi: X \rightarrow Y$ a morphism of affine varieties, and for $x \in X$ and $y=\varphi(x), \varphi$ induces a natural linear map $d \varphi: T_{x}(X) \rightarrow T_{y}(Y)$, called the differential of φ at x.

Given $x \in X$, a point derivation (of $\mathcal{O}(X))$ at x is a linear map $\delta: \mathcal{O}(X)$ $\rightarrow \mathcal{K}$ such that $\delta(f g)=f(x) \delta(g)+\delta(f) g(x)$. Then $T_{x}(X)$ can be naturally (and easily) identified with the space of point derivations at x. In this way, the differential in (6) is easy to construct, since a point derivation δ at x (of $\mathcal{O}(X))$ will clearly induce a point derivation $\delta \circ \varphi^{*}$ at $y=\varphi(x)($ of $\mathcal{O}(Y))$.

Next observe that the category $\operatorname{Affvar}_{\mathcal{K}}$ of affine varieties over \mathcal{K} has products. See Exercise A. 3 for part of the proof.
Theorem A.9. Let X, Y be affine varieties.
(1) $\mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y) \in$ Affalg $_{\mathcal{K}}$.
(2) If Z is the (unique up to isomorphism) affine variety with $\mathcal{O}(Z)=$ $\mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y)$, then as a set Z identifies with the set-theoretic product $X \times Y$.
(3) If $\pi_{1}: Z \rightarrow X$ (resp., $\pi_{2}: Z \rightarrow Y$) is the morphism of varieties induced by the algebra homomorphism $\mathcal{O}(X) \rightarrow \mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y)$ (resp., $\mathcal{O}(Y)$ $\left.\rightarrow \mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y)\right)$ given by $a \mapsto a \otimes 1$ (resp., $b \mapsto 1 \otimes b$), then, identifying Z with $X \times Y$ as sets, $\pi_{1}((x, y))=x$ and $\pi_{2}((x, y))=y$, for all $x \in X, y \in Y$.
(4) Z is the product of X and Y in the category Affvar $_{\mathcal{K}}$ in the following sense: given any affine variety W and morphisms $F: W \rightarrow X, G: W \rightarrow$ Y, there exists a unique morphism $H: W \rightarrow Z$ such that $\pi_{1} \circ H=F$ and $\pi_{2} \circ H=G$. For this reason, we denote Z simply by $X \times Y$.
(5) $\operatorname{dim} X \times Y=\operatorname{dim} X+\operatorname{dim} Y$.

Of course, property (4) in the theorem follows immediately from the contravariant equivalence given by Theorem A.6.

Let X be an affine variety with coordinate algebra $A=\mathcal{O}(X)$. It remains to equate (X, A) with an object $\left(X, \mathcal{O}_{X}\right)$ in $\operatorname{Shv}_{\mathcal{K}}$. We have remarked above that the open subsets $X_{f}, f \in A$, form a base for the Zariski topology on X. Suppose that U is a nonempty open subset of X. We assign a \mathcal{K}-algebra $\mathcal{O}_{X}(U)$ of \mathcal{K}-valued functions on U as follows. By definition, $g: U \rightarrow \mathcal{K}$ belongs to $\mathcal{O}_{X}(U)$ provided, for any $x \in U$, there is an $f \in A$ such that $x \in X_{f} \subseteq U$ and $\left.g\right|_{X_{f}} \in A_{f}$. It can be verified that $\left(X, \mathcal{O}_{X}\right) \in \operatorname{Shv}_{\mathcal{K}}$ and $\mathcal{O}_{X}(X)=A$. In this way, the pair (X, A) determines the pair $\left(X, \mathcal{O}_{X}\right)$, and conversely. (However, it is not true that every object $\left(X, \mathcal{O}_{X}\right)$ in $\operatorname{Shv}_{\mathcal{K}}$ is a variety.) This identification of (X, A) with $\left(X, \mathcal{O}_{X}\right)$ explains the notation $A=\mathcal{O}(X)$ we introduced before $-\mathcal{O}(X)$ is an abbreviation for $\mathcal{O}_{X}(X)$.

We define a quasi-affine variety to be an object $\left(U, \mathcal{O}_{U}\right)$ in $\operatorname{Shv}_{\mathcal{K}}$ in which U is an open subset of an affine variety X and the sheaf of \mathcal{K}-valued functions \mathcal{O}_{U} is that induced on U by \mathcal{O}_{X}. In general, a quasi-affine variety U need not be affine. However, it will be a union of a finite number of affine open subvarieties U_{i}. If $x \in U$, its tangent space is calculated (in a well-defined way) by regarding x as a point in an open affine subvariety of U. The dimension of U is the topological dimension of U defined above. As in Theorem A.8(5), $\operatorname{dim} U=\operatorname{dim} T_{x}$, for all x lying in a nonempty open subset of U.

We conclude this section by the following remark on how some of the setup can be made to work over a not necessarily algebraically closed field.

Remark A.10. Let \mathcal{K} be a subfield of \mathcal{K}. We say that the affine variety X with coordinate algebra A is defined over k (or that X is a k-variety) provided there is a K-subalgebra A_{0} of A such that $A_{0} \otimes_{K} \mathcal{K} \xrightarrow{\sim} A$. In this case, any algebra homomorphism $f: A_{0} \rightarrow K$ extends uniquely to an algebra homomorphism $f \otimes \mathcal{K}: A \rightarrow \mathcal{K}$. Identifying X with $\operatorname{Hom}_{\mathcal{K} \text {-alg }}(A, \mathcal{K})$, we denote by $X(K)$ the subset of X consisting of all algebra homomorphisms
$f \otimes \mathcal{K}$, for $f \in \operatorname{Hom}_{k \text {-alg }}\left(A_{0}, \mathcal{K}\right)$. We call $X(\mathcal{K})$ the set of \mathcal{K}-rational points of X. The following are some examples:
(1) If $X=\mathbb{A}^{n}$ is an affine n-space, then

$$
A=\mathcal{K}\left[x_{1}, \ldots, x_{n}\right] \cong \mathcal{K}\left[x_{1}, \ldots, x_{n}\right] \otimes_{k} \mathcal{K} .
$$

In this way, \mathbb{A}^{n} is defined over \mathcal{K}. Of course, $X(\mathcal{K})$ identifies with \mathcal{K}^{n}.
(2) The general linear group $\mathrm{GL}_{n}(\mathcal{K})$ viewed as an affine variety has coordinate algebra $\mathcal{O}\left(\mathrm{GL}_{n}(\mathcal{K})\right)=\mathcal{K}\left[x_{1,1}, \ldots, x_{n, n}\right]\left[\operatorname{det}^{-1}\right]$. Since the determinant polynomial has coefficients in the prime field, $\operatorname{det} \in \mathcal{K}\left[x_{1,1}, \ldots, x_{n, n}\right]$, so the isomorphism

$$
\mathcal{K}\left[x_{1,1}, \ldots, x_{n, n}\right]\left[\operatorname{det}^{-1}\right] \cong \mathcal{K}\left[x_{1,1}, \ldots, x_{n, n}\right]\left[\operatorname{det}^{-1}\right] \otimes_{K} \mathcal{K}
$$

gives $\mathrm{GL}_{n}(\mathcal{K})$ a structure as a \mathcal{K}-variety. (In general, $\mathrm{GL}_{n}(\mathcal{K})$ may have many nonisomorphic structures as a K-variety - we have just provided one example.) We also have that the set of k-rational points $\mathrm{GL}_{n}(k)$ is the subgroup of $\mathrm{GL}_{n}(\mathcal{K})$ consisting of $n \times n$ invertible matrices with coefficients in k.

A.2. Varieties

In the previous section, we defined the notion of an affine variety. Now we introduce varieties that need not be affine. Such geometric spaces are obtained by patching together a finite collection of affine varieties in a consistent way. More precisely, we make the following definition.

Definition A.11. An object $\left(X, \mathcal{O}_{X}\right)$ in $\operatorname{Shv}_{\mathcal{K}}$ is a variety provided that $X=U_{1} \cup \cdots \cup U_{m}$, where each U_{i} is a nonempty open subset such that the following conditions hold:
(1) For $1 \leqslant i \leqslant n,\left(U_{i}, \mathcal{O}_{U_{i}}\right)$ is an affine variety.
(2) Given $i, j, U_{i} \cap U_{j}=\left(U_{i}\right)_{f_{i, j}}$, for some $f_{i, j} \in \mathcal{O}_{X}\left(U_{i}\right)$.
(3) For $1 \leqslant i, j \leqslant n,\left\{(x, x) \mid x \in U_{i} \cap U_{j}\right\}$ is a closed subset of $U_{i} \times U_{j}$.

For some explanation of the usefulness of condition (3), see Exercise A.5.
Examples A.12. (1) An important class of (nonaffine) varieties are the projective varieties \mathbb{P}^{n}, where n is a nonnegative integer. Thus, \mathbb{P}^{n} is the set of lines in \mathbb{A}^{n+1} through the origin; specifically,

$$
\mathbb{P}^{n}=\left(\mathbb{A}^{n+1} \backslash\{\mathbf{0}\}\right) / \sim,
$$

where \sim is the equivalence relation on $\mathbb{A}^{n+1} \backslash\{\mathbf{0}\}$ defined by putting

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n+1}\right) \sim \boldsymbol{y}=\left(y_{1}, \ldots, y_{n+1}\right)
$$

provided there exists $\xi \in \mathcal{K}$ such that $x_{i}=\xi y_{i}$, for all i. Denote the equivalence class of $\left(x_{1}, \ldots, x_{n+1}\right)$ by $\left[x_{1}, \ldots, x_{n+1}\right]$. (More generally, if V
is a nonzero, finite dimensional vector space, write $\mathbb{P}(V)$ for the set of lines in V. So, if $\operatorname{dim} V=n+1$, then $\mathbb{P}(V)$ identifies with \mathbb{P}^{n}, once an ordered basis of V has been fixed.

The polynomial algebra $S=\mathcal{K}\left[x_{1}, \ldots, x_{n+1}\right]$ is an \mathbb{N}-graded algebra S $=\bigoplus_{r} S_{r}$, where S_{r} is the subspace of S spanned by the monomials in x_{1}, \ldots, x_{n+1} of total degree r. For $1 \leqslant i \leqslant n+1$, let U_{i} be the subset of \mathbb{P}^{n} consisting of all "points" with nonzero i-coordinate. Identify U_{i} with the affine space \mathbb{A}^{n} having coordinate algebra $\mathcal{K}\left[x_{1} / x_{i}, \ldots, x_{i-1} / x_{i}, x_{i+1} / x_{i}, \ldots, x_{n+1} / x_{i}\right]$. Then $\mathbb{P}^{n}=U_{1} \cup \ldots \cup U_{n+1}$. The topology on \mathbb{P}^{n} is defined by declaring a subset U of \mathbb{P}^{n} to be open provided that $U \cap U_{i}$ is open in U_{i}, for all i. When U is open, $\mathcal{O}_{\mathbb{P}^{n}}(U)$ consists of those $f \in \operatorname{Map}(U, \mathcal{K})$ such that, for each $i,\left.f\right|_{U \cap U_{i}} \in \mathcal{O}_{U_{i}}\left(U \cap U_{i}\right)$. Then $\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}\right)$ is a variety.
(2) An ideal \mathfrak{a} in S is homogeneous provided that $\mathfrak{a}=\bigoplus \mathfrak{a}_{i}$, where $\mathfrak{a}_{i}=S_{i} \cap \mathfrak{a}$. Given a homogeneous ideal \mathfrak{a}, let $\mathscr{V}(\mathfrak{a})$ be the set of common zeros in \mathbb{P}^{n} of homogeneous elements in \mathfrak{a}. Then $\mathscr{V}(\mathfrak{a})$ has a natural structure as a variety. We call such varieties projective varieties. Observe that $\mathscr{V}(\mathfrak{a})=$ \emptyset (the "empty" variety) if and only if either \mathfrak{a} is the augmentation ideal $S_{+}:=\bigoplus_{i>0} S_{i}$ or is S itself.

A morphism from a variety X to a variety Y is just a morphism $\left(X, \mathcal{O}_{X}\right)$ $\rightarrow\left(Y, \mathcal{O}_{Y}\right)$ in the category $\operatorname{Shv}_{\mathcal{K}}$.

Theorem A.13. (1) If U is an open subset of a variety X, then $\left(U, \mathcal{O}_{U}\right)$ is a variety.
(2) Products exist in the category of varieties. More precisely, if X, Y are varieties, there exists a variety Z together with morphisms $\pi_{1}: Z \rightarrow X$ and $\pi_{2}: Z \rightarrow Y$ satisfying the following universal property: given any variety W and morphisms $\varphi: W \rightarrow X, \psi: W \rightarrow Y$, there exists a unique morphism $\theta: W \rightarrow Z$ such that $\varphi=\pi_{1} \circ \theta$ and $\psi=\pi_{2} \circ \theta$. As a set, Z identifies with the cartesian product $X \times Y$ with $\pi_{1}((x, y))=x, \pi_{2}((x, y))=y$. For this reason, we denote Z by $X \times Y$.

Examples A.14. (1) The map $\mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{m n+m+n}$ given by

$$
\left(\left[x_{1}, \ldots, x_{m+1}\right],\left[y_{1}, \ldots, y_{n+1}\right]\right) \longmapsto\left[\ldots, x_{i} y_{j}, \ldots\right]
$$

(ordered in some fixed way) defines $\mathbb{P}^{m} \times \mathbb{P}^{n}$ as a projective subvariety of $\mathbb{P}^{m n+m+n}$.
(2) Let M be an ($n+1$)-dimensional vector space, and let $1 \leqslant d \leqslant n+1$. Any d-dimensional subspace N of M determines a line in the d th exterior power $\Lambda^{d} M$, and hence a point in $\mathbb{P}\left(\Lambda^{d} M\right)$. The set $\mathfrak{G}_{d}(M)$ of such points in $\mathbb{P}\left(\Lambda^{d} M\right)$ is a closed (hence projective) subvariety, called the d-Grassmannian variety. For example, $\mathfrak{G}_{1}(M)=\mathbb{P}(M) \cong \mathbb{P}^{n}$.
(3) Let M be an ($n+1$)-dimensional vector space. Let $1 \leqslant d_{1}<d_{2}<$ $\cdots<d_{t} \leqslant n+1$ be a sequence of integers. Using (2) above, any flag $M_{1} \subset M_{2} \subset \cdots \subset M_{t}$ of subspaces with $\operatorname{dim} M_{i}=d_{i}, 1 \leqslant i \leqslant t$, determines a point in $\mathfrak{G}_{d_{1}}(M) \times \cdots \times \mathfrak{G}_{d_{t}}(M)$. By (1) and (2), the set of such points defines a projective variety $\mathfrak{F}(\boldsymbol{d}, M)$, where $\boldsymbol{d}=\left(d_{1}, \ldots, d_{t}\right)$. When $t=n+1$ (and hence $d_{i}=i$, for all i), this variety is denoted simply $\mathfrak{F}_{\text {cpl }}(M)$ and called the flag variety of M. Its elements are called complete flags.

We will need the following result.
Theorem A.15. Let $\varphi: X \rightarrow Y$ be a morphism of varieties.
(1) (Chevalley) The image $\varphi(X)$ contains a nonempty open subset of the closure $\overline{\varphi(X)}$.
(2) Assume that X is irreducible with dense image in Y (i.e., $\overline{\varphi(X)}=$ Y). Let $r=\operatorname{dim} X-\operatorname{dim} Y$. For $y \in \varphi(X), \operatorname{dim} \varphi^{-1}(y) \geqslant r$. In addition, there exists a nonempty open subvariety U of Y such that $U \subseteq \varphi(X)$, and, for $y \in U, \operatorname{dim} \varphi^{-1}(y)=r$.

Remark A.16. Let \mathcal{K} be a subfield of \mathcal{K}. The theory of varieties over \mathcal{K} can be expanded to include a theory of varieties defined over the subfield K. In this case, the structure sheaf \mathcal{O}_{X} is obtained by "base change" from a sheaf of k-valued functions, suitably defined. The space X will have a finite cover by open affine subvarieties U, each defined over \mathcal{K} and with compatible K-structures. At the level of projective varieties, we might be tempted to define a k-projective variety to be one defined by homogeneous polynomials in $\mathcal{K}\left[x_{1}, \ldots, x_{n+1}\right]$. This definition leads to some difficulties when \mathcal{K} is not perfect, but suffices for the applications in this book. The reader can check that when M is a finite dimensional vector space over \mathcal{K} with a \mathcal{K}-structure, then the Grassmannian varieties $\mathfrak{G}_{d}(M)$ and the flag varieties $\mathfrak{F}(\boldsymbol{d}, M)$ are all defined over \mathcal{k}. We refer the reader to the references in the Notes for a more detailed discussion.

Finally, we say that a variety X is complete provided that, given any variety Y, the projection map $\pi_{2}: X \times Y \rightarrow Y$ is a closed mapping.

Theorem A.17. Any projective variety X over \mathcal{K} is complete.
Lemma A.18. (1) If $f: X \rightarrow Y$ is a morphism of varieties with X complete, then the image $f(X)$ is a closed subset of Y, and it is complete when viewed as a subvariety of Y.
(2) If X is an irreducible complete variety, then $\mathcal{O}_{X}(X) \cong \mathcal{K}$.
(3) Any irreducible, complete affine variety X is a single point.

Proof. (1) By Exercise A.5, the graph Γ_{f} is closed in $X \times Y$. Thus, $f(X)$, which is the image of Γ_{f} under the projection $X \times Y \rightarrow Y$, is closed in Y. The completeness of X now easily implies that of $f(X)$.
(2) Any $f \in \mathcal{O}_{X}(X)$ defines a morphism $f: X \rightarrow \mathbb{A}^{1}$. Since \mathbb{A}^{1} is an open subvariety of the complete variety $\mathbb{P}^{1}, \mathbb{A}^{1}$ is not complete. On the other hand, the only other closed, irreducible subsets of \mathbb{A}^{1} are points, so f must be constant.
(3) Let X be irreducible, complete, and affine. Then $\mathcal{O}(X)=\mathcal{O}_{X}(X) \cong$ \mathcal{K} by (2). Thus, $X=\operatorname{Hom}_{\mathcal{K} \text {-alg }}(\mathcal{O}(X), \mathcal{K})$ is a point.

A.3. Affine algebraic groups

We outline some basic material on affine algebraic groups.
Definition A.19. An affine algebraic group over \mathcal{K} is an affine variety G which is also a group with the property that the multiplication map $G \times G \rightarrow$ $G,(x, y) \mapsto x y$, and the inverse $\operatorname{map} G \rightarrow G, x \mapsto x^{-1}$, are both morphisms of affine varieties.

Let G be an affine algebraic group and let $A=\mathcal{O}(G)$. By Theorem A.6, multiplication $G \times G \rightarrow G$ is defined by a unique algebra homomorphism $\Delta: A \rightarrow A \otimes A$. Thus, if $\Delta(f)=\sum f_{(1)} \otimes f_{(2)}$, then $f(x y)=\sum f_{(1)}(x) f_{(2)}(y)$, for all $f \in A$, and $x, y \in G$. Also, the inverse map $G \rightarrow G$ is defined by an algebra homomorphism $\gamma: A \rightarrow A$. Thus, $\gamma(f)(x)=f\left(x^{-1}\right)$, for all $f \in A$, and $x \in G$. Finally, let $\varepsilon: A \rightarrow \mathcal{K}$ be evaluation at the identity $e \in G: \varepsilon(f)=f(e)$. The group axioms readily imply the first assertion in the following result; see $\S 5.1$ for a discussion of Hopf algebras. The second assertion is readily obtained using the contravariant equivalence given in Theorem A.6.

Proposition A.20. The 4-tuple $(A, \Delta, \gamma, \varepsilon)$ is a commutative Hopf algebra. Conversely, if A is a commutative Hopf algebra, which as an algebra belongs to Affalg $\mathcal{K}^{\mathcal{K}}$, then there is an algebraic group G with coordinate algebra A.

Given the commutative Hopf algebra A in the proposition, the corresponding algebraic group G is provided, as a variety, by Theorem A.6. The multiplication (resp., inverse map, identity element) are provided by Δ (resp., γ, ε).

Given two affine algebraic groups G and H, a morphism $\varphi: H \rightarrow G$ is defined to be a homomorphism of groups which is also a morphism of affine varieties. As a morphism of varieties, φ is determined by its comorphism $\varphi^{*}: \mathcal{O}(G) \rightarrow \mathcal{O}(H)$, and φ is a morphism of affine algebraic groups if and only if φ^{*} is a morphism of Hopf algebras.

In the following examples, we will often describe the group G in terms of its coordinate algebra A.

Examples A.21. (1) The multiplicative group \mathbb{G}_{m} has coordinate algebra $\mathcal{O}\left(\mathbb{G}_{m}\right)=\mathcal{K}\left[x, x^{-1}\right]$, the algebra of Laurent polynomials in a variable x. The comultiplication Δ is defined by $\Delta\left(x^{ \pm 1}\right)=x^{ \pm 1} \otimes x^{ \pm 1}$, while $\gamma\left(x^{ \pm 1}\right)=x^{\mp 1}$, and $\varepsilon\left(x^{ \pm 1}\right)=1$. As an abstract group, \mathbb{G}_{m} is isomorphic to the multiplicative group \mathcal{K}^{\times}of nonzero elements in \mathcal{K}.

For any affine algebraic group G, the set $X(G)=\operatorname{Hom}\left(G, \mathbb{G}_{m}\right)$ is a group under the multiplication of $\mathcal{O}(G)$, called the character group of G. Each $\chi \in X(G)$ is called a character of G. Note that $X(G)$ is, in fact, the set of group-like elements ${ }^{1}$ in $\mathcal{O}(G)$.
(2) The n-dimensional torus $T=\mathbb{G}_{m} \times \cdots \times \mathbb{G}_{m}$ (n copies) has coordinate algebra $\mathcal{O}(T)=\mathcal{K}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$, the algebra of Laurent polynomials in n variables. Also, $\Delta\left(x_{i}^{ \pm 1}\right)=x_{i}^{ \pm 1} \otimes x_{i}^{ \pm 1}$, while $\gamma\left(x_{i}^{ \pm 1}\right)=x_{i}^{\mp 1}$, and $\varepsilon\left(x_{i}^{ \pm 1}\right)=$ 1. As an abstract group, $T \cong \mathcal{K}^{\times} \times \cdots \times \mathcal{K}^{\times}$(n copies).

The character group $X(T)$ of a torus T is of great importance. Let $\varepsilon_{i}: T \rightarrow \mathbb{G}_{m}$ be the projection of T onto its i-component. It is easy to check that $X(T)$ is the free abelian group with basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$. (In general, it is common to change notation and regard $X(T)$ as an additive group.)
(3) The additive group \mathbb{G}_{a} has coordinate algebra $\mathcal{O}\left(\mathbb{G}_{a}\right)=\mathcal{K}[x]$, the polynomial algebra in a single variable x. Thus, as an affine variety, $\mathbb{G}_{a} \cong \mathbb{A}^{1}$. We have $\Delta(x)=x \otimes 1+1 \otimes x, \gamma(x)=-x$, and $\varepsilon(x)=0$. As an abstract group, \mathbb{G}_{a} is isomorphic to the additive group of \mathcal{K}.
(4) The general linear group $\mathrm{GL}_{n}(\mathcal{K})$ has coordinate algebra $\mathcal{O}\left(\mathrm{GL}_{n}(\mathcal{K})\right)$ $=\mathcal{K}\left[x_{1,1}, \ldots, x_{n, n}\right]\left[\operatorname{det}^{-1}\right]$, which is the localization of the polynomial algebra in n^{2} variables at the determinant polynomial det. Then $\Delta\left(x_{i, j}\right)=$ $\sum_{k} x_{i, k} \otimes x_{k, j}$, and $\Delta\left(\operatorname{det}^{-1}\right)=\operatorname{det}^{-1} \otimes \operatorname{det}^{-1}$ define an algebra map $\Delta: A$ $\rightarrow A \otimes A$. The counit ε satisfies $\varepsilon\left(x_{i, j}\right)=\delta_{i, j}$ and $\varepsilon\left(\operatorname{det}^{-1}\right)=1$. Finally, the antipode γ is defined by Cramer's rule: $\gamma\left(x_{i, j}\right)=(-1)^{i+j} A_{i, j} /$ det, where $A_{i, j}$ is the (i, j)-minor ${ }^{2}$ of the $n \times n$ matrix $\left(x_{k, l}\right)$, the determinant of its submatrix by deleting the i th column and the j th row. One can check that $\gamma\left(\operatorname{det}^{-1}\right)=\operatorname{det}$.

[^0]Of course, $\mathbb{G}_{m} \cong \mathrm{GL}_{1}(\mathcal{K})$. Note also that $\mathrm{GL}(M)$, for any finite dimensional \mathcal{K}-vector space M, can be identified with $\mathrm{GL}_{n}(\mathcal{K})$, for $n=\operatorname{dim} M$, via a basis of M. So $\mathrm{GL}(M)$ is also an affine algebraic group.
(5) The special linear group $\mathrm{SL}_{n}(\mathcal{K})$ with coordinate algebra $\mathcal{O}\left(\mathrm{SL}_{n}(\mathcal{K})\right)$ $=\mathcal{K}\left[x_{1,1}, \ldots, x_{n, n}\right] /(\operatorname{det}-1)$, where $\Delta\left(x_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j}$. Also, $\gamma\left(x_{i, j}\right)=$ $(-1)^{i+j} A_{i, j}$ (cf. Example (4) above), and $\varepsilon\left(x_{i, j}\right)=\delta_{i, j}$. As an abstract group, $\mathrm{SL}_{n}(\mathcal{K})$ is the group of all $n \times n$ matrices in \mathcal{K} having determinant 1.
(6) Any finite group Γ is an affine algebraic group, in which the underlying variety is just a disjoint union of zero-dimensional varieties (points). The coordinate algebra $\mathcal{O}(\Gamma)=\bigoplus_{x \in \Gamma} \mathcal{K} e_{x}$, where $e_{x} e_{y}=\delta_{x, y} e_{x}$, for all $x, y \in \Gamma$. The coalgebra structure is defined by $\Delta\left(e_{x}\right)=\sum_{y z=x} e_{y} \otimes e_{z}, \varepsilon\left(e_{x}\right)=1$ and $\gamma\left(e_{x}\right)=e_{x^{-1}}$.

The following result summarizes some elementary properties of affine algebraic groups.
Proposition A.22. Let G, H be affine algebraic groups.
(1) The product variety $G \times H$ is also an affine algebraic group. As a group, it is isomorphic to the direct product of G and H.
(2) If K is a subgroup of G, then its closure \bar{K} is an affine algebraic group, given its structure as a closed subvariety of G.
(3) If $\varphi: H \rightarrow G$ is a morphism of affine groups, the image $\operatorname{Im} \varphi$ of φ is a closed subgroup of G and the kernel $\operatorname{Ker} \varphi$ of φ is a closed subgroup of H.
(4) As a topological space, G has finitely many connected components. These components are disjoint and are the irreducible components of the variety G. The unique component G° containing the identity element $e \in G$ is a closed normal subgroup of G (and hence an affine algebraic group in its own right - called the connected component of the identity of G).
(5) The commutator subgroup $\mathscr{C}^{1}(G):=(G, G)$ is a closed subgroup of G.

See Exercise A. 8 for a sketch of part of the proof.
Example A.23. The groups in Examples A.21(1)-(5) are all connected. If G is finite, $G^{\circ}=\{e\}$. If \mathcal{K} does not have characteristic 2 , the orthogonal group $\mathrm{O}_{n}(\mathcal{K})=\left\{g \in \mathrm{GL}_{n}(\mathcal{K}) \mid g^{-1}=g^{\top}\right\}$ has two connected components. In this case, $\mathrm{O}_{n}(\mathcal{K})^{\circ}=\mathrm{SO}_{n}(\mathcal{K})$, the subgroup of orthogonal matrices of determinant 1.

An affine algebraic group G is called solvable (resp., nilpotent, abelian) provided it is solvable (resp., nilpotent, abelian) as an abstract group. We say that G is unipotent provided that, for any realization of G as a closed subgroup of some $\mathrm{GL}_{n}(\mathcal{K})$, all the elements of G when viewed as matrices
are unipotent (i.e., have only eigenvalues 1). For example, the additive group \mathbb{G}_{a} is unipotent.

If G is an affine algebraic group, it has a unique maximal connected solvable normal closed subgroup denoted $R(G)$ and called the solvable radical of G. Similarly, G has a unique maximal connected unipotent normal closed subgroup denoted $R_{u}(G)$ and called the unipotent radical. We will call a connected affine algebraic group G reductive (resp., semisimple) provided $R_{u}(G)=\{e\}$ (resp., $R(G)=\{e\}$).

Example A.24. $\mathrm{GL}_{n}(\mathcal{K})$ is reductive, but not semisimple. The subgroup $R(G)$ consists of the nonzero scalar matrices (and is isomorphic to \mathbb{G}_{m}). The group $\mathrm{SL}_{n}(\mathcal{K})$ is semisimple.

An important tool in studying algebraic groups is the Lie algebra of the group. Let G be an affine algebraic group. Recall that the tangent space $T_{e}(G)$ of G at e can be identified with the space of point derivations $\mathcal{O}(G) \rightarrow$ \mathcal{K} at e. Thus, it is a subspace of $\mathcal{O}(G)^{*}=\operatorname{Hom}_{\mathcal{K}}(\mathcal{O}(G), \mathcal{K})$. On the other hand, since $\mathcal{O}(G)$ is a Hopf algebra, the space $\mathcal{O}(G)^{*}$ has an associative \mathcal{K} algebra structure dual to the coalgebra structure on $\mathcal{O}(G)$; see Proposition 5.4. One can check that if $\mathrm{x}, \mathrm{y} \in T_{e}(G)$, then $[\mathrm{x}, \mathrm{y}]:=\mathrm{xy}-\mathrm{yx}$ (in terms of the multiplication of $\left.\mathcal{O}(G)^{*}\right)$ is also a point derivation of $\mathcal{O}(G)$ at e. Therefore, we define a Lie algebra structure on the tangent space $T_{e}(G)$.

Definition A.25. The Lie algebra $\mathfrak{g}:=T_{e}(G)$ endowed with the abovedefined operation $[\cdot, \cdot]$ is called the Lie algebra of G.

For example, it is easy to see directly that the Lie algebra of $\mathrm{GL}_{n}(\mathcal{K})$ is isomorphic to the general linear Lie algebra $\mathfrak{g l}_{n}(\mathcal{K})=\mathrm{M}_{n}(\mathcal{K})$ of $n \times n$ matrices over \mathcal{K}. Also, the Lie algebra of $\mathrm{SL}_{n}(\mathcal{K})$ is the special linear Lie algebra $\mathfrak{s l}_{n}(\mathcal{K})$ of $n \times n$ matrices of trace 0 .

Theorem A.26. Let G, H be affine algebraic groups over \mathcal{K} with Lie algebras $\mathfrak{g}, \mathfrak{h}$, respectively.
(1) $\operatorname{dim} \mathfrak{g}=\operatorname{dim} G$. In particular, $\mathfrak{g}=0$ if and only if G is finite.
(2) Any morphism $\varphi: G \rightarrow H$ of affine algebraic groups induces a Lie algebra homomorphism $d \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ called the differential of φ.

Proof. By Theorem A.8, there exist points $x \in G$ which are regular, i.e., at which $\operatorname{dim} T_{x}(G)=\operatorname{dim} G$. Because G acts transitively on itself by right (or left) translation, every point in G is regular. In particular, $\operatorname{dim} G=$ $\operatorname{dim} T_{e}(G)=\operatorname{dim} \mathfrak{g}$. This proves (1). For (2), the homomorphism $d \varphi$ is the restriction of $\varphi^{* *}: \mathcal{O}(G)^{*} \rightarrow \mathcal{O}(H)^{*}$.

Some calculations of differentials are given in Exercise A.9.

Finite groups are often studied by means of their actions on sets. The same principle holds true for algebraic groups.

Definition A.27. If G is an affine algebraic group and X is a variety, then G acts regularly on X (on the left) provided there is a morphism $G \times X$ $\rightarrow X,(g, x) \mapsto g \cdot x$, of varieties satisfying the following two conditions: (1) $e \cdot x=x$, for all $x \in G$; and (2) $(g h) \cdot x=g \cdot(h \cdot x)$, for all $x \in X, g, h \in G$.

A regular right action of G on X is symmetrically defined by a morphism $X \times G \rightarrow X$.

If G acts regularly on X (either on the left or the right), we usually just say that X is a G-variety.

Examples A.28. (1) There are three natural ways to make $X=G$ into a G-variety: (i) $G \times X \rightarrow X,(g, x) \mapsto g x$; (ii) $G \times X \rightarrow X,(g, x) \mapsto x g^{-1}$; and (iii) $G \times X \rightarrow X,(g, x) \mapsto \operatorname{Int} g(x):=g x g^{-1}$. The third example is often called the adjoint action of G on itself.
(2) Let $X=\mathfrak{g}$. For $g \in G$, Int $g: G \rightarrow G$ defined in (1) is a morphism, thus we have $\operatorname{Ad} g:=d(\operatorname{Int} g): \mathfrak{g} \rightarrow \mathfrak{g}$, by Theorem A.26(2). This procedure defines an action (or representation) of G on $\mathfrak{g}:(g, \mathrm{x}) \mapsto \operatorname{Ad} g(\mathrm{x})$, for $g \in G$ and $\mathrm{x} \in \mathfrak{g}$, also called the adjoint action (or adjoint representation of G on \mathfrak{g}). Regarding both G and \mathfrak{g} as subsets of $\mathcal{O}(G)^{*}$, we easily check (see Exercise A.9) that $\operatorname{Ad} g(\mathrm{x})=g \times g^{-1}$ in terms of the multiplication of $\mathcal{O}(G)^{*}$.
(3) Let H be a closed subgroup of G. There is a unique variety structure on the set G / H of left cosets $g H$ of H in G with the following universal property: given any G-variety X such that, for some $x \in X, h \cdot x=x$, for all $h \in H$, there exists a unique morphism $\varphi: G / H \rightarrow X$ such that $\varphi(g H)=g \cdot x$, for all $g \in G$. The variety G / H is called the quotient variety of G by H. If $X=G / H$, the map $G \times G / H \rightarrow G / H,(g, x H) \mapsto g x H$, makes G / H into a G-variety. If, in addition, H is a normal subgroup, then the quotient variety G / H has the structure of an affine algebraic group, as well. Furthermore, the quotient morphism $\pi: G \rightarrow G / H$ is a morphism of algebraic groups.

We will need the following important result.
Theorem A.29. Suppose G is an affine algebraic group which acts regularly on a variety X. For $x \in X$, let $\mathfrak{O}_{x}=G \cdot x \subseteq X$ be the corresponding G-orbit, and let $H=\{g \in G \mid g \cdot x=x\}$ be the isotropy subgroup of x.
(1) The G-orbit \mathfrak{O}_{x} is an open, smooth subvariety of its closure $\overline{\mathfrak{O}}_{x}$ with

$$
\operatorname{dim} \mathfrak{O}_{x}=\operatorname{dim} G / H=\operatorname{dim} G-\operatorname{dim} H
$$

(2) The boundary $\overline{\mathfrak{D}}_{x} \backslash \mathfrak{O}_{x}$ is a union of G-orbits having dimensions strictly smaller than $\operatorname{dim} \mathfrak{O}_{x}$. In particular, a G-orbit with minimal dimension is closed in X.

Proof. (1) Because G acts regularly on X, the $\operatorname{map} \varphi: G \rightarrow X, g \mapsto g \cdot x$, is morphism of varieties with $\varphi(G)=\mathfrak{O}_{x}$. By Theorem A.15(1), \mathfrak{O}_{x} is open in its closure $\overline{\mathfrak{O}}_{x}$. Because the regular points of $\overline{\mathfrak{O}}_{x}$ contain an open dense set, \mathfrak{O}_{x} itself must contain regular points. And, because G acts transitively on \mathfrak{O}_{x}, every point of \mathfrak{O}_{x} is regular. Thus, \mathfrak{O}_{x} is smooth. The dimension equality follows easily from Theorem A.15(2), since $\varphi^{-1}(g \cdot x)=g H g^{-1}$, for any $g \in G$.
(2) Clearly, \mathfrak{O}_{x} is stable under the action of G, so its closure $\overline{\mathfrak{O}}_{x}$ (and therefore, its boundary $\left.\overline{\mathfrak{O}}_{x} \backslash \mathfrak{O}_{x}\right)$ is a union of G-orbits. Finally, since $\overline{\mathfrak{O}}_{x} \backslash \mathfrak{O}_{x}$ meets every irreducible component of $\overline{\mathfrak{D}}_{x}$ in a proper closed subset, it has strictly smaller dimension.

A key theorem concerning actions of algebraic groups is the following famous Borel fixed point theorem.

Theorem A.30. Suppose that B is a connected solvable affine algebraic group acting regularly on a complete variety X. Then B fixes a point $x \in X$.

By a torus of an affine algebraic group G, we simply mean a closed subgroup T of G which, as an affine algebraic group, is isomorphic to a torus $\mathbb{G}_{m} \times \cdots \times \mathbb{G}_{m}$. (Possibly, $T \cong\{e\}$, the trivial group.) A torus T in G is a maximal torus provided it is not properly contained in another torus in G. For dimension reasons, maximal tori exist. If G is an affine algebraic group, put $\mathscr{C}^{1}(G)=(G, G)$ (commutator subgroup), and, for $n>$ 1 , set $\mathscr{C}^{n}(G)=\left(\mathscr{C}^{n-1}(G), G\right)$, the subgroup of G generated by commutators $(x, y)=x y x^{-1} y^{-1}, x \in \mathscr{C}^{n-1}(G), y \in G$. The groups $\mathscr{C}^{n}(G)$ are closed subgroups of G.

Theorem A.31. Let B be a connected solvable affine algebraic group.
(1) If $U=R_{u}(B)$ is the unipotent radical of B, then U is a closed, normal subgroup of B, and the quotient group B / U is a torus.
(2) If T is any maximal torus of B, then $B \cong U \rtimes T$ is the semidirect product of T and U.
(3) If T and T^{\prime} are two maximal tori of B, then there exists

$$
x \in \mathscr{C}^{\infty}(B):=\bigcap_{n=1}^{\infty} \mathscr{C}^{n}(B)
$$

such that $x T x^{-1}=T^{\prime}$.

A Borel subgroup B of an affine algebraic group G is a subgroup which is maximal among the connected, closed, solvable subgroups of G.

Theorem A.32. Let G be an affine algebraic group.
(1) Any two maximal tori T and T^{\prime} are conjugate in G.
(2) Any two Borel subgroups B and B^{\prime} are conjugate in G.
(3) Any maximal torus T is contained in a Borel subgroup B.
(4) A closed connected subgroup H of G is a Borel subgroup if and only if H is solvable and the quotient variety G / H is complete.

Statements (1), (2), and (3) follow directly from Theorems A. 30 and A.31, once statement (4) has been shown. The proof of (4) reduces easily to showing that if B is a Borel subgroup of G, then G / B is complete. A proof of this result requires some elementary facts about representations of affine algebraic groups which are indicated in §A.4. See Exercise A.21.

Now let G be a reductive group, let T be a maximal torus, and $X(T)$ be the character group of T (see Example A.21(1)). Let $N=N_{G}(T)$ be the normalizer of T in G. The quotient group $W:=N / T$ is called the Weyl group of G (with respect to T).

We consider the adjoint action of T on the Lie algebra \mathfrak{g} of G. Since T acts as a (commutative) group of semisimple linear transformations, \mathfrak{g} decomposes into eigenspaces for this action of T. Given $\alpha \in X(T)$, let $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid t \cdot x=\alpha(t) x$, for all $t \in T\}$. Moreover, T acts trivially on its own Lie algebra $\mathfrak{t} \subseteq \mathfrak{g}$, thus, $\mathfrak{t} \subseteq \mathfrak{g}_{0}$. In fact, it can be shown that $\mathfrak{t}=\mathfrak{g}_{0}$. We call $\alpha \in X(T)$ a root of T in G provided $\alpha \neq 0$ and $\mathfrak{g}_{\alpha} \neq 0$. Let $\Phi \subseteq X(T)$ be the set of roots, so that

$$
\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

For $\alpha \in \Phi$, the eigenspace \mathfrak{g}_{α} is called the α-root space. On the other hand, the action of N on \mathfrak{g} induces an action of W on Φ. This action can also be obtained by restricting the action of W on $X(T)$.

Theorem A.33. Let G be a reductive group, and let T be a maximal torus of G.
(1) The group W is a finite Coxeter group. Thus, the finite dimensional real space $\mathbb{E}:=X(T) \otimes \mathbb{R}$ can be given the structure of a Euclidean space with inner product $(-,-)$ so that W consists of orthogonal linear transformations. Moreover, for any Borel subgroup B of G containing $T, B \cap N=T$.
(2) Φ is a finite abstract root system in $\mathbb{E}:=X(T) \otimes \mathbb{R}$ in the sense of Theorem 0.35, and W becomes the Weyl group of the root system Φ. In
particular, each $\alpha \in \Phi$ defines a reflection $s_{\alpha} \in W$ by

$$
s_{\alpha}(x)=x-(x, \check{\alpha}) \alpha, \quad \text { for } x \in \mathbb{E},
$$

where $\check{\alpha}=2 \alpha /(\alpha, \alpha)$.
(3) Each Borel subgroup $B \supseteq T$ gives a choice of the set Φ^{+}of positive roots in such a way that the Lie algebra \mathfrak{b} of B decomposes as

$$
\mathfrak{b}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}
$$

Moreover, any choice of the set of positive roots arises in this way.
(4) If $\alpha \in \Phi, \operatorname{dim} \mathfrak{g}_{\alpha}=1$. Moreover, for $\alpha \in \Phi, G$ contains a unique 1dimensional subgroup $U_{\alpha} \cong \mathbb{G}_{a}$ normalized by T. Fix a choice of Φ^{+}, and let Γ be a closed subset of Φ^{+}in the sense that $\alpha, \beta \in \Gamma$ with $\alpha+\beta \in \Phi^{+}$implies $\alpha+\beta \in \Gamma$. Then the multiplication of G defines a variety isomorphism

$$
\begin{equation*}
\text { mult: } \prod_{\alpha \in \Gamma} U_{\alpha} \longrightarrow U_{\Gamma}, \tag{A.3.1}
\end{equation*}
$$

where the product is taken with respect to a fixed, but arbitrary, listing of elements in Γ, and U_{Γ} is the closed subgroup of G generated by U_{α}, for $\alpha \in \Gamma$. In particular, if B is the Borel subgroup containing T corresponding to the choice of Φ^{+}, then

$$
\text { mult : } \prod_{\alpha \in \Phi^{+}} U_{\alpha} \longrightarrow U:=R_{u}(B)
$$

is an isomorphism of varieties.
(5) For each root $\alpha \in \Phi$, there is a morphism $h_{\alpha}: \mathbb{G}_{m} \rightarrow T$ such that

$$
\xi \circ h_{\alpha}: \mathbb{G}_{m} \longrightarrow \mathbb{G}_{m}, \quad t \longmapsto t^{(\xi, \check{\alpha})}, \quad \text { for } \xi \in X(T) .
$$

The key to a proof of Theorem A.33(4) is to show that, given $x \in U_{\alpha}$ and $y \in U_{\beta}$, for $\alpha, \beta \in \Gamma$, the commutator $x y x^{-1} y^{-1}$ is a product of elements in U_{γ}, for various $\gamma \in \Gamma$ with $\operatorname{ht}(\gamma)>\max \{\operatorname{ht}(\alpha), \operatorname{ht}(\beta)\}$, where $\operatorname{ht}(\gamma)$ is the height of γ. In Chapter 4, a similar result is proved in Lemma 4.36 for $\mathrm{GL}_{n}(\mathcal{K})$ (K an arbitrary field) using only elementary linear algebra; this result can serve as an example of the result presented here.

An important example of closed subset of Φ^{+}is $\Phi_{w}:=\left\{\alpha \in \Phi^{+} \mid-w(\alpha)\right.$ $\left.\in \Phi^{+}\right\}$, for a fixed $w \in W$. We will write U_{w} for $U_{\Phi_{w}}$. The complement of Φ_{w} in Φ^{+}, i.e., $\Phi_{w}^{\prime}:=\left\{\alpha \in \Phi^{+} \mid w(\alpha) \in \Phi^{+}\right\}$, is also a closed subset of Φ^{+}.

The double coset decomposition of a reductive group with respect to a Borel subgroup plays an important role in the structure theory of the group. The following theorem gives the fundamental properties of such a decomposition.

Theorem A.34. Let G be a reductive group, let T be a maximal torus of G, and let B be the Borel subgroup of G containing T corresponding to a choice of positive roots Φ^{+}. Let $N=N_{G}(T)$, and let $W=N / T$ be the Weyl group of G (with respect to T) with S the set of simple reflections with respect to the choice of Φ^{+}. For $w \in W$, denote by $w B$ (resp., $B w$) the coset $n_{w} B$ (resp., $B n_{w}$), where n_{w} is a representative of w in N. Then the following statements hold:
(1) For $w \in W, w B w^{-1}=B$ implies $w=1$.
(2) For $w \in W$ and $s \in S$,

$$
B w B \cdot B s B= \begin{cases}B w s B, & \text { if } \ell(w s)>\ell(w) \\ B w s B \cup B w B, & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

(3) (Bruhat decomposition) The group G decomposes into a disjoint union

$$
G=\bigcup_{w \in W} B w B
$$

(4) Each double coset $B w B(w \in W)$ is a subvariety of G, open in its closure, and the multiplication

$$
\text { mult: } B \times\left\{n_{w}\right\} \times U_{w} \xrightarrow{\sim} B w B
$$

is an isomorphism of varieties, where n_{w} is a fixed representative of w in N.

By Theorem A.34(4), if $w_{0} \in W$ is the longest element, $B w_{0} B$ is open dense in G (called the big cell of G).

Remark A.35. A group G (not necessarily algebraic) has a $B N$-pair structure provided that G is generated by subgroups B and N satisfying the following properties:
(a) $T:=B \cap N \triangleleft N$;
(b) $W:=N / T$ is generated by a subset S consisting of elements of order 2;
(c) $s B s \neq B$, for all $s \in S$; and
(d) $w B s \subseteq B w s B \cup B w B$, for all $s \in S, w \in W$.
(In the above, if $n_{w} \in N$ represents $w \in W$, define $w B=n_{w} B$ and $B w=B n_{w}$.) Theorem A.34(1)-(2), together with Theorem A.33(1), shows that a reductive algebraic group G has a natural $B N$-pair structure. For further discussion, see [LAI, Ch. 4]. The Bruhat decomposition is a formal consequence of the axioms for a $B N$-pair. Most of the discussion of parabolic subgroups in the next section can also be generalized to the context of a group with $B N$-pair.

Example A.36. Let $G=\mathrm{GL}_{n}(\mathcal{K})$. We can describe some of the above results in concrete terms. A maximal torus T consists of the $n \times n$ invertible diagonal matrices. Then T has dimension n, and $X(T)$ has basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$, where

$$
\varepsilon_{i}(t)=t_{i} \quad \text { if } t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \in T
$$

Recall that, by convention, we write $X(T)$ as an additive group. Let B^{+} be the subgroup of G consisting of all invertible upper triangular matrices, and let U^{+}be the subgroup of upper unitriangular matrices. Then B^{+}is a Borel subgroup with unipotent radical U^{+}.

For $1 \leqslant i, j \leqslant n$, let $E_{i, j}$ be the (i, j) th matrix unit in the space $\mathrm{M}_{n}(\mathcal{K})$; thus, the entries in $E_{i, j}$ are all equal to 0, except for a 1 in position (i, j). The adjoint action of G (and T) on its Lie algebra $\mathfrak{g}=\mathfrak{g l}_{n}(\mathcal{K})$ is by matrix conjugation. Then $\Phi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i \neq j\right\}$. For $\alpha=\varepsilon_{i}-\varepsilon_{j} \in \Phi, \mathfrak{g}_{\alpha}=\mathcal{K} E_{i, j}$. Also, $U_{\alpha}=\left\{I_{n}+t E_{i, j} \mid t \in \mathcal{K}\right\}$, where I_{n} is the identity matrix.

Next, $N(T)$ is the subgroup of $\mathrm{GL}_{n}(\mathcal{K})$ consisting of all invertible monomial matrices. So, $W=N(T) / T \cong \mathfrak{S}_{n}$. The root system Φ has type A_{n-1}.

Finally, $G=\mathrm{GL}_{n}(\mathcal{K})$ acts naturally on the variety $\mathfrak{F}_{\text {cpl }}\left(\mathcal{K}^{n}\right)$ of complete flags in \mathcal{K}^{n}. If v_{1}, \ldots, v_{n} is the standard basis of \mathcal{K}^{n} and if $V_{i}=$ $\operatorname{span}\left(v_{1}, \ldots, v_{i}\right)$, then B is the stabilizer in G of the flag $V_{1} \subset V_{2} \subset \cdots \subset$ $V_{n}=V$, and $G / B \cong \mathfrak{F}_{\text {cpl }}\left(\mathcal{K}^{n}\right)$.

In Chapter 4, we established many of the same results for the general linear group $\mathrm{GL}_{n}(\mathcal{K})$ over an arbitrary (in particular, finite) field \mathcal{K}. See Theorem 4.37.

Let G be a semisimple group with fixed maximal torus T, Borel subgroup B, etc., as in the above theorem. Enumerate the set of simple roots $\Pi=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. For $1 \leqslant i \leqslant n$, there exists a unique $\varpi_{i} \in \mathbb{E}$ such that $\left\langle\varpi_{i}, \check{\alpha}_{j}\right\rangle=\delta_{i, j}$, whenever $1 \leqslant j \leqslant n$. The elements ϖ_{i} are called fundamental dominant weights for the root system Φ. Let X be the lattice (free abelian group) generated by the ϖ_{i} in \mathbb{E}. Then $\mathbb{E} \cong \mathbb{R} \otimes_{\mathbb{Z}} X$. Let $X^{+}=\mathbb{N} \varpi_{1} \oplus$ $\cdots \oplus \mathbb{N} \varpi_{n}$, which is the cone of dominant weights of T. If $\mathbb{Z} \Phi$ is the set of \mathbb{Z}-linear combinations of roots, $\mathbb{Z} \Phi \subseteq X(T) \subseteq X$. By definition, G is simply connected provided $X=X(T)$, and it is adjoint if $X(T)=\mathbb{Z} \Phi$. In addition, given any lattice L of \mathbb{E} satisfying $\mathbb{Z} \Phi \subseteq L \subseteq X$, there exists a semisimple group G over \mathcal{K}, unique up to isomorphism, with root system Φ such that $X(T) \cong L$. See the Notes for further references.

Example A.37. The semisimple algebraic group $\mathrm{SL}_{n}(\mathcal{K})$ is simply connected. Let T be the maximal torus of diagonal matrices. Put $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, for $1 \leqslant i<n$. Thus, $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}$ is a set of simple roots defined by the Borel subgroup of upper triangular unimodular matrices. Then the fundamental dominant weights $\varpi_{1}, \ldots, \varpi_{n-1}$ are given by $\varpi_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i}$.

We will use a partial ordering on X defined as follows. For $\xi, \nu \in X$, write $\xi \leqslant \nu$ provided $\nu-\xi \in \mathbb{N} \Phi^{+}$, a nonnegative integer combination of positive roots. This partial ordering induces a partial ordering on the set X^{+}of dominant weights.

A.4. Parabolic subgroups and the Chevalley-Bruhat ordering

This section relates the Chevalley-Bruhat ordering (see §4.1) on the Weyl group of a reductive group to the geometry of the group. We will make use of the results on parabolic subgroups of Coxeter groups presented in §4.3. We will also quote some results from $[\mathbf{L A I}]$, which are related to Theorem A.34, and which amount to the assertion that a reductive group G is a group with a $B N$-pair.

Let G be a connected affine algebraic group over \mathcal{K}. A subgroup P of G is called a parabolic subgroup provided that the quotient variety G / P is a complete variety. The following result summarizes some basic facts about parabolic subgroups.

Theorem A.38. Let G be a reductive group.
(1) A closed subgroup P of G is parabolic if and only if P contains a Borel subgroup of G.
(2) If P is a parabolic subgroup of G, then P is connected and equal to its own normalizer in G.
(3) Suppose that Z^{\prime} is a closed subvariety of a G-variety Z such that $P \cdot Z^{\prime}=Z^{\prime}$, for some parabolic subgroup P of G. Then $G \cdot Z^{\prime}$ is closed in Z. In particular, if P and Q are parabolic subgroups of G both containing the same Borel subgroup B, then the product $P Q$ is closed in G.

Proof (sketch of (3)). The subset of $G / P \times Z$ consisting of all points $(x P, z)$ such that $x^{-1} \cdot z \in Z^{\prime}$ is closed. Because the projection $G / P \times Z \rightarrow Z$ is a closed map since G / P is complete, $G \cdot Z^{\prime}$ is closed in Z, as required.

From now on, assume that G is a reductive group. Let T be a fixed maximal torus, and let Φ be the root system of T in \mathfrak{g}. Fix a Borel subgroup $B \supset T$ corresponding to a set Φ^{+}of positive roots. Let Π be the simple roots in Φ^{+}and let $W=N(T) / T$ be the Weyl group of G. Any root $\alpha \in \Phi$ determines a reflection $s_{\alpha} \in W$. If $S=\left\{s_{\alpha} \mid \alpha \in \Pi\right\}$, then (W, S) is a Coxeter system by Theorem A.33(1).

For notational convenience, we will usually (without mention) identify the sets Π and $S: \alpha \in \Pi \leftrightarrow s_{\alpha} \in S$. For $I \subseteq \Pi$, let Φ_{I} be the closed subroot system of Φ generated by $I: \Phi_{I}=\Phi \cap \mathbb{Z} I$.

Theorem A.39. Let G be a reductive group.
(1) The parabolic subgroups of G containing B are in one-to-one correspondence with subsets $I \subseteq \Pi$. If $I \subseteq \Pi$, the corresponding parabolic subgroup P_{I} is generated (as an abstract group) by B and the root subgroups $U_{-\alpha}, \alpha \in I$.
(2) Any parabolic subgroup P of G is conjugate to a unique $P_{I} \supseteq B$.
(3) For $I \subseteq \Pi$, if L_{I} is the subgroup of G generated by T and the $U_{ \pm \alpha}$, for $\alpha \in I$, then L_{I} is a closed, reductive subgroup of G containing T and having root system Φ_{I} (called a Levi subgroup of P_{I}). Also, $P_{I}=L_{I} \rtimes R_{u}\left(P_{I}\right)$.

Example A.40. In the notation of Example A.14(3), the parabolic subgroups of $\mathrm{GL}_{n}(\mathcal{K})$ are just the isotropy subgroups for the action of $\mathrm{GL}_{n}(\mathcal{K})$ on some $\mathfrak{F}(\boldsymbol{d}, V)$, for $V=\mathcal{K}^{n}$.

If H and K are subgroups of G at least one of which contains T, then, given $w \in W$, write $H w K$ for $H n_{w} K$, where $n_{w} \in N(T)$ is any coset representative of w. The definition of $H w K$ does not depend on the choice of n_{w}. Recall from Theorem A.34(3) that the double cosets $B w B, w \in W$, are precisely the distinct (B, B)-cosets in G. For $I \subseteq \Pi$, let W_{I} be the parabolic subgroup of W defined by the set of reflections $s_{\alpha}, \alpha \in I$. Let ${ }^{I} W$ (resp., W^{I}) be the set of shortest right (resp., left) coset representatives of W_{I} in W. Thus, $W^{I}={ }^{I} W^{-1}$ and multiplication defines bijections $W_{I} \times{ }^{I} W \xrightarrow{\sim} W$ and $W^{I} \times W_{I} \xrightarrow{\sim} W$. For $I, J \subseteq \Pi,{ }^{I} W^{J}={ }^{I} W \cap W^{J}$ is a set of double coset representatives for $W_{I} \backslash W / W_{J}$. See $\S 4.3$ for more details.

Let \leqslant be the Chevalley-Bruhat ordering on W; see $\S 4.1$. We can regard ${ }^{I} W, W^{I}$, and ${ }^{I} W^{J}$ as subposets.
Theorem A.41. Let $I, J \subseteq \Pi$.
(1) ${ }^{I} W^{J}$ is a set of double coset representatives for $P_{I} \backslash P / P_{J}$ in G. In other words,

$$
G=\bigcup_{w \in^{I} W^{J}} P_{I} w P_{J} \text { (disjoint union). }
$$

(2) For $w \in{ }^{I} W^{J}, P_{I} w P_{J}=B W_{I} w W_{J} B$.
(3) For $x, y \in{ }^{I} W^{J}, P_{I} x P_{J}$ is contained in the Zariski closure $\overline{P_{I} y P_{J}}$ of the double coset $P_{I} y P_{J}$ if and only if $x \leqslant y$.
(4) In particular, for $x, y \in W, B x B \subseteq \overline{B y B}$ if and only if $x \leqslant y$.

Proof. Statements (1) and (2) follow formally because the groups B and $N=N(T)$ define a $B N$-pair structure on G. See [LAI, Prop. 2, § 2.5, Ch.IV].

Next, we show why (4) holds. For $s \in S$, write $P_{s}=P_{\{s\}}$. Then $P_{s}=B \cup B s B$. If $y \in W$ has reduced expression $y=s_{1} \cdots s_{d}$, then $P_{s_{1}} \cdots P_{s_{d}}$
is a closed subvariety of G (by Theorem A.38(3)), which is a union of the double cosets $B x B$, for $x \leqslant y$; see [LAI, $\S 2.1$, Ch. IV]. Since $B s_{i} B$ is open in P_{s}, it follows that

$$
B y B=B s_{1} B \cdots B s_{d} B
$$

is open (and dense) in $P_{s_{1}} \cdots P_{s_{d}}$. Therefore, $\overline{B y B}=P_{s_{1}} \cdots P_{s_{d}}$, completing the proof of (4).

To see (3), first suppose that $P_{I} x P_{J} \subseteq \overline{P_{I} y P_{J}}$, for $x, y \in{ }^{I} W^{J}$. Because $B x B \subseteq P_{I} x P_{J},(2)$ and (4) imply that $x \leqslant a y b$, for some $a \in W_{I}$ and $b \in W_{J}$. Because x, y are shortest double coset representatives, this fact immediately implies that $x \leqslant y$, as required. Conversely, if $x \leqslant y$ both belong to ${ }^{I} W^{J}$, then $B x B \subseteq \overline{P_{I} y P_{J}}$ by (4), which implies that $P_{I} x P_{J} \subseteq \overline{P_{I} y P_{J}}$.

Let $P=P_{I}$ and $Q=P_{J}$ be two parabolic subgroups of G containing B. We can form the G-variety $X:=G / P \times G / Q$. It has points $(x P, y Q)$, and, for $g \in G, g \cdot(x P, y Q):=(g x P, g y Q)$. We form the following poset (Ψ, \leqslant) : the points of Ψ are just the orbits $\mathfrak{O}=G \cdot(x P, y Q)$ of G in X. If $\mathfrak{O}, \mathfrak{V}^{\prime} \in \Psi$, put $\mathfrak{O} \leqslant \mathfrak{O}^{\prime}$ if and only if $\mathfrak{O} \subseteq \overline{\mathfrak{D}^{\prime}}$.

We can also consider the $P \times Q$-variety G in which $(x, y) \cdot g:=x g y^{-1}$, for $x \in P, y \in Q$, and $g \in G$. Let Ω be the set of orbits of $P \times Q$ on G, viewed as a poset by means of Zariski closure. Thus, given orbits $\mathfrak{O}, \mathfrak{D}^{\prime} \in \Omega, \mathfrak{O} \leqslant \mathfrak{O}^{\prime}$ if and only if $\mathfrak{O} \subseteq \overline{\mathfrak{D}^{\prime}}$. By Theorem A.41, the poset (Ω, \leqslant) is isomorphic to the poset $\left({ }^{I} W^{J}, \leqslant\right)$.

There is an evident bijection $\sigma: \Psi \xrightarrow{\sim} \Omega$ defined as follows. Given an orbit $\mathfrak{O} \in \Psi$, first form $Z:=\mathfrak{O} \cap(P / P \times G / Q)$ and let $\sigma(\mathfrak{O})$ be the inverse image of Z under the map $G \rightarrow P / P \times G / Q, g \mapsto(P, g Q)$.
Proposition A.42. The map σ is a poset isomorphism.
Proof. By Theorem A.38(3), for $w \in{ }^{I} W^{J}, G \cdot(P / P \times \overline{P w Q / Q})$ is closed in $G / P \times G / Q$. (Because the quotient map $G \rightarrow G / Q$ is an open map, $\overline{P w Q} / Q$ identifies with $\overline{P w Q / Q}$.) Thus,

$$
\overline{G \cdot(P, w Q)}=G \cdot(P / P \times \overline{P w Q / Q})
$$

This easily implies that σ is a poset isomorphism.

A.5. Representation theory: a first view

Let G be an affine algebraic group over an algebraically closed field \mathcal{K}. In this section, we briefly outline some elementary features of the representation theory of G, especially when G is semisimple.

Let M be a finite dimensional $\mathcal{K} G$-module with $\phi: G \rightarrow \mathrm{GL}(M)$, the corresponding group homomorphism. We say that M is a rational G-module if ϕ is a morphism of algebraic groups. More generally, if M is an arbitrary
$\mathcal{K} G$-module, i.e., we do not assume that M is finite dimensional, then M is a rational G-module provided it can be written as a union of finite dimensional submodules which are rational G-modules in the above sense. The representation $G \rightarrow \mathrm{GL}(V)$ associated with a rational G-module V is called a rational representation of G. Given two rational G-modules M and M^{\prime}, a morphism $f: M \rightarrow M^{\prime}$ is simply a linear transformation from M to M^{\prime} commuting with the action of G. In this way, we obtain the category G-mod of all rational G-modules.

As noted in Proposition A. $20, \mathcal{O}(G)$ carries the structure of a (commutative) Hopf algebra. Consider the category of right $\mathcal{O}(G)$-comodules for the underlying coalgebra $\mathcal{O}(G)$; see Definition 5.3. A right comodule M with structure $\operatorname{map} \tau_{M}: M \rightarrow M \otimes \mathcal{O}(G)$ defines a left G-module structure on M as follows. Given $g \in G$ and $v \in M$, write $\tau_{M}(v)=\sum v_{i} \otimes a_{i}$ (finite sum), where $v_{i} \in M$ and $a_{i} \in \mathcal{O}(G)$. Then set

$$
g \cdot v:=\sum a_{i}(g) v_{i}
$$

Moreover, the local finiteness for $\mathcal{O}(G)$-comodules (see Exercise 5.2) implies the local finiteness of the resulting G-modules, and, clearly, any finite dimensional $\mathcal{O}(G)$-comodule gives a finite dimensional rational G-module. In this way, we obtain a functor $\operatorname{comod}-\mathcal{O}(G) \rightarrow G$-mod.

Lemma A.43. The functor $\operatorname{comod}-\mathcal{O}(G) \rightarrow G$-mod defined above is an equivalence of categories.

Proof. The functor in the other direction is obtained in the following way: If M is a left rational G-module with basis $\left\{v_{i}\right\}$, then the action of G can be expressed as $g v_{j}=\sum_{i} a_{i, j}(g) v_{i}$ (finite sum). The rationality of M implies $a_{i, j} \in \mathcal{O}(G)$. It is then easy to see that $\tau: M \rightarrow M \otimes \mathcal{O}(G)$ given by $\tau\left(v_{j}\right)=\sum_{i} v_{i} \otimes a_{i, j}$ defines a right $\mathcal{O}(G)$-comodule structure on M.

Examples A.44. (1) The coordinate algebra $\mathcal{O}(G)$ of G is a right $\mathcal{O}(G)$ comodule with the comultiplication as the structure map. Thus, $\mathcal{O}(G)$ is naturally a (left) rational G-module. In fact, the module structure can be defined as follows: given $f \in \mathcal{O}(G)$ and $g, x \in G,(g \cdot f)(x)=f(x g)$.
(2) If M and M^{\prime} are rational G-modules, so is the tensor product $M \otimes$ M^{\prime} (with the diagonal action of G). Also, the tensor powers $M^{\otimes r}$, the symmetric powers $\mathrm{S}^{r}(M)$, and the exterior powers $\Lambda^{r} M$ are rational G modules. Moreover, if M is finite dimensional, the linear dual M^{*} and, more generally, the space $\operatorname{Hom}_{\mathcal{K}}\left(M, M^{\prime}\right)$ carry natural structures as rational G-modules.
(3) The 1-dimensional trivial G-module (any $g \in G$ acts as the identity operator) is a rational module. This module is usually denoted by \mathcal{K}.

The notion of a rational representation is required to prove the following basic result.

Theorem A.45. If G is an affine algebraic group, then G is isomorphic to a closed subgroup of $\mathrm{GL}_{n}(\mathcal{K})$, for some positive integer n.

A proof of this result, which uses Example A.44(1), is indicated in Exercise A.16. Of course, any closed subgroup of $\mathrm{GL}(M)$, for a finite dimensional vector space M over \mathcal{K}, is also an affine algebraic group over \mathcal{K}. Therefore, affine algebraic groups are often referred to as linear algebraic groups.

Now fix a maximal torus T of G, and let $X(T)$ be the character group of T. The integral group algebra $\mathbb{Z} X(T)$ of $X(T)$ has basis e^{ξ}, for $\xi \in X(T)$, and product rule $e^{\xi} e^{\zeta}=e^{\xi+\zeta}$ (recall that the abelian group $X(T)$ is usually written additively). For a rational T-module M and $\xi \in X(T)$, the ξ-weight space of T in M is the subspace $M_{\xi}:=\{v \in M \mid t \cdot v=\xi(t) v, \forall t \in T\}$. If $M_{\xi} \neq 0$, then ξ is called a weight of T in M. We have

$$
\begin{equation*}
M=\bigoplus_{\xi \in X(T)} M_{\xi} \tag{A.5.1}
\end{equation*}
$$

(See Exercise A.15.) If T is a maximal torus in G and if M is a finite dimensional rational G-module, we can regard M as a rational T-module, and consider the decomposition (A.5.1). The character of M is then

$$
\begin{equation*}
\operatorname{ch} M:=\sum_{\xi \in X(T)} \operatorname{dim} M_{\xi} e^{\xi} \in \mathbb{Z} X(T) \tag{A.5.2}
\end{equation*}
$$

Now assume that G is a connected semisimple group over \mathcal{K}. Fix a maximal torus T and a Borel subgroup $B \supset T$ determining the positive roots Φ^{+}and simple roots Π, as discussed in Theorem A.34. For simplicity, assume that G is simply connected; see the discussion before Example A. 37 . This means that $X(T)=X$, which is the free \mathbb{Z}-module with fundamental dominant weights $\varpi_{1}, \ldots, \varpi_{n}$ as a basis. The set $X(T)$ is partially ordered as follows. For $\xi, \nu \in X(T)$, write $\xi \leqslant \nu$ if and only if $\nu-\xi \in \mathbb{N} \Phi^{+}$.

The Weyl group W of G acts naturally on $X(T)$, putting, for $w \in W$ and $\xi \in X(T), w(\xi)(t):=\xi\left(n_{w}^{-1} t n_{w}\right)$, where $n_{w} \in N_{G}(T)$ represents w. Thus, if M is a rational G-module, W permutes the weights of T in M. In particular, if M is finite dimensional,

$$
\begin{equation*}
\operatorname{ch} M \in(\mathbb{Z} X(T))^{W} \tag{A.5.3}
\end{equation*}
$$

the subspace of W-fixed points in $\mathbb{Z} X(T)$. If P is any parabolic subgroup containing T, a similar result holds for a rational P-module M, namely, ch $M \in(\mathbb{Z} X(T))^{W_{P}}$, where W_{P} is the Weyl group of a Levi factor of P containing T. This observation will be used sometimes in the next section.

Any $\xi \in X(T)$ can be "inflated" to a character on B by means of the quotient morphism $B \rightarrow B / U \cong T$, where $U=R_{u}(B)$. By abuse of notation, given $\xi \in X(T)$, let \mathcal{K}_{ξ} also denote the 1-dimensional rational B-module defined by ξ. It has basis vector v satisfying $u t \cdot v=\xi(t) v$, for $u \in U$ and $t \in T$. Sometimes it will be useful to denote \mathcal{K}_{ξ} simply by ξ.

Theorem A.46. Let G be a simply connected, semisimple algebraic group.
(1) If L is a simple rational G-module, then B stabilizes a unique onedimensional subspace of L. Necessarily, this B-stable subspace has the form \mathcal{K}_{ξ}, for $\xi \in X^{+}$. We call ξ the highest weight of L; it can be characterized as the maximal weight in L with respect to the partial ordering \leqslant. Also, $\operatorname{dim} L_{\xi}=1$.
(2) If L and L^{\prime} are simple rational G-modules having the same highest weight ξ, then $L \cong L^{\prime}$ as rational G-modules.
(3) Conversely, given $\xi \in X^{+}$, there exists a simple rational G-module of highest weight ξ.

Proof. (1) Generally, for any weight ν in a rational G-module M, if $v \in M_{\nu}$ and $x \in U_{\alpha}$, for $\alpha \in-\Phi^{+}$,

$$
\begin{equation*}
x . v=v+\sum_{\zeta<\nu} v_{\zeta}, \quad \zeta \in X(T), v_{\zeta} \in M_{\zeta} \tag{A.5.4}
\end{equation*}
$$

See Exercise A.19. Now let $\xi \in X(T)$ be a weight of T in L such that there exists $0 \neq v^{+} \in L_{\xi}$ for which the line $\mathcal{K} v^{+}$is B-stable. If $B^{\prime}=U^{\prime} \rtimes T$ is the Borel subgroup opposite to B (generated by T and $U_{-\alpha}, \alpha \in \Phi^{+}$), ${ }^{3}$ $B^{\prime} B=U^{\prime} B$ is dense in G, so $L=\mathcal{K} B^{\prime} B \cdot v^{+}=\mathcal{K} U^{\prime} . v^{+}$. By (A.5.4), ξ is the maximal weight in L and $\operatorname{dim} L_{\xi}=1$. Finally, the weights of T in L are stable under the Weyl group W, so that if $\alpha \in \Pi$, then $s_{\alpha}(\xi) \leqslant \xi$, i.e., $(\xi, \check{\alpha}) \in \mathbb{N}$, so that $\xi \in X^{+}$. This proves (1).
(2) If $v^{+} \in L$ and $u^{+} \in L^{\prime}$ are nonzero vectors of weight ξ, and if $\widetilde{L} \subseteq L \oplus L^{\prime}$ is the submodule generated by $\left(v^{+}, u^{+}\right)$, then the projection maps $\widetilde{L} \rightarrow L$ and $\widetilde{L} \rightarrow L^{\prime}$ are isomorphisms.
(3) See Exercise A.22.

In view of this theorem, we can label the (isomorphism classes of) rational simple G-modules by the set X^{+}of dominant weights. For $\xi \in X^{+}$, let $L(\xi)$ be a fixed rational simple G-module of highest weight ξ.

Remarks A.47. (1) Our assumption that G is simply connected is largely a convenience. Otherwise, the rational simple modules are indexed by those dominant weights ξ belonging to $X(T)$.

[^1](2) The classification of the simple rational representations of a reductive group G can easily be reduced to the case of semisimple groups, making use of the semisimple derived group G^{\prime}. For example, the dominant weights for the simply connected group $\mathrm{SL}_{n}(\mathcal{K})$ correspond to partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$ with at most $n-1$ nonzero parts. In the notation of Example A.36, the fundamental dominant weights on the maximal torus T of $\mathrm{SL}_{n}(\mathcal{K})$ consisting of diagonal matrices are given in Example A. 37 . Thus, the correspondence from the set of partitions to X^{+}is given by λ $\mapsto \sum_{i=1}^{n-1}\left(\lambda_{i}-\lambda_{i+1}\right) \varpi_{i}$, taking $\lambda_{n}=0$. Now the reader can check that the rational simple representations of $\mathrm{GL}_{n}(\mathcal{K})$ are indexed by (weakly) decreasing sequences $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ of integers (not necessarily nonnegative). The restriction of $L(\mu)$ to $\mathrm{SL}_{n}(\mathcal{K})$ is the simple $\mathrm{SL}_{n}(\mathcal{K})$-module of highest weight $\xi:=\sum_{i=1}^{n-1}\left(\mu_{i}-\mu_{i+1}\right) \varpi_{i}$.

Let $\mathscr{K}_{0}(G)$ be the Grothendieck group of the full subcategory of G-mod whose objects are the finite dimensional rational G-modules. If

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

is a short exact sequence of finite dimensional rational G-modules, then $\operatorname{ch} M=\operatorname{ch} M^{\prime}+\operatorname{ch} M^{\prime \prime}$. Hence, there is a group homomorphism

$$
\text { ch: } \mathscr{K}_{0}(G) \longrightarrow(\mathbb{Z} X(T))^{W}
$$

Theorem A. 46 implies the following fundamental fact.
Corollary A.48. There is an isomorphism

$$
\operatorname{ch}: \mathscr{K}_{0}(G) \xrightarrow{\sim}(\mathbb{Z} X(T))^{W} .
$$

Actually, it is clear that ch is a ring isomorphism as well. A similar result holds if G is replaced by a parabolic subgroup $P \supseteq T$ and W by W_{P}.

A.6. Representations in positive characteristic; Frobenius morphisms

In some sense, the most interesting aspect of the representation theory of reductive algebraic groups occurs when the ground field has positive characteristic p. In fact, rational representations of a connected reductive group over an algebraically closed field \mathcal{K} of characteristic 0 are all semisimple, and the representation theory of such a group is not much different from the representation theory of its Lie algebra, which is a finite dimensional reductive Lie algebra over \mathcal{K}.

However, when \mathcal{K} has positive characteristic, a rational module for a connected reductive group need not be semisimple (so the usage of the name "reductive group" is an abuse of terminology from the viewpoint of representations). Non-semisimplicity makes the representation theory of algebraic
groups in this case essentially different from the "classical" representation theory of finite dimensional reductive Lie algebras in characteristic 0 , and enriches the representation theory of algebraic groups in many ways.

In this section, we will introduce a basic tool - Frobenius morphisms - in the representation theory of algebraic groups in positive characteristic. Thus, we assume that the ground field \mathcal{K} has characteristic $p>0$. If $q=p^{r}$ is a power of p with $r>0$, then \mathcal{K} contains a subfield \mathbb{F}_{q} of q elements.

For a positive integer n, the map $F: \mathrm{GL}_{n}(\mathcal{K}) \rightarrow \mathrm{GL}_{n}(\mathcal{K})$ sending $x=$ $\left(x_{i, j}\right) \in \mathrm{GL}_{n}(\mathcal{K})$ to $F(x)=\left(x_{i, j}^{q}\right)$ is clearly a group isomorphism and a variety morphism. Thus, F is an endomorphism of $\mathrm{GL}_{n}(\mathcal{K})$ (in the category of algebraic groups). However, F is not an automorphism of $\mathrm{GL}_{n}(\mathcal{K})$ (in the category of algebraic groups), since the inverse of F is no longer a variety morphism. The homomorphism F is called a (standard) Frobenius morphism of $\mathrm{GL}_{n}(\mathcal{K})$.

More generally, let G be an affine algebraic group and let $F: G \rightarrow G$ be a morphism. By Theorem A.45, G can be regarded as a closed subgroup of $\mathrm{GL}_{n}(\mathcal{K})$, for some positive integer n. We say that F is a Frobenius morphism on G if, for some r, F^{r} is standard in the sense that it agrees with the restriction of a standard Frobenius morphism on $\mathrm{GL}_{n}(\mathcal{K})$. For example, suppose that G is a closed subgroup of $\mathrm{GL}_{n}(\mathcal{K})$ defined on \mathbb{F}_{q}. That is, G, as a closed subvariety of $\mathrm{GL}_{n}(\mathcal{K})$, is defined by a set of polynomials in the $x_{i, j}$ with coefficients in \mathbb{F}_{q}. Then the Frobenius morphism $\left(x_{i, j}\right) \mapsto\left(x_{i, j}^{q}\right)$ of $\mathrm{GL}_{n}(\mathcal{K})$ restricts to a Frobenius morphism of G.
Remark A.49. Although the notion of a Frobenius morphism discussed here has its origins in the theory of algebraic groups, it has been adopted in Chapter 2 to the study of finite dimensional algebras. Conversely, the notion of Frobenius morphisms of algebraic groups can be recovered from that of Frobenius maps on vector spaces (§2.1) or Frobenius morphisms of algebras (§2.2); see Remark 2.5(2).

The following theorem has nothing directly to do with representation theory, but it is used in the construction of a Frobenius folding of an almost split sequence in $\S 2.8$.
Theorem A. 50 (Lang-Steinberg). If G is a connected affine algebraic group and if F is a Frobenius morphism of G, then the map $\mathcal{L}: G \rightarrow G, g \mapsto$ $g^{-1} F(g)$, is surjective.

We only give a proof in the case where $\mathcal{K}=\overline{\mathbb{F}}_{q}$, the algebraic closure of the finite field \mathbb{F}_{q}. This special case is enough for the application in $\S 2.8$. A typical feature under the assumption $\mathcal{K}=\overline{\mathbb{F}}_{q}$ is that every element in G is of finite order (see Exercise A.25). A general proof using tangent spaces is sketched in Exercise A. 27.

Proof. Consider the right action " \triangleleft " of G on itself given by the morphism

$$
\varphi: G \times G \longrightarrow G, \quad(x, g) \longmapsto x \triangleleft g:=g^{-1} x F(g)
$$

Let \mathfrak{O} be a closed orbit (of minimal dimension); see Theorem A.29. If $\mathfrak{O}=G$, then $e \in \mathfrak{O}$. Therefore, $G=\mathfrak{O}_{e}:=\left\{g^{-1} F(g) \mid g \in G\right\}=\mathcal{L}(G)$, giving the theorem. So it remains to prove that $\mathfrak{O}=G$ or, equivalently, to prove that $\operatorname{dim} \mathfrak{O}=\operatorname{dim} G$.

Fix an $x \in \mathfrak{O}$ and consider the (surjective) orbit morphism $\psi: G \rightarrow \mathfrak{D}$, $g \mapsto x \triangleleft g$. By Theorem A.15(2), to prove the equality $\operatorname{dim} \mathfrak{O}=\operatorname{dim} G$, it suffices to prove that the stabilizer of x is a finite set, i.e., that the equation $x=g^{-1} x F(g)$ has only finitely many solutions $g \in G$. To see this, let $f(g)=x F(g) x^{-1}$. Then,

$$
f^{i}(g)=x F(x) F^{2}(x) \cdots F^{i-1}(x) F^{i}(g) F^{i-1}\left(x^{-1}\right) \cdots F^{2}\left(x^{-1}\right) F(x)^{-1} x^{-1}
$$

for all $i>0$. But there exists an $m>0$ such that $F^{m}(x)=x$ (see Exercise A.25). Thus, for $i=s m$,

$$
f^{s m}(g)=\left(x F(x) F^{2}(x) \cdots F^{m-1}(x)\right)^{s} F^{s m}(g)\left(x F(x) F^{2}(x) \cdots F^{m-1}(x)\right)^{-s}
$$

If r is the order of the element $x F(x) F^{2}(x) \cdots F^{m-1}(x)$, then $f^{r m}(g)=$ $F^{r m}(g)$. Since the equation $F^{r m}(g)=g$ has only finitely many solutions $g \in G$, the same is true for $f^{r m}(g)=g$. Consequently, $f(g)=g$ has only finitely many solutions.

A Frobenius morphism $F: G \rightarrow G$ relates several important objects. First, we have the finite group G^{F} of F-fixed points. When G is a reductive group, G^{F} is known as a finite group of Lie type. In particular, if G is almost simple (that is, semisimple with indecomposable root system) and simply connected, then, with few exceptions, the quotient of G^{F} by its center is a finite simple group. If we form $\bar{G}=G / C(G), C(G)$ being the center of G, then \bar{G} is a simple group, F induces a Frobenius morphism, denoted by F again, on \bar{G}, and the corresponding finite simple group can also be obtained as the normal subgroup of \bar{G}^{F} generated by its unipotent elements (i.e., elements whose orders are powers of $p=\operatorname{char} \mathcal{K})$. See $[\mathbf{2 8 4}, \S 12.8]$ for more details. In this way, we obtain the various infinite series of finite simple groups, except for the cyclic groups of prime orders and the alternating groups $\mathfrak{A}_{n}:=\left(\mathfrak{S}_{n}, \mathfrak{S}_{n}\right)$, for $n \geqslant 5$.

Examples A.51. (1) Let $G=\mathrm{GL}_{n}(\mathcal{K})$ (resp., $\mathrm{SL}_{n}(\mathcal{K})$), and let $F: G \rightarrow$ G be the standard Frobenius morphism $\left(x_{i, j}\right) \mapsto\left(x_{i, j}^{q}\right)$. Then $G^{F}=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (resp., $\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$). For any field K, let $\mathrm{PSL}_{n}(\mathbb{K})$ denote the quotient of $\mathrm{SL}_{n}(\mathcal{K})$ by its center. Then we obtain $\mathrm{PSL}_{n}\left(\mathbb{F}_{q}\right)$ (which is simple except for $n=2$ and, in the meantime, $q=2$ or 3) as the quotient of $\mathrm{SL}_{n}(\mathcal{K})^{F}$ by its
center. The group $\mathrm{PSL}_{n}\left(\mathbb{F}_{q}\right)$ can also be viewed as the normal subgroup of $\mathrm{PSL}_{n}(\mathcal{K})^{F}$ generated by its unipotent elements. See [284, Cor. 12.6].
(2) Let $G=\mathrm{GL}_{n}(\mathcal{K})$ (resp., $\left.\mathrm{SL}_{n}(\mathcal{K})\right), n \geqslant 3$, and let $F_{0}: G \rightarrow G$ be the standard Frobenius morphism $\left(x_{i, j}\right) \mapsto\left(x_{i, j}^{q}\right)$. Let $F=* \circ F_{0}$, where *: $G \rightarrow G$ is the evolution of G sending $g \in G$ to $\left(g^{\top}\right)^{-1}$ (with g^{\top} denoting the transpose of g). Clearly, $*$ commutes with F_{0}, making $F^{2}=F_{0}^{2}$ is a standard Frobenius morphism. Thus, F is a Frobenius morphism. One can check (Exercise A.26) that G^{F} is the unitary group $\mathrm{U}_{n}\left(\mathbb{F}_{q^{2}}\right)$ (resp., the special unitary group $\operatorname{SU}_{n}\left(\mathbb{F}_{q^{2}}\right)$). If we consider $G=\operatorname{PSL}_{n}(\mathcal{K})$ instead, then G^{F} contains the finite projective unitary subgroup $\operatorname{PSU}_{n}\left(\mathbb{F}_{q^{2}}\right)$ (which is simple, except when $n=3$ and $q=2$) as the normal subgroup generated by its unipotent elements.

Again let G be a reductive group. By restriction, a rational representation of G gives rise to a representation of the finite group G^{F} over the field \mathcal{K} (and so to a representation in the "defining characteristic"). Fortunately, there exists a set of simple representations of G which, upon restriction, is the complete set of simple representations of G^{F}. We will briefly indicate how this works at the end of this section. Thus, the representation theory of a finite group of Lie type in its defining characteristic heavily relies on the representation theory of the ambient algebraic group.

Another important object in the representation theory of algebraic groups with Frobenius morphisms is the notion of the Frobenius kernel. Although $F: G \rightarrow G$, for G an arbitrary affine algebraic group, is a group automorphism (see Exercise A.24), it is only an endomorphism of G as an algebraic group. Its comorphism $F^{*}: \mathcal{O}(G) \rightarrow \mathcal{O}(G)$ has a cokernel in the category CommHopf of commutative Hopf algebras, yielding a kernel in the dual category Affgrp := CommHopf ${ }^{\mathrm{op}}$ (called the category of affine group schemes ${ }^{4}$). This kernel, denoted $\operatorname{Ker} F$, is called the kernel of F. We have an exact sequence in the category Affgrp:

$$
E \longrightarrow \operatorname{Ker} F \longrightarrow G \xrightarrow{F} G \longrightarrow E,
$$

where $E=\{e\}$ is the trivial group with only one element e.
One can check that $\mathcal{O}(\operatorname{Ker} F)$, the coordinate algebra of $\operatorname{Ker} F$ (i.e., the corresponding object of $\operatorname{Ker} F$ in CommHopf), is obtained by forming the quotient algebra of $\mathcal{O}(G)$ modulo its ideal generated by $F^{*}\left(\operatorname{Ker} \varepsilon_{\mathcal{O}(G)}\right)$ (which can be seen to be a Hopf ideal). It turns out that $\mathcal{O}(\operatorname{Ker} F)$ is a finite dimensional Hopf algebra (see Exercise A.28).

[^2]The (rational) Ker F-modules are defined as $\mathcal{O}(\operatorname{Ker} F)$-comodules, which, in turn, are modules over the finite dimensional algebra $\mathcal{O}(\operatorname{Ker} F)^{*}$ (cf. Propositions 5.4 and 5.5). Therefore, the representation theory of the Frobenius kernel is the representation theory of the finite dimensional algebra $\mathcal{O}(\operatorname{Ker} F)^{*}$. Note that $\mathcal{O}(\operatorname{Ker} F)^{*}$ is a subalgebra of $\mathcal{O}(G)^{*}$, and it is easily checked that the conjugation of $x \in G$ (in terms of multiplication of $\left.\mathcal{O}(G)^{*}\right)$ leaves $\mathcal{O}(\operatorname{Ker} F)^{*}$ stable.

Upon restriction, a rational G-module gives a (rational) Ker F-module in the above sense. If a simple G-module remains simple when restricted to Ker F, we will say that the module is infinitesimally simple.

On the other hand, from a rational G-module M we can obtain another rational G-module $M^{(F)}$, called the Frobenius twist, ${ }^{5}$ or, more precisely, the F-twist, of M, by letting G act through the Frobenius morphism F. That is, define a new action \star of G on M by putting $x \star v=F(x) v$, for $x \in G$ and $v \in M$. Or, in terms of $\mathcal{O}(G)$-comodules, $M^{(F)}$ is defined by the structure map $F \circ \tau$ if M has structure map τ.

This setup is particularly useful in studying the representation theory of a reductive group G (in positive characteristic). In fact, in this case, infinitesimally simple modules constitute an "essential" part of the set of simple G-modules. In other words, all the simple rational G-modules can be expressed in terms of the infinitesimally simple modules. This important result, known as the Steinberg tensor product theorem, is stated without proof below.

To state the theorem, we remark that any semisimple affine algebraic group G over an algebraically closed field \mathcal{K} of characteristic $p>0$ can be linearized over the prime field \mathbb{F}_{p} with a maximal torus T diagonalized. Then the standard Frobenius morphism $\left(x_{i, j}\right) \mapsto\left(x_{i, j}^{p}\right)$ of the ambient general linear group defines a Frobenius morphism $F: G \rightarrow G$. For this Frobenius morphism, we will write $M^{\left(p^{i}\right)}$ for the Frobenius twist $M^{\left(F^{i}\right)}$ of a G-module M.

A weight $\xi \in X(T)$ is called p-restricted (with respect to a prefixed set of positive roots) if $0 \leqslant\langle\xi, \check{\alpha}\rangle<p$, for all simple roots α. Suppose, in addition, that G is simply connected. Then we can express a dominant weight $\xi \in X(T)$ in p-adic form as

$$
\xi=\xi_{0}+p \xi_{1}+p^{2} \xi_{2}+\cdots+p^{r} \xi_{r}
$$

with $\xi_{i} \in X(T) p$-restricted and $\xi_{r} \neq 0$.
Now we have the following theorem.

[^3]Theorem A. 52 (Steinberg tensor product theorem). Under the above assumptions and notation, if $\xi \in X(T)^{+}$, then there is a G-module isomorphism

$$
L(\xi) \cong L\left(\xi_{0}\right) \otimes L\left(\xi_{1}\right)^{(p)} \otimes L\left(\xi_{2}\right)^{\left(p^{2}\right)} \otimes \cdots \otimes L\left(\xi_{r}\right)^{\left(p^{r}\right)}
$$

Moreover, if $\xi \in X(T)$ is p-restricted, $L(\xi)$ is infinitesimally simple, and the set $\left\{\left.L(\xi)\right|_{\operatorname{Ker} F} \mid \xi\right.$ p-restricted $\}$ is a complete set of representatives of isoclasses of simple Ker F-modules.

For the Frobenius morphism F in the above theorem, the finite dimensional algebra $\mathcal{O}\left(\operatorname{Ker} F^{r}\right)^{*}$ is often denoted by \mathbf{u}_{r} in the literature. The algebra $\mathbf{u}_{1}=\mathcal{O}(\operatorname{Ker} F)^{*}$ is nothing but the restricted enveloping algebra of the Lie algebra \mathfrak{g} of the group $G .{ }^{6}$

Another important result states that, with the above assumptions, a simple rational G-module $L(\xi)$ remains simple when restricted to G^{F} if and only if ξ is p-restricted. And, the set $\left\{\left.L(\xi)\right|_{G^{F}} \mid \xi p\right.$-restricted $\}$ is a complete set of representatives of isoclasses of simple G^{F}-modules over \mathcal{K}. The same result holds if F is replaced by F^{i}, for some positive integer i, and if p restricted weights are replaced by p^{i}-restricted weights, defined similarly.

A.7. Induced representations and the Weyl character formula

Although the theory developed in this and the next sections applies equally to groups in characteristic 0 and those in prime characteristic, we are mainly interested in the latter case. In fact, many characteristic p results have uninteresting formulations in characteristic 0 , or correspond to considerably stronger results. As an example of the latter, the Kempf theorem A. 56 can be strengthened to the so-called Borel-Weil-Bott theorem, which claims that, if $\xi+\rho \in X^{+}$, where ρ is half the sum of positive roots, then $R^{i} \operatorname{Ind}_{B}^{G}(w(\xi+$ $\rho)-\rho) \cong L(\xi)$ if $\xi \in X^{+}$and $i=\ell(w)$, and equals 0 otherwise.

In the previous paragraph, $\operatorname{Ind}_{B}^{G}$ denotes the induction functor from the category of rational B-modules to the category of rational G-modules. The functor $\operatorname{Ind}_{B}^{G}$ is left exact. For $i \geqslant 0, R^{i} \operatorname{Ind}_{B}^{G}$ is the i th right derived functor of $\operatorname{Ind}_{B}^{G}$. As in the representation theory of finite groups, the theory of induced representations plays a central role in the representation theory of affine algebraic groups.

[^4]More generally, consider a closed subgroup H of an affine algebraic group G. Any rational G-module M is, by restriction to H, also a rational H module, denoted $\operatorname{Res}_{H}^{G} M$. Clearly, $\operatorname{Res}_{H}^{G}: G$-mod $\rightarrow H$-mod is an exact, additive functor. With this, we define the induction functor $\operatorname{Ind}_{H}^{G}$ in the first statement of the following theorem.

Theorem A.53. Let H be a closed subgroup of an affine algebraic group G.
(1) The restriction functor $\operatorname{Res}_{H}^{G}$ admits a left exact, right adjoint - the induction functor $\operatorname{Ind}_{H}^{G}: H-\bmod \rightarrow G$-mod from $H-\bmod$ to G-mod.
(2) For $M \in G-\bmod$ and $N \in H-\bmod$,

$$
M \otimes \operatorname{Ind}_{H}^{G} N \cong \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G} M \otimes N\right)
$$

(3) If K is a closed subgroup of H, then $\operatorname{Ind}_{H}^{G} \circ \operatorname{Ind}_{K}^{H}=\operatorname{Ind}_{K}^{G}$.
(4) The category G-mod has enough injective objects.

We sketch a proof of (1)-(3) in Exercise A.17. Then (4) follows once it is observed, by an elementary argument, that, if M is an injective rational H-module, then $\operatorname{Ind}_{H}^{G} M$ is an injective rational G-module. In particular, we can take $H=\{e\}$, where every rational H-module is injective, to conclude that $\operatorname{Ind}_{\{e\}}^{G} \operatorname{Res}_{\{e\}}^{G} M$ is an injective rational G-module for any rational G module M. Clearly, $M \subseteq \operatorname{Ind}_{\{e\}}^{G} \operatorname{Res}_{\{e\}}^{G} M$. Now a general argument on essential extensions (cf. [HAI, Ch. 1, Th. 9.2]) shows that M has an injective envelope, usually denoted $I(M)$. It is an injective module, containing M as an essential submodule, and it is a direct summand of every injective module containing M.

Example A.54. Suppose that H is a parabolic subgroup of a connected affine group G. Then the rational G-module $\operatorname{Ind}_{H}^{G} \mathcal{K}$ obtained by inducing the trivial H-module \mathcal{K} to G is the trivial G-module \mathcal{K}. In fact, as shown in Exercise A.17, for any rational H-module $N, \operatorname{Ind}_{H}^{G} N$ identifies with a $(\mathcal{O}(G) \otimes N)^{H}$ of H-fixed points. In particular, $N=\mathcal{K}$ and $\operatorname{Ind}_{H}^{G} \mathcal{K}=\mathcal{O}(G)^{H}=\mathcal{O}(G / H)$, the space of everywhere defined functions on the quotient variety G / H of left cosets. If H is parabolic, then G / H is complete, so that Lemma A.18(2) implies that $\operatorname{Ind}_{H}^{G} \mathcal{K} \cong \mathcal{K}$, the trivial module consisting of constant functions.

In particular, we can consider the right derived functors

$$
R^{n} \operatorname{Ind}_{H}^{G}: H-\bmod \longrightarrow G-\bmod , \quad n \geqslant 0
$$

Given a rational H-module N, let $0 \rightarrow N \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ be a resolution of N by injective H-modules, and set $R^{n} \operatorname{Ind}_{H}^{G} N$ equal to the nth cohomology of the complex $\operatorname{Ind}_{H}^{G} I^{\bullet}$. Each $R^{n} \operatorname{Ind}_{H}^{G} N$ is a rational G-module.

Theorem A.55. Let H be a closed subgroup of G and let N be a rational H-module.
(1) $R^{n} \operatorname{Ind}_{H}^{G} N=0$, for $n>\operatorname{dim} G / H$.
(2) If H is a parabolic subgroup and $\operatorname{dim} N<\infty$, then $\operatorname{dim} R^{n} \operatorname{Ind}_{H}^{G} N<$ ∞, for all n.

In fact, $R^{n} \operatorname{Ind}_{H}^{G} N$ can be interpreted in another way, namely, as a sheaf cohomology group $H^{n}\left(G / H, \mathscr{L}_{N}\right)$ of a (G-equivariant) quasi-coherent sheaf \mathscr{L}_{N} on the quotient variety G / H. Then (1) follows from the Grothendieck vanishing theorem, while (2) follows since \mathscr{L}_{N} is coherent if N is finite dimensional. (See [147, Ch. III, Th. 5.2].)

For the rest of this section and the next section, let G be a fixed simply connected, semisimple algebraic group over \mathcal{K}. We use the same notation as above. In particular, $B^{\prime}=U^{\prime} \rtimes T$ is the Borel subgroup containing T and opposite to B. For $\xi \in X(T)$, let ξ also denote the 1-dimensional B^{\prime}-module defined by ξ.
Theorem A. 56 (Kempf). For $\xi \in X^{+}, R^{n} \operatorname{Ind}_{B^{\prime}}^{G}(\xi)=0$, for $n>0$.
When $\xi \in X^{+}$, the rational G-module

$$
\begin{equation*}
\nabla(\xi):=\operatorname{Ind}_{B^{\prime}}^{G} \xi \tag{A.7.1}
\end{equation*}
$$

is called the costandard module of highest weight ξ. We use Theorem A. 56 to calculate the character and dimension of $\nabla(\xi)$.

Let $B^{\prime} \subseteq P \subseteq Q$ be parabolic subgroups of G. Given a finite dimensional rational P-module N, form the "Euler characteristic"

$$
\begin{equation*}
\mathcal{E}_{P, Q}(N):=\sum_{n=0}^{\infty}(-1)^{n} \operatorname{ch} R^{n} \operatorname{Ind}_{P}^{Q} N \tag{A.7.2}
\end{equation*}
$$

By Theorem A.55, this definition makes sense! If $P=B^{\prime}$ and $Q=G$, put simply $\mathcal{E}=\mathcal{E}_{B^{\prime}, G}$.

Because $\mathcal{E}_{P, Q}$ is additive on short exact sequences of rational P-modules, it is defined on the Grothendieck group $\mathscr{K}_{0}(P)$ of finite dimensional rational P-modules. Making use of the identifications in Corollary A.48, we view $\mathcal{E}_{P, Q}$ as a homomorphism

$$
\begin{equation*}
\mathcal{E}_{P, Q}: \mathbb{Z} X(T)^{W_{P}} \longrightarrow \mathbb{Z} X(T)^{W_{Q}} \tag{A.7.3}
\end{equation*}
$$

of abelian groups.
Lemma A.57. (1) $\mathcal{E}(1)=1$. (Here $1=e^{0}$.)
(2) If $B^{\prime} \subseteq P \subseteq Q \subseteq R$, then $\mathcal{E}_{P, R}=\mathcal{E}_{Q, R} \circ \mathcal{E}_{P, Q}$.
(3) For $\eta \in \mathbb{Z} X(T)^{W_{P}}$ and $\xi \in \mathbb{Z} X(T)^{W_{Q}}$,

$$
\xi \mathcal{E}_{P, Q}(\eta)=\mathcal{E}_{P, Q}(\xi \eta)
$$

Proof (sketch). (1) follows from Example A.54.
(2) The proof is actually quite formal and can be outlined as follows. By Theorem A.53(3), $\operatorname{Ind}_{P}^{R}=\operatorname{Ind}_{Q}^{R} \circ \operatorname{Ind}_{P}^{Q}$. On the other hand, $\operatorname{Ind}_{P}^{Q}$ takes injective objects in P-mod to injective (hence, acyclic) objects in Q-mod, so that there is, given a rational P-module M, a Grothendieck spectral sequence (see [HAI, Ch. VIII, Th 9.3])

$$
E_{2}^{s, t}=R^{s} \operatorname{Ind}_{Q}^{R}\left(R^{t} \operatorname{Ind}_{P}^{Q} M\right) \Longrightarrow R^{s+t} \operatorname{Ind}_{P}^{Q} M
$$

Finally, for formal reasons, the Euler characteristic commutes with the differentials on the spectral sequence, implying the desired formula.

Statement (3) follows easily from Theorem A.53(2) and the identification of Grothendieck groups with character groups.

Theorem A.58. For $\xi \in X(T)$,

$$
\begin{equation*}
\mathcal{E}(\xi)=\frac{\sum_{w \in W}(-1)^{\ell(w)} e^{w(\xi+\rho)}}{\sum_{w \in W}(-1)^{\ell(w)} e^{w \rho}} \tag{A.7.4}
\end{equation*}
$$

Proof (sketch). We break the proof down into several steps.
(1) Suppose that $\alpha \in \Pi$ is a simple root, and P is the "minimal" parabolic subgroup $P_{\alpha}=\left\langle B^{\prime}, U_{\alpha}\right\rangle$. Then a direct calculation shows that

$$
\begin{equation*}
\mathcal{E}_{B^{\prime}, P}(\xi)=e^{\xi}+e^{\xi-\alpha}+\ldots+e^{\xi-n \alpha} \tag{A.7.5}
\end{equation*}
$$

if $n=(\xi, \check{\alpha}) \geqslant 0$.
(2) If there exists a simple root α such that $(\xi, \check{\alpha})=-1$, then $\mathcal{E}(\xi)=0$. A direct check yields that $\mathcal{E}_{B^{\prime}, P_{\alpha}}(\xi)=0$, so the claim follows from Lemma A.57(1).
(3) For $w \in W$ and $\xi \in X(T)$, put $w \cdot \xi=w(\xi+\rho)-\rho$ (the "dot" action). Then $\mathcal{E}(w \cdot \xi)=(-1)^{\ell(w)} \mathcal{E}(\xi)$. This formula holds, for $w=s_{\alpha}$, where $\alpha \in \Pi$, for $\mathcal{E}_{B^{\prime}, P_{\alpha}}$, and then for \mathcal{E} by Lemma A.57.
(4) For $w \in W$, let $\varepsilon_{w}=(-1)^{\ell(w)}$, and, for $\xi \in X(T)$, let $A(\xi):=$ $\sum_{w \in W} \varepsilon_{w} e^{w \xi}$. Then $A(\rho)^{2} \in(\mathbb{Z} X(T))^{W}$, so by Lemma A.57(2),

$$
\begin{aligned}
A(\rho)^{2} \mathcal{E}(\xi) & =\sum_{x, y \in W} \mathcal{E}\left(\xi+x^{-1} \rho+y \rho\right)=\sum_{u=x, v=x y} \varepsilon_{v} \mathcal{E}\left(\xi+u^{-1} \rho+u^{-1} v \rho\right) \\
& =\sum_{u, v \in W} \varepsilon_{u} \varepsilon_{v} \mathcal{E}\left(u \cdot\left(\xi+u^{-1} \rho+u^{-1} v \rho\right)\right)=\sum_{u, v \in W} \mathcal{E}(u \xi+v \rho+u \rho) \\
& =A(\xi+\rho) A(\rho) \mathcal{E}(1)=A(\xi+\rho) A(\rho)
\end{aligned}
$$

Since $0 \neq A(\rho)=e^{\rho} \prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)$ (Weyl's denominator formula), and since $\mathbb{Z} X(T)$ is an integral domain, we have (A.7.4), as required.

Combining Theorems A. 56 and (A.7.4), we obtain part (1) of the following important theorem. Part (2) then follows directly, except for the assertion that $\nabla(\xi)$ has a simple socle (see Exercise A.23). In the character formula given in (1), it would be possible to cancel an $e^{-\rho}$ from the numerator and denominator, but we prefer the given form since $w(\xi+\rho)=w \cdot \xi$ and $w \rho-\rho=w \cdot \rho$, in the notation of the dot action of W.

Theorem A.59. Let $\xi \in X^{+}$.
(1) (Weyl character and dimension formulas) We have

$$
\operatorname{ch} \nabla(\xi)=\frac{\sum_{w \in W}(-1)^{\ell(w)} e^{w(\xi+\rho)-\rho}}{\sum_{w \in W}(-1)^{\ell(w)} e^{w \rho-\rho}}
$$

Therefore,

$$
\operatorname{dim} \nabla(\xi)=\prod_{\alpha \in \Phi^{+}} \frac{(\xi+\rho, \check{\alpha})}{(\rho, \check{\alpha})}
$$

(2) As a rational G-module, $\nabla(\xi)$ has simple socle $L(\xi)$, while other composition factors $L(\nu)$ satisfy $\nu<\xi$. (Thus, $L(\xi)$ occurs with multiplicity one in $\nabla(\xi)$.)
(3) When \mathcal{K} has characteristic 0, any rational G-module is semisimple. Thus, in particular, $\nabla(\xi) \cong L(\xi)$.

It is also the case that $\nabla(\xi)$ is finite dimensional. Let $w_{0} \in W$ be the longest element, and, for $\xi \in X$, define $\xi^{\star}=-w_{0}(\xi)$. If $\xi \in X^{+}$, then $\xi^{\star} \in X^{+}$. For $\xi \in X^{+}$, put

$$
\begin{equation*}
\Delta(\xi):=\nabla\left(\xi^{\star}\right)^{*} \tag{A.7.6}
\end{equation*}
$$

The rational G-module $\Delta(\xi)$ is called the standard module of highest weight ξ. Theorem A. 60 easily implies the following result.
Corollary A.60. For $\xi \in X^{+}, \Delta(\xi)$ has top isomorphic to $L(\xi)$. The other composition factors $L(\nu)$ satisfy $\nu<\xi$. Finally, $\operatorname{ch} \Delta(\xi)=\operatorname{ch} \nabla(\xi)$.

A.8. Higher Ext functors; Δ - and ∇-filtrations

We give a very brief account of some basic results on the higher Ext functors of rational modules for reductive groups. These results relate to the existence of certain filtrations, and will be useful in constructing interesting highest weight categories in Appendix C.

We have already used the fact that the category G-mod has enough injective objects. As a consequence, the usual cohomology machinery is available for the category G-mod. Thus, given $M, N \in G$-mod and a nonnegative integer n,

$$
\operatorname{Ext}_{G}^{n}(M, N):=R^{n} \operatorname{Hom}_{G}(M, N)
$$

is the nth right derived functor of the left exact functor $\operatorname{Hom}_{G}(M,-): G$-mod $\rightarrow \mathrm{Ab}$ (the category of abelian groups) evaluated at N. If $M=\mathcal{K}$, the extension group $\operatorname{Ext}_{G}^{n}(\mathcal{K}, N)$ is usually denoted simply $H^{n}(G, N)$; if, in addition, M is finite dimensional, then $\operatorname{Ext}_{G}^{n}(M, N) \cong H^{n}\left(G, M^{*} \otimes N\right)$.

We say a rational G-module M has a Δ-filtration provided there exists a decreasing filtration $M=M_{0} \supseteq M_{1} \supseteq \cdots$ such that $\bigcap_{i} M_{i}=0$ and each nonzero $M_{i} / M_{i+1} \cong \Delta\left(\xi_{i}\right)$, for some $\xi_{i} \in X^{+}$. Dually, M has a ∇-filtration provided there is an increasing filtration $0=M_{0} \subseteq M_{1} \subseteq \cdots$ such that $\bigcup M_{i}=M$ and each nonzero section $M_{i} / M_{i-1} \cong \nabla\left(\xi_{i}\right)$, for some $\xi_{i} \in X^{+}$.
Theorem A.61. Let $\xi, \nu \in X^{+}$, and let M be a rational G-module.
(1) $\operatorname{dim} \operatorname{Ext}_{G}^{n}(\Delta(\xi), \nabla(\nu))=\delta_{\xi, \nu} \delta_{n, 0}$.
(2) For any integer $n \geqslant 0$,

$$
\begin{aligned}
& \operatorname{Ext}_{G}^{n}(\Delta(\xi), L(\nu)) \neq 0 \Longrightarrow \xi<\nu \\
& \operatorname{Ext}_{G}^{n}(L(\nu), \nabla(\xi)) \neq 0 \Longrightarrow \xi<\nu
\end{aligned}
$$

(3) (Donkin, Scott) Assume that, for any $\zeta \in X^{+}, \operatorname{dim}_{\operatorname{Hom}_{G}}(\Delta(\zeta), M)$ $<\infty$. Then M has a Δ-filtration if and only if $\operatorname{Ext}_{G}^{1}(M, \nabla(\nu))=0$, for all $\nu \in X^{+}$. Similarly, M has a ∇-filtration if and only if $\operatorname{Ext}_{G}^{1}(\Delta(\nu), M)=0$, for all $\nu \in X^{+}$. In both these criteria, it suffices to confine ν to those dominant weights satisfying $\nu<\xi$ for those $\xi \in X^{+}$such that $L(\xi)$ is a composition factor of M.

Proof. We will sketch the arguments.
(1) Theorem A. 60 and Corollary A. 59 immediately imply that

$$
\operatorname{dim} \operatorname{Ext}_{G}^{0}(\Delta(\xi), \nabla(\nu))=\operatorname{dim} \operatorname{Hom}_{G}(\Delta(\xi), \nabla(\nu))=\delta_{\xi, \nu}
$$

Thus, it suffices to show that

$$
\operatorname{Ext}_{G}^{n}(\Delta(\xi), \nabla(\nu))=\operatorname{Ext}_{G}^{n}\left(\Delta\left(\nu^{\star}\right), \nabla\left(\xi^{\star}\right)\right)=0
$$

for all positive integers n. We can assume that ξ is not strictly larger than ν in the partial ordering $<$ on $X(T)$ (replacing ξ by ν^{\star} and ν by ξ^{\star} if necessary). There is an injective resolution $\nu \rightarrow I_{\bullet}$ in B^{\prime}-mod in which I^{n} is a summand of $\nu \otimes \mathcal{O}\left(U^{\prime}\right)^{\otimes n}$ with weights $>\nu$ if $n>0$. By Theorem A.56, $R^{n} \operatorname{Ind}_{B^{\prime}}^{G} \nu=0$, so the resolution induces an injective resolution $\nabla(\nu)$ $\rightarrow \operatorname{Ind}_{B^{\prime}}^{G} I^{\bullet}$ of $\nabla(\nu)$. Thus, $\operatorname{Ext}_{G}^{\bullet}(\Delta(\xi), \nabla(\nu))$ is the cohomology of the complex

$$
\operatorname{Hom}_{G}\left(\Delta(\xi), \operatorname{Ind}_{B^{\prime}}^{G} I^{\bullet}\right) \cong \operatorname{Hom}_{B^{\prime}}\left(\Delta(\xi), I^{\bullet}\right)
$$

Since $\Delta(\xi)$ is a cyclic B^{\prime}-module with generator of weight $\xi(\nsupseteq \nu)$, this complex has zero cohomology in positive degree. This proves (1).
(2) follows by the same argument.
(3) Assume that M satisfies the Hom and Ext ${ }^{1}$ conditions in (3). Choose minimal ν for which $L(\nu)$ is a composition factor of the socle of M. If $\tau \in X^{+}$satisfies $\tau<\nu$, then form the short exact sequence $0 \rightarrow Q(\tau) \rightarrow$ $\Delta(\tau) \rightarrow L(\tau) \rightarrow 0$, so that the composition factors $L(\sigma)$ of $Q(\tau)$ satisfy $\sigma<\tau$. By the long exact sequence of cohomology, $\operatorname{Ext}{ }_{G}^{1}(L(\tau), M)=0$, since $\operatorname{Hom}_{G}(Q(\tau), M)=0$ and $\operatorname{Ext}_{G}^{1}(\Delta(\tau), M)=0$. Thus, the inclusion $L(\nu) \subseteq M$ extends to an inclusion $\nabla(\nu) \subseteq M$. The hypothesis of (3) still applies to $M / \nabla(\nu)$ and

$$
\operatorname{dim} \operatorname{Hom}_{G}(\Delta(\tau), M / \nabla(\nu))=\operatorname{dim} \operatorname{Hom}_{G}(\Delta(\tau), M)-\delta_{\tau, \nu}
$$

Since X^{+}is countable, we can construct a submodule M^{\prime} of M with a ∇-filtration such that $\operatorname{Hom}_{G}\left(\Delta(\sigma), M / M^{\prime}\right)=0$, for all $\sigma \in X^{+}$. Thus, $M=M^{\prime}$. The converse follows from (1).

The injective envelope $I(\xi)=I(L(\xi)), \xi \in X^{+}$, has the property that $\operatorname{Ext}_{G}^{1}(\Delta(\zeta), I(\xi))=0$, for all $\zeta \in X^{+}$. Also, $I(\xi)$ is a direct summand of $\mathcal{O}(G)=\operatorname{Ind}_{\{e\}}^{G} \mathcal{K}$, so
$\operatorname{dim} \operatorname{Hom}_{G}(\Delta(\zeta), I(\xi)) \leqslant \operatorname{dim} \operatorname{Hom}_{G}(\Delta(\zeta), \mathcal{O}(G))=\operatorname{dim} \Delta(\zeta)<\infty$.
Thus, $I(\xi)$ has a ∇-filtration.

Exercises and notes

Exercises

§A. 1

A.1. Complete the details for the proofs of Examples A.4(2), (3).
A.2. Give the details of the proof of Theorem A.7.
A.3. Let X, Y be affine varieties.
(1) Show that the algebra $\mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y)$ identifies with an algebra of functions on the product set $X \times Y$. (In particular, $\mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y)$ is reduced, i.e., it has no nonzero nilpotent elements). Conclude that (1) of Theorem A. 9 holds.
(2) Prove that there is an identification

$$
\operatorname{Hom}_{\mathcal{K}-\operatorname{alg}}\left(\mathcal{O}(X) \otimes_{\mathcal{K}} \mathcal{O}(Y), \mathcal{K}\right) \leftrightarrow \operatorname{Hom}_{\mathcal{K}-\operatorname{alg}}(\mathcal{O}(X), \mathcal{K}) \times \operatorname{Hom}_{\mathcal{K}-\mathrm{alg}}(\mathcal{O}(Y), \mathcal{K})
$$ of sets. Conclude that (2) and (3) of Theorem A. 9 hold.

(3) Using the universal mapping properties of tensor products, deduce part (4) of Theorem A.9.
(4) Assume that X, Y are both irreducible, and show that $X \times Y$ is irreducible.

Hint: First, assume that $X \subseteq \mathbb{A}^{m}$ (resp., $Y \subseteq \mathbb{A}^{n}$) is the zero set of a prime ideal $\mathfrak{p} \subset \mathcal{K}\left[x_{1}, \ldots, x_{m}\right]$ (resp., $\mathfrak{q} \subset \mathcal{K}\left[y_{1}, \ldots, y_{n}\right]$). If I is the ideal generated by $\mathfrak{p}, \mathfrak{q}$ in $\mathcal{K}[x, y]:=\mathcal{K}\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$, check that $X \times Y$ is the zero set of I in \mathbb{A}^{m+n}. Thus, $X \times Y$ is a closed subvariety of \mathbb{A}^{m+n}. To see that it is irreducible, suppose that $f(x, y), g(x, y) \in \mathcal{K}[x, y]$ are such that $f(x, y) g(x, y)$ vanishes on $X \times Y$, but that $f(x, y)$ and $g(x, y)$ do not vanish on $X \times Y$. Then there exist $a, b \in X$ such that $f(a, y)$, $g(b, y)$ do not vanish on Y. Since Y is irreducible, $f(a, y) g(b, y)$ does not vanish on Y, and there exists a point $c \in Y$ for which $f(a, c) g(b, c) \neq 0$. However, $f(x, c) g(x, c)$ does vanish on X. Now use the irreducibility of X to obtain a contradiction.

§A. 2

A.4. Verify Example A.14(1).
A.5. Let X be a variety over \mathcal{K}. Deduce that $\mathcal{D}:=\{(x, x) \mid x \in X\}$ is a closed subspace of $X \times X$. Show that if $f: X \rightarrow Y$ is a morphism of varieties, then the graph $\Gamma_{f}:=\{(x, f(x)) \mid x \in X\}$ is a closed subvariety of $X \times Y$.
A.6. Assume the notation of Example A.14(2). Show that the map $\iota_{d}: \mathfrak{G}_{d}(M) \rightarrow$ $\mathbb{P}\left(\Lambda^{d} M\right)$ which sends a d-dimensional subspace N to the line $\Lambda^{d} N$ in $\Lambda^{d} M$ is injective. Let v_{1}, \ldots, v_{n} be an ordered basis for M. If $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ is an increasing sequence of integers $i_{j}, 1 \leqslant i_{j} \leqslant n$, put $v_{i}=v_{i_{1}} \wedge \cdots \wedge v_{i_{d}}$. The v_{i} thus form a basis of $\Lambda^{d} M$. Let U_{i} be the open subspace of $\mathbb{P}\left(\wedge^{d} M\right)$ consisting of lines with nonzero v_{i}-component. Prove that $\operatorname{Im} \iota_{d} \cap U_{i}$ is a closed subvariety of $U_{\boldsymbol{i}}$. In this way, identify $\mathfrak{G}_{d}(M)$ as a closed subvariety of $\mathbb{P}\left(\Lambda^{d} M\right)$.
A.7. Verify Example A.14(3).

§A. 3

A.8. (1) Prove assertions (1), (2), (4) of Proposition A. 22 directly. Use Theorem A.15(1) to prove assertion (3) of Proposition A.22.
(2) Suppose that G is an affine algebraic group, and that $\mathcal{X}=\left\{X_{i}\right\}_{i \in I}$ is a family of irreducible (but not necessarily) closed subspaces of G, each containing the identity element e. Show that the subgroup H of G generated by the members of \mathcal{X} is closed and connected.

Hint: We can assume, enlarging the family if necessary, that if $X \in \mathcal{X}$, then $X^{-1} \in \mathcal{X}$. Use Theorem A.15(1) to show that there is a sequence i_{1}, \ldots, i_{d} of elements in I (with possible repetitions) such that $H=X_{i_{1}} \cdots X_{i_{d}}$. Conclude also that H is closed.
(3) Use (2) above to prove Proposition A.22(5).

Hint: First show that the normal subgroup $K:=\left(G^{\circ}, G\right)$ is closed and connected by using (2) above with \mathcal{X} consisting of the irreducible
subsets $X_{g}:=\left\{g x g^{-1} x^{-1} \mid x \in G^{\circ}\right\}$. Finally, show that K has finite index in (G, G), so that (G, G) is also closed. For this, show the image of (G, G) in the quotient group G / K is finite. (This requires a theorem of Baer: if N is a subgroup of M such that the set of commutators $(x, y)=x y x^{-1} y^{-1}, x \in M, y \in N$, is finite, then the subgroup (M, N) they generate is finite. See [24, p. 60].)
A.9. (1) Show that the multiplication $m: G \times G \rightarrow G$ has differential $d m: \mathfrak{g} \oplus \mathfrak{g}$ $\rightarrow \mathfrak{g}$ sending (x, y) to $\mathrm{x}+\mathrm{y}$, for any $\mathrm{x}, \mathrm{y} \in \mathfrak{g}$.
(2) Let $\iota: G \rightarrow G$ be the morphism taking $x \in G$ to $x^{-1} \in G$. Show that $d \iota: \mathfrak{g} \rightarrow \mathfrak{g}$ takes $x \in \mathfrak{g}$ to -x .
(3) Fix $g \in G$, consider the inner automorphism Int $g: G \rightarrow G, x \mapsto g x g^{-1}$. Show that $d(\operatorname{Int} g): \mathfrak{g} \rightarrow \mathfrak{g}$ is the restriction of the automorphism of $\mathcal{O}(G)^{*}$ given by $u \mapsto g u g^{-1}$, for $u \in \mathcal{O}(G)^{*}$ (and $g \in G$ is canonically regarded as an element of $\left.\mathcal{O}(G)^{*}\right)$. The automorphism $d(\operatorname{Int} g)$ of \mathfrak{g} is usually denoted by $\operatorname{Ad} g$. In this way, we obtain a morphism Ad: $G \rightarrow \operatorname{Aut}(\mathfrak{g})$. Prove that $d(\operatorname{Ad})=\operatorname{ad}: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g}), \operatorname{ad} x(y)=[x, y]$.
A.10. Let A be an (associative) algebra over k and let V be a finite dimensional A module. Prove that $\mathrm{Aut}_{A}(V)$ is an affine algebraic group. Show that $\operatorname{Aut}_{A}(V)$ is a dense subset of the affine variety $\operatorname{End}_{A}(V)$. Hence, $\operatorname{dim~Aut}_{A}(V)=$ $\operatorname{dim} \operatorname{End}_{A}(V)$.
A.11. Form the $2 m \times 2 m$ matrix $J=\left(\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right)$, where I_{m} is the $m \times m$ identity matrix. Let G be the set of all $2 m \times 2 m$ invertible matrices g such that $g J g^{\top}=J$. Then G is a semisimple, simply connected group (the symplectic group). Illustrate the various parts of Theorems A. 33 and A.34; see $\S 4.6$ and Example A. 36 for related results for general linear groups.
A.12. Let G be an affine algebraic group over \mathcal{K}. Prove that if $x \in G$, then the variety G is smooth at x. If G is connected, conclude that the integral domain $\mathcal{O}(G)$ is algebraically closed in its fraction field $\mathcal{K}(G)$.

§A. 4

A.13. Explicitly describe the parabolic subgroups containing a fixed Borel subgroup for the symplectic groups introduced in Exercise A.11.
A.14. Prove that, for $I, J \subseteq \Pi$, we have $P_{I} \cap P_{J}=P_{I \cap J}$.

§A. 5

A.15. Let M be a rational module for a torus T. Prove the decomposition (A.5.1).

Hint: First show that $X(T)$ forms a basis for $\mathcal{O}(T)$, and observe that each $\chi \in X(T)$ is a group-like element in the Hopf algebra $\mathcal{O}(T)$. Next, let $\tau_{M}: M$ $\rightarrow M \otimes \mathcal{O}(T)$ be the structure map on M. For $v \in M$, write $\tau_{M}(v)=\sum v_{i} \otimes \chi_{i}$, where $\chi_{i} \in X(T)$ are distinct. Use the identity $\left(\tau_{M} \otimes 1\right) \tau_{M}=(1 \otimes \Delta) \tau_{M}$ to conclude that $v_{i} \in M_{\chi_{i}}$.
A.16. Prove Theorem A. 45 .

Hint: Let M be a finite dimensional submodule of $\mathcal{O}(G)$ containing a set of algebra generators. Show that the resulting representation $\rho: G \rightarrow$ GL (M) maps G isomorphically onto its image H, which is a closed subgroup of GL(M).
A.17. Let H be a closed subgroup of an affine algebraic group G. Given a rational H-module N, we regard $\mathcal{O}(G) \otimes N$ as a right H-module, by putting

$$
(f \otimes w) \cdot h=f \cdot h \otimes h^{-1} \cdot w, \quad f \in \mathcal{O}(G), w \in N, h \in H
$$

where $f \cdot h \in \mathcal{O}(G)$ is defined by $(f \cdot h)(x)=f(h x), x \in G$. This right action of H commutes with the left action of G, given by $g \cdot(f \otimes w)=(g \cdot f) \otimes w$. Thus, the space $(\mathcal{O}(G) \otimes N)^{H}$ of H-fixed points is a rational G-module.
(1) Define Ev: $(\mathcal{O}(G) \otimes N)^{H} \rightarrow N$ by $\operatorname{Ev}\left(\sum f_{i} \otimes w_{i}\right)=\sum f_{i}(e) w_{i}$. Show that Ev defines an H-module morphism Ev: $\operatorname{Res}_{H}^{G}(\mathcal{O}(G) \otimes N)^{H} \rightarrow N$.
(2) Let M be a rational G-module and let $a: \operatorname{Res}_{H}^{G} M \rightarrow N$ be an H-module morphism. Show there is a unique G-module morphism $A: M \rightarrow(\mathcal{O}(G) \otimes$ $N)^{H}$ such that $\operatorname{Ev} \circ A=a$.
(3) Conclude that the right adjoint $\operatorname{Ind}_{H}^{G}: H$-mod $\rightarrow G$-mod to $\operatorname{Ind}_{H}^{G}$ exists, and that Ev is the corresponding adjunction morphism $\operatorname{Res}_{H}^{G} \circ \operatorname{Ind}_{H}^{G} \rightarrow$ $\mathrm{id}_{H-\text { mod }}$.
(4) Using standard properties of adjunction maps, prove Theorem A.53(2), (3).
A.18. Let G be a closed, connected, solvable subgroup of GL(M), for some finite dimensional vector space M. Prove the Lie-Kolchen theorem: G stabilizes a complete flag in M. Conversely, show that if G is a subgroup of GL(M) which stablizes a complete flag in M, then G is solvable.

Hint: It suffices to show that G has a common eigenvector in M. Argue by induction on the $\operatorname{dim} G+\operatorname{dim} M$. We can assume that M is simple. By induction, the commutator subgroup G^{\prime} has a common eigenvector in M. Since G^{\prime} is a normal subgroup of G, if $g \in G$ and if $v \in M$ is a G^{\prime}-eigenvector, then $g v$ is also an eigenvector for G^{\prime}. Because M is finite dimensional, there are only a finite number of such eigenvalues (viewed as characters $G^{\prime} \rightarrow \mathbb{G}_{m}$). Now an elementary argument, using exterior powers, step (1) of Exercise A.20(1), and a continuity argument involving the connectedness of G shows that G, in fact, stabilizes an eigenspace for G^{\prime}. By induction, we can thus assume that M is itself an eigenspace for G^{\prime}. Every element in G^{\prime} has determinant 1 , so, since the elements of G^{\prime} are scalar operators, G^{\prime} is finite, whence $G^{\prime}=\{e\}$ is trivial. Therefore, G consists of a commutating family of linear transformations, which thus has a common eigenvector. An alternative and much more sophisticated proof can be based on Theorem A. 30 and Example A.14(3).
A.19. Suppose that M is a rational G-module and that $v \in M_{\xi}$ is a root vector, for some $\xi \in X(T)$. Let $\alpha \in \Phi$. Show that, for $x \in U_{\alpha}, x \cdot v=v+\sum_{\zeta} v_{\zeta}$, where $v_{\zeta} \in M_{\zeta}$ and $\zeta=\xi+r \alpha$, for some positive integer r.

Hint: The conjugation action of T on U_{α} induces an action of T as a group of automorphisms of the coordinate algebra $\mathcal{O}\left(U_{\alpha}\right)$. Then $\mathcal{O}\left(U_{\alpha}\right)$ is a polynomial algebra in a variable u satisfying $t \cdot u=\alpha(t)^{-1} u$.
A.20. A key step in proving the existence of quotient groups (see Example A.28(3)) is the following fundamental theorem: If H is a closed subgroup of an affine algebraic group G, then there exists a (finite dimensional) rational representation $\rho: G \rightarrow \mathrm{GL}(M)$ such that H (and its Lie algebra \mathfrak{h}) is the stabilizer of a line $L \subseteq M$. We sketch a proof of this result for H in the following steps.
(1) Let M be a finite dimensional vector space over \mathcal{K}, and let $\psi: M \rightarrow M$ be an invertible linear transformation, extending to an invertible \mathcal{K}-algebra homomorphism $\psi: \Lambda(M) \rightarrow \Lambda(M)$. Suppose that N is a subspace of dimension n of M. Prove that $\psi(N)=N$ if and only if $\psi\left(\Lambda^{n} N\right)=\Lambda^{n} N$.
(2) Now let I be the ideal in $\mathcal{O}(G)$ consisting of all functions which vanish on H. Because $\mathcal{O}(G)$ is noetherian, there exist $f_{1}, \ldots, f_{m} \in I$ which generate the ideal I. Let M be the finite dimensional rational G-submodule of $\mathcal{O}(G)$ generated by f_{1}, \ldots, f_{m} and set $N=I \cap M$. Prove that $g \in G$ belongs to H if and only if $g \cdot N=N$. Now use (1) to complete the proof.
Remarks: (a) Although we have sketched the argument above for H, it can be extended to include the action of the Lie algebra. Of course, if $\phi: M \rightarrow M$ is a linear transformation, the appropriate action of ϕ on $\Lambda^{n} M$ in the Lie algebra situation is given by $\phi\left(v_{1} \wedge \cdots \wedge v_{n}\right)=\sum_{i} v_{1} \wedge \cdots \wedge v_{i-1} \wedge \phi\left(v_{i}\right) \wedge v_{i+1} \wedge \cdots \wedge v_{n}$, for $v_{1}, \ldots, v_{n} \in M$.
(b) Suppose that $G \subseteq \mathrm{GL}(M)$, and let $\mathbb{P}(M)=\mathfrak{G}_{1}(M)$ be the corresponding projective space. (See Example A.14(2).) It can be proved that the quotient variety G / H is isomorphic to the orbit \mathfrak{O} of $L \in \mathbb{P}(M)$.
A.21. Let G be an affine algebraic group and let B be a Borel subgroup of G. Prove that the quotient variety G / B is complete.

Hint: It can be assumed that B has maximal dimension among all Borel subgroups of G. By Theorem A. 45 (see Exercise A.16) and Exercise A.20, it can be assumed that (i) $G \subseteq \mathrm{GL}(M)$, for some finite dimensional vector space M, and (ii) B (resp., its Lie algebra) is the stablizer in G (resp., the Lie algebra of G) of a line $M_{1} \subseteq M$. Then B stablizes a complete flag $M_{1} \subset M_{2} \subset \cdots \subset M_{n}=M$ of M; see Exercise A.18. Let x be the point defined by this flag in the complete flag variety $X:=\mathfrak{F}_{\text {cpl }}(M)$. Let $\mathfrak{D}_{x}:=G \cdot x$ be the G-orbit of x for the regular action of G on X. Using the Remark (b) to Exercise A.20, it can be shown that $G / B \cong \mathfrak{O}_{x}$. By Theorem A.29(2) and Exercise A.18, \mathfrak{O}_{x} is a minimal orbit, and hence \mathfrak{O}_{x} is closed in X. Therefore, \mathfrak{O}_{x} is complete by Lemma A.18(1).
A.22. We sketch a proof of Theorem A.46.
(1) For $\alpha \in \Pi$, set $Q_{\alpha}=P_{\Pi \backslash\{\alpha\}}$ (a maximal parabolic subgroup). By Exercise A.20, there exists a rational G-module having a line $\mathcal{K} v$ stabilized by Q_{α}. Assume that v has weight ξ. Show that ξ is fixed by all s_{β}, $\beta \in \Pi \backslash\{\alpha\}$, so that $\xi=m \varpi_{\alpha}$, for some positive integer m, where ϖ_{α} is the fundamental weight corresponding to α. Let M^{\prime} be the submodule
of M generated by v. Prove that M^{\prime} has a simple quotient $L\left(m \varpi_{\alpha}\right)$ of highest weight $m \varpi_{\alpha}$.
(2) Let M be as in (1), and choose a basis v_{1}, \ldots, v_{n} of M with $v=v_{1}$. For $g \in G$, write $g \cdot v_{j}=\sum_{i} a_{i, j}(g) v_{j}$. If $f:=a_{1,1}$, then $b \cdot f=\xi(b) f$, for $b \in B$.
(3) Define $f \in \mathcal{O}\left(U^{\prime} B\right)$ by $f(u b)=\varpi_{\alpha}(b)$. Regarding $f \in \mathcal{K}(G)$, we have $f^{d} \in \mathcal{O}(G)$ by (4). Hence, $f \in \mathcal{O}(G)$ using Exercise A.12. Conclude that G has a simple representation of highest weight ϖ_{α}.
(4) Let $\xi=\sum_{\alpha \in \Pi} n_{\alpha} \varpi_{\alpha} \in X^{+}$. Let

$$
M(\xi):=\bigotimes L\left(\varpi_{\alpha}\right)^{\otimes n_{\alpha}}
$$

Show that M has a B-fixed line of weight ξ, and conclude that G has a simple rational module of highest weight ξ.
A.23. Using the definition $\nabla(\xi)=\operatorname{Ind}_{B}^{G} \xi$, show that $\nabla(\xi)$ has simple socle isomorphic to $L(\xi)$, and hence $\Delta(\xi)$ has simple top isomorphic to $L(\xi)$.

§A. 6

A.24. Let $F: G \rightarrow G$ be a Frobenius morphism for the affine algebraic group G. Prove the following assertions:
(1) If H is an F-stable closed subgroup of G, then $\left.F\right|_{H}: H \rightarrow H$ is also a Frobenius morphism. If, in addition, H is normal in G, then the homomorphism $\bar{F}: G / H \rightarrow G / H$ induced by F is also a Frobenius morphism.
(2) The morphism F is bijective. In other words, F is an isomorphism of G as a group.

Hint: : The injectivity is proved by reducing to the case of a standard Frobenius morphism. Then the surjectivity is trivial if G is finite, and it follows from dimension considerations if G is connected. The general case is reduced to these two extreme cases by using (1).
A.25. Prove that, for a Frobenius morphism $F: G \rightarrow G$, the set G^{F} of F-invariants of G is a finite subgroup of G. Moreover, if $\mathcal{K}=\overline{\mathbb{F}}_{q}$ is the algebraic closure of \mathbb{F}_{q}, then $G=\bigcup_{i \geqslant 1} G^{F^{i}}$. In particular, in this case, every element in G is of finite order.
A.26. Prove the assertions of Example A.51(2). Here the unitary group is defined with respect to the Hermitian form on the n-dimensional $\mathbb{F}_{q^{2}}$-vector space V defined by $\left(\sum_{i} a_{i} v_{i}, \sum_{i} b_{i} v_{i}\right)=\sum_{i} a_{i} b_{i}^{q}$, where $\left(v_{1}, \ldots, v_{n}\right)$ is the basis of V through which the group $\mathrm{GL}_{n}\left(\mathbb{F}_{q^{2}}\right)$ acts on V.
A.27. Prove the Lang-Steinberg theorem (Theorem A.50) in the following steps:
(1) Suppose that $F: G \rightarrow G$ is a Frobenius morphism. Show that if F is standard, then its differential $d F: \mathfrak{g} \rightarrow \mathfrak{g}$ is the zero map. Prove that, in general, $d F: \mathfrak{g} \rightarrow \mathfrak{g}$ is a nilpotent map in the sense that $(d F)^{r}:=$ $\underbrace{d F \circ d F \circ \cdots \circ d F}_{r}=0$, for large r.
(2) Fix $x \in G$, consider the morphism (of varieties) $\theta_{x}: G \rightarrow G, g \mapsto$ $g^{-1} x F(g) x^{-1}$. Prove this morphism is dominant by showing that its differential $d \theta_{x}: \mathfrak{g} \rightarrow \mathfrak{g}$ is an isomorphism. Deduce that the G-orbit \mathfrak{O}_{x} of x under the right G-action $x \triangleleft g=g^{-1} x F(g)$ is dense in G.

Hint: We have $d \theta_{x}=-\mathrm{id}_{\mathfrak{g}}+\operatorname{Ad} x \circ d F$, by Exercise A.9. Verify that $(\operatorname{Ad} x \circ d F)^{r}=\operatorname{Ad} y \circ(d F)^{r}$, for $r \geqslant 1$ with $y=x F(x) \cdots F^{r-1}(x)$. Thus, $\left(d \theta_{x}\right)^{p^{t}}=(-1)^{p} \mathrm{id}_{\mathfrak{g}}$, for large t, by the nilpontency of $d F$.
(3) Show that, for any $x \in G$, the orbit \mathfrak{O}_{x} is closed in G, and hence equals G. In particular, this is the case if $x=e$, giving the theorem.

Hint: All orbits \mathfrak{O}_{x} have the same dimension $(=\operatorname{dim} G)$ and so must be closed in G, by Theorem A.29(2).
A.28. Let $F: G \rightarrow G$ be a Frobenius morphism of an affine algebraic group G. Prove that $\mathcal{O}(\operatorname{Ker} F)$ (hence $\left.\mathcal{O}(\operatorname{Ker} F)^{*}\right)$ is finite dimensional.

Hint: Clearly, we have $\mathcal{O}\left(\operatorname{Ker} F^{i+1}\right) \rightarrow \mathcal{O}\left(\operatorname{Ker} F^{i}\right)$, for any positive integer i. Hence, we can assume that F is standard.

§A. 8

A.29. (1) Prove that, given dominant weights ξ and ν, if $\operatorname{Ext}_{G}^{n}(\Delta(\xi), \Delta(\nu)) \neq 0$, for some $n>0$, then $\nu>\xi$. Similarly, show that if $\operatorname{Ext}_{G}^{n}(\nabla(\nu), \nabla(\xi)) \neq 0$, for some $n>0$, then $\nu>\xi$.
(2) Let $\Lambda \subset X^{+}$be a finite ideal, so that $\zeta \leqslant \xi \in \Lambda \Longrightarrow \zeta \in \Lambda$. Let $\xi \in X^{+}$, and let $I(\xi)_{\Lambda}$ be the largest submodule of the injective envelope $I(\xi)$ of $L(\xi)$ such that all the composition factors $L(\zeta)$ of $I(\xi)_{\Lambda}$ satisfy $\zeta \in \Lambda$. Prove that $I(\xi)_{\Lambda}$ has a ∇-filtration.

Notes

§§A.1-A.2: We have adopted a rather elementary approach. All of the results can be found in standard textbooks, e.g., Hartshorne [147, Ch. 1]. AtiyahMacDonald $[\mathbf{C A}]$ collects together in a concise way the relevant commutative algebra, often in the form of exercises.

A proper discussion of algebraic geometry would include the theory of schemes. See $[\mathbf{1 4 7}]$ for this as well.
$\S \S \mathbf{A . 3 - A . 4 : ~ T h e r e ~ a r e ~ m a n y ~ g o o d ~ r e f e r e n c e s ~ t o ~ t h e ~ t h e o r y ~ o f ~ a f f i n e ~ a l g e - ~}$ braic groups. Borel [24] and Springer [280] are classics. The treatise [56] by Demazure-Gabriel takes a functorial points of view, which is very useful for studying groups over fields of positive characteristic. These books present most of the needed algebraic geometry from scratch, paying attention to varieties defined over non-algebraically closed fields, a topic we have largely ignored above. Borel's book stops short of presenting the full classification of reductive groups over \mathcal{K}. This topic is completely covered by Springer [280, Ch. 9-10] in terms of the root datum. At the end of $\S A .3$, we have stated the main result, but in the special case of semisimple groups.

See also Steinberg $[\mathbf{2 8 5}]$ and Geck $[\mathbf{1 2 4}]$ for other readable accounts. We have followed $[\mathbf{2 8 5}, \S 2.9]$ for Definition A.11. An approach via the theory of Chevalley groups appears in [283]. Many of these results are also nicely described in [132].
§A.5: The elementary theory of rational representations for an affine algebraic group is contained in $[\mathbf{2 8 0}$, Ch. 2]. We have followed [158, §31.4] for the proof of the existence of simple modules of a given highest weight sketched in Exercise A.22.
$\S \S A .6-\mathbf{A . 8 :}$ A standard reference for almost all of the material in these sections, together with historical remarks, is the book by Jantzen [165].

The easy proof of the Lang-Steinberg theorem presented here is due to Müller [226], while the "standard" proof using tangent spaces contained in Exercise A. 27 can be found in, for example, Borel $[\mathbf{2 4}]$ and Springer $[\mathbf{2 8 0}]$ (a "classical" proof, modified so that it applies to the generalized definition of Frobenius morphism, is sketched in Exercise A.27). For another discussion of Frobenius morphisms (from a slightly different point of view), see [284, §11].

The tensor product theorem was first proved by Steinberg in [282]. He also obtained there the connection between the rational simple G-modules and the simple G^{F}-modules over \mathcal{K}. The tensor product theorem is now usually proved using "infinitesimal methods" involving $\operatorname{Ker} F$ by means of an argument first given by Cline-Parshall-Scott [44].

For the discussion of the Euler characteristic operator, we have followed the elegant treatment given by Donkin [82].

The modules $\Delta(\xi)$ are often called Weyl modules in the literature. These can also be obtained by "reduction mod" p from the complex simple modules for the associated complex Lie algebra, using a minimal lattice, as explained in Steinberg [283]. In turn, $\nabla(\xi)$ arises from a maximal lattice. In fact, these assertions follow easily once the elementary properties of $\nabla(\xi)$ in \S A. 7 have been proved.

More generally, the study of the standard modules $\Delta(\xi)$ and costandard modules $\nabla(\xi)$ can be placed in the context of "Borel-Weil-Bott theory" for reductive groups over fields of arbitrary characteristic. From this point of view, the isomorphism (A.7.6) is just a special case of Serre duality for the cohomology of coherent sheaves on G / B.

The problem of determining the characters of the simple modules $L(\xi)$ in positive characteristics is a big unsolved problem. For a survey of progress up to 2004, together with many references, see Tanisaki $[\mathbf{2 9 1}]$. When $G=\mathrm{SL}_{n}(\mathcal{K})$, the problem of determining the characters of the simple modules can be reduced (when $p \geqslant n$) to a concrete problem (in the spirit of almost split sequences studied in Chapter 2) involving Specht modules for symmetric groups [235, Th. 4.2].

Quantum linear groups through coordinate algebras

One can approach quantum groups by means of their coordinate algebras, which are (usually noncommutative and noncocommutative) Hopf algebras obtained by deforming the coordinate algebras of affine algebraic groups as studied in Appendix A. To obtain quantum linear groups - deformations of classical general or special linear groups - we must begin with the notion of a quantum matrix space. A particularly interesting property of a quantum matrix space in our context is that it has a coordinate algebra which, just like the coordinate algebra of a classical matrix space, is a graded algebra whose homogeneous components are coalgebras of finite rank over the ground ring. Moreover, the quantum Schur algebras discussed in Chapter 9 can be realized as the dual algebras of these homogeneous components. This appendix gives a brief account of this theory of quantum linear groups, with applications of this point of view to quantum Schur algebras.

Throughout this appendix, let \mathcal{R} be a commutative ring over which all the structures we will consider are defined. We motivate the discussion by reviewing the classical case from Appendix A.

Fix a positive integer n. The set M_{n} of $n \times n$ matrices over \mathcal{R} can be viewed as an affine n^{2}-space defined over \mathcal{R} with coordinate algebra $A_{n}:=\mathcal{O}\left(\mathrm{M}_{n}\right)=\mathcal{R}\left[x_{1,1}, \ldots, x_{1, n}, x_{2,1}, \ldots, x_{n, n}\right]$, the (commutative) polynomial algebra in n^{2} generators $x_{i, j}, i, j=1, \ldots, n$. As an \mathcal{R}-module, A_{n} is free with monomials in the $x_{i, j}$ as a basis. Matrix multiplication makes M_{n}
into a monoid, and A_{n} carries a bialgebra structure with comultiplication Δ and counit ε induced by the matrix multiplication and the identity matrix in M_{n}. In fact, the comultiplication and counit can be expressed in terms of the generators $x_{i, j}$ as follows:

$$
\Delta\left(x_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j} \text { and } \varepsilon\left(x_{i, j}\right)=\delta_{i, j}
$$

Let Ω be a free \mathcal{R}-module of rank n with basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, by means of which the multiplicative monoid M_{n} acts from the left (resp., right) on Ω. Thus, Ω is a left (resp., right) M_{n}-module. This module structure can be interpreted in terms of a right (resp., left) A_{n}-comodule structure via the structure map $\tau: \Omega \rightarrow \Omega \otimes A_{n}$ (resp., $\rho: \Omega \rightarrow A_{n} \otimes \Omega$) given by

$$
\tau\left(\omega_{j}\right)=\sum_{i} \omega_{i} \otimes x_{i, j} \quad\left(\text { resp., } \rho\left(\omega_{i}\right)=\sum_{j} x_{i, j} \otimes \omega_{j}\right)
$$

The actions of the monoid M_{n} on Ω extend to actions of M_{n} on the tensor algebra $\mathrm{T}(\Omega)$, symmetric algebra $\mathrm{S}(\Omega)$, and exterior algebra $\Lambda(\Omega)$. All of these actions can be interpreted in terms of A_{n}-comodules with structure maps obtained by extending τ (resp., ρ) to algebra homomorphisms.

Also, A_{n} is naturally graded by the total degrees of the monomials, and Δ maps a monomial to a sum of tensor products of monomials with the same total grade. Let $A_{n}(r)$ be the homogeneous component of A_{n} of grade r; that is, let $A_{n}(r)$ be the span of all monomials of total degree r. Thus, $A_{n}(r)$ is a free \mathcal{R}-module of rank $\binom{n^{2}+r-1}{r}$, and the above discussion implies that $A_{n}(r)$ is a subcoalgebra of A_{n}. The dual algebra $A_{n}(r)^{*}$ (see Proposition 5.4) of $A_{n}(r)$ is the (classical) Schur algebra $S(n, r)$.

B.1. Quantum linear algebra

As in $\S 5.1$, let Bialg $_{\mathcal{R}}$ be the category of bialgebras over \mathcal{R}. We will call an object M in the opposite category $\left(\operatorname{Bialg}_{\mathcal{R}}\right)^{\mathrm{op}}$ a quantum matrix space if the corresponding object in Bialg $_{\mathcal{R}}$, usually called the coordinate algebra of M and denoted $\mathcal{O}(M)$, is generated, as an algebra, by n^{2} generators $x_{i, j}$ $(i, j=1, \ldots, n)$, for some $n \in \mathbb{N}$, with coalgebra structure given by

$$
\Delta\left(x_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j} \text { and } \varepsilon\left(x_{i, j}\right)=\delta_{i, j}
$$

The most interesting quantum matrix spaces arise from the deformations of the classical matrix spaces M_{n} of all $n \times n$-matrices with entries in \mathcal{R}. We now construct the quantum analogue $\mathrm{M}_{n, v}$ of M_{n} with a single parameter
$v \in \mathcal{R}^{\times}$, the multiplicative group of invertible elements in \mathcal{R}. We also let $q=v^{2}$, whose role will be clear in \S B.3. ${ }^{1}$

To obtain $\mathrm{M}_{n, v}$, we define, as the first step, an algebra $A_{n, v}$ as the candidate of the coordinate algebra $\mathcal{O}\left(\mathrm{M}_{n, v}\right)$ of $\mathrm{M}_{n, v}$. Let $A_{n, v}$ be the associative algebra over \mathcal{R} with n^{2} generators $\chi_{i, j}, i, j=1, \ldots, n$, and relations

$$
\begin{align*}
x_{k, i} x_{k, j} & =v \chi_{k, j} x_{k, i}, & & \text { for all } i>j ; \\
x_{k, i} \chi_{l, i} & =v \chi_{l, i} \chi_{k, i}, & & \text { for all } k>l ; \\
x_{k, i} \chi_{l, j} & =x_{l, j} x_{k, i}, & & \text { if } k>l \text { and } i<j ; \tag{B.1.1}\\
x_{k, i} \chi_{l, j}-x_{l, j} x_{k, i} & =\left(v-v^{-1}\right) x_{l, i} x_{k, j}, & & \text { if } k>l \text { and } i>j .
\end{align*}
$$

The relations (B.1.1) of $A_{n, v}$ can be interpreted in terms of a YangBaxter matrix (i.e., the matrix of a Yang-Baxter operator, which is a solution to the Yang-Baxter equation (B.1.3) below). Again let Ω be a free \mathcal{R}-module of rank n with basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. Consider the \mathcal{R}-module homomorphism $\mathscr{R}_{v}: \Omega \otimes \Omega \rightarrow \Omega \otimes \Omega$ defined by

$$
\mathscr{R}_{v}\left(\omega_{i} \otimes \omega_{j}\right)= \begin{cases}\omega_{i} \otimes \omega_{j}, & \text { for } i<j \tag{B.1.2}\\ v \omega_{i} \otimes \omega_{i}, & \text { for } i=j \\ \omega_{i} \otimes \omega_{j}+\left(v-v^{-1}\right) \omega_{j} \otimes \omega_{i}, & \text { for } i>j\end{cases}
$$

It is easy to check that the transformation $\mathscr{R}=\mathscr{R}_{v}$ is a solution of the Yang-Baxter equation

$$
\begin{equation*}
\mathscr{R}_{1,2} \circ \mathscr{R}_{1,3} \circ \mathscr{R}_{2,3}=\mathscr{R}_{2,3} \circ \mathscr{R}_{1,3} \circ \mathscr{R}_{1,2}, \tag{B.1.3}
\end{equation*}
$$

where $\mathscr{R}_{s, t}: \Omega \otimes \Omega \otimes \Omega \rightarrow \Omega \otimes \Omega \otimes \Omega$ is the application of an \mathcal{R}-module homomorphism $\mathscr{R}: \Omega \otimes \Omega \rightarrow \Omega \otimes \Omega$ to the s th and t th factors, for $1 \leqslant s<$ $t \leqslant 3$, viewed as $\Omega \otimes \Omega$.

Let R_{v} be the matrix of the \mathcal{R}-module homomorphism \mathscr{R}_{v} with respect to the basis $\left\{\omega_{i} \otimes \omega_{j} \mid i, j=1, \ldots, n\right\}$ ordered lexicographically. Also, let X be the $n \times n$ matrix $\left(\chi_{i, j}\right)$, and let \mathbf{I}_{n} be the $n \times n$ identity matrix. Form the $n^{2} \times n^{2}$ matrices $^{2} \mathrm{X}_{1}=\mathrm{X} \otimes \mathrm{I}_{n}$ and $\mathrm{X}_{2}=\mathrm{I}_{n} \otimes \mathrm{X}$.

Proposition B.1. With the above conventions, the relations (B.1.1) can be stated in matrix form as

$$
\begin{equation*}
\mathrm{R}_{v} \mathrm{X}_{1} \mathrm{X}_{2}=\mathrm{X}_{2} \mathrm{X}_{1} \mathrm{R}_{v} \tag{B.1.4}
\end{equation*}
$$

The easy proof of Proposition B. 1 is left for Exercise B.1.
The matrix form (B.1.4) sometimes is useful in deducing various identities in $A_{n, v}$. See, for example, the proof of Lemma B.11.

[^5]We summarize certain basic properties of the algebra $A_{n, v}$ as follows.
Theorem B.2. (1) $A_{n, v}$ is a free \mathcal{R}-module with basis

$$
\begin{equation*}
\mathcal{B}=\left\{\prod_{i, j} x_{i, j}^{t_{i, j}} \mid t_{i, j} \in \mathbb{N}\right\} \tag{B.1.5}
\end{equation*}
$$

where the products are formed with respect to any fixed ordering of the $\chi_{i, j}$. If \mathcal{R} is an integral domain, then $A_{n, v}$ is also an integral domain.
(2) $A_{n, v}$ is a \mathbb{Z}-graded algebra with the homogeneous component $A_{n, v}(r)$ of grade r spanned by all monomials $\prod_{i, j} \chi_{i, j}^{t_{i, j}}$ with $\sum_{i, j} t_{i, j}=r$. Thus, $A_{n, v}(r)$ is a free \mathcal{R}-module of $\operatorname{rank}\binom{n^{2}+r-1}{r}$.
(3) $A_{n, v}$ is a bialgebra with comultiplication Δ and counit ε defined on generators by

$$
\begin{equation*}
\Delta\left(x_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j} \quad \text { and } \quad \varepsilon\left(x_{i, j}\right)=\delta_{i, j} \tag{B.1.6}
\end{equation*}
$$

(4) The homogeneous components $A_{n, v}(r)$ are subcoalgebras of $A_{n, v}$.

Proof (sketch). The proof of (1) involves an application of the Bergman basis theorem (see [20]). Assertion (2) is clear from the defining relations - all of the relations are homogeneous (and of grade 2). The proof of (3) is routine, by checking that the $\Delta\left(\chi_{i, j}\right)$ satisfy the relations satisfied by the $x_{i, j}$ (Exercise B.2). Now (4) is obvious from the definition of Δ.

We can standardize the choice of the basis \mathcal{B} by using the lexicographic ordering on the generators $\chi_{i, j}$. Thus, $\chi_{i, k} \leqslant \chi_{j, l}$ if $i<j$, or if $i=j$ and $k \leqslant l$. A monomial in the $x_{i, j}$ is called standard if its factors are arranged (perhaps weakly) increasingly from left to right with respect to this ordering. By Theorem B.2, the standard monomials form a basis for $A_{n, v}$.
Definition B.3. The basis of $A_{n, v}$ (resp., $\left.A_{n, v}(r)\right)$ consisting of standard monomials is called the standard basis of $A_{n, v}$ (resp., $A_{n, v}(r)$), and it is denoted $\boldsymbol{B}_{n, v}$ (resp., $\boldsymbol{B}_{n, v}(r)$).

The standard basis can be indexed by various sets occurring in Chapter 9 (and earlier). To do this, we recall some notational conventions. For any positive integer r, let $I(n, r)$ be the set of sequences of integers $\boldsymbol{i}=\left(i_{1}, \ldots, i_{r}\right)$ with $1 \leqslant i_{k} \leqslant n$, for all k. For $\boldsymbol{i}=\left(i_{1}, \ldots, i_{r}\right)$ and $\boldsymbol{j}=\left(j_{1}, \ldots, j_{n}\right)$ in $I(n, r)$, we let

$$
x_{i, j}=x_{i_{1}, j_{1}} \cdots x_{i_{r}, j_{r}} \in A_{n, v}(r)
$$

We may also define a (right) action of the symmetric group $\mathfrak{S}=\mathfrak{S}_{r}$ on $I(n, r)$ by letting

$$
\boldsymbol{i} w=\left(i_{w(1)}, \ldots, i_{w(r)}\right), \quad \text { for } \boldsymbol{i} \in I(n, r), w \in \mathfrak{S}_{r}
$$

Let $\Lambda(n, r)$ be the set of compositions of r into n parts, and, for $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$ (thus, $\lambda_{i} \geqslant 0$ and $\sum \lambda_{i}=r$), define

$$
\boldsymbol{i}_{\lambda}=(\underbrace{1, \ldots, 1}_{\lambda_{1}}, \underbrace{2, \ldots, 2}_{\lambda_{2}}, \ldots, \underbrace{n, \ldots, n}_{\lambda_{n}}) \in I(n, r) .
$$

Let \mathfrak{S}_{λ} be the stablizer of \boldsymbol{i}_{λ} in \mathfrak{S} (which coincides with the parabolic subgroup \mathfrak{S}_{λ} of \mathfrak{S} defined in $\S 9.1$), and let ${ }^{\lambda} \mathfrak{S}$ be the set of shortest right coset representatives of \mathfrak{S}_{λ} in \mathfrak{S}. Clearly, every element in $I(n, r)$ can be uniquely expressed as $\boldsymbol{i}_{\lambda} w$, for $\lambda \in \Lambda(n, r)$ and $w \in{ }^{\lambda} \mathfrak{S}$.

For $\lambda, \mu \in \Lambda(n, r)$, let ${ }^{\lambda} \mathfrak{S}^{\mu}$ denote the set of shortest $\left(\mathfrak{S}_{\lambda}, \mathfrak{S}_{\mu}\right)$-double coset representatives. An element in $\boldsymbol{B}_{n, v}(r)$ can be uniquely expressed as $\chi_{i_{\lambda}, i_{\mu} w^{-1}}$, for $\lambda, \mu \in \Lambda(n, r)$ and $w \in{ }^{\lambda} \mathfrak{S}^{\mu}$, and conversely, any element of the form $\chi_{i_{\lambda}, i_{\mu} w^{-1}}$, for $\lambda, \mu \in \Lambda(n, r)$ and $w \in{ }^{\lambda} \mathfrak{S}^{\mu}$, belongs to $\boldsymbol{B}_{n, v}(r)$. This index system for $\boldsymbol{B}_{n, v}(r)$ is essential in the proof of the fact that the dual algebra of $A_{n, v}$ is isomorphic to the q-Schur algebra $S_{q}(n, r)$; see Lemma B. 34 and Theorem B. 37 .

We may also index $\boldsymbol{B}_{n, v}(r)$ by $\Xi(n, r)$, the set of $n \times n$ matrices with entries in \mathbb{N} summing to r. Recall that we defined in (8.2.3) a two-line array π_{A} associated with $A \in \Xi(n, r)$. For $A \in \Xi(n, r)$, the corresponding element in $\boldsymbol{B}_{n, v}(r)$ is $\chi_{A}=\chi_{i, j}$, where $\pi_{A}=\binom{\boldsymbol{i}}{\boldsymbol{j}}$. We refer the reader to the discussion in $\S 9.1$ for the equivalence of this index system and the above system using $\lambda, \mu \in \Lambda(n, r)$ and $w \in{ }^{\lambda} \mathfrak{S}^{\mu}$.

Remark B.4. Using $I(n, r)$, the comultiplication Δ and counit ε of $A_{n, v}(r)$ can be expressed in the following formulas: for $\boldsymbol{i}, \boldsymbol{j} \in I(n, r)$,

$$
\Delta\left(\chi_{i, j}\right)=\sum_{k \in I(n, r)} \chi_{i, k} \otimes \chi_{\boldsymbol{k}, \boldsymbol{j}} \text { and } \varepsilon\left(\chi_{i, j}\right)=\delta_{i, \boldsymbol{j}}
$$

Definition B.5. The quantum matrix space $\mathrm{M}_{n, v}$ with coordinate algebra $\mathcal{O}\left(\mathrm{M}_{n, v}\right)=A_{n, v}$ is called the standard quantum matrix space of order n.

Note that if $v=1$, (B.1.1) is nothing but the commutative law. Thus, the classical $A_{n}=\mathcal{O}\left(\mathrm{M}_{n}\right)$ is recovered as a limiting case.

A left (resp., right) $\mathrm{M}_{n, v}$-module is interpreted (by definition!) as a right (resp., left) $A_{n, v}$-comodule. As an example, consider the "natural" left (resp., right) $\mathrm{M}_{n, v}$-module Ω, where Ω is a free \mathcal{R}-module of rank n. The $A_{n, v}$-comodule structure map $\tau: \Omega \rightarrow \Omega \otimes A_{n, v}$ (resp., $\rho: \Omega \rightarrow A_{n, v} \otimes \Omega$) is defined in terms of a prefixed basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ by

$$
\begin{equation*}
\tau\left(\omega_{j}\right)=\sum_{i} \omega_{i} \otimes x_{i, j} \quad\left(\text { resp., } \rho\left(\omega_{i}\right)=\sum_{j} x_{i, j} \otimes \omega_{j}\right) \tag{B.1.7}
\end{equation*}
$$

for all j (resp., for all i).

Because $A_{n, v}$ is a bialgebra, there are $\mathrm{M}_{n, v}$-module structures on the tensor algebra $\mathrm{T}(\Omega):=\bigoplus_{r \in \mathbb{N}} \Omega^{\otimes r}$ such that the extended comodule structure maps $\tau: \mathrm{T}(\Omega) \rightarrow \mathrm{T}(\Omega) \otimes A_{n, v}$ and $\rho: \mathrm{T}(\Omega) \rightarrow A_{n, v} \otimes \mathrm{~T}(\Omega)$ are algebra homomorphisms. In fact, using the notation $\omega_{i}=\omega_{i_{1}} \otimes \cdots \otimes \omega_{i_{r}}$ for $i \in I(n, r)$, the structure maps τ and ρ can be expressed in terms of the basis elements of $T(\Omega)$ as

$$
\begin{equation*}
\tau\left(\omega_{\boldsymbol{j}}\right)=\sum_{i \in I(n, r)} \omega_{\boldsymbol{i}} \otimes \chi_{\boldsymbol{i}, \boldsymbol{j}} \text { and } \rho\left(\omega_{\boldsymbol{i}}\right)=\sum_{\boldsymbol{j} \in I(n, r)} \chi_{\boldsymbol{i}, \boldsymbol{j}} \otimes \omega_{\boldsymbol{j}} \tag{B.1.8}
\end{equation*}
$$

Recall that we defined the v-symmetric algebra $\mathrm{S}_{v}(\Omega)$ and the v-exterior algebra $\Lambda_{v}(\Omega)$ in Examples 0.17 and 0.18 , respectively. We let $\mathrm{S}_{v}^{r}(\Omega)$ and $\Lambda_{v}^{r}(\Omega)$ be the homogeneous component of grade r (for $r \in \mathbb{N}$) of $\mathrm{S}_{v}(\Omega)$ and $\Lambda_{v}(\Omega)$, respectively. Of course, $\Lambda_{v}^{r}(\Omega)=0$ if $r>n$.

Proposition B.6. The algebras $\mathrm{S}_{v}(\Omega)$ and $\Lambda_{v}(\Omega)$, as well as their homogeneous components $\mathrm{S}_{v}^{r}(\Omega)$ and $\Lambda_{v}^{r}(\Omega)$, for $r \in \mathbb{N}$, inherit left and right $\mathrm{M}_{n, v}{ }^{-}$ module structures from the $\mathrm{M}_{n, v}$-module structure on Ω defined by (B.1.7).

Proof. The result will follow if we can show that the relation spaces R_{v} and R_{v}^{\prime} defined in Examples 0.17 and 0.18 , respectively, are $\mathrm{M}_{n, v}$-submodules of $\mathrm{T}(\Omega)$ with respect to both τ and ρ. It is a routine verification. Here is an example:

We show that, for $i<j, \tau\left(\omega_{i} \otimes \omega_{j}+v \omega_{j} \otimes \omega_{i}\right) \in R_{v}^{\prime} \otimes A_{n, v}$. In fact,

$$
\begin{aligned}
& \tau\left(\omega_{i} \otimes \omega_{j}+v \omega_{j} \otimes \omega_{i}\right) \\
& =\sum_{k, l} \omega_{k} \otimes \omega_{l} \otimes \chi_{k, i} \chi_{l, j}+v \sum_{k, l} \omega_{k} \otimes \omega_{l} \otimes \chi_{k, j} \chi_{l, i} \\
& =\sum_{k<l} \omega_{k} \otimes \omega_{l} \otimes\left(\chi_{k, i} \chi_{l, j}+v \chi_{k, j} \chi_{l, i}\right)+\sum_{k} \omega_{k} \otimes \omega_{k} \otimes\left(\chi_{k, i} \chi_{k, j}+v \chi_{k, j} \chi_{k, i}\right) \\
& +\sum_{k<l} \omega_{l} \otimes \omega_{k} \otimes\left(x_{l, i} x_{k, j}+v x_{l, j} x_{k, i}\right) \\
& =\sum_{k<l} \omega_{k} \otimes \omega_{l} \otimes\left(\chi_{l, j} \chi_{k, i}+v^{-1} \chi_{k, j} \chi_{l, i}\right)+\sum_{k} \omega_{k} \otimes \omega_{k} \otimes\left(\chi_{k, i} \chi_{k, j}+v \chi_{k, j} \chi_{k, i}\right) \\
& +\sum_{k<l} v \omega_{l} \otimes \omega_{k} \otimes\left(v^{-1} \chi_{l, i} x_{k, j}+x_{l, j} x_{k, i}\right) \\
& =\sum_{k<l}\left(\omega_{k} \otimes \omega_{l}+v \omega_{l} \otimes \omega_{k}\right) \otimes\left(x_{l, j} x_{k, i}+v^{-1} x_{k, j} x_{l, i}\right) \\
& +\sum_{k} \omega_{k} \otimes \omega_{k} \otimes\left(\chi_{k, i} \chi_{k, j}+v \chi_{k, j} \chi_{k, i}\right),
\end{aligned}
$$

which belongs to $R_{v}^{\prime} \otimes A_{n, v}$, as required. The other verifications are left to the reader in Exercise B.3.

The $\mathrm{M}_{n, v}$-module structure on the v-exterior algebra $\Lambda_{v}(\Omega)$ is particularly useful in establishing a theory of "quantum linear algebra."

For $\boldsymbol{i} \in I(n, r)$, let

$$
\hat{\omega}_{\boldsymbol{i}}=\omega_{i_{1}} \cdots \omega_{i_{r}} \in \Lambda_{v}^{r}(\Omega)
$$

where the product is formed inside $\Lambda_{v}(\Omega) .{ }^{3}$ We obtain from (B.1.8), for \boldsymbol{j} (or \boldsymbol{i}) in $I(n, r)$, that

$$
\begin{equation*}
\tau\left(\hat{\omega}_{\boldsymbol{j}}\right)=\sum_{i \in I(n, r)} \hat{\omega}_{\boldsymbol{i}} \otimes x_{i, \boldsymbol{j}} \text { and } \rho\left(\hat{\omega}_{\boldsymbol{i}}\right)=\sum_{\boldsymbol{j} \in I(n, r)} x_{\boldsymbol{i}, \boldsymbol{j}} \otimes \hat{\omega}_{\boldsymbol{j}} . \tag{B.1.9}
\end{equation*}
$$

Now let $I_{0}(n, r)$ be the subset of $I(n, r)$ consisting of sequences $\boldsymbol{i}=$ $\left(i_{1}, \ldots, i_{r}\right)$ with $1 \leqslant i_{1}<\cdots<i_{r} \leqslant n$. Clearly, $I_{0}(n, r) \neq \emptyset$ if and only if $r \leqslant n$.

Since $\hat{\omega}_{\boldsymbol{i}}=0$ if there are two identical ingredients in \boldsymbol{i}, for $r \leqslant n$ and $\boldsymbol{j} \in I(n, r), \hat{\omega}_{\boldsymbol{j}} \neq 0$ if and only if $\boldsymbol{j}=\boldsymbol{i} w$, for some $\boldsymbol{i} \in I_{0}(n, r)$ and $w \in \mathfrak{S}_{r}$. In particular, for $r \leqslant n$, the set $\left\{\hat{\omega}_{i} \mid i \in I_{0}(n, r)\right\}$ is a basis for $\Lambda_{v}^{r}(\Omega)$. Moreover,

$$
\hat{\omega}_{\boldsymbol{i} w}=(-v)^{-\ell(w)} \hat{\omega}_{\boldsymbol{i}}, \quad \text { for } \boldsymbol{i} \in I_{0}(n, r), w \in \mathfrak{S}_{r}
$$

With these observations, we rewrite, for \boldsymbol{j} (or \boldsymbol{i}) in $I_{0}(n, r)$, the formulas in (B.1.9) as

$$
\begin{aligned}
& \tau\left(\hat{\omega}_{\boldsymbol{j}}\right)=\sum_{i \in I_{0}(n, r)} \sum_{w \in \mathfrak{S}_{r}} \hat{\omega}_{\boldsymbol{i} w} \otimes x_{\boldsymbol{i} w, \boldsymbol{j}}=\sum_{i \in I_{0}(n, r)} \hat{\omega}_{\boldsymbol{i}} \otimes\left(\sum_{w \in \mathfrak{S}_{r}}(-v)^{-\ell(w)} \chi_{\boldsymbol{i} w, \boldsymbol{j}}\right) \\
& \rho\left(\hat{\omega}_{\boldsymbol{i}}\right)=\sum_{\boldsymbol{j} \in I_{0}(n, r)} \sum_{w \in \mathfrak{S}_{r}} \chi_{i, \boldsymbol{j} w} \otimes \hat{\omega}_{\boldsymbol{j} w}=\sum_{\boldsymbol{j} \in I_{0}(n, r)}\left(\sum_{w \in \mathfrak{S}_{r}}(-v)^{-\ell(w)} \chi_{i, \boldsymbol{j} w}\right) \otimes \hat{\omega}_{\boldsymbol{j}} .
\end{aligned}
$$

It is easy to verify (see Exercise B.4) that

$$
\sum_{w \in \mathfrak{S}_{r}}(-v)^{-\ell(w)} \chi_{i w, j}=\sum_{w \in \mathfrak{S}_{r}}(-v)^{-\ell(w)} \chi_{i, j w},
$$

for all $\boldsymbol{i}, \boldsymbol{j} \in I_{0}(n, r)$. We denote this element of $A_{n, v}$ by $\mathcal{D}_{i, \boldsymbol{j}}$. We finally arrive at the following formulas. For \boldsymbol{j} (or \boldsymbol{i}) in $I_{0}(n, r)$,

$$
\begin{equation*}
\tau\left(\hat{\omega}_{\boldsymbol{j}}\right)=\sum_{\boldsymbol{i} \in I_{0}(n, r)} \hat{\omega}_{\boldsymbol{i}} \otimes \mathcal{D}_{\boldsymbol{i}, \boldsymbol{j}}, \quad \rho\left(\hat{\omega}_{\boldsymbol{i}}\right)=\sum_{\boldsymbol{j} \in I_{0}(n, r)} \mathcal{D}_{\boldsymbol{i}, \boldsymbol{j}} \otimes \hat{\omega}_{\boldsymbol{j}} . \tag{B.1.10}
\end{equation*}
$$

The case $n=r$ has particular importance. The set $I_{0}(n, n)$ has a unique element $\boldsymbol{i}_{\max }=(1, \ldots, n)$. We denote by $\operatorname{det}_{q}:=\mathcal{D}_{\boldsymbol{i}_{\max }, \boldsymbol{i}_{\max }}$ (the reason for using the notation det_{q} instead of det_{v} will become clear in \S B.3), and call

[^6]it the quantum determinant for $\mathrm{M}_{n, v}$. We have
\[

$$
\begin{align*}
\operatorname{det}_{q} & =\sum_{w \in \mathfrak{S}_{n}}(-v)^{-\ell(w)} \chi_{w(1), 1} \cdots \chi_{w(n), n} \tag{B.1.11}\\
& =\sum_{w \in \mathfrak{S}_{n}}(-v)^{-\ell(w)} \chi_{1, w(1)} \cdots x_{n, w(n)}
\end{align*}
$$
\]

When $v=1$, the classical determinant for M_{n} is recovered.
Theorem B.7. The quantum determinant det_{q} is a central group-like element in $A_{n, v}$.

Only the centrality of det_{q} is nontrivial, which will be proved at the end of this section.

In general, for \boldsymbol{i} and $\boldsymbol{j} \in I_{0}(n, r)$ with $r \leqslant n$, the element $\mathcal{D}_{i, j}$ will be called a quantum minor of det_{q}. This notion is a generalization of the classical concept of a minor in a determinant.

For $\boldsymbol{i} \in I_{0}(n, r)$ with $r \leqslant n$, denote by $\boldsymbol{i}^{\prime} \in I_{0}(n, n-r)$ the complement of \boldsymbol{i}. That is, \boldsymbol{i}^{\prime} is the unique element in $I_{0}(n, n-r)$ such that $\boldsymbol{i} \cup \boldsymbol{i}^{\prime}=\boldsymbol{i}_{\text {max }}$, as sets. For convenience, let $\mathcal{A}_{i, \boldsymbol{j}}:=\mathcal{D}_{\boldsymbol{j}^{\prime}, \boldsymbol{i}^{\prime}}$ for \boldsymbol{i} and $\boldsymbol{j} \in I_{0}(n, r)$. Let $|\boldsymbol{i}|$ be the sum of ingredients in the sequence \boldsymbol{i}, for $\boldsymbol{i} \in I_{0}(n, r)$.

Now we are ready to prove the following result.
Theorem B. 8 (Laplace expansions). Let $\boldsymbol{i}, \boldsymbol{j} \in I_{0}(n, r)$ with $r \leqslant n$. Then

$$
\begin{aligned}
\delta_{i, \boldsymbol{j}} \operatorname{det}_{q} & =\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{|\boldsymbol{j}|-|\boldsymbol{k}|} \mathcal{D}_{i, \boldsymbol{k}} \mathcal{A}_{\boldsymbol{k}, \boldsymbol{j}}=\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{|\boldsymbol{k}|-|\boldsymbol{i}|} \mathcal{A}_{i, \boldsymbol{k}} \mathcal{D}_{\boldsymbol{k}, \boldsymbol{j}} \\
& =\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{|\boldsymbol{j}|-|\boldsymbol{k}|} \mathcal{D}_{\boldsymbol{k}, i} \mathcal{A}_{\boldsymbol{j}, \boldsymbol{k}}=\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{|\boldsymbol{k}|-|\boldsymbol{i}|} \mathcal{A}_{\boldsymbol{k}, \boldsymbol{i}} \mathcal{D}_{\boldsymbol{j}, \boldsymbol{k}}
\end{aligned}
$$

Proof. Using (B.1.10) and Exercise B. 5 (and noting that $\hat{\omega}_{\boldsymbol{k}^{\prime}} \hat{\omega}_{\boldsymbol{l}}=0$ if $\boldsymbol{k} \neq \boldsymbol{l}$, for $\boldsymbol{k}, \boldsymbol{l} \in I_{0}(n, r)$), we can make the following calculations:

$$
\begin{aligned}
\rho\left(\hat{\omega}_{\boldsymbol{i}} \hat{\omega}_{\boldsymbol{j}^{\prime}}\right) & =\left(\sum_{\boldsymbol{k} \in I_{0}(n, r)} \mathcal{D}_{i, \boldsymbol{k}} \otimes \hat{\omega}_{\boldsymbol{k}}\right)\left(\sum_{\boldsymbol{l} \in I_{0}(n, r)} \mathcal{D}_{\boldsymbol{j}^{\prime}, \boldsymbol{l}^{\prime}} \otimes \hat{\omega}_{\boldsymbol{l}^{\prime}}\right) \\
& =\sum_{\boldsymbol{k} \in I_{0}(n, r)} \mathcal{D}_{i, \boldsymbol{k}} \mathcal{D}_{\boldsymbol{j}^{\prime}, \boldsymbol{k}^{\prime}} \otimes \hat{\omega}_{\boldsymbol{k}} \hat{\omega}_{\boldsymbol{k}^{\prime}} \\
& =\left(\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{r(r+1) / 2-|\boldsymbol{k}|} \mathcal{D}_{\boldsymbol{i}, \boldsymbol{k}} \mathcal{A}_{\boldsymbol{k}, \boldsymbol{j}}\right) \otimes \hat{\omega}_{\boldsymbol{i}_{\max }}
\end{aligned}
$$

On the other hand, since $\hat{\omega}_{i} \hat{\omega}_{i^{\prime}}=(-v)^{r(r+1) / 2-|i|} \hat{\omega}_{i_{\max }}$, by Exercise B. 5 again, we have

$$
\rho\left(\hat{\omega}_{\boldsymbol{i}} \hat{\omega}_{\boldsymbol{j}^{\prime}}\right)=\delta_{\boldsymbol{i}, \boldsymbol{j}}(-v)^{r(r+1) / 2-|\boldsymbol{j}|} \operatorname{det}_{q} \otimes \hat{\omega}_{\boldsymbol{i}_{\max }} .
$$

Therefore,

$$
\delta_{i, \boldsymbol{j}} \operatorname{det}_{q}=\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{|\boldsymbol{j}|-|\boldsymbol{k}|} \mathcal{D}_{i, \boldsymbol{k}} \mathcal{A}_{\boldsymbol{k}, \boldsymbol{j}}
$$

Since $|\boldsymbol{k}|+\left|\boldsymbol{k}^{\prime}\right|=n(n+1) / 2$, for all \boldsymbol{k}, we also have

$$
\delta_{\boldsymbol{i}, \boldsymbol{j}} \operatorname{det}_{q}=\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{\left|\boldsymbol{j}^{\prime}\right|-\left|\boldsymbol{k}^{\prime}\right|} \mathcal{D}_{\boldsymbol{i}^{\prime}, \boldsymbol{k}^{\prime}} \mathcal{A}_{\boldsymbol{k}^{\prime}, \boldsymbol{j}^{\prime}}=\sum_{\boldsymbol{k} \in I_{0}(n, r)}(-v)^{|\boldsymbol{k}|-|\boldsymbol{j}|} \mathcal{A}_{\boldsymbol{k}, \boldsymbol{i}} \mathcal{D}_{\boldsymbol{j}, \boldsymbol{k}}
$$

The other two formulas are proved similarly.
In the special case $r=1$, we write $\mathcal{A}_{i, j}=\mathcal{A}_{\boldsymbol{i}, \boldsymbol{j}}=\mathcal{D}_{\boldsymbol{j}^{\prime}, \boldsymbol{i}^{\prime}}$ if $\boldsymbol{i}=\{i\}$ and $\boldsymbol{j}=$ $\{j\}$, which can be called the (i, j)-minor. The following corollary generalizes the classical expansions of a determinant along its rows or columns.

Corollary B.9. Let $1 \leqslant i, j \leqslant n$. Then

$$
\begin{align*}
\delta_{i, j} \operatorname{det}_{q} & =\sum_{k=1}^{n}(-v)^{j-k} \chi_{i, k} \mathcal{A}_{k, j}=\sum_{k=1}^{n}(-v)^{k-i} \mathcal{A}_{i, k} \chi_{k, j} \tag{B.1.12}\\
& =\sum_{k=1}^{n}(-v)^{j-k} \chi_{k, i} \mathcal{A}_{j, k}=\sum_{k=1}^{n}(-v)^{k-i} \mathcal{A}_{k, i} \chi_{j, k} .
\end{align*}
$$

Let X be the $n \times n$ matrix $\left(\chi_{i, j}\right)$, and let A be the matrix $\left((-v)^{j-i} \mathcal{A}_{i, j}\right)$. The first two expressions in (B.1.12) can be rewritten in matrix form as

$$
\begin{equation*}
\mathrm{XA}=\operatorname{det}_{q} \cdot \boldsymbol{I}_{n}=\mathrm{AX} \tag{B.1.13}
\end{equation*}
$$

where \mathbf{I}_{n} is the $n \times n$ identity matrix. The centrality of det_{q} is an easy consequence, since

$$
X \cdot \operatorname{det}_{q}=X \cdot\left(\operatorname{det}_{q} \cdot I_{n}\right)=X A X=\left(\operatorname{det}_{q} \cdot I_{n}\right) \cdot X=\operatorname{det}_{q} \cdot X
$$

Thus, det_{q} commutes with all $x_{i, j}$, and so is central.

B.2. Quantum linear groups

As in $\S 5.1$, let $\operatorname{Hopf}_{\mathcal{R}}$ be the category of Hopf algebras over \mathcal{R}. An object G in the opposite category $\left(\operatorname{Hopf}_{\mathcal{R}}\right)^{\mathrm{op}}$ is called a quantum group if the corresponding object $\mathcal{O}(G)$, called the coordinate algebra of G, in Hopf \mathcal{R} is a deformation of the coordinate algebra of an affine group scheme over \mathcal{R}. Rather than making precise here what we mean by a "deformation," we illustrate the idea by means of important examples.

In this section, we define the quantum linear groups $\mathrm{GL}_{n, v}$ and $\mathrm{SL}_{n, v}$, which are deformations of the classical general and special linear groups GL_{n} and SL_{n}. Imitating the classical case, we define two algebras as candidates for "coordinate algebras."

Since the quantum determinant det_{q} is central in $A_{n, v}$, we can form the localization of $A_{n, v}$ at the multiplicative set $\left\{\operatorname{det}_{q}^{r} \mid r \in \mathbb{N}\right\}$ to obtain an algebra $\tilde{A}_{n, v}:=A_{n, v}\left[\operatorname{det}_{q}^{-1}\right]$. For the details of localization theory of noncommutative rings, see $[\mathbf{2 2 2}]$. On the other hand, form the quotient algebra $\bar{A}_{n, v}:=A_{n, v} /\left(\operatorname{det}_{q}-1\right)$ of $A_{n, v}$ modulo its ideal generated by the central element $\operatorname{det}_{q}-1$. The algebras $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$ are candidates for the coordinate algebras of $\mathrm{GL}_{n, v}$ and $\mathrm{SL}_{n, v}$, respectively. To support the roles of these algebras, we need to define Hopf algebra structures on them. We begin with the following proposition, which summarizes certain fundamental properties of the algebras $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$.

Proposition B.10. (1) The algebras $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$ are integral domains if \mathcal{R} is an integral domain.
(2) $A_{n, v}$ is canonically a subalgebra of $\tilde{A}_{n, v}$, while $\bar{A}_{n, v}$ is canonically the quotient algebra of $\tilde{A}_{n, v}$ modulo its ideal generated by $\operatorname{det}_{q}-1$.
(3) Both $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$ inherit bialgebra structures from $A_{n, v}$.

Proof. The assertions both that $\tilde{A}_{n, v}$ is an integral domain (under the assumption that \mathcal{R} is an integral domain) and that $A_{n, v}$ is canonically a subalgebra of $\tilde{A}_{n, v}$ follow from the general theory of localization, since $A_{n, v}$ is an integral domain, by Theorem B.2(1), and since det_{q} is not a zero divisor. The integral property of $\bar{A}_{n, v}$ (under the assumption that \mathcal{R} is an integral domain) thus follows from an \mathcal{R}-algebra isomorphism $\bar{A}_{n, v} \otimes \mathcal{R}\left[u, u^{-1}\right] \cong \tilde{A}_{n, v}$, for u an indeterminate over \mathcal{R}; see Exercise B.6. Moreover, since the quotient $\operatorname{map} \pi: A_{n, v} \rightarrow \bar{A}_{n, v}$ sends det_{q} to 1 , an invertible element, the universal property of a localization ensures that this quotient map factors through $\tilde{A}_{n, v}$, giving a surjective homomorphism $\tilde{\pi}: \tilde{A}_{n, v} \rightarrow \bar{A}_{n, v}$. Thus, $\bar{A}_{n, v}$ is canonically a quotient of $\tilde{A}_{n, v}$. Any element of $\tilde{A}_{n, v}$ has the form $f \cdot \operatorname{det}_{q}^{-m}$, for $f \in A_{n, v}$ and $m \in \mathbb{N}$. Since $\tilde{\pi}\left(f \cdot \operatorname{det}_{q}^{-m}\right)=\pi(f)$, Ker $\tilde{\pi}$ is the ideal generated by $\operatorname{det}_{q}-1$. This completes the proof of (1) and (2).

For (3), there is an algebra homomorphism $A_{n, v} \xrightarrow{\Delta} A_{n, v} \otimes A_{n, v} \rightarrow \tilde{A}_{n, v} \otimes$ $\tilde{A}_{n, v}$, sending det_{q} to $\operatorname{det}_{q} \otimes \operatorname{det}_{q}$, which is invertible in $\tilde{A}_{n, v} \otimes \tilde{A}_{n, v}$. Again, the universal property of the localization ensures the unique extension of Δ to an algebra homomorphism $\tilde{A}_{n, v} \rightarrow \tilde{A}_{n, v} \otimes \tilde{A}_{n, v}$ which is clearly a comultiplication. Similarly, the counit extends. Now consider $\bar{A}_{n, v}$. In $A_{n, v}$, $\Delta\left(\operatorname{det}_{q}-1\right)=\operatorname{det}_{q} \otimes\left(\operatorname{det}_{q}-1\right)+\left(\operatorname{det}_{q}-1\right) \otimes 1$ and $\varepsilon\left(\operatorname{det}_{q}-1\right)=0$, so the ideal of $A_{n, v}$ generated by $\operatorname{det}_{q}-1$ is a biideal. Thus, the bialgebra structure on $A_{n, v}$ induces a bialgebra structure on the quotient algebra $\bar{A}_{n, v}$.

To define antipodes for the algebras $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$, we need the following lemma.

Lemma B.11. The following commutation formulas hold in $A_{n, v}$:

$$
\begin{align*}
\mathcal{A}_{k, i} \mathcal{A}_{k, j} & =v^{-1} \mathcal{A}_{k, j} \mathcal{A}_{k, i}, & & \text { for all } i>j ; \\
\mathcal{A}_{k, i} \mathcal{A}_{l, i} & =v^{-1} \mathcal{A}_{l, i} \mathcal{A}_{k, i}, & & \text { for all } k>l ; \\
\mathcal{A}_{k, i} \mathcal{A}_{l, j} & =\mathcal{A}_{l, j} \mathcal{A}_{k, i}, & & \text { if } k>l \text { and } i<j ; \tag{B.2.1}\\
\mathcal{A}_{k, i} \mathcal{A}_{l, j}-\mathcal{A}_{l, j} \mathcal{A}_{k, i} & =\left(v^{-1}-v\right) \mathcal{A}_{l, i} \mathcal{A}_{k, j}, & & \text { if } k>l \text { and } i>j
\end{align*}
$$

Proof. Again, let $\mathrm{A}=\left((-v)^{j-i} \mathcal{A}_{i, j}\right)$. From the definition of the linear transformation \mathscr{R}_{v} in (B.1.2), the matrix R_{v} given in Proposition B. 1 is invertible with inverse $\mathrm{R}_{v^{-1}}$. Also, as in Proposition B.1, if we form $n^{2} \times n^{2}$ matrices $\mathrm{P}_{1}:=\mathrm{P} \otimes \mathrm{I}_{n}$ and $\mathrm{P}_{2}:=\mathrm{I}_{n} \otimes \mathrm{P}$, for any $n \times n$ matrix P , then $(\mathrm{PQ})_{1}=\mathrm{P}_{1} \mathrm{Q}_{1}$ and $(\mathrm{PQ})_{2}=\mathrm{P}_{2} \mathrm{Q}_{2}$, for any $n \times n$ matrices P and Q . With these observations, and using (B.1.4) and (B.1.13), we have

$$
\begin{aligned}
\mathrm{R}_{v^{-1}} \mathrm{~A}_{1} \mathrm{~A}_{2} & =\mathrm{R}_{v^{-1}} \mathrm{~A}_{1} \mathrm{~A}_{2}\left(\mathrm{R}_{v} \mathrm{X}_{1} \mathrm{X}_{2}\right) \mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{R}_{v^{-1}} \operatorname{det}_{q}^{-2} \\
& =\mathrm{R}_{v^{-1}} \mathrm{~A}_{1} \mathrm{~A}_{2}\left(\mathrm{X}_{2} \mathrm{X}_{1} \mathrm{R}_{v}\right) \mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{R}_{v^{-1}} \operatorname{det}_{q}^{-2}=\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{R}_{v^{-1}}
\end{aligned}
$$

This means that the set of elements $\left\{(-v)^{j-i} \mathcal{A}_{i, j}\right\}$ obeys the same commutation formulas as the set $\left\{\chi_{i, j}\right\}$, with v replacing by v^{-1}. This proves the lemma.

Now we are ready to define the antipodes for $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$.
Theorem B.12. (1) Define

$$
\begin{equation*}
\gamma\left(\chi_{i, j}\right)=(-v)^{j-i} \mathcal{A}_{i, j} \operatorname{det}_{q}^{-1} \tag{B.2.2}
\end{equation*}
$$

Then γ extends to an algebra anti-endomorphism of $\tilde{A}_{n, v}$, providing an antipode that makes $\tilde{A}_{n, v}$ into a Hopf algebra.
(2) The antipode γ maps the ideal of $\tilde{A}_{n, v}$ generated by $\operatorname{det}_{q}-1$ into itself. Thus, $\bar{A}_{n, v}$ is a quotient Hopf algebra of $\tilde{A}_{n, v}$ with antipode γ sending $\chi_{i, j}$ to $(-v)^{j-i} \mathcal{A}_{i, j}$.

Proof. (1) By Lemma B.11, the assignment (B.2.2) clearly extends to an algebra anti-homomorphism $\gamma: A_{n, v} \rightarrow \tilde{A}_{n, v}$. The antipode law (5.1.8) (as maps $A_{n, v} \rightarrow \tilde{A}_{n, v}$ at this moment) follows directly from an easy application of (B.1.12). In particular, $\operatorname{det}_{q} \gamma\left(\operatorname{det}_{q}\right)=1=\gamma\left(\operatorname{det}_{q}\right) \operatorname{det}_{q}$. That is, $\gamma\left(\operatorname{det}_{q}\right)=\operatorname{det}_{q}^{-1}$, which is an invertible element in $\tilde{A}_{n, v}$. Hence γ extends to an algebra anti-endomorphism $\gamma: \tilde{A}_{n, v} \rightarrow \tilde{A}_{n, v}$ satisfying the antipode law. This proves (1).
(2) Since $\gamma\left(\operatorname{det}_{q}-1\right)=\operatorname{det}_{q}^{-1}-1=-\operatorname{det}_{q}^{-1}\left(\operatorname{det}_{q}-1\right)$, the ideal of $\tilde{A}_{n, v}$ generated by $\operatorname{det}_{q}-1$ is stable under γ.

The quantum groups with coordinate algebras $\tilde{A}_{n, v}$ and $\bar{A}_{n, v}$ are denoted by $\mathrm{GL}_{n, v}$ and $\mathrm{SL}_{n, v}$ and they are called the quantum general linear group (of
degree n) and the quantum special linear group (of degree n), respectively. Thus, we have $\mathcal{O}\left(\mathrm{GL}_{n, v}\right)=\tilde{A}_{n, v}$ and $\mathcal{O}\left(\mathrm{SL}_{n, v}\right)=\bar{A}_{n, v}$. When $v=1$, the classical general linear group GL_{n} and special linear group SL_{n} are recovered.

As in the classical case, any quotient Hopf algebra of $\mathcal{O}\left(\mathrm{GL}_{n, v}\right)$ (resp., $\left.\mathcal{O}\left(\mathrm{SL}_{n, v}\right)\right)$ defines a closed subgroup of $\mathrm{GL}_{n, v}$ (resp., $\mathrm{SL}_{n, v}$). In particular, $\mathrm{SL}_{n, v}$ is a closed subgroup of $\mathrm{GL}_{n, v}$. We now briefly introduce certain interesting closed subgroups of $\mathrm{GL}_{n, v}$ and $\mathrm{SL}_{n, v}$.

For convenience, let G_{v} be $\mathrm{GL}_{n, v}$ or $\mathrm{SL}_{n, v}$ (and thus $\mathcal{O}\left(G_{v}\right)=\tilde{A}_{n, v}$ or $\left.\bar{A}_{n, v}\right)$. First, we mention three important closed subgroups of G_{v}.
Proposition B.13. (1) The ideal of $\mathcal{O}\left(G_{v}\right)$ generated by all $\chi_{i, j}$ with $i>$ j (resp., with $i<j$) is a Hopf ideal. Thus, the corresponding quotient Hopf algebra defines a closed subgroup of G_{v} called the upper (resp., lower) triangular Borel subgroup and denoted B_{v}^{+}(resp., B_{v}^{-}).
(2) The ideal of $\mathcal{O}\left(G_{v}\right)$ generated by all $\chi_{i, j}$ with $i \neq j$ is a Hopf ideal. Thus, the corresponding quotient Hopf algebra defines a closed subgroup of G_{v}, called the diagonal maximal torus and denoted T_{v}.

The proof of the proposition is easy, and is left as Exercise B.7.
Remark B.14. Constructions of certain parabolic subgroups and their Levi decompositions are also available. We will not go into the details.

Remarks B.15. (1) Based on these closed subgroups, it is possible to talk about the root system and weights for G_{v}. In particular, the weight lattice of G_{v} is $X\left(T_{v}\right)$, the character group of the (ordinary) torus T_{v}, which is generated as a multiplicative group by $\chi_{i, i}$, for $1 \leqslant i \leqslant n$. If, for psychological reasons, we write $X\left(T_{v}\right)$ additively, then we write ε_{i} for $\chi_{i, i}$ if it is regarded as a character of T_{v}; cf. Example A.36. This gives the root system $\Phi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i \neq j\right\}$, the positive roots $\Phi^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i<j\right\}$, and the simple roots $\Pi=\left\{\alpha_{i}:=\varepsilon_{i}-\varepsilon_{i+1} \mid i=1, \ldots, n-1\right\}$. This is a root system of type A_{n-1}. The fundamental weights in the lattice $X\left(T_{v}\right)$ are $\varpi_{1}:=\varepsilon_{1}$, $\varpi_{2}:=\varepsilon_{1}+\varepsilon_{2}, \ldots, \varpi_{n-1}=\varepsilon_{1}+\cdots+\varepsilon_{n-1}$; while a weight $\sum_{i=1}^{n} \mu_{i} \varepsilon_{i}, \mu_{i} \in \mathbb{Z}$, is dominant if and only if $\mu_{1} \geqslant \cdots \geqslant \mu_{n-1} \geqslant \mu_{n}$.
(2) At least when $\mathcal{R}=\mathcal{K}$ is a field, the main results in the representation theory of the reductive algebraic groups (sketched in §A.5) can be carried over to the quantum linear groups, developed in terms of comodules over the coordinate algebras. For example, the simple modules for Borel subgroups are 1-dimensional, determined by a character of T_{v}, while a $G_{v^{-}}$ module induced from a 1-dimensional B_{v}^{-}-module, if nonzero, has a simple socle, and all simple G_{v}-modules can be obtained in this way. Through this construction, we arrive at a classification of simple G_{v}-modules by highest T_{v}-weights. The simple G_{v}-modules are indexed by $X\left(T_{v}\right)^{+}$, the set of dominant weights in $X\left(T_{v}\right)$. The theory of cohomology of vector bundles on flag
varieties can be generalized to the quantum case in terms of the derived functors of the induction from B_{v}^{-}-modules to G_{v}-modules. Costandard modules $\nabla(\xi), \xi \in X\left(T_{v}\right)^{+}$, can be obtained using induction from the Borel subgroup B_{v}^{-}, as in the classical case (see $\S A .7$). Based on these results, we obtain highest weight categories (in the sense of Definition C.8) of finite dimensional G_{v}-modules; see Example C. 9 for the analogous situation for a semisimple group.

In the remainder of this section, we assume that v is a primitive ℓ th root of 1 , for an odd positive integer ℓ. We will exhibit an infinitesimal theory for $G_{v}=\mathrm{GL}_{n, v}$ or $\mathrm{SL}_{n, v}$.

We have the following result.
Lemma B.16. Let v be a primitive ℓ th root of 1 with ℓ odd.
(1) For any i, j, the element $\chi_{i, j}^{\ell}$ is in the center of $\mathcal{O}\left(\mathrm{M}_{n, v}\right), \mathcal{O}\left(\mathrm{GL}_{n, v}\right)$, and $\mathcal{O}\left(\mathrm{SL}_{n, v}\right)$.
(2) In $\mathcal{O}\left(\mathrm{M}_{n, v}\right)$, $\mathcal{O}\left(\mathrm{GL}_{n, v}\right)$, and $\mathcal{O}\left(\mathrm{SL}_{n, v}\right)$ we have

$$
\Delta\left(\chi_{i, j}^{\ell}\right)=\sum_{k=1}^{n} x_{i, k}^{\ell} \otimes \chi_{k, j}^{\ell}, \quad \varepsilon\left(\chi_{i, j}^{\ell}\right)=\delta_{i, j}
$$

Proof. The proof requires only routine verification, involving the Gaussian polynomials $\left[\begin{array}{c}m \\ n\end{array} \rrbracket\right.$ defined in $\S 0.4$. We leave it as Exercise B.8(1).

We now discuss the quantum and the classical linear groups simultaneously. Denote the coordinate functions of the classical $\mathrm{M}_{n}, \mathrm{GL}_{n}$, and SL_{n} by $x_{i, j}$, which differs from the notation $\chi_{i, j}$ for the coordinate functions of quantum $\mathrm{M}_{n, v}, \mathrm{GL}_{n, v}$, and $\mathrm{SL}_{n, v}$. We have the following result.
Proposition B.17. (1) There is a bialgebra embedding

$$
\phi: \mathcal{O}\left(\mathrm{M}_{n}\right) \longrightarrow \mathcal{O}\left(\mathrm{M}_{n, v}\right), \quad x_{i, j} \longmapsto \chi_{i, j}^{\ell}
$$

(2) The bialgebra embedding ϕ extends to Hopf algebra embeddings

$$
\phi: \mathcal{O}\left(\mathrm{GL}_{n}\right) \longrightarrow \mathcal{O}\left(\mathrm{GL}_{n, v}\right) \text { and } \phi: \mathcal{O}\left(\mathrm{SL}_{n}\right) \longrightarrow \mathcal{O}\left(\mathrm{SL}_{n, v}\right)
$$

Proof (sketch). (1) follows directly from Lemma B.16. The extensions in (2) can be obtained from the facts that $\phi(\operatorname{det})=\operatorname{det}_{q}^{\ell}$ and $\gamma \circ \phi\left(x_{i, j}\right)=$ $\phi \circ \gamma\left(x_{i, j}\right)$. The detailed verifications are also left to the reader; see Exercise B.8(2)-(3).

The homomorphisms ϕ defined in Proposition B. 17 are called the (quantum) co-Frobenius morphisms. Dually, we have an epimorphism of "quantum semigroups" $F: \mathrm{M}_{n, v} \rightarrow \mathrm{M}_{n}$, and epimorphisms of quantum groups

$$
F: \mathrm{GL}_{n, v} \longrightarrow \mathrm{GL}_{n} \text { and } F: \mathrm{SL}_{n, v} \longrightarrow \mathrm{SL}_{n}
$$

All these morphisms are called (quantum) Frobenius morphisms.
Again, let $G_{v}=\mathrm{GL}_{n, v}$ or $\mathrm{SL}_{n, v}$, and correspondingly, $G=\mathrm{GL}_{n}$ or SL_{n}. We have the Frobenius morphism $F: G_{v} \rightarrow G$ or, equivalently, the co-Frobenius morphism $\phi: \mathcal{O}(G) \rightarrow \mathcal{O}\left(G_{v}\right)$. The Frobenius morphism has a "kernel" (in the categorical sense) $G_{v}^{\text {inf }}:=\operatorname{Ker} F$, which is a closed subgroup of G_{v} defined by the ideal generated by all $x_{i, j}^{\ell}-\delta_{i, j}$. (A direct verification shows that the ideal generated by all $\chi_{i, j}^{\ell}-\delta_{i, j}$ is a Hopf ideal. Or, instead, this ideal can be regarded as the extension of the augmentation ideal $\operatorname{Ker} \varepsilon$ of $\mathcal{O}(G)$, while the latter is clearly generated by $x_{i, j}-\delta_{i, j}$.) The algebra $\mathcal{O}\left(G_{v}^{\inf }\right)$ is free and of finite rank over \mathcal{R}, so G_{v}^{inf} is usually called the infinitesimal quantum linear group.

The exact sequence

$$
1 \longrightarrow G_{v}^{\mathrm{inf}} \longrightarrow G_{v} \longrightarrow G \longrightarrow 1
$$

(where 1 stands for the group with only the identity) gives a fundamental framework in which to discuss representations of G_{v} through representations of the infinitesimal quantum group $G_{v}^{\text {inf }}$ (which are just representations of an algebra of finite rank) and representations of the algebraic group G. An ample theory has resulted from this setting. As an example, we conclude with the tensor product theorem.

A G-module $\left(=\mathcal{O}(G)\right.$-comodule) V can be regarded as a G_{v}-module ($=\mathcal{O}\left(G_{v}\right)$-comodule) by pulling back along the Frobenius morphism F (that is, by pushing out along the co-Frobenius morphism ϕ). This G_{v}-module is called the (quantum) Frobenius twist, and is denoted by $V^{[F]}$. ${ }^{4}$

A dominant weight $\zeta \in X\left(T_{v}\right)^{+}$is called ℓ-restricted if ζ is a linear combination of fundamental weights with all coefficients $<\ell$. A dominant weight ξ can be written in the (one-step) ℓ-adic expression as $\xi=\xi_{-1}+\ell \xi^{\prime}$ with ξ^{\prime} dominant and $\xi_{-1} \ell$-restricted.
Theorem B. 18 (tensor product theorem). Suppose $\mathcal{R}=\mathcal{K}$ is a field. If $\xi \in X\left(T_{v}\right)^{+}$with the (one step) ℓ-adic expression $\xi=\xi_{-1}+\ell \xi^{\prime}$, then we have the following G_{v}-module isomorphism

$$
L_{v}(\xi) \cong L_{v}\left(\xi_{-1}\right) \otimes L\left(\xi^{\prime}\right)^{[F]}
$$

where $L_{v}(\zeta)$ is the simple G_{v}-module with highest weight $\zeta \in X\left(T_{v}\right)^{+}$, while $L(\zeta)$ is the simple G-module with highest weight $\zeta \in X(T)^{+}$.

Remark B.19. If the ground field \mathcal{K} has prime characteristic p, then, by Theorem A.52, the G-module $L\left(\xi^{\prime}\right)$ can be decomposed as $L\left(\xi_{0}\right) \otimes L\left(\xi_{1}\right)^{(p)} \otimes$

[^7]$\cdots \otimes L\left(\xi_{r}\right)^{\left(p^{r}\right)}$, where $\xi^{\prime}=\xi_{0}+p \xi_{1}+\cdots+p^{r} \xi_{r}$ is the p-adic expression of ξ^{\prime} (with $\xi_{0}, \ldots, \xi_{r} p$-restricted and $\xi_{r} \neq 0$). Therefore, in this case, we have an ℓ - p-mixed tensor product decomposition for $L_{v}(\xi)$:
$$
L_{v}(\xi) \cong L_{v}\left(\xi_{-1}\right) \otimes L\left(\xi_{0}\right)^{[F]} \otimes L\left(\xi_{1}\right)^{(p)[F]} \otimes \cdots \otimes L\left(\xi_{r}\right)^{\left(p^{r}\right)[F]}
$$

B.3. Multiparameter quantum matrix spaces

In \S B. 1 we investigated the quantum matrix space $\mathrm{M}_{n, v}$ with a single parameter $v \in \mathcal{R}$. In fact, $\mathrm{M}_{n, v}$ is a special case of more general structures, namely, multiparameter quantum matrix spaces $\mathrm{M}_{n, v}^{q}$. The most general setting involves $n(n-1) / 2+1$ parameters. For convenience, we consider an $n \times n$ parameter matrix $\boldsymbol{v}=\left(v_{i, j}\right)$ in which $v_{i, j} \in \mathcal{R}$ with $v_{i, i}=1$, for all i, and $v_{i, j} v_{j, i}=1$, for all i, j. Thus, v determines $n(n-1) / 2$ free parameters. Let $0 \neq q \in \mathcal{R}$ be the extra parameter, called the dominant parameter.

Now let $A_{n, v}^{q}$ be the associative algebra over \mathcal{R} with generators $\chi_{i, j}$ $(i, j=1, \ldots, n)$ and relations

$$
\begin{align*}
x_{k, i} x_{k, j} & =v_{i, j}^{-1} x_{k, j} x_{k, i}, & & \text { for all } i>j ; \\
x_{k, i} x_{l, i} & =q v_{k, l} \chi_{l, i} x_{k, i}, & & \text { for all } k>l ; \\
x_{k, i} x_{l, j} & =q v_{i, j}^{-1} v_{k, l} x_{l, j} x_{k, i}, & & \text { if } k>l \text { and } i<j ; \tag{B.3.1}\\
v_{k, l}^{-1} x_{k, i} x_{l, j}-v_{i, j}^{-1} x_{l, j} x_{k, i} & =(q-1) x_{l, i} x_{k, j}, & & \text { if } k>l \text { and } i>j .
\end{align*}
$$

Definition B.20. The "space" $\mathrm{M}_{n, v}^{q}$ with coordinate algebra $\mathcal{O}\left(\mathrm{M}_{n, v}^{q}\right)=$ $A_{n, v}^{q}$ is called the multiparameter quantum matrix space of order n with parameter matrix \boldsymbol{v} and dominant parameter q.

We now define a bialgebra structure on $A_{n, v}^{q}$ in Theorem B. 28 to support the above definition. If we put $v_{i, j}=v$, for all $i<j$ and $q=v^{2}$, then the standard quantum matrix space $\mathrm{M}_{n, v}$ defined in (B.1.1) is obtained.

Although we have defined a variety of quantum matrix spaces, we have, in fact, not wandered too far. We will show that, once the dominant parameter q is fixed, we can, given two parameter matrices \boldsymbol{v} and \boldsymbol{u}, "twist" (in a precise sense) the algebra $A_{n, v}^{q}$ to the algebra $A_{n, u}^{q}$. In addition, the coalgebra structures on the $A_{n, v}^{q}$, for a fixed q, which we have not defined yet, are the same! Thus, one can "twist" a standard quantum matrix space to obtain all multiparameter quantum matrix spaces.

Example B. 21 (Two-parameter quantum matrix spaces). A two-parameter special subfamily of the multiparameter quantum matrix spaces can be obtained by considering all $A_{n, \boldsymbol{a}}^{q}$, where the parameter matrix \boldsymbol{a} has the form $\boldsymbol{a}=\left(a_{i, j}\right)$ with $a_{i, j}=a$, where $a \in \mathcal{R}$, for all $i<j$, is a fixed invertible element. In the literature, this system is often parametrized by parameters a and $b=q / a$. (Thus, the product $a b$ of the two parameters a and b gives
the dominant parameter q.) We denote the $A_{n, \boldsymbol{a}}^{q}$ as above by $A_{n}^{a, b}$ in terms of the parameters a and b. From (B.3.1), the defining relations of $A_{n}^{a, b}$ are

$$
\begin{align*}
\chi_{k, i} \chi_{k, j} & =a \chi_{k, j} \chi_{k, i}, & & \text { for all } i>j ; \\
x_{k, i} x_{l, i} & =b \chi_{l, i} \chi_{k, i}, & & \text { for all } k>l ; \tag{B.3.2}\\
x_{k, i} x_{l, j} & =a^{-1} b \chi_{l, j} x_{k, i}, & & \text { if } k>l \text { and } i<j ; \\
x_{k, i} \chi_{l, j}-\chi_{l, j} x_{k, i} & =\left(b-a^{-1}\right) \chi_{l, i} \chi_{k, j}, & & \text { if } k>l \text { and } i>j .
\end{align*}
$$

One can check directly (Exercise B.9(1)) that $A_{n}^{a, b}$ is a bialgebra with comultiplication Δ and counit ε defined by $\Delta\left(\chi_{i, j}\right)=\sum_{k} \chi_{i, k} \otimes \chi_{k, j}$ and $\varepsilon\left(\chi_{i, j}\right)=\delta_{i, j}$. If $a=v$ is a square root of q, then (B.1.1) is recovered, and we obtain $A_{n}^{v, v}=A_{n, v}$, as defined in \S B.1.

The invariance of the coalgebra structures on $A_{n}^{a, b}$ with $a b=q$ fixed, called hyperbolic invariance, can be proved directly (i.e., without using the concept of 2-cocycles introduced below). We indicate a proof in Exercise B.9(2) so that the reader may gain an intuitive feeling about the invariance of the coalgebras.

We now return to general multiparameter quantum matrix spaces. The twisting of multiparameter quantum matrix spaces depends on the 2nd cohomology group of a suitable abelian group with coefficients in \mathcal{R}^{\times}, the multiplication group of invertible elements in \mathcal{R}. We begin by reviewing the relevant definitions.

Definition B.22. Let Λ be an abelian group written additively. A mapping $\zeta: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$is called a 2 -cocycle of Λ if it satisfies

$$
\begin{equation*}
\zeta(\lambda, \mu+\iota) \zeta(\mu, \iota)=\zeta(\lambda, \mu) \zeta(\lambda+\mu, \iota), \quad \text { for all } \lambda, \mu, \iota \in \Lambda \tag{B.3.3}
\end{equation*}
$$

A mapping $\zeta: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$is called a 2 -coboundary if there exists a mapping $\eta: \Lambda \rightarrow \mathcal{R}^{\times}$such that

$$
\begin{equation*}
\zeta(\lambda, \mu)=\eta(\lambda) \eta(\mu) \eta(\lambda+\mu)^{-1}, \quad \text { for all } \lambda, \mu \in \Lambda \tag{B.3.4}
\end{equation*}
$$

The 2-cocycles of Λ with values in \mathcal{R}^{\times}form an abelian group under function multiplication, and the set of 2 -coboundaries is a subgroup. The quotient group, denoted $H^{2}\left(\Lambda, \mathcal{R}^{\times}\right)$, is called the 2nd cohomology group of Λ with coefficients in \mathcal{R}^{\times}, and the coset of a 2-cocycle ζ with respect to the subgroup of 2 -coboundaries is called the cohomology class of ζ. If 2 cocycles ζ and ξ belong to the same cohomology class, then they are termed cohomologous.

We call a 2-cocycle (a 2-coboundary) ζ unitary if, in addition,

$$
\zeta(0,0)=1
$$

Clearly, every 2-cocycle is cohomologous to a unitary 2-cocycle. In fact, if ξ is a 2-cocycle, then $\zeta: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$defined by $\zeta(\lambda, \mu)=\xi(0,0)^{-1} \xi(\lambda, \mu)$ is a
unitary 2-cocycle cohomologous to ξ (since a constant map $\Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$is clearly a 2 -coboundary). Moreover, it is clear that if two unitary 2-cocycles ξ and ζ are cohomologous, then $\xi \zeta^{-1}$ is a unitary 2-coboundary. It follows that $H^{2}\left(\Lambda, \mathcal{R}^{\times}\right)$can be obtained by forming the quotient group of the group of unitary 2 -cocyles modulo its subgroup of unitary 2 -coboundaries.

We now explain how a 2 -cocycle of Λ twists an algebra graded by Λ.
Suppose we are given an \mathcal{R}-algebra A which is graded by an abelian $\operatorname{group} \Lambda: A=\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ with $A_{\lambda} A_{\mu} \subseteq A_{\lambda+\mu}$. Let $\zeta: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$be a unitary 2 -cocycle. Define a new binary product $*$ on A by

$$
\begin{equation*}
x * y=\zeta(\lambda, \mu) x y, \quad \text { for all } x \in A_{\lambda}, y \in A_{\mu} . \tag{B.3.5}
\end{equation*}
$$

Clearly, $*$ is \mathcal{R}-bilinear on $A_{\lambda} \times A_{\mu}$, for any $\lambda, \mu \in \Lambda$, and hence it defines a bilinear mapping $*: A \times A \rightarrow A$.

Proposition B.23. Let $A=(A, \cdot)$ be an \mathcal{R}-algebra graded by an abelian group Λ as above. Then:
(1) For any unitary 2 -cocycle ζ, A becomes an associative algebra graded by Λ under the operation $*$ defined by (B.3.5). We also have $x * y=x y$ if $x \in A_{0}$ or $y \in A_{0}$. In particular, the identity 1 of the algebra $A=(A, \cdot)$ is also the identity of the algebra $A^{\zeta}:=(A, *)$.
(2) For unitary 2 -cocycles ζ and $\xi,\left(A^{\zeta}\right)^{\xi}=A^{\zeta \xi}$. In particular, $\left(A^{\zeta}\right)^{\zeta^{-1}}=$ A.
(3) If ζ is a unitary 2-coboundary as in (B.3.4), then there is an algebra isomorphism $\phi: A^{\zeta} \xrightarrow{\sim} A$ defined by $\phi(x)=\eta(\lambda) x$, for $x \in A_{\lambda}$. Therefore, given a unitary 2 -cocycle ζ, the algebra A^{ζ} is determined, up to isomorphism, by the cohomology class of ζ.
(4) If $\psi: A \rightarrow B$ is a homomorphism of Λ-graded algebras, then $\psi: A^{\zeta} \rightarrow$ B^{ζ}, for any unitary 2 -cocycle ζ of Λ, is also a graded algebra homomorphism.

Proof. (1) Consider $x \in A_{\lambda}, y \in A_{\mu}$, and $z \in A_{\iota}$, for $\lambda, \mu, \iota \in \Lambda$. We have

$$
\begin{aligned}
& (x * y) * z=(\zeta(\lambda, \mu) x y) * z=\zeta(\lambda, \mu) \zeta(\lambda+\mu, \iota)(x y) z, \text { and } \\
& x *(y * z)=x *(\zeta(\mu, \iota) y z)=\zeta(\lambda, \mu+\iota) \zeta(\mu, \iota) x(y z) .
\end{aligned}
$$

Using (B.3.3), we obtain that $(x * y) * z=x *(y * z)$.
By assumption, $\zeta(0,0)=1$. We see from (B.3.3) that $\zeta(0, \iota)=\zeta(\lambda, 0)=$ 1 , for $\iota, \lambda \in \Lambda$. This means that $x * y=x y$ if $x \in A_{0}$ or $y \in A_{0}$. In particular, the identity 1 of A serves as the identity in A^{ζ}.
(2) These statements are obvious from the definitions.
(3) If ζ satisfies (B.3.4), then, for $x \in A_{\lambda}$ and $y \in A_{\mu}$,

$$
\phi(x * y)=\eta(\lambda+\mu)(x * y)=\eta(\lambda) \eta(\mu) x y=\phi(x) \phi(y)
$$

Also, since ζ is unitary, $\eta(0)=1$ from (B.3.4). Thus, $\phi(1)=1$. Since ϕ is obviously bijective, it gives an isomorphism $A^{\zeta} \rightarrow A$.
(4) We have

$$
\psi(x * y)=\zeta(\lambda, \mu) \psi(x y)=\zeta(\lambda, \mu) \psi(x) \psi(y)=\psi(x) * \psi(y)
$$

Also, the identity element is preserved under twisting. Therefore, ψ is an algebra homomorphism $A^{\zeta} \rightarrow B^{\zeta}$.

Now let

$$
\mathcal{V}=\left\{\boldsymbol{v}=\left(v_{i, j}\right)_{n \times n} \mid v_{i, j} \in \mathcal{R}, v_{i, i}=1=v_{i, j} v_{j, i}, \text { for all } i, j\right\}
$$

We define a componentwise multiplication on \mathcal{V}, that is, for $\boldsymbol{v}=\left(v_{i, j}\right)$ and $\boldsymbol{u}=\left(u_{i, j}\right)$, define $\boldsymbol{v} \boldsymbol{u}=\left(v_{i, j} u_{i, j}\right)$. Clearly, the set \boldsymbol{V} is an abelian group under this multiplication, in which the matrix with all entries being 1 is the identity, and the inverse of $\boldsymbol{v}=\left(v_{i, j}\right)$ is $\boldsymbol{v}^{-1}=\left(v_{i, j}^{-1}\right)$.

Let $\Lambda:=\mathbb{Z}^{n}$ be the free abelian group with basis $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$. The free algebra generated by all $\chi_{i, j}$ is $\Lambda \times \Lambda$-graded by giving the generator $\chi_{i, j}$ the grade $\left(\theta_{i}, \theta_{j}\right)$. Since the relations (B.3.1) are homogeneous with respect to this grading, we obtain a $\Lambda \times \Lambda$-graded algebra structure on $A_{n, v}^{q}$.

If $\zeta: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$is a 2 -cocycle of Λ, we put $\pi_{i, j}(\zeta)=\zeta\left(\theta_{i}, \theta_{j}\right) \zeta\left(\theta_{j}, \theta_{i}\right)^{-1}$. Clearly, the $n \times n$ matrix $\boldsymbol{\pi}(\zeta)=\left(\pi_{i, j}(\zeta)\right) \in \mathcal{V}$, and $\boldsymbol{\pi}$ defines a group homomorphism from the group of 2-cocycles of Λ to the group \mathcal{V}. Moreover, since any 2 -coboundary ζ of Λ is symmetric in the sense that $\zeta(\lambda, \mu)=$ $\zeta(\mu, \lambda)$ (by (B.3.4)), the homomorphism factors through the cohomology group $H^{2}\left(\Lambda, \mathcal{R}^{\times}\right)$, giving a group homomorphism $\pi: H^{2}\left(\Lambda, \mathcal{R}^{\times}\right) \rightarrow \mathcal{V}$.

Lemma B.24. The homomorphism $\boldsymbol{\pi}: H^{2}\left(\Lambda, \mathcal{R}^{\times}\right) \rightarrow \mathcal{V}$ is surjective.
Proof. Let $\boldsymbol{v}=\left(v_{i, j}\right) \in \mathcal{V}$. Define a function $\zeta_{v}: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$by

$$
\zeta_{v}\left(\sum_{i} a_{i} \theta_{i}, \sum_{j} b_{j} \theta_{j}\right)=\prod_{i>j} v_{i, j}^{a_{i} b_{j}}
$$

An easy calculation shows that ζ_{v} is a unitary 2-cocycle, and $\boldsymbol{\pi}\left(\zeta_{v}\right)=\boldsymbol{v}$.
Remark B.25. The homomorphism $\boldsymbol{\pi}: H^{2}\left(\Lambda, \mathcal{R}^{\times}\right) \rightarrow \mathcal{V}$ is, in fact, an isomorphism; see Exercise B.14.

Clearly, if ζ and ξ are 2-cocycles of Λ, then the mapping $(\zeta, \xi):(\Lambda \times$ $\Lambda) \times(\Lambda \times \Lambda) \rightarrow \mathcal{R}^{\times}$defined by

$$
(\zeta, \xi)\left(\left(\lambda_{1}, \mu_{1}\right),\left(\lambda_{2}, \mu_{2}\right)\right)=\zeta\left(\lambda_{1}, \lambda_{2}\right) \xi\left(\mu_{1}, \mu_{2}\right), \quad \text { for all } \lambda_{i}, \mu_{i} \in \Lambda
$$

is a 2-cocycle of $\Lambda \times \Lambda$. In particular, $\left(\zeta, \zeta^{-1}\right)$ is a unitary 2-cocycle, since

$$
\left(\zeta, \zeta^{-1}\right)((0,0),(0,0))=\zeta(0,0) \zeta(0,0)^{-1}=1
$$

The algebra $A_{n, v}^{q}$ is graded by $\Lambda \times \Lambda$, so we can twist it by $\left(\zeta, \zeta^{-1}\right)$, for any 2-cocycle ζ of Λ, to obtain $\left(A_{n, v}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)}$.

Theorem B.26. Let $\zeta: \Lambda \times \Lambda \rightarrow \mathcal{R}^{\times}$be a 2 -cocycle of Λ. For $\boldsymbol{v} \in \mathcal{V}$ and $q \in \mathcal{R}^{\times},\left(A_{n, v}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)} \cong A_{n, \pi(\zeta) v}^{q}$.

Proof. We must verify that the generators $\chi_{i, j}$ of $A_{n, v}^{q}$ satisfy, under the $*$ multiplication, the relations (B.3.1), where $\boldsymbol{\pi}(\zeta) \boldsymbol{v}$ takes the place of \boldsymbol{v}. Here, we verify the fourth relation.

Suppose $k>l$ and $i>j$. For convenience, write $\pi_{i, j}=\pi_{i, j}(\zeta)$. We have

$$
\begin{aligned}
& \pi_{k, l}^{-1} v_{k, l}^{-1} \chi_{k, i} * \chi_{l, j}-\pi_{i, j}^{-1} v_{i, j}^{-1} x_{l, j} * \chi_{k, i} \\
&=\pi_{k, l}^{-1} v_{k, l}^{-1} \zeta\left(\theta_{k}, \theta_{l}\right) \zeta\left(\theta_{i}, \theta_{j}\right)^{-1} \chi_{k, i} \chi_{l, j}-\pi_{i, j}^{-1} v_{i, j}^{-1} \zeta\left(\theta_{l}, \theta_{k}\right) \zeta\left(\theta_{j}, \theta_{i}\right)^{-1} \chi_{l, j} \chi_{k, i} \\
&=\zeta\left(\theta_{l}, \theta_{k}\right) \zeta\left(\theta_{i}, \theta_{j}\right)^{-1} v_{k, l}^{-1} \chi_{k, i} x_{l, j}-\zeta\left(\theta_{l}, \theta_{k}\right) \zeta\left(\theta_{i}, \theta_{j}\right)^{-1} v_{i, j}^{-1} \chi_{l, j} \chi_{k, i} \\
&=\zeta\left(\theta_{l}, \theta_{k}\right) \zeta\left(\theta_{i}, \theta_{j}\right)^{-1}\left(v_{k, l}^{-1} \chi_{k, i} \chi_{l, j}-v_{i, j}^{-1} \chi_{l, j} \chi_{k, i}\right) \\
&=(q-1) \zeta\left(\theta_{l}, \theta_{k}\right) \zeta\left(\theta_{i}, \theta_{j}\right)^{-1} \chi_{l, i} \chi_{k, j} \\
&=(q-1) \chi_{l, i} * x_{k, j},
\end{aligned}
$$

as required. The other verifications are left to the reader in Exercise B.10.
Therefore, we now have defined a natural algebra homomorphism $\beta_{v, \zeta}$: $A_{n, \boldsymbol{\pi}(\zeta) \boldsymbol{v}}^{q} \longrightarrow\left(A_{n, \boldsymbol{v}}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)}$. By Proposition B.23(2) and (4),

$$
\left.A_{n, \boldsymbol{v}}^{q}=A_{n, \boldsymbol{\pi}\left(\zeta^{-1}\right) \boldsymbol{\pi}(\zeta) \boldsymbol{v}}^{q} \xrightarrow{\beta_{\boldsymbol{\pi}(\zeta) \boldsymbol{v}, \zeta^{-1}}}\left(A_{n, \boldsymbol{\pi}(\zeta) \boldsymbol{v}}^{q}\right)^{\left(\zeta^{-1}, \zeta\right)}\left(\left(A_{n, \boldsymbol{v}}^{q}\right)\right)^{\left(\zeta, \zeta^{-1}\right)}\right)^{\left(\zeta^{-1}, \zeta\right)}=A_{n, v}^{q} .
$$

The composite is the identity map on $A_{n, v}^{q}$, which ensures the injectivity of $\beta_{\boldsymbol{\pi}(\zeta) \boldsymbol{v}, \zeta^{-1}}$ and the surjectivity of $\beta_{\boldsymbol{v}, \zeta}$. Therefore, $\beta_{\boldsymbol{v}, \zeta}$ is an isomorphism, since \boldsymbol{v} and ζ are arbitrary.
Corollary B.27. For any $\mathfrak{v} \in \mathcal{V}$, the algebra $A_{n, v}^{q}$ is free as an \mathcal{R}-module with basis

$$
\begin{equation*}
\mathcal{B}=\left\{\prod_{i, j} x_{i, j}^{t_{i, j}} \mid t_{i, j} \in \mathbb{N}\right\} \tag{B.3.6}
\end{equation*}
$$

where the products are formed with respect to any fixed ordering of the $\chi_{i, j}$. In particular, $A_{n, v}^{q}$ has the standard basis $\boldsymbol{B}_{n, v}^{q}=\bigcup_{r \in \mathbb{N}} \boldsymbol{B}_{n, v}^{q}(r)$, where $\boldsymbol{B}_{n, v}^{q}(r)=\left\{\chi_{i_{\lambda}, \boldsymbol{i}_{\mu} w^{-1}} \mid \lambda, \mu \in \Lambda(n, r), w \in{ }^{\lambda}\left(\mathfrak{S}_{r}\right)^{\mu}\right\}$ is the standard basis for the homogeneous component $A_{n, v}^{q}(r)$ of grade r in $A_{n, v}^{q}$. Moreover, $A_{n, v}^{q}$ is an integral domain if \mathcal{R} is an integral domain.

Proof. The defining relations (B.3.1) show that the algebra $A_{n, v}^{q}$ is spanned by \mathcal{B}. To see the linear independence of \mathcal{B} and the integral property (under
the assumption that \mathcal{R} is an integral domain), extend \mathcal{R}, if necessary, to contain a square root v of q. Then, by Theorem B.26, the corresponding properties of $A_{n, v}$ stated in Theorem B.2(1) ensure the results here.

Consider now the coalgebra structures on $A_{n, v}^{q}$.
Theorem B.28. If $q \in \mathcal{R}^{\times}$, then for any $\boldsymbol{v} \in \mathcal{V}$, the algebra $A_{n, v}^{q}$ admits a bialgebra structure, whose comultiplication Δ and counit ε are defined on generators by

$$
\begin{equation*}
\Delta\left(\chi_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j} \text { and } \varepsilon\left(\chi_{i, j}\right)=\delta_{i, j} \tag{B.3.7}
\end{equation*}
$$

Moreover, all $A_{n, v}^{q}$ with the same dominant parameter q are isomorphic as coalgebras.

Proof. First, assume that there is a bialgebra structure on $A_{n, v}^{q}$, for some $\boldsymbol{v} \in \mathcal{V}$, with coalgebra as defined in (B.3.7). We make the following
Claim: Identifying $A_{n, v}^{q}$ and $\left(A_{n, v}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)}$ as \mathcal{R}-modules, the coalgebra structure on $A_{n, v}^{q}$, together with the algebra structure of $\left(A_{n, v}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)}$, also defines a bialgebra structure on $\left(A_{n, v}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)}$, for any 2-cocycle ζ of Λ.

Clearly, with this result, we can transfer the bialgebra structure of $A_{n, v}^{q}$ to a bialgebra structure on the algebra $A_{n, \boldsymbol{u}}^{q}$, for any $\boldsymbol{u} \in \mathcal{V}$, keeping the coalgebra structures unchanged.

Denote the multiplication of $\left(A_{n, v}^{q}\right)^{\left(\zeta, \zeta^{-1}\right)}$ by $*$ again. We must show that $\Delta(y * z)=\Delta(y) * \Delta(z)$ and $\varepsilon(y * z)=\varepsilon(y) * \varepsilon(z)$ with the assumptions that $\Delta(y z)=\Delta(y) \Delta(z)$ and $\varepsilon(y z)=\varepsilon(y) \varepsilon(z)$. It suffices to consider the case in which y and z are homogeneous with respect to the $\Lambda \times \Lambda$-grading with, say, grades (λ, μ) and (ϱ, η), respectively.

By (B.3.7), $\Delta(y)$ and $\Delta(z)$ can be written as finite sums

$$
\Delta(y)=\sum_{\iota \in \Lambda} y_{\lambda, \iota}^{\prime} \otimes y_{\iota, \mu}^{\prime \prime} \text { and } \Delta(z)=\sum_{\kappa \in \Lambda} z_{\varrho, \kappa}^{\prime} \otimes z_{\kappa, \eta}^{\prime \prime}
$$

where the subscripts of $y^{\prime}, y^{\prime \prime}, z^{\prime}$, and $z^{\prime \prime}$ indicate the $\Lambda \times \Lambda$-grades of the elements. Then

$$
\begin{aligned}
& \Delta(y * z) \\
& \quad=\zeta(\lambda, \varrho) \zeta(\mu, \eta)^{-1} \Delta(y z)=\zeta(\lambda, \varrho) \zeta(\mu, \eta)^{-1} \sum_{\iota, \kappa} y_{\lambda, \iota}^{\prime} z_{\varrho, \kappa}^{\prime} \otimes y_{\iota, \mu}^{\prime \prime} z_{\kappa, \eta}^{\prime \prime} \\
& \quad=\zeta(\lambda, \varrho) \zeta(\mu, \eta)^{-1} \sum_{\iota, \kappa} \zeta(\lambda, \varrho)^{-1} \zeta(\iota, \kappa) y_{\lambda, \iota}^{\prime} * z_{\varrho, \kappa}^{\prime} \otimes \zeta(\iota, \kappa)^{-1} \zeta(\mu, \eta) y_{\iota, \mu}^{\prime \prime} * z_{\kappa, \eta}^{\prime \prime} \\
& \quad=\sum_{\iota, \kappa} y_{\lambda \iota}^{\prime} * z_{\varrho, \kappa}^{\prime} \otimes y_{\iota, \mu}^{\prime \prime} * z_{\kappa, \eta}^{\prime \prime}=\Delta(y) * \Delta(z) .
\end{aligned}
$$

Observe that $\varepsilon(y) \neq 0$, for a $\Lambda \times \Lambda$-homogeneous element y, only if y has grade (λ, λ), for some $\lambda \in \Lambda$. Thus, to prove $\varepsilon(y * z)=\varepsilon(y) * \varepsilon(z)$, we may assume y and z have grades (λ, λ) and (ϱ, ϱ), respectively. This gives $y * z=y z$, and the required equality is trivial, proving the claim.

To complete the proof of the theorem, we enlarge \mathcal{R}, if necessary, so that it contains a square root v of q. Then all the bialgebra structures can be obtained from the bialgebra structure of $A_{n, v}$ given by Theorem B.2(3). For $v \in \mathcal{V}$, all commutations between the generators $\chi_{i, j}$ involve only coefficients in \mathcal{R}, so the comultiplication and counit defined by (B.3.7) are realized within \mathcal{R}, defining a bialgebra structure on $A_{n, v}^{q}$, as required.

Since all $A_{n, v}^{q}$ have the same coalgebra structure, the quantum determinant det_{q} in $A_{n, v}$ defined by (B.1.11) is also a group-like element in $A_{n, v}^{q}$. (The reason why we use det_{q}, instead of det_{v}, to denote the quantum determinant is now obvious - the quantum determinant depends only on the dominant parameter q.) As above, sometimes it is necessary, for technical reasons, to enlarge the ring \mathcal{R}. But, the element det_{q} exists in $A_{n, v}^{q}$, for any $v \in \mathcal{V}$; see the expression in (B.3.8). When we work in $A_{n, v}^{q}$, the element det_{q} will be called the quantum determinant of $A_{n, v}^{q}$.

To obtain an expression for det_{q} in terms of the generators $\chi_{i, j}$ and the multiplication on $A_{n, \boldsymbol{v}}^{q}$, we need an element v_{w}, for $w \in \mathfrak{S}_{n}$. The element is defined using the cocycle ζ_{v} given in the proof of Lemma B.24:

$$
v_{w}:=\prod_{i=1}^{n-1} \zeta_{v}\left(\theta_{w(1)}+\cdots+\theta_{w(i)}, \theta_{w(i+1)}\right)=\prod_{\substack{i<j \\ w(i)>w(j)}} v_{w(i), w(j)}
$$

Proposition B.29. Let $\boldsymbol{v}=\left(v_{i, j}\right) \in \mathcal{V}$. Then in $A_{n, \boldsymbol{v}}^{q}$,

$$
\begin{align*}
\operatorname{det}_{q} & =\sum_{w \in \mathfrak{S}_{n}}(-q)^{-\ell(w)} v_{w}^{-1} x_{w(1), 1} \cdots x_{w(n), n} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{-\ell(w)} v_{w} x_{1, w(1)} \cdots x_{n, w(n)} \tag{B.3.8}
\end{align*}
$$

If $v_{i, j}=v$, for all $i<j$, then $v_{w}=v^{-\ell(w)}$. If, in addition, $q=v^{2}$, then (B.1.11) is recovered from (B.3.8). Thus, (B.3.8) holds in $A_{n, v}$.

Proof. As in the proof of Theorem B.28, we assume that (B.3.8) holds in $A_{n, \boldsymbol{v}}^{q}$, for some $\boldsymbol{v} \in \mathcal{V}$, and then prove it holds in $A_{n, u v}^{q}=\left(A_{n, v}^{q}\right)^{\left(\zeta_{u}, \zeta_{u}^{-1}\right)}$, for $\boldsymbol{u} \in \mathcal{V}$. We have, for $w \in \mathfrak{S}_{n}$, that

$$
\begin{aligned}
x_{w(1), 1} * \cdots * \chi_{w(n), n} & =u_{w} x_{w(1), 1} \cdots x_{w(n), n} ; \text { and } \\
x_{1, w(1)} * \cdots * x_{n, w(n)} & =u_{w}^{-1} \chi_{1, w(1)} \cdots x_{n, w(n)}
\end{aligned}
$$

Here $*$ denotes the multiplication in $A_{n, u v}^{q}$. Substitution to (B.3.8) yields the same formulas in $A_{n, u v}^{q}$.

Generally speaking, det_{q} is no longer a central element, but it still behaves reasonably - it commutes with $x_{i, j}$, up to the multiple of a product of parameters. More precisely, we have the following result.

Proposition B.30. In the algebra $A_{n, \boldsymbol{v}}^{q}$, for $\boldsymbol{v}=\left(v_{i, j}\right) \in \mathcal{V}$,

$$
x_{i, j} \operatorname{det}_{q}=q^{i-j}\left(\prod_{k} v_{i, k} v_{k, j}\right) \operatorname{det}_{q} x_{i, j}
$$

Proof. Again, twist the formula from $A_{n, v}^{q}$ to $A_{n, u v}^{q}$ by means of the 2cocycle $\zeta_{\boldsymbol{u}}$. The details are left to the reader as Exercise B.11.

Because of Proposition B.30, the set $\left\{\operatorname{det}^{r}{ }_{q}^{r} \mid r \in \mathbb{N}\right\}$ is a so-called "Ore set" in $A_{n, v}^{q}$, so that one can form the localization of $A_{n, v}^{q}$ at det_{q} to obtain an algebra $\tilde{A}_{n, v}^{q}:=A_{n, v}^{q}\left[\operatorname{det}_{q}^{-1}\right]$, as in \S B.2. For the details of the localization theory of noncommutative rings, the reader is again referred to the textbook [222]. It is easy to check that the bialgebra structure of $A_{n, v}^{q}$ extends to $\tilde{A}_{n, v}^{q}$ by making $\operatorname{det}_{q}^{-1}$ a group-like element; coalgebra structures of $\tilde{A}_{n, v}^{q}$ are all isomorphic.

There is another way to obtain the algebras $\tilde{A}_{n, v}^{q}$ by directly twisting the algebra $\tilde{A}_{n, v}$ defined in \S B.2. In fact, since det_{q} is homogeneous with respect to the $\Lambda \times \Lambda$-grading we used above, the algebra $\tilde{A}_{n, v}$ is $\Lambda \times \Lambda$ graded. We can go through the procedure of twisting $\tilde{A}_{n, v}$ to obtain $\tilde{A}_{n, v}^{q}$, for all $v \in \mathcal{V}$, and, in the meantime, we can prove the invariance of the coalgebra structures, as we did in this section for $A_{n, v}^{q}$.

Thus, we have assertion (1) of the following theorem.
Theorem B.31. (1) The localization $\tilde{A}_{n, v}^{q}$ of $A_{n, v}^{q}$ at the quantum determinant det_{q} is a bialgebra, and the coalgebra structures on $\tilde{A}_{n, \boldsymbol{v}}^{q}$, for all $\boldsymbol{v} \in \mathcal{V}$, are all isomorphic.
(2) The bialgebra $\tilde{A}_{n, v}^{q}$ is, in fact, a Hopf algebra, whose antipode γ_{v} satisfies

$$
\gamma_{v u}=\eta_{v}(\lambda)^{-1} \eta_{v}(\mu) \gamma_{u}
$$

on the $\Lambda \times \Lambda$-homogeneous component of grade (λ, μ), for $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{V}$, where $\eta_{v}: \Lambda \rightarrow \mathcal{R}^{\times}$is the coboundary defined by $\eta_{v}\left(\sum_{i} a_{i} \theta_{i}\right):=\prod_{i>j} v_{i, j}^{a_{i} a_{j}}$.

The proof of assertion (2) is left as Exercise B.12. A precise formula of γ_{v} is also given in the exercise.

So far, we have obtained a multiparameter quantum general linear group $\mathrm{GL}_{n, v}^{q}$ by letting $\mathcal{O}\left(\mathrm{GL}_{n, v}^{q}\right):=\tilde{A}_{n, v}^{q}$, for any $v \in \mathcal{V}$.

Remark B.32. It is now natural to ask if there is a multiparameter quantum special linear group associated with a given $v \in \mathcal{V}$ and $q \in \mathcal{R}^{\times}$. Although the ideal generated by $\operatorname{det}_{q}-1$ of $\mathcal{O}\left(\mathrm{M}_{n, v}^{q}\right)=A_{n, v}^{q}$ (resp., of $\left.\mathcal{O}\left(\mathrm{GL}_{n, v}^{q}\right)=\tilde{A}_{n, v}^{q}\right)$ is always a biideal (resp., a Hopf ideal), the quotient algebra of $A_{n, v}^{q}$ (resp., $\tilde{A}_{n, v}^{q}$) modulo that ideal may degenerate if det_{q} is not central. For example, if det_{q} does not commute with a generator $\chi_{i, j}$, then $x_{i, j}$ will vanish in the quotient. Therefore, only the case in which det_{q} is central can give interesting multiparameter quantum special linear groups. From Proposition B.30, we see that the condition that det_{q} be central is equivalent to the condition that

$$
q^{i} \prod_{k} v_{i, k}=q^{j} \prod_{k} v_{j, k}, \quad \text { for all } i, j
$$

When this condition is satisfied, we have a multiparameter quantum special linear group $\mathrm{SL}_{n, v}^{q}$ with $\mathcal{O}\left(\mathrm{SL}_{n, v}^{q}\right):=A_{n, v}^{q} /\left(\operatorname{det}_{q}-1\right)=\tilde{A}_{n, v}^{q} /\left(\operatorname{det}_{q}-1\right)$.

B.4. An application: quantum Schur algebras

As an application of the theory developed in this appendix, we show how the quantum Schur algebra ${ }^{5} S_{q}(n, r)$ can be realized as the dual algebra of the homogeneous component of $A_{n, v}(r)$ of grade r. This component, according to Theorem B.2, is a coalgebra, which is free as an \mathcal{R}-module of rank $\binom{n^{2}+r-1}{r}$. Moreover, for q fixed, Theorem B. 28 assures that the coordinate algebras $A_{n, v}^{q}=\mathcal{O}\left(\mathrm{M}_{n, v}^{q}\right)$ of the multiparameter quantum matrix spaces $\mathrm{M}_{n, v}^{q}$ have the same coalgebra structure as v varies over \mathcal{V}. Thus, we may use any of the coalgebras $A_{n, v}^{q}(r)$, the homogeneous components of $A_{n, v}^{q}$ of grade r, to obtain the dual algebra $A_{n, v}(r)^{*}:=\operatorname{Hom}_{\mathcal{R}}\left(A_{n, v}(r), \mathcal{R}\right) ;$ see Proposition 5.4.

As in \S B.1, let Ω be a free \mathcal{R}-module of rank n with basis $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$, and define a "natural" right $A_{n, v}^{q}$-comodule on Ω by the structure map

$$
\tau: \Omega \longrightarrow \Omega \otimes A_{n, v}^{q}, \quad \omega_{j} \longmapsto \sum_{i} \omega_{i} \otimes x_{i, j}
$$

This comodule structure map extends to an \mathcal{R}-algebra homomorphism τ : $\mathrm{T}(\Omega) \rightarrow \mathrm{T}(\Omega) \otimes A_{n, v}^{q}$ making the tensor algebra $\mathrm{T}(\Omega)$ of Ω into an $A_{n, v^{-}}^{q}$ comodule. Clearly, (B.1.8) still holds. It is also clear that the homogeneous component $\mathrm{T}^{r}(\Omega)=\Omega^{\otimes r}$ of grade r of $\mathrm{T}(\Omega)$ is an $A_{n, v}^{q}$-subcomodule and that $\tau\left(\Omega^{\otimes r}\right) \subseteq \Omega^{\otimes r} \otimes A_{n, v}^{q}(r)$. Hence, τ induces a right $A_{n, v}^{q}(r)$-comodule structure on $\Omega^{\otimes r}$, whose comodule structure map, by abuse of notation, is

[^8]still denoted by τ. Via this comodule structure, the dual algebra $A_{n, v}^{q}(r)^{*}$ has a left action on $\Omega^{\otimes r}$ given by the formula:
\[

$$
\begin{equation*}
f \cdot \omega=\left(\operatorname{id}_{\Omega^{\otimes r}} \otimes f\right) \circ \tau(\omega), \text { for } f \in A_{n, v}^{q}(r)^{*}, \omega \in \Omega^{\otimes r} \tag{B.4.1}
\end{equation*}
$$

\]

Lemma B.33. The action of $A_{n, v}^{q}(r)^{*}$ on $\Omega^{\otimes r}$ is faithful.
Proof. If $f \in A_{n, v}^{q}(r)^{*}$ acts trivially on $\Omega^{\otimes r}$, then, for any $\boldsymbol{j} \in I(n, r)$,

$$
0=f \cdot \omega_{j}=\sum_{i} f\left(x_{i, j}\right) \omega_{i}
$$

It follows that $f\left(\chi_{i, j}\right)=0$, for all \boldsymbol{i} and $\boldsymbol{j} \in I(n, r)$. Thus $f=0$.
Since the structure map $\tau: \mathrm{T}(\Omega) \rightarrow \mathrm{T}(\Omega) \otimes A_{n, v}^{q}$ involves the multiplication of $A_{n, v}^{q}$, the $A_{n, v}^{q}(r)$-comodule structure, hence the $A_{n, v}^{q}(r)^{*}$-module structure, on $\Omega^{\otimes r}$ may depend on \boldsymbol{v}. To meet the preexisting definition of quantum Schur algebras in Chapter 9, we must choose a suitable \boldsymbol{v}, i.e., a suitable quantum matrix space.

Take the matrix $\boldsymbol{e}=\left(e_{i, j}\right)$ with all $e_{i, j}=1$ as the parameter matrix. Thus, from (B.3.1) (or (B.3.2)), the relations in $A_{n, e}^{q}\left(=A_{n}^{1, q}\right.$ in the notation of two-parameter quantum matrix spaces introduced in Example B.21) are

$$
\begin{align*}
\chi_{k, i} \chi_{k, j} & =x_{k, j} \chi_{k, i}, & & \text { for all } i, j, k ; \\
x_{k, i} x_{l, j} & =q \chi_{l, j} \chi_{k, i}, & & \text { if } k>l \text { and } i \leqslant j ; \tag{B.4.2}\\
x_{k, i} \chi_{l, j}-\chi_{l, j} \chi_{k, i} & =(q-1) \chi_{l, i} \chi_{k, j}, & & \text { if } k>l \text { and } i>j .
\end{align*}
$$

To get the action of $A_{n, \boldsymbol{e}}^{q}(r)^{*}$ on certain basis elements of $\Omega^{\otimes r}$, use the standard basis $\boldsymbol{B}_{n, \boldsymbol{e}}^{q}(r)$ of $A_{n, \boldsymbol{e}}^{q}(r)$ as given in Corollary B.27, denoting the basis elements by $\chi_{i_{\lambda}, i_{\mu} w^{-1}}$, for $\lambda, \mu \in \Lambda(n, r)$ and $w \in^{\lambda} \mathfrak{S}^{\mu}$. Denote the corresponding dual basis of $A_{n, \boldsymbol{e}}^{q}(r)^{*}$ by $f_{\lambda, \mu}^{w}$. That is,

$$
f_{\lambda, \mu}^{w}\left(\chi_{i_{\lambda^{\prime}}, i_{\mu^{\prime}} w^{\prime-1}}\right):=\delta_{\lambda, \lambda^{\prime}} \delta_{\mu, \mu^{\prime}} \delta_{w, w^{\prime}}
$$

Lemma B.34. Let $\lambda, \mu, \mu^{\prime} \in \Lambda(n, r)$ and $w \in{ }^{\lambda} \mathfrak{S}^{\mu}$. Then

$$
f_{\lambda, \mu}^{w} \cdot \omega_{\boldsymbol{i}_{\mu^{\prime}}}=\delta_{\mu, \mu^{\prime}} \sum_{\substack{d \in \lambda \\ \mathfrak{S}_{\lambda} d \mathfrak{S}_{\mu}=\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}}} q^{\ell(d)} \omega_{i_{\lambda} d}
$$

$$
f_{\lambda, \mu}^{w} \cdot \omega_{\boldsymbol{i}_{\mu^{\prime}}}=\sum_{\lambda^{\prime} \in \Lambda(n, r), d \in \in^{\prime} \mathfrak{S}} f_{\lambda, \mu}^{w}\left(\chi_{\boldsymbol{i}_{\lambda^{\prime}}, \boldsymbol{i}_{\mu^{\prime}}}\right) \omega_{\boldsymbol{i}_{\lambda^{\prime}}}
$$

If $\lambda^{\prime} \neq \lambda$ or $\mu^{\prime} \neq \mu$, then $f_{\lambda, \mu}^{w}\left(\chi_{i_{\lambda^{\prime}}, \boldsymbol{i}_{\mu^{\prime}}}\right)=0$. The result for $\mu \neq \mu^{\prime}$ follows, and the case $\mu^{\prime}=\mu$ simplifies to

$$
f_{\lambda, \mu}^{w} \cdot \omega_{\boldsymbol{i}_{\mu}}=\sum_{d \in \lambda \mathfrak{S}} f_{\lambda, \mu}^{w}\left(\chi_{\boldsymbol{i}_{\lambda} d, \boldsymbol{i}_{\mu}}\right) \omega_{\boldsymbol{i}_{\lambda} d}
$$

Using the defining relations (B.4.2), we see that $\chi_{\boldsymbol{i}_{\lambda} d, \boldsymbol{i}_{\mu}}=q^{\ell(d)} \chi_{\boldsymbol{i}_{\lambda}, \boldsymbol{i}_{\mu} d^{-1} y^{-1}}$, for any $y \in \mathfrak{S}_{\lambda}$. Therefore,

$$
f_{\lambda, \mu}^{w}\left(\chi_{i_{\lambda} d, \boldsymbol{i}_{\mu}}\right)= \begin{cases}q^{\ell(d)}, & \text { if } \mathfrak{S}_{\lambda} d \mathfrak{S}_{\mu}=\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu} \\ 0, & \text { otherwise }\end{cases}
$$

Thus, the formula in the lemma holds in the $\mu=\mu^{\prime}$ case.
Now we define a linear map $\mathscr{T}: \Omega \otimes \Omega \rightarrow \Omega \otimes \Omega$ by the rule

$$
\mathscr{T}\left(\omega_{i} \otimes \omega_{j}\right)= \begin{cases}q \omega_{j} \otimes \omega_{i}, & \text { if } i \leqslant j \tag{B.4.3}\\ (q-1) \omega_{i} \otimes \omega_{j}+\omega_{j} \otimes \omega_{i}, & \text { if } i>j\end{cases}
$$

We have the following results, which link the $A_{n, \boldsymbol{e}}^{q}$-comodule structure on $\Omega^{\otimes r}$ with the action of the Hecke algebra $H_{\mathcal{R}}=H\left(\mathfrak{S}_{r}\right)_{\mathcal{R}}$ given in (9.1.1)

Proposition B.35. (1) The above-defined map \mathscr{T} is a right $A_{n, e}^{q}$-comodule homomorphism. Thus, for any $m<r$, the map $\mathscr{T}_{m, m+1}: \Omega^{\otimes r} \rightarrow \Omega^{\otimes r}$, which is the application of \mathscr{T} to the mth and the $(m+1)$ th factors of the tensor space, viewed as $\Omega \otimes \Omega$, is a right $A_{n, e}^{q}$-comodule homomorphism.
(2) The assignment $T_{s_{m}} \mapsto \mathscr{T}_{m, m+1}$ for $s_{m}=(m, m+1) \in \mathfrak{S}_{r}, m=$ $1, \ldots, r-1$, defines a (left and right) $H_{\mathcal{R}}$-module structure on $\Omega^{\otimes r}$.

Proof. For (1), it suffices to check that $\tau \circ \mathscr{T}\left(\omega_{i} \otimes \omega_{j}\right)=(\mathscr{T} \otimes \mathrm{id}) \circ \tau\left(\omega_{i} \otimes \omega_{j}\right)$, for all i, j, where τ defines the comodule structure of $\Omega \otimes \Omega$, and id stands for the identity map on $A_{n, \boldsymbol{e}}^{q}$. We give a verification for the case $i<j$, leaving the other cases as an exercise; see Exercise B.15.

$$
\begin{aligned}
& \tau \circ \mathscr{T}\left(\omega_{i} \otimes \omega_{j}\right)=\tau\left(q \omega_{j} \otimes \omega_{i}\right)=q \sum_{k, l} \omega_{l} \otimes \omega_{k} \otimes x_{l, j} \chi_{k, i} \\
& =\sum_{k>l} \omega_{l} \otimes \omega_{k} \otimes x_{k, i} x_{l, j}+q \sum_{k} \omega_{k} \otimes \omega_{k} \otimes x_{k, i} \chi_{k, j} \\
& \quad+\sum_{k<l} \omega_{l} \otimes \omega_{k} \otimes\left(q \chi_{k, i} \chi_{l, j}+(q-1) \chi_{l, i} \chi_{k, j}\right) \\
& =\sum_{k>l}\left(\omega_{l} \otimes \omega_{k}+(q-1) \omega_{k} \otimes \omega_{l}\right) \otimes x_{k, i} \chi_{l, j}+\sum_{k \leqslant l} q \omega_{l} \otimes \omega_{k} \otimes x_{k, i} \chi_{l, j} \\
& =\sum_{k, l} \mathscr{T}\left(\omega_{k} \otimes \omega_{l}\right) \otimes x_{k, i} \chi_{l, j}=(\mathscr{T} \otimes \mathrm{id}) \circ \tau\left(\omega_{i} \otimes \omega_{j}\right),
\end{aligned}
$$

as required.

We now consider (2). From the defining relations (4.4.1) of a Hecke algebra, we see that, in the case of $W=\mathfrak{S}_{r}$, the only nontrivial relations requiring verification are $\mathscr{T} \circ \mathscr{T}=(q-1) \mathscr{T}+q($ on $\Omega \otimes \Omega)$ and $\mathscr{T}_{1,2} \circ$ $\mathscr{T}_{2,3} \circ \mathscr{T}_{1,2}=\mathscr{T}_{2,3} \circ \mathscr{T}_{1,2} \circ \mathscr{T}_{2,3}($ on $\Omega \otimes \Omega \otimes \Omega)$. The verifications are routine, involving case-by-case exhibitions. For example, if $i<j$, then

$$
\omega_{i} \otimes \omega_{j} \stackrel{\mathscr{G}}{\longmapsto} q \omega_{j} \otimes \omega_{i} \stackrel{\mathscr{T}}{\longrightarrow}(q-1) q \omega_{j} \otimes \omega_{i}+q \omega_{i} \otimes \omega_{j},
$$

which equals the image of $\omega_{i} \otimes \omega_{j}$ under the map $(q-1) \mathscr{T}+q$. Also, if $i \leqslant j \leqslant k$, both $\mathscr{T}_{1,2} \circ \mathscr{T}_{2,3} \circ \mathscr{T}_{1,2}$ and $\mathscr{T}_{2,3} \circ \mathscr{T}_{1,2} \circ \mathscr{T}_{2,3}$ take $\omega_{i} \otimes \omega_{j} \otimes \omega_{k}$ to $q^{3} \omega_{k} \otimes \omega_{j} \otimes \omega_{i}$. For the other cases, see Exercise B. 15 again.

Remark B.36. The $H_{\mathcal{R}}$-module structure on $\Omega^{\otimes r}$ defined here looks different from that given in (9.1.1). However, (see Exercise B.16) these two (right) module structures are isomorphic via the map $\omega_{i} \mapsto q^{-\operatorname{inv}(i)} \omega_{i}$, where $\operatorname{inv}(i)$ stands for the number of inversions in the sequence \boldsymbol{i}, or, using the notation of Chapter $9, \omega_{i_{\lambda} d} \mapsto q^{-\ell(d)} \omega_{i_{\lambda} d}$, for $\lambda \in \Lambda(n, r)$ and $d \in{ }^{\lambda} \mathfrak{S}_{r}$. Therefore, the $H_{\mathcal{R}}$-module $\Omega^{\otimes r}$ defined here is, in fact, isomorphic to $\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\mathcal{R}}$ via the map $\omega_{i_{\lambda} w} \mapsto q^{-\ell(d)} x_{\lambda} T_{d}$.
Theorem B.37. The \mathcal{R}-algebras $A_{n, v}^{q}(r)^{*}$ and $S_{q}(n, r)$ are isomorphic. Moreover, if we identify the $H_{\mathcal{R}}$-module $\Omega^{\otimes r}$ with $\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\mathcal{R}}$ via the map $\omega_{i_{\lambda} d} \mapsto q^{-\ell(d)} x_{\lambda} T_{d}$, then $f_{\lambda, \mu}^{w}=\zeta_{\lambda, \mu}^{w}$ as defined in (9.1.2).

Proof. Lemma B. 33 shows that the algebra $A_{n, v}^{q}(r)^{*}$ is realized as a subalgebra of $\operatorname{End}_{\mathcal{R}}\left(\Omega^{\otimes r}\right)$, while Proposition B. 35 ensures that the actions of the algebras $A_{n, v}^{q}(r)^{*}$ and $H_{\mathcal{R}}$ on $\Omega^{\otimes r} \cong \bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\mathcal{R}} \quad$ (see Remark B.36) commute. This means, by the definition of quantum Schur algebras, that $A_{n, v}^{q}(r)^{*}$ is realized as a subalgebra of $S_{q}(n, r)$. If $\mathcal{R}=\mathcal{K}$ is a field, the required isomorphism follows immediately from the dimension comparison, since both of these algebras have dimension $\binom{n^{2}+r-1}{r}$. To see the isomorphism in the general case, it suffices to show that $f_{\lambda, \mu}^{w}=\zeta_{\lambda, \mu}^{w}$. Identify $\Omega^{\otimes r}$ with $\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\mathcal{R}}$ as in the theorem, then the formula in Lemma B. 34 becomes

$$
f_{\lambda, \mu}^{w} \cdot x_{\mu^{\prime}}=\delta_{\mu, \mu^{\prime}} \sum_{\substack{d \in^{\lambda} \mathfrak{S}_{\begin{subarray}{c}{ } }}} \\
{\mathfrak{S}_{\lambda} d \mathfrak{S}_{\mu}=\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}}\end{subarray}} x_{\lambda} T_{d}=\delta_{\mu, \mu^{\prime}} \sum_{\substack{y \in \mathfrak{S}_{\lambda}, d \in \mathfrak{N}^{\lambda} \\
\mathfrak{S}_{\lambda} d \mathfrak{S}_{\mu}=\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}}} T_{y d}=\delta_{\mu, \mu^{\prime}} \sum_{x \in \mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}} T_{x}
$$

which is exactly the definition of $\zeta_{\lambda, \mu}^{w}$; see (9.1.2).
Remark B.38. From the defining relations (B.4.2), it is clear that the invertibility of q is unnecessary in the definition of $A_{n, \boldsymbol{e}}^{q}$, and the standard basis $\boldsymbol{B}_{n, \boldsymbol{e}}^{q}$ can be realized without q^{-1}. Thus, we can define $A_{n, \boldsymbol{e}}^{q}(r)$, and hance $A_{n, \boldsymbol{e}}^{q}(r)^{*}$, over the ring $\mathcal{A}=\mathbb{Z}[q]$. Moreover, the isomorphism sending $f_{\lambda, \mu}^{w}$ to $\zeta_{\lambda, \mu}^{w}$ is also realized within \mathcal{A}. The only change in our argument
is that the isomorphism $\Omega^{\otimes r} \rightarrow \bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\mathscr{A}}$ must be revised as an isomorphism of the \mathcal{A}-submodule of $\Omega^{\otimes r}$ spanned by $q^{\ell(d)} \omega_{i_{\lambda} d}(\lambda \in \Lambda(n, r)$, $d \in{ }^{\lambda} \mathfrak{S}$) with $\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\mathcal{A}}$. This remark shows that the integral q-Schur algebra $S_{q}(n, r)$ over \mathcal{A} (see Definition 9.2) can also be obtained by duality.

Exercises and notes

Exercises

§B. 1

B.1. Verify that the matrix relation (B.1.4) in terms of the Yang-Baxter matrix is equivalent to the relations (B.1.1).
B.2. Check, for $A_{n, v}$, that the elements $\Delta\left(\chi_{i, j}\right)$ satisfy the relations satisfied by the elements $\chi_{i, j}$.
B.3. Complete the verification for Proposition B.6.
B.4. Verify that

$$
\sum_{w \in \mathfrak{S}_{r}}(-v)^{-\ell(w)} \chi_{i w, j}=\sum_{w \in \mathfrak{S}_{r}}(-v)^{-\ell(w)} \chi_{i, j w},
$$

for all $\boldsymbol{i}, \boldsymbol{j} \in I_{0}(n, r)$.
Hint: Show that, for any $w \in \mathfrak{S}_{r}, \chi_{i w, j}=\chi_{i, j w^{-1}}$.
B.5. Given $\boldsymbol{i} \in I_{0}(n, r)$, for $r \leqslant n$, let $\boldsymbol{i}^{\prime} \in I_{0}(n, n-r)$ be the complement of \boldsymbol{i}. Prove that in $\Lambda_{v}(\Omega)$,

$$
\omega_{i} \omega_{i^{\prime}}=(-v)^{r(r+1) / 2-|i|} \omega_{i_{\max }}
$$

§B. 2

B.6. Prove that there is an \mathcal{R}-algebra isomorphism $\bar{A}_{n, v} \otimes \mathcal{R}\left[u, u^{-1}\right] \cong \tilde{A}_{n, v}$, where u is an indeterminate over \mathcal{R}.

Hint: First, we have $\bar{A}_{n, v} \otimes \mathcal{R}\left[u, u^{-1}\right] \cong\left(A_{n, v} \otimes \mathcal{R}\left[u, u^{-1}\right]\right) /\left(\operatorname{det}_{q}-1\right)$. Now define an algebra isomorphism $\left(A_{n, v} \otimes \mathcal{R}\left[u, u^{-1}\right]\right) /\left(\operatorname{det}_{q}-1\right) \rightarrow\left(A_{n, v} \otimes\right.$ $\left.\mathcal{R}\left[u, u^{-1}\right]\right) /\left(\operatorname{det}_{q}-u\right)$ by sending $x_{1, j}$ to $u^{-1} x_{1, j}$ and $x_{i, j}$, with $i>1$, to $x_{i, j}$. Finally, $\left(A_{n, v} \otimes \mathcal{R}\left[u, u^{-1}\right]\right) /\left(\operatorname{det}_{q}-u\right)$ is isomorphic to $\tilde{A}_{n, v}$.
B.7. Verify that the ideals defining the Borel subgroups $B_{v}^{ \pm}$and the maximal torus T_{v} are Hopf ideals, and thus complete the definitions of $B_{v}^{ \pm}$and T_{v} as closed subgroups of G_{v}.
B.8. (1) Give a proof for Lemma B.16.
(2) Prove that in $\mathcal{O}\left(\mathrm{M}_{n, v}\right)$, $\operatorname{det}\left(\chi_{i, j}^{\ell}\right)=\operatorname{det}_{q}^{\ell}$, where $\operatorname{det}\left(\chi_{i, j}^{\ell}\right)$ denotes the ordinary determinant of the matrix $\left(\chi_{i, j}^{\ell}\right)$ with commutative entries.
(3) Prove that the embeddings $\phi: \mathcal{O}\left(\mathrm{GL}_{n}\right) \rightarrow \mathcal{O}\left(\mathrm{GL}_{n, v}\right)$ and $\phi: \mathcal{O}\left(\mathrm{SL}_{n}\right) \rightarrow$ $\mathcal{O}\left(\mathrm{SL}_{n, v}\right)$ are compatible with antipodes.
Hint: Let $q=v^{2}$, which is also a primitive ℓ th root of 1 . The verification involves Gaussian polynomials $\left\lfloor\begin{array}{c}m \\ r\end{array} \rrbracket\right.$. Use Exercise 0.13.

§B. 3

B.9. Consider the two-parameter family of quantum linear matrix spaces given in Example B. 21 .
(1) Give a direct verification (i.e., without reference to Theorem B.28) that the maps $\Delta\left(\chi_{i, j}\right)=\sum_{k} \chi_{i, k} \otimes \chi_{k, j}$ and $\varepsilon\left(\chi_{i, j}\right)=\delta_{i, j}$ extend to \mathcal{R}-algebra homomorphisms $\Delta: A_{n}^{a, b} \rightarrow A_{n}^{a, b} \otimes A_{n}^{a, b}$ and $\varepsilon: A_{n}^{a, b} \rightarrow \mathcal{R}$, making $A_{n}^{a, b}$ into an \mathcal{R}-bialgebra.
(2) (Hyperbolic invariance of two-parameter quantum matrix spaces) Let a, b and a^{\prime}, b^{\prime} be invertible elements in \mathcal{R} with $a b=a^{\prime} b^{\prime}$. Give a direct proof (i.e., without reference to Theorem B.28) that $A_{n}^{a, b} \cong A_{n}^{a^{\prime}, b^{\prime}}$ as coalgebras.

Hint: Denote the generators of $A_{n}^{a, b}$ and $A_{n}^{a^{\prime}, b^{\prime}}$ by $\chi_{i, j}$ and $\chi_{i, j}^{\prime}$, respectively. Let $\kappa:=a^{\prime} / a=b / b^{\prime}$. Define an \mathcal{R}-linear map $\phi_{\kappa}: A_{n}^{a, b} \rightarrow$ $A_{n}^{a^{\prime}, b^{\prime}}$ by sending $\chi_{i, j}(\boldsymbol{i}, \boldsymbol{j} \in I(n, r)$, for some $r \in \mathbb{N})$ to $\kappa^{\operatorname{inv}(\boldsymbol{i})-\operatorname{inv}(\boldsymbol{j})} \chi_{\boldsymbol{i}, \boldsymbol{j}}^{\prime}$, where $\operatorname{inv}(i)$ stands for the number of inversions in the sequence $\boldsymbol{i}=$ $\left(i_{1}, \ldots, i_{r}\right) \in I(n, r)$. Prove that ϕ_{κ} is a coalgebra isomorphism.
B.10. Complete the verifications in the proof of Theorem B.26.
B.11. Carry out the necessary verification in the proof of Proposition B. 30 .
B.12. Carry out the necessary verification in the proof of Theorem B.31(2). Moreover, prove the following expression for $\gamma_{\boldsymbol{v}}$, for $\boldsymbol{v}=\left(v_{i, j}\right) \in \mathcal{V}$, on the generators $\chi_{i, j}$:

$$
\gamma_{v}\left(\chi_{i, j}\right)=(-1)^{n+j} q^{j-i} \tilde{v}_{j, i} \operatorname{det}_{q}^{-1} \sum_{\substack{w \in \mathfrak{S}_{n} \\ w(n)=i}}(-1)^{\ell(w)} \tilde{v}_{w} \tilde{x}_{w}
$$

where $\tilde{v}_{j, i}:=\prod_{k>j ; l>i} v_{j, k} v_{l, i}, \tilde{v}_{w}:=\prod_{k<l<n ; w(k)>w(l)} v_{w(k), w(l)}$, while

$$
\tilde{x}_{w}:=x_{1, w(1)} \cdots x_{j-1, w(j-1)} x_{j+1, w(j)} \cdots x_{n, w(n-1)} .
$$

Although the fact that the homomorphism $\boldsymbol{\pi}$ defined in Lemma B. 24 is an isomorphism (see Remark B.25) is not necessary for theory of multiparameter quantum matrix spaces developed in $\S B .3$, the following two exercises provide a proof of this fact, which we give for completeness. Exercise B. 13 establishes the well-known fact that the second cohomology $H^{2}(G, A)$ of a group G with values in an abelian group A can be interpreted as the set of equivalence classes of the central extensions of G by A. This result is used in Exercise B. 14 to establish that $\boldsymbol{\pi}$ is an isomorphism.
B.13. (Group extensions and the 2nd cohomology group) Let G be a group and let A be an abelian group (written multiplicatively). By a central extension of G by A we mean an exact sequence $1 \rightarrow A \xrightarrow{i} \widehat{G} \xrightarrow{p} G \rightarrow 1$ of groups such that $\operatorname{Im} i$ is central in \widehat{G}. Two central extensions $1 \rightarrow A \rightarrow \widehat{G} \rightarrow G \rightarrow 1$ and $1 \rightarrow$ $A \rightarrow \widehat{G}^{\prime} \rightarrow G \rightarrow 1$ of G by A are said to be equivalent provided there exists an isomorphism $\widehat{G} \xrightarrow{\sim} \widehat{G}^{\prime}$ making the diagram

commutative. A central extension $1 \rightarrow A \xrightarrow{i} \widehat{G} \xrightarrow{p} G 1$ is split if there exists a homomorphism $c: G \rightarrow \widehat{G}$ such that $p \circ c=\operatorname{id}_{G}$ or, equivalently, if $\widehat{G} \cong A \times G$ (with i and p the corresponding inclusion and projection maps).

Now assume that $G=\Lambda$ is abelian (written additively). Given a central extension $1 \rightarrow A \xrightarrow{i} \widehat{\Lambda} \xrightarrow{p} \Lambda \rightarrow 1$, let $c: \Lambda \rightarrow \widehat{\Lambda}$ be a map of sets satisfying $p \circ c=\operatorname{id}_{\Lambda}$. Define $\zeta: \Lambda \times \Lambda \rightarrow \widehat{\Lambda}$ by

$$
\zeta(\lambda, \mu)=c(\lambda+\mu) c(\lambda)^{-1} c(\mu)^{-1}, \quad \text { for all } \lambda, \mu \in \Lambda
$$

(1) Prove that ζ has its values in A, and that ζ is a 2 -cocycle of Λ, which is unitary if and only if $c\left(1_{\Lambda}\right)=1_{\widehat{\Lambda}}$.
(2) Show that if $c^{\prime}: G \rightarrow \widehat{G}$ is a map also satisfying $p \circ c^{\prime}=\operatorname{id}_{G}$, then the corresponding ζ^{\prime} differs from ζ by a 2 -coboundary, i.e., ζ and ζ^{\prime} define the same cohomology class in $H^{2}(\Lambda, A)$.
(3) Conversely, given a 2 -cocycle of Λ with value in A, show that it defines a central extension of Λ by A. Show that 2 -cocycles in the same cohomology class define equivalent extensions. Conclude that the cohomology group $H^{2}(\Lambda, A)$ classifies the central extensions of Λ by A, up to equivalence.
B.14. Assume that $\Lambda \cong \mathbb{Z}^{n}$ with basis $\theta_{1}, \ldots, \theta_{n}$. Let $\mathcal{V}_{n}(A)$ be the set of $n \times n$ matrices $\boldsymbol{v}=\left(v_{i, j}\right)$ with entries in A satisfying $v_{i, i}=1$ and $v_{i, j} v_{j, i}=1$, for all i, j. Make $\mathcal{V}_{n}(A)$ into a group by introducing entry-wise multiplication. Prove that $H^{2}(\Lambda, A) \cong \mathcal{V}_{n}(A)$ in the following steps:
(1) Given a 2-cocycle ζ of Λ in A, define $\pi(\zeta)=\left(\pi_{i, j}(\zeta)\right) \in \mathcal{V}_{n}(A)$ by putting $\pi_{i, j}(\zeta)=\zeta\left(\theta_{i}, \theta_{j}\right) \zeta\left(\theta_{j}, \theta_{i}\right)^{-1}$. Mimic the proof of Lemma B. 24 to conclude that the map $\zeta \mapsto \boldsymbol{\pi}(\zeta)$ defines a surjective homomorphism $\boldsymbol{\pi}: H^{2}(\Lambda, A)$ $\rightarrow \mathcal{V}_{n}(A)$.
(2) To see that $\boldsymbol{\pi}$ is an isomorphism, suppose that ζ is a 2 -cocycle such that $\pi(\zeta)=1$ or, equivalently, that ζ is symmetric in the sense that $\zeta\left(\theta_{i}, \theta_{j}\right)=\zeta\left(\theta_{j}, \theta_{i}\right)$. Show that the extension $\widehat{\Lambda}$ of Λ by A defined by ζ is abelian and therefore splits, since Λ is free abelian. Conclude ζ is a coboundary.

§B. 4

B.15. Complete the necessary verifications of Proposition B.35.
B.16. Establish the isomorphism between the $H_{\mathcal{R}}$-module $\Omega^{\otimes r}$ defined by Proposition B.35(2) and that defined by (9.1.1); see Remark B. 36 .
B.17. Suppose $\mathcal{R}=K$ is a field. Let v be a primitive ℓ th root of unity with ℓ odd. Let $q=v^{2}$. Show that there is a Frobenius morphism $F: \mathcal{S}_{q}(n, \ell r) \rightarrow \mathcal{S}(n, r)$, where $\mathcal{S}(n, r)$ is the classical Schur algebra (or, equivalently, the quantum Schur algebra with dominant parameter 1). Thus, an $\mathcal{S}(n, r)$-module V has a Frobenius twist V^{F}. Derive the tensor product theorem for Schur algebras from Theorem B.18.

Notes

The general point of view of this appendix follows the treatment in ParshallWang [236] and Donkin [84]. The reader can consult these works for a discussion of the representation theory of q-Schur algebras, especially at roots of unity, which is not really treated in this book.
$\S \S$ B.1-B.2: The definitions of standard quantum matrix spaces and quantum linear groups by quantum coordinate algebras can be traced back to early works by Russian mathematicians. See, for example, Faddeev-Reshetkhin-Takhtadjian [111]. Manin [215] explained these structures in terms of so-called quantum vector spaces and certain products of these vector spaces. A systematic theory of standard quantum matrix spaces and quantum linear groups in terms of quantum coordinate algebras, including structures and representations, was developed by Parshall-Wang [236]. The material contained in these two sections is taken mainly from [236]. It is possible to go further in the direction of quantum linear algebra. For example, a quantum Cayley-Hamilton theory was developed by Zhang [308].
§B.3: The multiparameter matrix bialgebras were independently defined by Sudbery [287], Reshetikhin [241], and Artin-Schelter-Tate [7]. We mainly follow Artin-Schelter-Tate [7] to establish, in our notation and terminology, the invariance of the coalgebra structures on the multiparameter matrix bialgebras $A_{n, v}^{q}$, for a fixed dominant parameter q. The bialgebra $A_{n, e}^{q}\left(\right.$ that is, $A_{n}^{1, q}$, in the notation of two-parameter quantum matrix spaces) with parameter $(1, q)$ was discussed in detail by Dipper-Donkin [71] in relation to the theory of q-Schur algebras. The family of two-parameter matrix bialgebras introduced in Example B. 21 was defined and investigated by Takeuchi [289]. Du-Parshall-Wang [108] proved the "hyperbolic invariance" (see Exercise B.9) of these two-parameter matrix bialgebras. This invariance is a special case of Artin-Schelter-Tate invariance.
§B.4: The fact that q-Schur algebras can be realized as dual algebras of homogeneous components of suitable quantum matrix bialgebras was independently proved by Dipper-Donkin [71] (using quantum matrix bialgebras $A_{n}^{1, q}$) and by Parshall-Wang [236] (using standard quantum matrix bialgebras $A_{n, v}$). Certain results (for example, the quasi-heredity of the q-Schur algebras over a field) on the structure and representation theory of q-Schur algebras were obtained by ParshallWang [236] from the investigation of the structure and representations of quantum linear groups.

Quasi-hereditary and cellular algebras

Quasi-hereditary algebras make up a class of finite dimensional algebras which possesses certain strong homological properties and which arises naturally in representation theory. In particular, if A is a quasi-hereditary algebra, the category A-mod of finite dimensional A-modules is a highest weight category in a sense which closely models module categories for algebraic groups, Lie algebras, quantum groups, Apart from this connection, the importance of quasi-hereditary algebras also lies in ring theory itself, since many interesting algebras turn out to be quasi-hereditary.

A cellular algebra is a finite dimensional algebra having a basis (the cellular basis) which reflects an important symmetry structure of the algebra. The basis leads to a class of important representations for the algebra, called cell representations. Many algebras, such as Hecke algebras, q-Schur algebras, Brauer algebras, and Temperley--Lieb algebras, are cellular.

This appendix develops, from an elementary point of view, the basic theory of quasi-hereditary/cellular algebras to a degree sufficient for this book. Further results and more details of some proofs are indicated in the exercises, as well as in the references mentioned in the Notes at the end.
$\S \S$ C.1-C. 2 introduce the basics of quasi-hereditary algebras over a field k. Then \S C. 3 digresses to collect together some results from commutative algebra which are needed later. In addition, these results can be used to construct a "Brauer theory" for algebras over regular rings of Krull dimension $\leqslant 2$, a theory sketched in the exercises. In \S C.4, we give a brief introduction of the theory of integral quasi-hereditary algebras, quasi-hereditary algebras
over commutative, noetherian rings. This setup is applied in \S C. 5 to certain natural endomorphism algebras $\operatorname{End}_{H}(T)$, for algebras H having what we call a Specht datum. The main result, given in Theorem C.29, plays an important role in the theory of Schur algebras discussed in Chapter 9. Finally, §C. 6 defines cellular algebras and develops some elementary results about them.

For a ring A, if M is an A - A-bimodule, denote by ${ }_{A} M$ (resp., M_{A}) the corresponding left (resp., right) A-module obtained from M. For example, if M is an ideal \mathfrak{J} in $A, A \mathfrak{J}$ just means that \mathfrak{J} is to be regarded as a left A-module. Unless otherwise mentioned, modules are always taken to be left modules, and they are assumed to be finitely generated. In this appendix, A-mod denotes the category of finitely generated left A-modules.

Let $\operatorname{rad}(A)$ be the Jacobson radical of A. When A is a finite dimensional algebra over a field, $\operatorname{rad}(A)$ is the largest two-sided nilpotent ideal of A.

C.1. Heredity ideals

Throughout $\S \S$ C.1-C. $2, \mathcal{K}$ is a fixed field and A is a finite dimensional \mathcal{K} algebra. We will often work with idempotent ideals of A, i.e., (two-sided) ideals \mathfrak{J} satisfying $\mathfrak{J}^{2}=\mathfrak{J}$. As the following elementary result shows, such ideals arise very naturally.

Lemma C.1. (1) An ideal \mathfrak{J} in the algebra A is idempotent if and only if $\mathfrak{J}=A e A$, for some idempotent element $e \in A$.
(2) Given an idempotent ideal \mathfrak{J}, the algebra $e A e$ is semisimple if and only if $\mathfrak{J} \cdot \operatorname{rad}(A) \cdot \mathfrak{J}=0$.

Proof. We first prove (1). If $\mathfrak{J}=A e A$ for an idempotent $e \in A$, then obviously $\mathfrak{J}^{2}=\mathfrak{J}$.

Conversely, let \mathfrak{J} be an idempotent ideal in A. If A is a semisimple algebra, then A is a finite direct product of various algebras of the form $\mathrm{M}_{n}(\mathcal{D})$, where \mathcal{D} is a division algebra over \mathcal{K}. In this case, \mathfrak{J} (and, in fact, any ideal of A) is a direct product of some of the $\mathrm{M}_{n}(\mathcal{D})$, so $\mathfrak{J}=A e A$ for the idempotent e, which is just the sum of the identity elements of the factors $\mathrm{M}_{n}(\mathcal{D})$ contained in \mathfrak{J}. Thus, the lemma holds when A is semisimple. More generally, write $\mathfrak{N}=\operatorname{rad}(A)$ and let

$$
\pi: A \longrightarrow \bar{A}:=A / \mathfrak{N}
$$

be the quotient map. The image $\overline{\mathfrak{J}}=\pi(\mathfrak{J})$ of \mathfrak{J} in \bar{A} is an idempotent ideal in the semisimple algebra \bar{A}. Thus, $\overline{\mathfrak{J}}=\bar{A} \bar{e} \bar{A}$, for some idempotent $\bar{e} \in \bar{A}$. It is well known that there exists an idempotent $e \in A$ such that $\pi(e)=\bar{e}$. (See Exercise C.1.) Finally, we have $A e A+\mathfrak{N}=\mathfrak{J}+\mathfrak{N}$ so that
$A e A+\mathfrak{N}^{m}=\mathfrak{J}+\mathfrak{N}^{m}$, for any positive integer m. Thus, $A e A=\mathfrak{J}$, as required for (1).

Assertion (2) follows from the elementary fact that the radical of $e A e$ is $e \mathfrak{N} e$.

The following notion will be basic for the development of quasi-hereditary algebras.
Definition C.2. An ideal \mathfrak{J} of A is said to be a heredity ideal if the following three conditions hold:
(HI1) $\mathfrak{J}^{2}=\mathfrak{J}$.
(HI2) \mathfrak{J} is projective as a left A-module.
(HI3) The \mathcal{K}-algebra $E=\operatorname{End}_{A}(A \mathfrak{J})$ is semisimple.
We will develop several properties of heredity ideals. The two lemmas below provide slightly alternative characterizations of heredity ideals.
Lemma C.3. The conditions (HI1) and (HI2) in Definition C.2 are equivalent to the conditions (HI2) and
$\left(\mathrm{HII}^{\prime}\right) \operatorname{Hom}_{A}\left({ }_{A} \mathfrak{J},{ }_{A}(A / \mathfrak{J})\right)=0$.
Proof. First, assume (HI1) and (HI2) hold. If $f \in \operatorname{Hom}_{A}\left({ }_{A} \mathfrak{J},{ }_{A}(A / \mathfrak{J})\right)$, then $f(\mathfrak{J})=f(\mathfrak{J} \mathfrak{J})=\mathfrak{J} f(\mathfrak{J})=0$. Thus, (HI1') and (HI2) hold.

Conversely, assume (HI1') and (HI2) hold, but that $\mathfrak{J} \neq \mathfrak{J}^{2}$. Clearly, $A\left(\mathfrak{J} / \mathfrak{J}^{2}\right)$, as an A-module, is a homomorphic image of a finite direct sum, say M, of copies of ${ }_{A}(A / \mathfrak{J})$. On the other hand, by (HI2), $A \mathfrak{J}$ is a projective A module, so the quotient morphism ${ }_{A} \mathfrak{J} \rightarrow{ }_{A}\left(\mathfrak{J} / \mathfrak{J}^{2}\right)$ lifts to a nonzero morphism $A \mathfrak{J} \rightarrow M$. Hence, there is a nonzero morphism $A \mathfrak{J} \rightarrow{ }_{A}(A / \mathfrak{J})$, contradicting condition (HI1'). Therefore, $\mathfrak{J}^{2}=\mathfrak{J}$.

Lemma C.4. Let \mathfrak{J} be an idempotent ideal in A. Then \mathfrak{J} is a heredity ideal if and only if the following two conditions hold:
(HI2') The multiplication map $\mu: A e \otimes_{e A e} e A \rightarrow A e A$ is bijective, where $\mathfrak{J}=A e A$, for some idempotent $e \in A$.
$\left(\mathrm{HI}^{\prime}\right) \mathfrak{J} \cdot \operatorname{rad}(A) \cdot \mathfrak{J}=0$.
Proof. To begin, assume that \mathfrak{J} is an idempotent ideal in the algebra A (say, $\left.\mathfrak{J}=A e A, e^{2}=e\right)$ such that $A \mathfrak{J}$ is projective. We will show that condition ($\mathrm{HI} 2^{\prime}$) holds. For any left A-module M, consider the map

$$
\mu_{M}: A e \otimes_{e A e} e A \otimes_{A} M \longrightarrow M, \quad a e \otimes e b \otimes m \longmapsto a e b m
$$

Certainly, μ_{M} is an A-module map. If $M=A e$, then the A-module map $\nu: A e \rightarrow A e \otimes_{e A e} e A \otimes_{A} A e$ sending $a e$ to $a e \otimes e \otimes e$ is clearly the inverse of $\mu_{A e}$. Therefore, $\mu_{A e}$ is bijective. Consequently, μ_{M} is bijective when M is a direct
summand of a finite direct sum of the module $A e$. Since $\mathfrak{J}=A e A=\sum A e a$, a running over a finite subset of A, we see that \mathfrak{J} is the homomorphic image of a finite direct sum of copies of $A e$. Now the projectivity of $A \mathfrak{J}$ ensures that $\mathfrak{J}=A e A$ is a direct summand of a finite direct sum of copies of $A e$. Therefore, $\mu_{A e A}$ is bijective. Since $e A \otimes_{A} \mathfrak{J} \cong e \mathfrak{J}=e A$, condition (HI2') holds.

Next, observe that the map

$$
E:=\operatorname{Hom}_{A}\left(A e \otimes_{e A e} e A, A e \otimes_{e A e} e A\right) \longrightarrow \operatorname{Hom}_{e A e}(e A, e A)=: F,
$$

which sends $\varphi \in E$ to $[\varphi]: e A \rightarrow e A$ defined by $[\varphi](e a)=\varphi(e \otimes e a)=$ $e \varphi(e \otimes e a) \in e A e \otimes_{e A e} e A \cong e A$ is an isomorphism of algebras. (In fact, this isomorphism is just the usual isomorphism arising from the adjoint associativity of the functor $-\otimes_{e A e} e A$ and the functor $\operatorname{Hom}_{A}(A e,-)$ [HAII, Prop.2.6.3], once it is observed that $\operatorname{Hom}_{A}\left(A e, A e \otimes_{e A e} e A\right) \cong e A e \otimes_{e A e}$ $e A \cong e A$.) Thus, if $e A e$ is semisimple (i.e., if $\mathfrak{J} \cdot \operatorname{rad}(A) \cdot \mathfrak{J}=0$, by Lemma C.1(2)), then E is also semisimple. On the other hand, as an $e A e$-module, $e A=e A e \oplus e A(1-e)$. Let $f \in F$ be the corresponding projection of $e A$ onto $e A e$. Then f is an idempotent, and

$$
(e A e)^{\mathrm{op}} \cong f F f \cong \operatorname{Hom}_{F}(F f, F f)^{\mathrm{op}}
$$

Thus, if E is semisimple, then the isomorphic algebra F is semisimple, and hence $e A e$ is also semisimple as the endomorphism algebra of a semisimple module.

Now we can prove the lemma. First, if \mathfrak{J} is a heredity ideal, then $A \mathfrak{J}$ is idempotent and projective so that (HI^{\prime}) holds by the above discussion. Then (HI2 ${ }^{\prime}$) and the previous paragraph show that $e A e$ is semisimple, so (HI^{\prime}) holds. Conversely, assume that conditions ($\mathrm{HI} 2^{\prime}$) and ($\mathrm{HI} 3^{\prime}$) hold. Then the previous paragraph again says that $E=\operatorname{End}_{A}(A \mathfrak{J})$ is semisimple. It remains to show that $A \mathfrak{J}$ is projective. But $e A e$ is semisimple, so $e A$ is a projective left $e A e$-module. Thus, $A \mathfrak{J} \cong A e \otimes_{e A e} e A$ is isomorphic to a direct summand of a finite direct sum of copies of $A e \otimes_{e A e} e A e \cong A e$, and hence it is projective, as required.

We can now establish several basic properties of heredity ideals. Recall that A is said to have finite global dimension provided there is an integer n_{0} such that $\operatorname{Ext}_{A}^{n}(M, N)=0$, for all finite dimensional A-modules M, N and for $n \geqslant n_{0} .{ }^{1}$ If \mathfrak{J} is an ideal in A, the quotient map $A \rightarrow A / \mathfrak{J}$ induces a functor $i^{*}: A / \mathfrak{J}$-mod $\rightarrow A$-mod of module categories. Given an A / \mathfrak{J}-module M, it is convenient to denote the A-module $i^{*} M$ simply by M again: the algebra A simply acts on M through the quotient map $A \rightarrow A / \mathfrak{J}$ and the

[^9]given action of A / \mathfrak{J} on M. Moreover, if M, N are A / \mathfrak{J}-modules, then i^{*} induces a graded morphism
\[

$$
\begin{equation*}
\operatorname{Ext}_{A / \mathfrak{J}}^{\bullet}(M, N) \longrightarrow \operatorname{Ext}_{A}^{\bullet}(M, N) \tag{C.1.1}
\end{equation*}
$$

\]

of Ext-groups. In fact, an element $\xi \in \operatorname{Ext}_{A / \mathfrak{J}}^{n}(M, N)$ can be represented by an equivalence class of n-extensions

$$
\begin{equation*}
0 \longrightarrow N \longrightarrow Q_{1} \longrightarrow \cdots \longrightarrow Q_{n} \longrightarrow M \longrightarrow 0 \tag{C.1.2}
\end{equation*}
$$

of A / \mathfrak{J}-modules; see [HAII, Vista 3.4.6]. Then applying the functor i^{*} to (C.1.2) gives an n-extension of A-modules and so defines the map in (C.1.1) in degree n.

Proposition C.5. Let \mathfrak{J} be a heredity ideal in a finite dimensional algebra A.
(1) $\mathfrak{J}^{\mathrm{op}}$ is a heredity ideal in the opposite algebra A^{op}.
(2) For A / \mathfrak{J}-modules M, N, the morphism given in (C.1.1) is an isomorphism.
(3) The algebra A has finite global dimension if and only if the quotient algebra A / \mathfrak{J} has finite global dimension.

Proof. Statement (1) is clear from Lemma C. 4 since the conditions that \mathfrak{J} be heredity given there are left-right symmetric.

Now we sketch the proofs of (2) and (3). Trivially, (C.1.1) is an isomorphism in homological degree 0 for all A / \mathfrak{J}-modules M, N. Next, observe that given any A / \mathfrak{J}-module N, the contravariant long exact sequence of Ext ${ }_{A}^{\bullet}$ for the short exact sequence $0 \rightarrow A \mathfrak{J} \rightarrow A \rightarrow A / \mathfrak{J} \rightarrow 0$ yields, for $n \geqslant 1$, a surjection $\operatorname{Ext}_{A}^{n-1}(\mathfrak{J}, N) \rightarrow \operatorname{Ext}_{A}^{n}(A / \mathfrak{J}, N)$. Thus, if $n>1, \operatorname{Ext}_{A}^{n}(A / \mathfrak{J}, N)=0$ since $A \mathfrak{J}$ is projective. But Lemma C. 3 implies there is no nonzero morphism $A \mathfrak{J} \rightarrow N$ (since $A \mathfrak{J}$ is projective and N is a homomorphic image of a direct sum of copies of $A / \mathfrak{J})$. Hence, $\operatorname{Ext}_{A}^{1}(A / \mathfrak{J}, N)=0$. Thus, given any A / \mathfrak{J} module $N, A / \mathfrak{J}$ and hence all projective A / \mathfrak{J}-modules are acyclic for the functor $\operatorname{Hom}_{A}(-, N)$, where N is regarded as an A-module. Therefore, if M is an A / \mathfrak{J}-module, we can compute the groups $\operatorname{Ext}_{A}^{n}(M, N)$ using an A / \mathfrak{J} projective resolution of M; see [HAII, Exer. 2.4.3]. Hence, the isomorphism (C.1.1) follows from the isomorphism in homological degree 0, proving (2).

Now if A has finite global dimension, then (2) implies that A / \mathfrak{J} has finite global dimension as well. So to prove (3), assume that A / \mathfrak{J} has finite global dimension. Thus, assume that there is an integer n_{0} such that $\operatorname{Ext}_{A / \mathfrak{J}}^{n}(M, N)=0$, for $n \geqslant n_{0}$ and for all finite dimensional A / \mathfrak{J}-modules M, N. We claim that $\operatorname{Ext}_{A}^{n}(M, N)=0$, for all finite dimensional A-modules M, N and all $n>n_{0}+1$. We can assume that M and N are both simple modules (by repeated use of the long exact sequences of Ext ${ }_{A}^{\bullet}$). If $\mathfrak{J} M=0=\mathfrak{J} N$,
our claim is clear since, then, M, N are A / \mathfrak{J}-modules. If $\mathfrak{J} M \neq 0$, define the A-module Q by the short exact sequence

$$
\begin{equation*}
0 \longrightarrow Q \longrightarrow A e \otimes_{e A e} e M \xrightarrow{\text { mult }} M \longrightarrow 0 \tag{C.1.3}
\end{equation*}
$$

Then $\mathfrak{J} Q=A e Q=0$ so Q is an A / \mathfrak{J}-module. Also, because $e A e$ is semisimple, $A e \otimes_{e A e} e M$ is a projective A-module. In addition, if $\mathfrak{J} N \neq 0$, then $e N \neq 0$, and we can form a short exact sequence

$$
\begin{equation*}
0 \longrightarrow N \longrightarrow \operatorname{Hom}_{e A e}(e A, e N) \longrightarrow Q^{\prime} \longrightarrow 0 \tag{C.1.4}
\end{equation*}
$$

with $\mathfrak{J} Q^{\prime}=0$ and $\operatorname{Hom}_{e A e}(e A, e N)$ an injective A-module. (See Exercise C.2.) Now, dimension shifting (possibly twice using (C.1.3) and (C.1.4)) implies our claim.

C.2. Quasi-hereditary algebras and highest weight categories

We now are ready to define the notion of a quasi-hereditary algebra. The idea is simply that a quasi-hereditary algebra should be one which is "stratified" by semisimple algebras. More precisely:

Definition C.6. A finite dimensional algebra A over the field \mathcal{K} is called quasi-hereditary provided there is a sequence

$$
0=\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{t}=A
$$

of ideals in A such that $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$ is a heredity ideal in A / \mathfrak{J}_{i-1}, for $i=$ $1,2, \ldots, t$. Such a sequence of ideals is called a heredity chain in A.

Making use of our discussion of heredity ideals, we can immediately draw some conclusions about a quasi-hereditary algebra A.

Theorem C.7. Let A be a quasi-hereditary algebra with heredity chain $\left\{\mathfrak{J}_{i}\right\}_{i=0}^{t}$.
(1) The opposite algebra A^{op} is a quasi-hereditary algebra with heredity chain $\left\{\tilde{J}_{i}^{\mathrm{op}}\right\}$ induced from that of A.
(2) For $0 \leqslant i<t$, the quotient map $A \rightarrow A / \mathfrak{J}_{i}$ induces a (graded) isomorphism

$$
\operatorname{Ext}_{A / \mathfrak{J}_{i}}^{\bullet}(M, N) \cong \operatorname{Ext}_{A}^{\bullet}(M, N)
$$

for all A / \mathfrak{J}_{i}-modules M, N.
(3) The algebra A has finite global dimension.

Proof. (1) follows from Proposition C.5(1). The isomorphism in (2) is the composite of the isomorphisms

$$
\begin{aligned}
\operatorname{Ext}_{A / \mathfrak{J}_{i}}^{\bullet}(M, N) & \xrightarrow[\longrightarrow]{\sim} \operatorname{Ext}_{A / \mathfrak{J}_{i-1}}^{\bullet}(M, N) \xrightarrow{\sim} \cdots \\
& \xrightarrow{\sim} \operatorname{Ext}_{A / \mathfrak{J}_{0}}(M, N)=\operatorname{Ext}_{A}^{\bullet}(M, N)
\end{aligned}
$$

which are guaranteed by Proposition C.5(2). Finally, (3) follows from Proposition C. 5 by induction on the length of the heredity chain.

It will be very convenient to recast the above discussion in purely moduletheoretic terms. Call an abelian category \mathcal{C} a finite \mathcal{K}-category provided \mathcal{C} is equivalent to the category A-mod of finite dimensional modules, for a finite dimensional algebra A over k. The algebra A is not uniquely determined by the category \mathcal{C} : Morita equivalent algebras have equivalent module categories; see [BAII, §3.12]. Given a finite \mathcal{K}-category \mathcal{C}, let $\Lambda=\Lambda(\mathcal{C})$ be a finite set which indexes the distinct isoclasses of simple objects in \mathcal{C}. Given $\lambda \in \Lambda$, let $L(\lambda) \in \mathcal{C}$ be a representative from the isomorphism class of simple objects corresponding to λ. Also, let $P(\lambda)$ (resp., $I(\lambda)$) be a projective (resp., injective) object in \mathcal{C} with top (resp., socle) $L(\lambda)$. Both $P(\lambda)$ and $I(\lambda)$ are unique up to isomorphism.

Definition C.8. A highest weight category is a finite \mathcal{K}-category \mathcal{C}, together with a poset structure \leqslant on the set $\Lambda=\Lambda(\mathcal{C})$, such that the following statements hold:
(HWC1) For $\lambda \in \Lambda$, there is given an object $\Delta(\lambda) \in \mathcal{C}$ which has simple top $L(\lambda)$ and, in addition, has the property that all composition factors $L(\mu)$ of the radical $\operatorname{rad}(\Delta(\lambda))$ satisfy $\mu<\lambda$.
(HWC2) For $\lambda \in \Lambda$, there exists a filtration

$$
P(\lambda)=F_{0}^{\lambda} \supset F_{1}^{\lambda} \supset \cdots \supset F_{t_{\lambda}}^{\lambda}=0
$$

such that $F_{0}^{\lambda} / F_{1}^{\lambda} \cong \Delta(\lambda)$ and, for $0<i<t_{\lambda}, F_{i}^{\lambda} / F_{i+1}^{\lambda} \cong$ $\Delta\left(\mu_{i}\right)$, for some $\mu_{i} \in \Lambda$ (which depends on λ) satisfying $\mu_{i}>\lambda$.

We call Λ the weight poset of \mathcal{C}, and refer to the elements $\lambda \in \Lambda$ as weights.

Example C.9. Let G be a semisimple, simply connected algebraic group over an algebraically closed field \mathcal{K}. We use the notation of \S A.5. Recall that there is a partial ordering defined on the set X^{+}of dominant weights: $\xi, \zeta \in X^{+}, \xi \leqslant \zeta$ provided $\zeta-\xi \in \mathbb{N} \Phi^{+}$. Let Λ be a finite order ideal in the poset X^{+}. Let $\mathcal{C}[\Lambda]$ be the full subcategory of G-mod whose objects consist of finite dimensional rational G-modules having composition factors $L(\xi)$ satisfying $\xi \in \Lambda$. We will check that $\mathcal{C}[\Lambda]$ is a highest weight category with weight poset Λ.

First, the objects $\Delta(\xi), \xi \in \Lambda$, are as defined in (A.7.6). Corollary A. 60 establishes that these modules satisfy condition (HWC1).

Next, let Λ^{\star} be the image of Λ under the poset isomorphism $X^{+} \rightarrow$ $X^{+}, \xi \mapsto \xi^{\star}:=-w_{0}(\xi)$. Then Λ^{\star} is also an order ideal in X^{+}. If $\xi \in \Lambda$, Exercise A.29(2) constructs the injective envelope $I\left(\xi^{\star}\right)_{\Lambda^{\star}}$ of $L\left(\xi^{\star}\right)$ in $\mathcal{C}\left[\Lambda^{\star}\right]$.

Furthermore, Exercise A.29(1) there implies that $I\left(\xi^{\star}\right)_{\Lambda^{\star}}$ has a ∇-filtration, with lowest "section" $\nabla\left(\xi^{\star}\right)$ and other sections $\nabla\left(\zeta^{\star}\right)$ with $\zeta>\xi$. Since $L\left(\xi^{\star}\right)^{*} \cong L(\xi)$, it follows that $P(\xi):=I\left(\xi^{\star}\right)^{*}$ is the projective cover of $L(\xi)$ in $\mathcal{C}[\Lambda]$, and it satisfies the required conditions in (HWC2). Thus, $\mathcal{C}[\Lambda]$ is a highest weight category.

Theorem C.10. A finite dimensional K-algebra A is quasi-hereditary if and only if the category A-mod of finite dimensional A-modules is a highest weight category with respect to a poset structure on $\Lambda=\Lambda(A$-mod).

Proof. Suppose A is a quasi-hereditary algebra with defining sequence $0=$ $\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{t}=A$. For $0<i \leqslant t$, consider the distinct indecomposable summands of the projective A / \mathfrak{J}_{i-1}-module $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$. Each such projective module is labelled by its simple top, so denote them by $\Delta_{i}(\lambda)$, for λ running over some subset Λ_{i} of Λ.

Claim: If $i \neq j$, then $\Lambda_{i} \cap \Lambda_{j}=\emptyset$.
Otherwise, suppose that $i<j$ and that $\lambda \in \Lambda_{i} \cap \Lambda_{j}$. Because A / \mathfrak{J}_{j-1} is a homomorphic image of A / \mathfrak{J}_{i-1}, and $\Delta_{j}(\lambda)$ has top $L(\lambda)$, we find that $\Delta_{j}(\lambda)$ is a homomorphic image of the projective A / \mathfrak{J}_{i-1}-module $\Delta_{i}(\lambda)$. So, there exists a nonzero A / \mathfrak{J}_{i-1}-module homomorphism $\mathfrak{J}_{i} / \mathfrak{J}_{i-1} \rightarrow \mathfrak{J}_{j} / \mathfrak{J}_{j-1}$. However, since $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$ is an idempotent ideal in A / \mathfrak{J}_{i-1} and $\mathfrak{J}_{i} \subseteq \mathfrak{J}_{j-1}$, the existence of such a homomorphism is absurd. This establishes the claim.

Moreover, any simple A-module $L(\lambda)$ is a homomorphic image of some $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$, hence of some $\Delta_{i}(\lambda)$. Thus, Λ is a disjoint union of the Λ_{i}. Given $\lambda \in \Lambda$, there is a unique i, for which $\lambda \in \Lambda_{i}$ and we put $\Delta(\lambda)=\Delta_{i}(\lambda)$, as defined above.

Define a poset structure $<$ on Λ by putting $\lambda<\mu$ if and only if $\lambda \in \Lambda_{i}$ and $\mu \in \Lambda_{j}$, for some $i>j$.

We verify the highest weight category axioms. First, any $\Delta(\lambda)$ has, by definition, simple top $L(\lambda)$, for $\lambda \in \Lambda_{j}$, say. Suppose that $L(\mu)$ is a composition factor of the radical $\operatorname{rad}(\Delta(\lambda))$ of $\Delta(\lambda)$. For some i, we have $\mu \in \Lambda_{i}$. If $i<j$, there exists a nonzero A / \mathfrak{J}_{i-1}-homomorphism $\mathfrak{J}_{i} / \mathfrak{J}_{i-1} \rightarrow$ $\mathfrak{J}_{j} / \mathfrak{J}_{j-1}$ by the projectivity of the A / \mathfrak{J}_{i-1}-module $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$. As we showed above, the existence of such a homomorphism is impossible. Thus, $i \geqslant j$. If $i=j$, again there is a nonzero morphism $f: \overline{\mathfrak{J}}=\mathfrak{J}_{i} / \mathfrak{J}_{i-1} \rightarrow \operatorname{rad}(\overline{\mathfrak{J}})$. Thus, by Lemma C.4, letting $\bar{A}=A / \mathfrak{J}_{i-1}$,

$$
f(\overline{\mathfrak{J}})=f\left(\overline{\mathfrak{J}}^{2}\right)=\overline{\mathfrak{J}} f(\overline{\mathfrak{J}}) \subseteq \overline{\mathfrak{J}} \cdot \operatorname{rad}(\overline{\mathfrak{J}})=\overline{\mathfrak{J}} \cdot \operatorname{rad}(A) \cdot \overline{\mathfrak{J}}=0,
$$

a contradiction. It follows that $i>j$. By definition of the poset structure on Λ, this means that $\mu<\lambda$. Thus, condition (HWC1) holds.

Next, we verify that the projective module $P(\lambda)$ satisfies condition (HWC2). Write $P(\lambda) \cong A e$, for some primitive idempotent $e \in A$. For
any $i,\left(\mathfrak{J}_{i} / \mathfrak{J}_{i-1}\right) e \cong \mathfrak{J}_{i} e / \mathfrak{J}_{i-1} e$ is a direct summand of $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$ as a left A module. Hence,

$$
\mathfrak{J}_{i} P(\lambda) / \mathfrak{J}_{i-1} P(\lambda) \cong \mathfrak{J}_{i} e / \mathfrak{J}_{i-1} e
$$

is a direct sum of various $\Delta(\nu)$, for $\nu \in \Lambda_{i}$. Now suppose that $\lambda \in \Lambda_{i}$. By definition, $\Delta(\lambda)$ is an A / \mathfrak{J}_{i-1}-direct summand of $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$, so there is a surjective A-module morphism $\mathfrak{J}_{i} \longrightarrow \Delta(\lambda)$. Since \mathfrak{J}_{i} is an idempotent ideal, $\mathfrak{J}_{i} \Delta(\lambda)=\Delta(\lambda)$ and hence $\mathfrak{J}_{i} L(\lambda)=L(\lambda)$. Therefore, the covering morphism $P(\lambda) \longrightarrow L(\lambda)$ restricts to a surjective morphism $\mathfrak{J}_{i} P(\lambda) \longrightarrow L(\lambda)$. This means that $\mathfrak{J}_{i} P(\lambda)=P(\lambda)$. On the other hand, if $\mathfrak{J}_{i-1} P(\lambda)=P(\lambda)$, then $\mathfrak{J}_{i-1} L(\lambda)=L(\lambda)$, and $\operatorname{Hom}_{A}\left(\mathfrak{J}_{i-1}, L(\lambda)\right) \neq 0$. This fact implies the existence of an index $j<i$, for which $\operatorname{Hom}_{A}\left(\mathfrak{J}_{j} / \mathfrak{J}_{j-1}, L(\lambda)\right) \neq 0$, and $\lambda \in$ $\Lambda_{j} \cap \Lambda_{i}$, a contradiction. Thus, $\mathfrak{J}_{i-1} P(\lambda)$ is a proper submodule of $P(\lambda)$, and $P(\lambda) / \mathfrak{J}_{i-1} P(\lambda)$ has simple top $L(\lambda)$. It follows that

$$
P(\lambda) / \mathfrak{J}_{i-1} P(\lambda) \cong \mathfrak{J}_{i} P(\lambda) / \mathfrak{J}_{i-1} P(\lambda) \cong \Delta(\lambda)
$$

Thus, omitting repetitions, $\mathfrak{J}_{\bullet} P(\lambda)$ defines a filtration of $P(\lambda)$ with top section $\Delta(\lambda)$ and lower sections of the form $\Delta(\mu)$, for $\mu \in \Lambda_{1} \cup \cdots \cup \Lambda_{i-1}$ and hence, for $\mu>\lambda$. We have shown that A-mod is a highest weight category with poset (Λ, \leqslant).

For the converse implication, see Exercise C.3.
Corollary C.11. Let A and B be finite dimensional \mathbb{K}-algebras such that A-mod and B-mod are equivalent as k-categories (i.e., A and B are Morita equivalent algebras over \mathcal{K}). Then A is a quasi-hereditary algebra if and only if B is a quasi-hereditary algebra.

In order to indicate the structure of the highest weight category A-mod, we often say that A is quasi-hereditary with poset Λ. The modules $\Delta(\lambda)$, $\lambda \in \Lambda$, are called the standard objects in the highest weight category A-mod. Now consider the opposite algebra $A^{\text {op }}$. We can identify $A^{\text {op }}$-mod with the category of finite dimensional right A-modules. For $\lambda \in \Lambda$, let $L^{\prime}(\lambda)$ be the simple right A-module whose linear dual is isomorphic to $L(\lambda)$. Since $A^{\text {op }}$ is quasi-hereditary, the standard objects $\Delta(\lambda)^{\mathrm{op}}$, viewed as right A-modules, exist. Let

$$
\nabla(\lambda):=\operatorname{Hom}_{k}\left(\Delta(\lambda)^{\mathrm{op}}, \mathcal{K}\right)
$$

Then $\nabla(\lambda)$ is a left A-module. The modules $\nabla(\lambda), \lambda \in \Lambda$, are called costandard objects in the highest weight category A-mod.

The following result follows easily from the discussion; see Exercise C.4.
Lemma C.12. Let A-mod be a highest weight category with weight poset Λ. For $\lambda, \mu \in \Lambda$, if $\operatorname{Ext}_{A}^{1}(\Delta(\lambda), L(\mu)) \neq 0$, then $\mu>\lambda$. Similarly, if $\operatorname{Ext}_{A}^{1}(L(\lambda), \nabla(\mu)) \neq 0$, then $\mu>\lambda$.

Making use of this result, we can prove the following strong homological property of the standard and costandard modules in a highest weight category.

If $A-\bmod$ is a highest weight category, let $A-\bmod (\Delta)(\operatorname{resp} ., A-\bmod (\nabla))$ be the full subcategory of A-mod consisting of all modules M which have a filtration $M=F_{0} \supset F_{1} \supset \cdots \supset F_{m}=0$ with sections F_{i} / F_{i+1} isomorphic to modules of the form $\Delta\left(\lambda_{i}\right)$ (resp., $\nabla\left(\lambda_{i}\right)$), for some $\lambda_{i} \in \Lambda$.

Proposition C.13. Let A-mod be a highest weight category with weight poset Λ.
(1) For $M \in A-\bmod (\Delta)$ and $N \in A-\bmod (\nabla), \operatorname{Ext}_{A}^{n}(M, N)=0$, for all $n>0$.
(2) For $n>0$ and $\lambda, \mu \in \Lambda$, if $\operatorname{Ext}_{A}^{n}(\Delta(\lambda), L(\mu)) \neq 0$, then $\mu>\lambda$. Hence, if $\operatorname{Ext}_{A}^{n}(\Delta(\lambda), \Delta(\mu)) \neq 0$, for some $n>0$, then $\mu>\lambda$.
(3) For $n>0$ and $\lambda, \mu \in \Lambda$, if $\operatorname{Ext}_{A}^{n}(L(\lambda), \nabla(\mu)) \neq 0$, then $\lambda>\mu$. Hence, if $\operatorname{Ext}_{A}^{n}(\nabla(\lambda), \nabla(\mu)) \neq 0$, for some $n>0$, then $\lambda>\mu$.
(4) For $n \geqslant 0$ and $\lambda, \mu \in \Lambda$,

$$
\operatorname{dim} \operatorname{Ext}_{A}^{n}(\Delta(\lambda), \nabla(\mu))=\delta_{n, 0} \delta_{\lambda, \mu} \operatorname{dim} \operatorname{End}_{A}(L(\lambda))
$$

Proof. First, suppose that $\operatorname{Ext}{ }_{A}^{1}(\Delta(\lambda), \nabla(\mu)) \neq 0$, for some $\lambda, \mu \in \Lambda$. Then for a composition factor $L(\tau)$ of $\Delta(\lambda), \operatorname{Ext}_{A}^{1}(L(\tau), \nabla(\mu)) \neq 0$, so that $\lambda \geqslant$ $\tau>\mu$. Similarly, for a composition factor $L(\xi)$ of $\nabla(\mu), \operatorname{Ext}_{A}^{1}(\Delta(\lambda), L(\xi))$ $\neq 0$ so that $\lambda<\xi \leqslant \mu$. This contradiction proves that $\operatorname{Ext}_{A}^{1}(\Delta(\lambda), \nabla(\mu))=$ 0 , for all λ, μ. Induction on the number of Δ-sections of M and ∇-sections of N and a standard argument using the long exact sequence of Ext ${ }_{A}^{\circ}$ prove (1) in the special case $n=1$. Now an easy induction argument on n, using dimension shifting, shows that $\operatorname{Ext}_{A}^{n}(M, N)=0$, for any positive integer n, whenever $M \in A-\bmod (\Delta)$ and $N \in A-\bmod (\nabla)$. This proves (1).

We have already observed that (2) holds if $n=1$. So assume $n>1$. Dimension shifting on the short exact sequence

$$
0 \longrightarrow L(\mu) \longrightarrow \nabla(\mu) \longrightarrow K(\mu) \longrightarrow 0
$$

and using (1), we find by induction that if $\operatorname{Ext}_{A}^{n}(\Delta(\lambda), L(\mu)) \neq 0$, then $\lambda<\tau<\mu$, for some τ such that $L(\tau)$ is a composition factor of $K(\mu)$. This proves (2).

A dual argument shows that (3) holds. Now (4) is easy from (1).
Let A-mod be a highest weight category with weight poset Λ. Define a tilting module to be an A-module M which belongs to both $A-\bmod (\Delta)$ and to $A-\bmod (\nabla)$, i.e., $M \in A-\bmod (:=A-\bmod (\Delta) \cap A-\bmod (\nabla)$.

Proposition C. 14 (Ringel). Let A-mod be a highest weight category with weight poset Λ.
(1) For any $\lambda \in \Lambda$, there exists an indecomposable tilting module $X(\lambda) \in$ $A-\bmod (\$)$ having composition factor $L(\lambda)$ of multiplicity 1 , and satisfying the further property that all other composition factors $L(\mu)$ satisfy $\mu<\lambda$. The module $X(\lambda)$ is unique up to isomorphism with these properties.
(2) Any $M \in A-\bmod ()$ is a direct sum of copies of the $X(\lambda)$.
(3) Let $X \in A-\bmod ($ contain at least one direct summand isomorphic to $X(\lambda)$, for each $\lambda \in \Lambda$. Then the algebra $E:=\operatorname{End}_{A}(X)$ is also quasihereditary. In fact, E-mod is a highest weight category with weight poset Λ^{op}, the poset opposite to Λ.

We will sketch a proof of this result in the exercises; see Exercise C.6. The algebra E is often called the Ringel dual of A.

C.3. Regular rings of Krull dimension at most 2

We pause for a digression into the commutative algebra of regular rings of Krull dimension $\leqslant 2$. As a main goal, we establish a result due to Auslander and Goldman (see Theorem C.17) which provides a criterion for the projectivity of certain modules over such rings. This result has several important consequences, which will be useful to us in the next two sections on quasihereditary algebras. Of course, the ring $Z=\mathbb{Z}\left[v, v^{-1}\right]$ of integral Laurent polynomials in a variable v is a regular ring of Krull dimension 2. Hence, the results of this and the following sections have applications in Chapter 9 to Schur algebras.

We assume the reader has some familiarity with the theory of (commutative) regular rings. Everything that is needed can be found in [HAII, Ch. 4]. Throughout, \mathcal{R} denotes a commutative ring.

As indicated in Appendix A, the Krull dimension $\operatorname{Kdim} \mathcal{R}$ of \mathcal{R} is the maximal length d of a chain $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{d}$ of prime ideals in \mathcal{R}. If no such integer d exists, we set $\operatorname{Kdim} \mathcal{R}=\infty$.

If \mathcal{R} is a local ring, i.e., if \mathcal{R} is noetherian and has a unique maximal ideal \mathfrak{m}, then $\operatorname{Kdim} \mathcal{R} \leqslant \operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}<\infty[$ HAII, p. 105], where $\kappa<=\mathcal{R} / \mathfrak{m}$ is the residue field. When $\operatorname{Kdim} \mathcal{R}=\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$, then \mathcal{R} is called regular. A regular local ring must be a domain [HAII, Prop.4.4.5].

A general commutative noetherian ring \mathcal{R} is called regular if its localization $\mathcal{R}_{\mathfrak{p}}$ is a regular local ring, for every $\mathfrak{p} \in \operatorname{Spec} \mathcal{R}$.

Let \mathcal{R} be a local ring and let M be a nonzero finitely generated \mathcal{R} module. A regular sequence on M is a sequence $\left\{x_{1}, \ldots, x_{n}\right\}$ of elements in \mathfrak{m} such that each $x_{i}(1 \leqslant i \leqslant n)$ is not a zero divisor on $M_{i-1}:=$
$M /\left(x_{1}, \ldots, x_{i-1}\right) M$ (i.e., if $0 \neq m \in M_{i-1}$, then $0 \neq x_{i} m$), where $M_{0}=M$. The length of any two maximal sequences on M are the same, and the depth of M, depth M, is the common length of the maximal regular sequences on M. Also, depth $\mathcal{R} \leqslant \operatorname{Kim} \mathcal{R}$.

Returning to a general \mathcal{R}, the projective dimension $\operatorname{pdim} M$ of an \mathcal{R} module M is the minimum integer n such that there is a resolution of M by projective modules

$$
0 \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

If no such integer n exists, we set $\operatorname{pdim} M=\infty$. Define the global dimension $\operatorname{gldim} \mathcal{R}:=\sup _{M} \operatorname{pdim} M$, taken over all \mathcal{R}-modules M. (When \mathcal{R} is noetherian, the supremum can be taken over all finitely generated \mathcal{R}-modules.)

The formula in part (1) of the result below is known as the AuslanderBuchsbaum equality. A proof of this proposition can be found in [HAII, Ths. 4.4.15, 4.4.16, Prop. 4.4.1].

Proposition C.15. Let \mathcal{R} be a local ring.
(1) If M is a finitely generated, nonzero \mathcal{R}-module having finite projective dimension, then

$$
\operatorname{depth} M+\operatorname{pdim} M=\operatorname{depth} \mathcal{R}
$$

(2) \mathcal{R} is a regular local ring if and only if $\operatorname{gldim} \mathcal{R}<\infty$. In this case, $\operatorname{gldim} \mathcal{R}=\mathrm{K} \operatorname{dim} \mathcal{R}=\operatorname{depth} \mathcal{R}$. Also, for any finitely generated \mathcal{R}-module $M, \operatorname{pdim} M<\infty$.

An important application of the Auslander-Buchsbaum formula is the Auslander-Goldman result for a regular ring of Krull dimension $\leqslant 2$. We need a lemma first.

Lemma C.16. Let \mathcal{R} be a local ring and assume M, N are finitely generated \mathcal{R}-modules such that $\operatorname{Hom}_{\mathcal{R}}(M, N) \neq 0$. Then, for $i=1,2$,

$$
\operatorname{depth} N \geqslant i \Longrightarrow \operatorname{depth} \operatorname{Hom}_{\mathcal{R}}(M, N) \geqslant i .
$$

In particular, if depth $N \leqslant 2$, then $\operatorname{depth} \operatorname{Hom}_{\mathcal{R}}(M, N) \geqslant \operatorname{depth} N$.
Proof. First, $\operatorname{Hom}_{\mathcal{R}}(M, N)$ is a finitely generated \mathcal{R}-module. If $x \in \mathfrak{m}$ is not a zero divisor of N, then the map $x: N \rightarrow N$ sending $n \in N$ to $x n$ is injective. Thus, we obtain a short exact sequence

$$
0 \longrightarrow N \xrightarrow{x} N \longrightarrow N / x N \longrightarrow 0
$$

and, hence, the exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{\mathcal{R}}(M, N) \xrightarrow{x^{*}} \operatorname{Hom}_{\mathcal{R}}(M, N) \longrightarrow \operatorname{Hom}_{\mathcal{R}}(M, N / x N)
$$

Since $x^{*}(f)=x f$, for $f \in \operatorname{Hom}_{\mathcal{R}}(M, N)$, we see that x is not a zero divisor on $\operatorname{Hom}_{\mathcal{R}}(M, N)$. Hence, depth $\operatorname{Hom}_{\mathcal{R}}(M, N) \geqslant 1$, establishing the $i=1$ case. Also, by the Nakayama lemma, $\operatorname{Hom}_{\mathcal{R}}(M, N) / x \operatorname{Hom}_{\mathcal{R}}(M, N)$ is a nonzero submodule of $\operatorname{Hom}_{\mathcal{R}}(M, N / x N)$. In particular, $\operatorname{Hom}_{\mathcal{R}}(M, N / x N)$ $\neq 0$.

If $y \in \mathfrak{m}$ is not a zero divisor on $N / x N$, then, by the previous paragraph, y is not a zero divisor on $\operatorname{Hom}_{\mathcal{R}}(M, N / x N)$ and on its nonzero submodule $\operatorname{Hom}_{\mathcal{R}}(M, N) / x \operatorname{Hom}_{\mathcal{R}}(M, N)$. The $i=2$ case thus follows.

Given an \mathcal{R}-module M, it is not necessarily true that its dual $M^{*}=$ $\operatorname{Hom}_{\mathcal{R}}(M, \mathcal{R})$ is a projective \mathcal{R}-module. Projectivity of M^{*} certainly does hold if M is already projective over \mathcal{R} (a fact frequently used later in this appendix, often without mention). However, we have the following remarkable result.

Theorem C. 17 (Auslander-Goldman lemma). If \mathcal{R} is a regular ring of Krull dimension $\leqslant 2$ and M is a finitely generated \mathcal{R}-module, then $M^{*}:=$ $\operatorname{Hom}_{\mathcal{R}}(M, \mathcal{R})$ is projective. Thus, if $M \cong M^{* *}$, then M is projective.

Proof. Since M is projective if and only if $M_{\mathfrak{p}}$ is projective, for every prime ideal \mathfrak{p} of \mathcal{R} [BAII, §7.4], we may assume that \mathcal{R} is a local regular ring.

We can assume that $M^{*} \neq 0$ (i.e., M is not a torsion module); otherwise, there is nothing to prove. For a regular local ring \mathcal{R}, depth $\mathcal{R}=$ $\operatorname{Kdim} \mathcal{R}$ and $\operatorname{pdim} M^{*}<\infty$ by Proposition C.15(2). Hence, the assumption $\operatorname{Kdim} \mathcal{R} \leqslant 2$ implies that depth $\mathcal{R} \leqslant 2$. By Lemma C. 16 and the Auslander-Buchsbaum equality,

$$
\operatorname{depth} \mathcal{R} \leqslant \operatorname{depth} M^{*}+\operatorname{pdim} M^{*}=\operatorname{depth} \mathcal{R}
$$

and, thus, $\operatorname{depth} M^{*}=\operatorname{Kdim} \mathcal{R}$ and $\operatorname{pdim} M^{*}=0$. It follows that M^{*} is projective.

In the modular representation theory of a finite group G, classical Brauer theory relates the characteristic zero representation theory of G with the representation theory of G over a field of positive characteristic, making use of an intermediate discrete valuation ring. Using the above results, it is possible to develop a Brauer theory in which the discrete valuation ring is replaced by a regular local ring of Krull dimension $\leqslant 2$. The following fundamental result is key to this Brauer theory, which will be described in more detail in Exercises C. 9 and C. 10 .

Corollary C.18. Let \mathcal{R} be a regular ring of Krull dimension $\leqslant 2$ with fraction field \mathcal{K}. Let A be an \mathcal{R}-algebra which is projective and finitely
generated as an \mathcal{R}-module. Suppose that \boldsymbol{V} is a finitely generated $A_{\mathcal{K}}$ module. Then $\boldsymbol{V}=V_{\mathcal{K}}$, for some A-lattice V. (In other words, V is an A submodule of \boldsymbol{V} which is projective and finitely generated as an \mathcal{R}-module.)

Proof. Choose a \mathcal{K}-basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for \boldsymbol{V} and let $V_{0}=\sum_{i=1}^{n} A x_{i}$. Then V_{0} is a finitely generated A-submodule of \boldsymbol{V}, and $\boldsymbol{V}=\left(V_{0}\right)_{\mathcal{K}}$. Now Theorem C. 17 implies that the right A-module $V_{0}^{*}=\operatorname{Hom}_{\mathcal{R}}\left(V_{0}, \mathcal{R}\right)$ is projective and finitely generated over \mathcal{R}. Hence, the A-module $V=V_{0}^{* *}$ is finitely generated and projective as an \mathcal{R}-module. Since V_{0} is \mathcal{R}-torsion free, the natural evaluation map

$$
\operatorname{Ev}: V_{0} \longrightarrow V_{0}^{* *}=\operatorname{Hom}_{\mathcal{R}}\left(\operatorname{Hom}_{\mathcal{R}}\left(V_{0}, \mathcal{R}\right), \mathcal{R}\right), \quad v \longmapsto[f \mapsto f(v)]
$$

defines an injection of A-modules which becomes an isomorphism upon applying (the exact localization functor) $(-)_{\mathcal{K}}=-\otimes_{\mathcal{R}} \mathcal{K}$. In other words, $\boldsymbol{V} \cong V_{0}^{* *} \otimes_{\mathcal{R}} \mathcal{K}$. Identifying V with an A-submodule of \boldsymbol{V} gives $V_{\mathcal{K}} \cong \boldsymbol{V}$, as required.

Corollary C.19. Let \mathcal{R} be a regular ring of Krull dimension $\leqslant 2$ with fraction field \mathcal{K}. Suppose F is a finitely generated, projective \mathcal{R}-module and \boldsymbol{V} is a subspace of the \mathcal{K}-space $\boldsymbol{F}:=F_{\mathcal{K}}$. Then $V:=F \cap \boldsymbol{V}$ is \mathcal{R} projective.

Proof. Because F is \mathcal{R}-projective, the canonical evaluation map

$$
\operatorname{Ev}_{F}: F \xrightarrow{\sim} F^{* *}=\operatorname{Hom}_{\mathcal{R}}\left(\operatorname{Hom}_{\mathcal{R}}(F, \mathcal{R}), \mathcal{R}\right)
$$

is an isomorphism which localizes to the canonical isomorphism

$$
\operatorname{Ev}_{\boldsymbol{F}}=\operatorname{Ev} \otimes_{\mathcal{R}} \mathcal{K}: \boldsymbol{F} \xrightarrow{\sim} \boldsymbol{F}^{* *}=\operatorname{Hom}_{\mathcal{K}}\left(\operatorname{Hom}_{\mathcal{K}}(\boldsymbol{F}, \mathcal{K}), \mathcal{K}\right) .
$$

Also, Ev_{F} restricts V to give the evaluation map $\mathrm{Ev}_{V}: V \rightarrow V^{* *}$. (Observe that the cokernel of the natural map $F^{*} \rightarrow V^{*}$ is a torsion module, so that $V^{* *}$ identifies as an \mathcal{R}-submodule of $F^{* *}$.) Identifying \boldsymbol{V} with $\boldsymbol{V}^{* *}$ via the restriction to \boldsymbol{V} of $\mathrm{Ev}_{\boldsymbol{F}}$, it follows that Ev_{V} is an isomorphism of \mathcal{R}-modules. Therefore, Theorem C. 17 implies that V is \mathcal{R}-projective.

We will often use this corollary as follows. Suppose H is an algebra over \mathcal{R} and V, W are two H-modules which are projective and finitely generated as \mathcal{R}-modules. Let $F=\operatorname{Hom}_{\mathcal{R}}(V, W)$, which is finitely generated and projective as an \mathcal{R}-module. Then $\boldsymbol{V}:=\operatorname{Hom}_{H}(V, W)_{\mathcal{K}} \cong \operatorname{Hom}_{H_{\mathcal{K}}}\left(V_{\mathcal{K}}, W_{\mathcal{K}}\right)$ is a subspace of $F_{\mathcal{K}}$, so that $\boldsymbol{V} \cap F=\operatorname{Hom}_{H}(V, W)$ is finitely generated and projective over \mathcal{R}.

If M is an \mathcal{R}-module, let $\operatorname{Supp}(M)$ be its support, i.e., the set of all $\mathfrak{p} \in \operatorname{Spec} \mathcal{R}$ such that $M_{\mathfrak{p}} \neq 0$.

Lemma C.20. Let \mathcal{R} be a regular ring of Krull dimension $\leqslant 2$, and let A be an \mathcal{R}-algebra, finitely generated and projective as an \mathcal{R}-module. Suppose X, Y are A-modules which are finitely generated and projective as \mathcal{R} modules. Assume $\operatorname{Ext}_{A}^{1}(X, Y) \neq 0$. Then there exists $\mathfrak{p} \in \operatorname{Supp}\left(\operatorname{Ext}_{A}^{1}(X, Y)\right)$ such that $\operatorname{Ext}_{A_{k}}^{1}\left(X_{k}, Y_{k}\right) \neq 0$, where \mathcal{K} is the residue field $\mathcal{K}(\mathfrak{p})=\mathcal{R}_{\mathfrak{p}} / \mathfrak{p} \mathcal{R}_{\mathfrak{p}}$.

Proof. Since $\operatorname{Ext}_{A}^{1}(X, Y) \neq 0$, by the local-global property $(M=0 \Longleftrightarrow$ $M_{\mathfrak{p}}=0, \forall \mathfrak{p} \in \operatorname{Spec} \mathcal{R}$, for any finitely generated \mathcal{R}-module $\left.M\right)$, there is a prime ideal \mathfrak{p} such that $\operatorname{Ext}_{A}^{1}(X, Y)_{\mathfrak{p}} \neq 0$. If $\mathfrak{p}=0$ is in $\operatorname{Supp}\left(\operatorname{Ext}_{A}^{1}(X, Y)\right)$ the assertion is clear, since $\operatorname{Ext}_{A_{k}}^{1}\left(X_{k}, Y_{k}\right)$ identifies in this case with the localization $\operatorname{Ext}_{A}^{1}(X, Y)_{\mathfrak{p}}$. If $\mathfrak{p} \in \operatorname{Supp}\left(\operatorname{Ext}_{A}^{1}(X, Y)\right)$ has height 1 , then the localization $\mathcal{R}_{\mathfrak{p}}$ is a discrete valuation ring. In this case,

$$
\operatorname{Ext}_{A_{\mathfrak{p}}}^{1}\left(X_{\mathfrak{p}}, Y_{\mathfrak{p}}\right) \cong \operatorname{Ext}_{A}^{1}(X, Y)_{\mathfrak{p}} \neq 0 \Longrightarrow \operatorname{Ext}_{A_{\mathcal{K}(\mathfrak{p})}}^{1}\left(X_{K(\mathfrak{p})}, Y_{k(\mathfrak{p})}\right) \neq 0
$$

see Exercise C.8.
It remains to check the case when \mathcal{R} has Krull dimension 2 , and $\mathfrak{p} \in$ $\operatorname{Supp}\left(\operatorname{Ext}_{A}^{1}(X, Y)\right)$ is a maximal ideal of height 2 such that there is no smaller prime ideal in $\operatorname{Supp}\left(\operatorname{Ext}_{A}^{1}(X, Y)\right)$. Localizing at \mathfrak{p}, we can assume that \mathcal{R} is a regular local ring. Choose $p \in \mathfrak{p}$ so that $\mathcal{R} / p \mathcal{R}$ is regular of Krull dimension 1 [HAII, Exer.4.4.1], and so is a discrete valuation ring. We claim that $\operatorname{Ext}_{A / p A}^{1}(X / p X, Y / p Y) \cong \operatorname{Ext}_{A}^{1}(X, Y / p Y) \neq 0$. Assuming this claim, the result follows from the discrete valuation ring case above. But the natural map $\operatorname{Ext}{ }_{A}^{1}(X, Y) \rightarrow \operatorname{Ext}_{A}^{1}(X, Y / p Y)$ is nonzero, since otherwise multiplication by p is surjective as an endomorphism of $\operatorname{Ext}_{A}^{1}(X, Y)$. But, using the Nakayama lemma, this would imply that $\operatorname{Ext}_{A}^{1}(X, Y)=0$ (since it is a finitely generated \mathcal{R}-module), a contradiction. Thus, $\operatorname{Ext}_{A}^{1}(X, Y / p Y) \neq$ 0 , as required.

Proposition C.21. Let \mathcal{R} be a regular ring of Krull dimension $\leqslant 2$, and let A be an \mathcal{R}-algebra, finitely generated and projective as an \mathcal{R}-module. Suppose that X, Y are A-modules which are finitely generated and projective over \mathcal{R}. If $\operatorname{Ext}_{A}^{n}(X, Y) \neq 0$, for some $n \geqslant 1$, then there exists $\mathfrak{p} \in$ $\operatorname{Supp}\left(\operatorname{Ext}_{A}^{n}(X, Y)\right)$ such that, if $\mathcal{K}=\mathcal{R}_{\mathfrak{p}} / \mathfrak{p} \mathcal{R}_{\mathfrak{p}}$, then $\operatorname{Ext}_{A_{k}}^{n}\left(X_{k}, Y_{k}\right) \neq 0$. If \mathcal{K}^{\prime} is any field extension of \mathcal{K}, we have $\operatorname{Ext}_{A_{k^{\prime}}}^{n}\left(X_{\kappa^{\prime}}, Y_{k^{\prime}}\right) \neq 0$.

Proof. We argue by induction on $n \geqslant 1$. The case $n=1$ is handled by Lemma C.20. So assume the $n \geqslant 2$ and the result is true for $\operatorname{Ext}_{A}^{m}$, when $m<n$. Form a short exact sequence

$$
0 \longrightarrow K \longrightarrow P \longrightarrow X \longrightarrow 0
$$

of A-modules, where P is a projective and finitely generated A-module. Then

$$
\operatorname{Ext}_{A}^{n-1}(K, Y) \cong \operatorname{Ext}_{A}^{n}(X, Y), \text { for all } n \geqslant 2
$$

So, the hypothesis that $\operatorname{Ext}_{A}^{n}(X, Y) \neq 0$ implies that $\operatorname{Ext}_{A}^{n-1}(K, Y) \neq 0$. Since K is necessarily projective and finitely generated over \mathcal{R},

$$
\operatorname{Ext}_{A_{K(\mathfrak{p})}}^{n-1}\left(K_{k(\mathfrak{p})}, Y_{k(\mathfrak{p})}\right) \neq 0, \quad \text { for some } \mathfrak{p}
$$

by induction. However, X and necessarily P are projective \mathcal{R}-modules, so that the above short exact sequence splits as a sequence of \mathcal{R}-modules. Hence, we also have a short sequence

$$
0 \longrightarrow K_{K(\mathfrak{p})} \longrightarrow P_{K(\mathfrak{p})} \longrightarrow X_{K(\mathfrak{p})} \longrightarrow 0
$$

of $A_{k(\mathfrak{p}) \text {-modules in which }} P_{k(\mathfrak{p})}$ is a projective $A_{\mathcal{K}(\mathfrak{p}) \text {-module. Therefore, }}$ $\operatorname{Ext}_{A_{\kappa(\mathfrak{p})}}^{n}\left(X_{\kappa(\mathfrak{p})}, Y_{\kappa(\mathfrak{p})}\right) \neq 0$.

We now apply the Auslander-Goldman lemma (Theorem C.17) to link base change with Ext vanishing. If X, Y are A-modules for an \mathcal{R}-algebra A, then, for any commutative \mathcal{R}-algebra \mathcal{R}^{\prime}, there is a natural homomorphism

$$
\operatorname{Hom}_{A}(X, Y)_{\mathcal{R}^{\prime}} \longrightarrow \operatorname{Hom}_{A_{\mathcal{R}^{\prime}}}\left(X_{\mathcal{R}^{\prime}}, Y_{\mathcal{R}^{\prime}}\right)
$$

In the following result, we provide a condition which guarantees that this homomorphism is an isomorphism.

Theorem C.22. Let \mathcal{R} be a regular ring of Krull dimension $\leqslant 2$ and let A be an \mathcal{R}-algebra which is finitely generated and projective as an \mathcal{R}-module. Suppose M, N are A-modules, finitely generated and projective over \mathcal{R}. If $\operatorname{Ext}_{A}^{i}(M, N)=0$, for $i=1,2$, then

$$
\begin{equation*}
\operatorname{Hom}_{A}(M, N)_{\mathcal{R}^{\prime}} \cong \operatorname{Hom}_{A_{\mathcal{R}^{\prime}}}\left(M_{\mathcal{R}^{\prime}}, N_{\mathcal{R}^{\prime}}\right) \tag{C.3.1}
\end{equation*}
$$

for any commutative \mathcal{R}-algebra \mathcal{R}^{\prime}.
Proof. Let

$$
\cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

be a resolution of M by projective, finitely generated A-modules P_{i}. The hypothesis implies that the complex

$$
\begin{aligned}
0 \longrightarrow \operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{A} & \left(P_{0}, N\right) \longrightarrow \operatorname{Hom}_{A}\left(P_{1}, N\right) \\
& \longrightarrow \operatorname{Hom}_{A}\left(P_{2}, N\right) \longrightarrow \operatorname{Hom}_{A}\left(P_{3}, N\right)
\end{aligned}
$$

is exact. Also, because the ring \mathcal{R} has Krull dimension at most 2, the remarks after the proof of Corollary C. 19 imply that the terms in the above complex are \mathcal{R}-projective. If X is the kernel of the $\operatorname{map} \operatorname{Hom}_{A}\left(P_{2}, N\right) \rightarrow$ $\operatorname{Hom}_{A}\left(P_{3}, N\right)$, the following diagram is commutative with exact rows:

By the 5 -Lemma, we have $X \cong X^{* *}$, and hence X is also \mathcal{R}-projective. It follows that the acyclic complex

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{A}\left(P_{0}, N\right) \longrightarrow \operatorname{Hom}_{A}\left(P_{1}, N\right) \longrightarrow X \longrightarrow 0 \tag{C.3.2}
\end{equation*}
$$

splits as a complex of \mathcal{R}-modules (in the sense that the kernels and cokernels of the various maps are \mathcal{R}-direct summands). Hence, (C.3.2) remains acyclic after applying the functor $-\otimes_{\mathcal{R}} \mathcal{R}^{\prime}$. Since P_{0} and P_{1} are A-projective, $\operatorname{Hom}_{A}(Q, N)_{\mathcal{R}^{\prime}} \cong \operatorname{Hom}_{A_{\mathcal{R}^{\prime}}}\left(Q_{\mathcal{R}^{\prime}}, N_{\mathcal{R}^{\prime}}\right)$, for $Q=P_{0}, P_{1}$. Thus,

$$
\operatorname{Hom}_{A}(M, N)_{\mathcal{R}^{\prime}} \cong \operatorname{Hom}_{A_{\mathcal{R}^{\prime}}}\left(M_{\mathcal{R}^{\prime}}, N_{\mathcal{R}^{\prime}}\right)
$$

again by the 5 -Lemma. This completes the proof.

C.4. Integral quasi-hereditary algebras

This section generalizes the notion of a quasi-hereditary algebra over a field to the notion of a quasi-hereditary algebra over a noetherian domain. Specializaton to the case in which the base ring is a regular local ring results in a vanishing property for tilting modules. We do not develop a complete theory for integral quasi-hereditary algebras, but instead focus on those results needed for Chapter 9.

To begin with, let \mathcal{R} be an arbitrary commutative, noetherian domain with fraction field \mathcal{K}. Let A be an arbitrary \mathcal{R}-algebra, finitely generated and projective as an \mathcal{R}-module. An ideal \mathfrak{J} of A is a heredity ideal provided that
(IHI1) A / \mathfrak{J} is \mathcal{R}-projective;
(IHI2) $\mathfrak{J}^{2}=\mathfrak{J}$;
(IHI3) \mathfrak{J} is projective as a left A-module;
(IHI4) $E:=\operatorname{End}_{A}(\mathfrak{J})$ is \mathcal{R}-semisimple.
Here an \mathcal{R}-algebra E is \mathcal{R}-semisimple provided, for every $\mathfrak{p} \in \operatorname{Spec} \mathcal{R}$, the residue algebra $E(\mathfrak{p})=E \otimes_{\mathcal{R}} \mathcal{K}(\mathfrak{p})$ is a semisimple algebra over the residue field $\mathcal{K}(\mathfrak{p}):=\mathcal{R}_{\mathfrak{p}} / \mathfrak{p} \mathcal{R}_{\mathfrak{p}}$. In case each $E(\mathfrak{p})$ is a split semisimple algebra, e.g., if E is a split semisimple \mathcal{R}-algebra in (IHI4) - in particular, if E is a direct product of matrix algebras $\mathrm{M}_{n}(\mathcal{R})$ - we call \mathfrak{J} a split heredity ideal.

When $\mathcal{R}=\kappa$ is a field, the above definition agrees identically with the definition of a heredity ideal given in §C.1.

The algebra A is \mathcal{R}-quasi-hereditary (or a quasi-hereditary algebra over \mathcal{R}) if there exists a sequence

$$
\begin{equation*}
0=\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{t}=A \tag{C.4.1}
\end{equation*}
$$

of ideals in A such that $\mathfrak{J}_{i} / \mathfrak{J}_{i-1}$ is a heredity ideal in A / \mathfrak{J}_{i-1}, for $0<$ $i \leqslant t$. Such a sequence (C.4.1) is called a heredity chain in A. If each $\operatorname{End}_{A / \mathfrak{J}_{i-1}}\left(\mathfrak{J}_{i} / \mathfrak{J}_{i-1}\right)$ is a split \mathcal{R}-semisimple algebra, then A is called a split quasi-hereditary algebra.

We also have the following easy result.
Proposition C.23. Suppose A is \mathcal{R}-quasi-hereditary. Then the algebra $A_{\mathcal{K}}=A \otimes_{\mathcal{R}} \mathcal{K}$ is quasi-hereditary in the sense of Definition C.6, for any field K which is an \mathcal{R}-algebra.

Proof. Let A be \mathcal{R}-quasi-hereditary with heredity chain (C.4.1) and let $\overline{\mathfrak{J}}_{i, K}$ be the image of $\mathfrak{J}_{i, K}:=\mathfrak{J}_{i} \otimes_{\mathcal{R}} \mathcal{K}$ in $A_{\mathcal{K}}$. Then the idempotent ideal $\overline{\mathfrak{J}}_{1, \kappa} \cong \mathfrak{J}_{1, \kappa}$ is a projective A_{κ}-module. Also, the projectivity of \mathfrak{J}_{1} implies $\operatorname{End}_{A}\left(\mathfrak{J}_{1}\right)_{k} \cong \operatorname{End}_{A_{k}}\left(\mathfrak{J}_{1, k}\right)$ which is semisimple. Inductively, we see that A_{k} has a heredity chain

$$
0=\overline{\mathfrak{J}}_{0, \kappa} \subset \overline{\mathfrak{J}}_{1, \kappa} \subset \cdots \subset \overline{\mathfrak{J}}_{t, \kappa}=A_{\kappa}
$$

proving the assertion.
Definition C.24. Let A be an \mathcal{R}-quasi-hereditary algebra. Then A is \mathcal{R} -quasi-hereditary with poset Λ if, for any field \mathcal{K} which is an \mathcal{R}-algebra, A_{k} is quasi-hereditary with poset Λ. Also, an A-module M, which is finitely generated and projective as an \mathcal{R}-module, is an integral standard (resp., integral costandard) module in A-mod corresponding to $\lambda \in \Lambda$ if, for any field \mathcal{K} which is an \mathcal{R}-algebra, M_{k} is a standard (resp., costandard) module in A_{k}-mod corresponding to λ.

In the next section, we will need the result below, which provides conditions under which the algebra A is quasi-hereditary. In the hypothesis, we require only that the noetherian domain \mathcal{R} be normal (i.e., integrally closed in its fraction field \mathcal{K}.) This condition is automatic if \mathcal{R} is regular.

Proposition C.25. Assume that \mathcal{R} is a normal noetherian domain with fraction field \mathcal{K}. Let A be an \mathcal{R}-algebra which is finitely generated and projective as an \mathcal{R}-module. Suppose that $\{\Delta(\lambda)\}_{\lambda \in \Lambda}$ is a family of A-modules such that the following conditions hold.
(1) For $\lambda \in \Lambda, \Delta(\lambda)$ is finitely generated and projective as an \mathcal{R}-module.
(2) For $\lambda \in \Lambda$, there exists a finitely generated projective A-module $P(\lambda)$ which has a decreasing filtration $F_{\bullet}^{\lambda}: P(\lambda)=F_{0}^{\lambda} \supset F_{1}^{\lambda} \supset \cdots \supset F_{t_{\lambda}}^{\lambda}=0$ with sections $F_{i}^{\lambda} / F_{i+1}^{\lambda} \cong \Delta\left(\nu_{\lambda, i}\right)$, for some $\nu_{\lambda, i} \in \Lambda$.
(3) For $\lambda \in \Lambda, \Delta(\lambda)_{\mathcal{K}}$ is an absolutely simple $A_{\mathcal{K}}-$ module. For $\lambda \neq \mu \in$ $\Lambda, \Delta(\lambda)_{\mathcal{K}}$ is not isomorphic to $\Delta(\mu)_{\mathcal{K}}$.
(4) In the Grothendieck group $\mathscr{K}_{0}\left(A_{\mathcal{K}}\right)$ of finitely generated $A_{\mathcal{K}}$-modules,

$$
\left[P(\lambda)_{\mathcal{K}}\right]=\left[\Delta(\lambda)_{\mathcal{K}}\right]+\sum_{\zeta>\lambda} m_{\zeta, \lambda}\left[\Delta(\zeta)_{\mathcal{K}}\right], \quad \text { for all } \quad \lambda \in \Lambda .
$$

(5) $P:=\bigoplus_{\lambda \in \Lambda} P(\lambda)$ is a progenerator for A-mod. In other words, P is projective and every finitely generated A-module is a homomorphic image of a finite direct sum of copies of P.

Then A is a split quasi-hereditary algebra over \mathcal{R} with poset Λ and standard objects $\{\Delta(\lambda)\}_{\lambda \in \Lambda}$.

Proof. We prove that A is a split quasi-hereditary algebra over \mathcal{R}. The second assertion is left to the reader; see Exercise C.13.

Let $A^{\prime}=\operatorname{End}_{A}(P)^{\mathrm{op}}$. Since P is a projective A-module, A^{\prime} is finitely generated and projective as an \mathcal{R}-module. Also,

$$
\mathscr{F}=\operatorname{Hom}_{A}(P,-): A-\bmod \longrightarrow A^{\prime}-\bmod
$$

is an equivalence of module categories. The correspondence $\mathfrak{J} \mapsto \mathfrak{J}^{\prime}:=$ $\mathscr{F}(\mathfrak{J} P)=\operatorname{Hom}_{A}(P, \mathfrak{J} P)$ defines a bijection between ideals in A and those in A^{\prime}. In addition, a sequence of ideals $0=\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{t}=A$ is a (split) heredity chain in A if and only if $0=\mathfrak{J}_{0}^{\prime} \subset \mathfrak{J}_{1}^{\prime} \subset \cdots \subset \mathfrak{J}_{t}^{\prime}=A^{\prime}$ is a (split) heredity chain in A^{\prime}; see Exercise C.12. Thus, it suffices to prove that A^{\prime} is a split quasi-hereditary algebra over \mathcal{R}.

For $\lambda \in \Lambda$, let $P^{\prime}(\lambda)=\mathscr{F}(P(\lambda))$ and $\Delta^{\prime}(\lambda)=\mathscr{F}(\Delta(\lambda))$. It is easy to see that the hypotheses (1)-(5) hold, for the modules $P^{\prime}(\lambda), \Delta^{\prime}(\lambda), \lambda \in \Lambda$.

Let $\Lambda_{1} \subseteq \Lambda$ be the set of maximal elements in the poset Λ. By condition (4), there exists an idempotent $e_{1}^{\prime} \in A^{\prime}$ so that $A^{\prime} e_{1}^{\prime} \cong \bigoplus_{\lambda \in \Lambda_{1}} P^{\prime}(\lambda)$. Also, conditions (1)-(3) imply that $P^{\prime}(\lambda) \cong \Delta^{\prime}(\lambda)$, for all $\lambda \in \Lambda_{1}$. Therefore, given $\mu \in \Lambda$, in the filtration

$$
F_{\bullet}^{\mu}: P^{\prime}(\mu)=F_{0}^{\mu} \supset F_{1}^{\mu} \supset \cdots \supset F_{t_{\mu}}^{\mu}=0
$$

of $P^{\prime}(\mu)$ with sections $F_{i}^{\mu} / F_{i+1}^{\mu} \cong \Delta\left(\nu_{\mu, i}\right)$, for some $\nu_{\mu, i} \in \Lambda$, we can assume that the sections $\Delta^{\prime}(\lambda)$, for $\lambda \in \Lambda_{1}$, are concentrated in the "tail" of the filtration, i.e., there exist an integer j_{μ} and nonnegative integers $m_{\zeta, \mu}$ such that $F_{j_{\mu}}^{\mu}=\bigoplus_{\zeta \in \Lambda_{1}} m_{\zeta, \mu} \Delta^{\prime}(\zeta)$, but, for $i<j_{\mu}, \nu_{\mu, i} \notin \Lambda_{1}$. By (1) and (3), $\operatorname{Hom}_{A^{\prime}}\left(\Delta^{\prime}(\lambda), \Delta^{\prime}(\zeta)\right)=0$, for $\lambda \neq \zeta$. The ideal $\mathfrak{J}_{1}^{\prime}=A^{\prime} e_{1}^{\prime} A^{\prime}$ in A^{\prime} is the trace ideal of $A^{\prime} e_{1}^{\prime}$ in A^{\prime}, namely, $\mathfrak{J}_{1}^{\prime}$ is the submodule of A^{\prime} generated by the images of all homomorphisms $A^{\prime} e_{1}^{\prime} \rightarrow A^{\prime}$. Thus, $\mathfrak{J}_{1}^{\prime} \cong \bigoplus_{\mu \in \Lambda} F_{j_{\mu}}^{\mu}$. Because the $\Delta^{\prime}(\lambda), \lambda \in \Lambda_{1}$, are all projective \mathcal{R}-modules, it follows that $A^{\prime} / \mathfrak{J}_{1}^{\prime}$ is also a projective \mathcal{R}-module. By construction, $\mathfrak{J}_{1}^{\prime}$ is projective as a left A^{\prime}-module. Hence, conditions (IHI1)-(IHI3) hold.

For $\lambda \in \Lambda, \operatorname{End}_{A^{\prime}}\left(\Delta^{\prime}(\lambda)\right)$ is a finitely generated \mathcal{R}-module such that $\operatorname{End}_{A^{\prime}}\left(\Delta^{\prime}(\lambda)\right)_{\mathcal{K}} \cong \operatorname{End}_{A_{\mathcal{K}}^{\prime}}\left(\Delta^{\prime}(\lambda)_{\mathcal{K}}\right) \cong \mathcal{K}$. Since \mathcal{R} is normal, $\operatorname{End}_{A^{\prime}}\left(\Delta^{\prime}(\lambda)\right)$ $\cong \mathcal{R}$. Thus, End $_{A^{\prime}}\left(\mathfrak{J}_{1}^{\prime}\right)$ is a direct product of matrix algebras $\mathrm{M}_{n}(\mathcal{K})$. So (IHI4) holds, and, in fact, $\mathfrak{J}_{1}^{\prime}$ is a split hereditary ideal.

Let $A_{1}^{\prime}=A^{\prime} / \mathfrak{J}_{1}^{\prime}$. For $\lambda \in \Lambda \backslash \Lambda_{1}$, put

$$
P_{1}^{\prime}(\lambda)=P^{\prime}(\lambda) / \mathfrak{J}_{1}^{\prime} P^{\prime}(\lambda)=P^{\prime}(\lambda) / F_{j_{\lambda}}^{\lambda}
$$

Then each $P_{1}^{\prime}(\lambda)$ is a projective A_{1}^{\prime}-module. Together with the family $\left\{\Delta^{\prime}(\lambda)\right\}_{\lambda \in \Lambda \backslash \Lambda_{1}}$ of A_{1}^{\prime}-modules, all the hypotheses (1)-(5) are satisfied. It follows by induction on the cardinality of Λ that A^{\prime} is a split \mathcal{R}-quasihereditary algebra with poset Λ and standard objects $\Delta^{\prime}(\lambda)$.

In the rest of the section, we will consider quasi-hereditary algebras over a regular ring \mathcal{R} of Krull dimension $\leqslant 2$ in order to develop the associated tilting module theory.

Tilting modules for quasi-hereditary algebras over a field were introduced in \S C.2; see Proposition C.14. We now introduce their integral version.

Definition C.26. Let A be an \mathcal{R}-quasi-hereditary algebra with poset Λ. An A-module M, which is finitely generated and projective as an \mathcal{R}-module, is an integral tilting module if, for any field \mathcal{K} which is an \mathcal{R}-algebra, M_{k} has both a Δ-filtration and a ∇-filtration.

In other words, M is an integral tilting module if and only if M_{k} is a tilting module, for every such field \mathcal{K}. If integral standard and costandard objects exist in A-mod in the sense of Definition C.24, then an A-module, which has both integral Δ - and ∇-filtrations, is an integral tilting module; see $\S 9.5$ for the example of quantum Schur algebras.

The following homological vanishing property holds for integral tilting modules.

Theorem C.27. Assume that \mathcal{R} is a regular ring of Krull dimension $\leqslant 2$. Let A be an \mathcal{R}-quasi-hereditary algebra with poset Λ. Let M, N be A-modules which are finitely generated and projective as \mathcal{R}-modules. If M_{k} (resp., N_{k}) has a Δ-filtration (resp., ∇-filtration), for any field \mathcal{K} which is an \mathcal{R}-algebra, then $\operatorname{Ext}_{A}^{n}(M, N)=0$, for all $n>0$. In particular, if M, N are integral tilting modules, then $\operatorname{Ext}_{A}^{n}(M, N)=0$, for all $n>0$.

Proof. By Definition C.26, the second assertion is clearly a special case of the first assertion. The first assertion follows from Theorem C.13(1) by using Proposition C.21.

C.5. Algebras with a Specht datum

The main result of this brief section, given in Theorem C.29, provides a way to obtain a split quasi-hereditary algebra as a certain endomorphism algebra. Throughout this section, we assume that \mathcal{R} is a regular ring of Krull dimension $\leqslant 2$. In the applications, given in Chapter $9, \mathcal{R}$ will be the $\operatorname{ring} Z=\mathbb{Z}\left[v, v^{-1}\right]$ of Laurent polynomials in a variable v. Let \mathcal{K} be the fraction field of \mathcal{R}.

We begin with the following definition which introduces the basic setup.
Definition C.28. Let H be an \mathcal{R}-algebra, free of finite rank as an \mathcal{R} module. Assume that $H_{\mathcal{K}}$ is a split semisimple algebra. A triple (Λ, T, S) is called a Specht datum of H provided the following conditions hold:
(SD1) Λ is a poset, T and S are functions from Λ to the set of right H-modules which are finitely generated and projective over \mathcal{R};
(SD2) For $\lambda \in \Lambda, S(\lambda)_{\mathcal{K}}$ is an absolutely simple $H_{\mathcal{K}}$-module. If λ, ζ are distinct elements in Λ, then $S(\lambda)_{\mathcal{K}}$ is not isomorphic to $S(\zeta)_{\mathcal{K}}$;
(SD3) For $\lambda \in \Lambda, T(\lambda)_{\mathcal{K}} \cong S(\lambda)_{\mathcal{K}} \oplus\left(\bigoplus_{\zeta>\lambda} d_{\zeta, \lambda} S(\zeta)_{\mathcal{K}}\right)$, for nonnegative integers $d_{\zeta, \lambda}$
(SD4) For $\lambda \in \Lambda, T(\lambda)$ has an increasing filtration

$$
0=G_{\lambda}^{0} \subset G_{\lambda}^{1} \subset \cdots \subset G_{\lambda}^{t_{\lambda}}=T(\lambda)
$$

with sections $G_{\lambda}^{i+1} / G_{\lambda}^{i} \cong S\left(\nu_{\lambda, i}\right)$, where $\nu_{\lambda, i} \in \Lambda$, for $0 \leqslant i<t_{\lambda}$. Furthermore, for any $\mu \in \Lambda$,

$$
\operatorname{Ext}_{H}^{1}\left(T(\lambda) / G_{\lambda}^{i}, T(\mu)\right)=0, \quad 0 \leqslant i \leqslant t_{\lambda} .
$$

Let (Λ, T, S) be a Specht datum. For an (arbitrary) collection $\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ of positive integers, put

$$
\begin{equation*}
T=T(\Lambda):=\bigoplus_{\lambda \in \Lambda} m_{\lambda} T(\lambda) \quad \text { and } \quad A=A(\Lambda):=\operatorname{End}_{H}(T(\Lambda)) \tag{C.5.1}
\end{equation*}
$$

If the multiplicities m_{λ} are changed, then the algebra A is replaced by a Morita equivalent algebra. We have the following result.

Theorem C.29. Let \mathcal{R} be a regular ring of Krull dimension $\leqslant 2$. Let (Λ, T, S) be a Specht datum as given in Definition C.28. Let $T=T(\Lambda)$ and $A=A(\Lambda)$ be as in (C.5.1). For $\lambda \in \Lambda$, put $\Delta(\lambda)=\operatorname{Hom}_{H}(S(\lambda), T) \in$ A-mod. Then A is a split quasi-hereditary algebra over \mathcal{R} with poset Λ and standard modules $\{\Delta(\lambda)\}_{\lambda \in \Lambda}$.

Proof. We verify the hypotheses (1)-(5) of Proposition C.25, using the fact that \mathcal{R} is normal since it is regular. First, hypothesis (1) follows immediately
from Corollary C.19. Next, given $\lambda \in \Lambda$, put $P(\lambda):=\operatorname{Hom}_{H}(T(\lambda), T)$. For a given i, let $F_{i}^{\lambda}:=\operatorname{Hom}_{H}\left(T(\lambda) / G_{\lambda}^{i}, T\right)$. Then

$$
P(\lambda)=F_{0}^{\lambda} \supset F_{2}^{\lambda} \supset \cdots \supset F_{t_{\lambda}}^{\lambda}=0
$$

is a filtration of $P(\lambda)$. Apply the functor $\operatorname{Hom}_{H}(-, T)$ to the short exact sequence $0 \rightarrow G_{\lambda}^{i+1} / G_{\lambda}^{i} \rightarrow T(\lambda) / G_{\lambda}^{i} \rightarrow T(\lambda) / G_{\lambda}^{i+1} \rightarrow 0$ and use the $\operatorname{Ext}_{H^{-}}^{1}$ vanishing property contained in condition (SD4) in Definition C. 28 to obtain that $F_{i}^{\lambda} / F_{i+1}^{\lambda} \cong \Delta\left(\nu_{\lambda, i}\right)$. Thus, hypothesis (2) holds. Hypotheses (3) and (4) of Proposition C. 25 are clear since $H_{\mathcal{K}}$ is semisimple.

Finally, by construction, $A=\bigoplus_{\lambda \in \Lambda} m_{\lambda} P(\lambda)$, so that $P:=\bigoplus_{\lambda \in \Lambda} P(\lambda)$ is a progenerator for A-mod. Therefore, hypothesis (5) holds.

C.6. Cellular algebras

In this final section, we introduce cellular algebras and their representations.
Definition C. 30 (Graham-Lehrer). Let A be an algebra over a commutative ring \mathcal{R}. A 4 -tuple (Λ, I, C, τ) is called a cellular datum of A if the following conditions hold:
(CA1) Λ is a poset and $\{I(\lambda)\}_{\lambda \in \Lambda}$ is a collection of disjoint (nonempty) finite sets;
(CA2) C: $\bigcup_{\lambda \in \Lambda} I(\lambda) \times I(\lambda) \rightarrow A$ is an injective map whose image

$$
\left\{C_{i, j}^{\lambda}:=C(i, j) \mid \lambda \in \Lambda, i, j \in I(\lambda)\right\}
$$

is an \mathcal{R}-basis for A;
(CA3) τ is an \mathcal{R}-linear anti-involution of A such that $\tau\left(C_{i, j}^{\lambda}\right)=C_{j, i}^{\lambda}$, for all $\lambda \in \Lambda$ and $i, j \in I(\lambda)$; and
(CA4) if $\lambda \in \Lambda$ and $i, j \in I(\lambda)$, then, for any $a \in A$,

$$
\begin{equation*}
a C_{i, j}^{\lambda} \equiv \sum_{i^{\prime} \in I(\lambda)} f_{a}^{\lambda}\left(i^{\prime}, i\right) C_{i^{\prime}, j}^{\lambda} \quad \bmod A^{>\lambda} \tag{C.6.1}
\end{equation*}
$$

where $f_{a}^{\lambda}\left(i^{\prime}, i\right) \in \mathcal{R}$ is independent of j, and $A^{>\lambda}$ is the \mathcal{R} submodule spanned by all $C_{i, j}^{\mu}$ with $\mu>\lambda, i, j \in I(\mu) .{ }^{2}$
An algebra which possesses a cellular datum is called a cellular algebra, and the basis $\left\{C_{i, j}^{\lambda} \mid \lambda \in \Lambda, i, j \in I(\lambda)\right\}$ is called a cellular basis.

Applying τ to (C.6.1) yields

$$
\begin{equation*}
C_{j, i}^{\lambda} \tau(a) \equiv \sum_{i^{\prime} \in I(\lambda)} f_{a}^{\lambda}\left(i^{\prime}, i\right) C_{j, i^{\prime}}^{\lambda} \bmod A^{>\lambda} \tag{C.6.2}
\end{equation*}
$$

[^10]For simplicity, we often write $f_{a}\left(i^{\prime}, i\right)$ for $f_{a}^{\lambda}\left(i^{\prime}, i\right)$.
A cellular basis has remarkable properties, especially in the construction of representations of A.

Let A be a cellular algebra with cellular datum (Λ, I, C, τ). Let $A \geqslant \lambda$ be the \mathcal{R}-submodule spanned by all $C_{i, j}^{\mu}$ with $\mu \geqslant \lambda, i, j \in I(\mu)$. Clearly, both $A^{\geqslant \lambda}$ and $A^{>\lambda}$ are two-sided ideals. Hence, $A^{\lambda}:=A^{\geqslant \lambda} / A^{>\lambda}$ is an A - A-bimodule which is also an ideal of the quotient algebra $A / A^{>\lambda}$. This bimodule is a direct sum of the left (resp., right) A-modules $A_{\bullet, j}^{\lambda}$ (resp., $\left.A_{j, \bullet}^{\lambda}\right), j \in I(\lambda)$, where $A_{\bullet, j}^{\lambda}$ (resp., $A_{j, \bullet}^{\lambda}$) is spanned by the images of $C_{i, j}^{\lambda}$ (resp., $C_{j, i}^{\lambda}$), for all $i \in I(\lambda)$.

Let $\mathrm{C}(\lambda)$ be a free \mathcal{R}-module with basis $\mathrm{c}_{i}^{\lambda}, i \in I(\lambda)$. The A-action on $C(\lambda)$ defined by

$$
\begin{equation*}
a \cdot \mathrm{c}_{i}^{\lambda}:=\sum_{i^{\prime} \in I(\lambda)} f_{a}\left(i^{\prime}, i\right) \mathrm{c}_{i^{\prime}}^{\lambda}, \quad \text { for all } a \in A \tag{C.6.3}
\end{equation*}
$$

gives rise to a representation of A. We call $\mathrm{C}(\lambda)$ a cell representation or a cell module. Let $\mathrm{C}(\lambda)^{\tau}$ be the right A-module with the A-action twisted by τ. Thus, $\mathrm{C}(\lambda)^{\tau}=\mathrm{C}(\lambda)$ as an \mathcal{R}-module with the right A-action $\mathrm{c}_{i}^{\lambda} * a:=\tau(a) \mathrm{c}_{i}^{\lambda}$, for all $a \in A$.

Lemma C.31. (1) If $C_{i^{\prime}, j^{\prime}}^{\mu} C(\lambda) \neq 0$, then $\lambda \geqslant \mu$. Hence, $C(\lambda)$ is naturally an $A / A^{>\lambda}$-module.
(2) For every $\lambda \in \Lambda$ and $j \in I(\lambda)$, the map sending c_{i}^{λ} to $C_{i, j}^{\lambda}+A^{>\lambda}$, for all $i \in I(\lambda)$, defines an A-module isomorphism $\mathrm{C}(\lambda) \cong A_{\bullet, j}^{\lambda}$. Similarly, $\mathrm{C}(\lambda)^{\tau} \cong A_{j, \bullet}^{\lambda}$, for all $j \in I(\lambda)$.
(3) There is a natural isomorphism of A - A-bimodules

$$
\begin{equation*}
m_{\lambda}: \mathrm{C}(\lambda) \otimes_{\mathcal{R}} \mathrm{C}(\lambda)^{\tau} \longrightarrow A^{\lambda} \tag{C.6.4}
\end{equation*}
$$

defined by $m_{\lambda}\left(\mathrm{c}_{i}^{\lambda} \otimes \mathrm{c}_{j}^{\lambda}\right)=C_{i, j}^{\lambda}+A^{>\lambda}$, for all $i, j \in I(\lambda)$.
Proof. If $C_{i^{\prime}, j^{\prime}}^{\mu} C(\lambda) \neq 0$, (C.6.3) implies that $C_{i^{\prime}, j^{\prime}}^{\mu} C_{i, j}^{\lambda} \not \equiv 0 \bmod A^{\lambda}$, for some $i \in I(\lambda)$ (and all $j \in I(\lambda)$). Since $C_{i^{\prime}, j^{\prime}}^{\mu} C_{i, j}^{\lambda} \in A \geqslant \mu$, it follows that $\lambda \geqslant \mu$, proving (1). Now (2) and (3) are clear from the definition.

We also observe from (C.6.1) and (C.6.2) that, for any $\lambda \in \Lambda$ and $i, j, k, l \in I(\lambda)$,

$$
\begin{aligned}
C_{i, j}^{\lambda} C_{k, l}^{\lambda} & \equiv \sum_{k^{\prime} \in I(\lambda)} f_{C_{i, j}^{\lambda}}\left(k^{\prime}, k\right) C_{k^{\prime}, l}^{\lambda} \bmod A^{>\lambda} \\
& \equiv \sum_{j^{\prime} \in I(\lambda)} f_{C_{l, k}^{\lambda}}\left(j^{\prime}, j\right) C_{i, j^{\prime}}^{\lambda} \bmod A^{>\lambda}
\end{aligned}
$$

Thus, all $f_{C_{i, j}^{\lambda}}\left(k^{\prime}, k\right)=f_{C_{l, k}^{\lambda}}\left(j^{\prime}, j\right)=0$ if $k^{\prime} \neq i$ or $j^{\prime} \neq l$, and $f_{C_{i, j}^{\lambda}}(i, k)=$ $f_{C_{l, k}^{\lambda}}(l, j)$ is independent of i, l. Hence, for any $\lambda \in \Lambda$ and $j, k \in I(\lambda)$, there is a unique element $g(j, k)=g^{\lambda}(j, k) \in \mathcal{R}$ such that, for all $i, l \in I(\lambda)$,

$$
\begin{equation*}
C_{i, j}^{\lambda} C_{k, l}^{\lambda} \equiv g(j, k) C_{i, l}^{\lambda} \quad \bmod A^{>\lambda} \tag{C.6.5}
\end{equation*}
$$

Define the symmetric bilinear form

$$
\begin{equation*}
\beta_{\lambda}: \mathrm{C}(\lambda) \times \mathrm{C}(\lambda) \longrightarrow \mathcal{R} \tag{C.6.6}
\end{equation*}
$$

by putting $\beta_{\lambda}\left(\mathrm{c}_{i}^{\lambda}, \mathrm{c}_{j}^{\lambda}\right)=g(i, j)$, for all $i, j \in I(\lambda)$. In the following result, we regard this bilinear form as a pairing $\beta_{\lambda}: C(\lambda)^{\tau} \times C(\lambda) \rightarrow \mathcal{R}$.

Lemma C.32. (1) As a pairing, β_{λ} is associative in the sense that

$$
\beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda} a, \mathrm{c}_{i}^{\lambda}\right)=\beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda}, a \mathrm{c}_{i}^{\lambda}\right), \quad \text { for all } i, j \in I(\lambda) \text { and } a \in A .
$$

Hence, it induces an \mathcal{R}-linear map $\varphi_{\lambda}: C(\lambda)^{\tau} \otimes_{A} C(\lambda) \rightarrow \mathcal{R}$. In particular, the image $\operatorname{Im}\left(\varphi_{\lambda}\right)$ is an ideal of \mathcal{R} generated by all the $g(j, i)$.
(2) If $a, a^{\prime} \in \mathrm{C}(\lambda)$ and $b, b^{\prime} \in \mathrm{C}(\lambda)^{\tau}$, then the associative relations

$$
\begin{aligned}
m_{\lambda}(a \otimes b) \cdot a^{\prime} & =a \cdot \beta_{\lambda}\left(b, a^{\prime}\right)=a \cdot \varphi_{\lambda}\left(b \otimes a^{\prime}\right) \\
b \cdot m_{\lambda}\left(a^{\prime} \otimes b^{\prime}\right) & =\beta_{\lambda}\left(b, a^{\prime}\right) \cdot b^{\prime}=\varphi_{\lambda}\left(b \otimes a^{\prime}\right) \cdot b^{\prime}
\end{aligned}
$$

hold. Here $\mathrm{C}(\lambda)$ is regarded as an $\mathcal{R}-\mathcal{R}$-bimodule via $a \cdot r=$ ra, for all $a \in \mathrm{C}(\lambda), r \in \mathcal{R}$.
(3) If there exists $z \in \mathrm{C}(\lambda)$ such that $\mathcal{I}_{z}:=\left\{\beta_{\lambda}(y, z) \mid y \in \mathrm{C}(\lambda)\right\}=\mathcal{R}$, then
(a) $\operatorname{Hom}_{A}(\mathrm{C}(\lambda), \mathrm{C}(\mu))=0$, unless $\lambda \leqslant \mu$;
(b) $\operatorname{Hom}_{A}(\mathrm{C}(\lambda), \mathrm{C}(\lambda)) \cong \mathcal{R}$.

Proof. By (C.6.3) and the definitions,

$$
\beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda} a, \mathrm{c}_{i}^{\lambda}\right)=\sum_{j^{\prime} \in I(\lambda)} f_{\tau(a)}\left(j^{\prime}, j\right) \beta_{\lambda}\left(\mathrm{c}_{j^{\prime}}^{\lambda}, \mathrm{c}_{i}^{\lambda}\right)=\sum_{j^{\prime} \in I(\lambda)} f_{\tau(a)}\left(j^{\prime}, j\right) g\left(j^{\prime}, i\right) .
$$

Similarly, $\beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda}, a \mathrm{c}_{i}^{\lambda}\right)=\sum_{i^{\prime} \in I(\lambda)} g\left(j, i^{\prime}\right) f_{a}\left(i^{\prime}, i\right)$. But, for fixed $i_{0}, j_{0} \in I(\lambda)$,

$$
\begin{aligned}
\sum_{j^{\prime} \in I(\lambda)} f_{\tau(a)}\left(j^{\prime}, j\right) g\left(j^{\prime}, i\right) C_{i_{0}, j_{0}}^{\lambda} & \equiv\left(C_{i_{0}, j}^{\lambda} a\right) C_{i, j_{0}}^{\lambda}=C_{i_{0}, j}^{\lambda}\left(a C_{i, j_{0}}^{\lambda}\right) \\
& \equiv \sum_{i^{\prime} \in I(\lambda)} g\left(j, i^{\prime}\right) f_{a}\left(i^{\prime}, i\right) C_{i_{0}, j_{0}}^{\lambda} \bmod A^{>\lambda}
\end{aligned}
$$

Hence, $\beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda} a, \mathrm{c}_{i}^{\lambda}\right)=\beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda}, a \mathrm{c}_{i}^{\lambda}\right)$, proving (1).
To prove (2), we may assume $a=\mathrm{c}_{i}^{\lambda}, b=\mathrm{c}_{j}^{\lambda}$, and $a^{\prime}=\mathrm{c}_{i^{\prime}}^{\lambda}, b^{\prime}=\mathrm{c}_{j^{\prime}}^{\lambda}$. Then

$$
m_{\lambda}\left(\mathrm{c}_{i}^{\lambda} \otimes \mathrm{c}_{j}^{\lambda}\right) \cdot \mathrm{c}_{i^{\prime}}^{\lambda}=\left(\mathrm{C}_{i, j}^{\lambda}+A^{>\lambda}\right) \mathrm{c}_{i^{\prime}}^{\lambda}=g\left(j, i^{\prime}\right) \mathrm{c}_{i}^{\lambda}=\mathrm{c}_{i}^{\lambda} \cdot \beta_{\lambda}\left(\mathrm{c}_{j}^{\lambda}, \mathrm{c}_{i^{\prime}}^{\lambda}\right) .
$$

The second equality can be proved similarly.

It remains to prove (3). By (2) and Lemma C.31(2),

$$
\mathrm{C}(\lambda) \supseteq A z \supseteq A^{\lambda} z=\operatorname{span}\left\{x \beta_{\lambda}(y, z) \mid x, y \in \mathrm{C}(\lambda)\right\}=\mathcal{I}_{z} \mathrm{C}(\lambda) .
$$

Thus, $\mathcal{I}_{z}=\mathcal{R}$ implies $\mathrm{C}(\lambda)=A z=A^{\lambda} z$.
If $\operatorname{Hom}_{A}(\mathrm{C}(\lambda), \mathrm{C}(\mu)) \neq 0$, then there exist $x \in \mathrm{C}(\lambda), a \in A^{\lambda}$, and $f \in$ $\operatorname{Hom}_{A}(\mathrm{C}(\lambda), \mathrm{C}(\mu))$ such that $a f(x)=f(a x) \neq 0$. Hence, $\lambda \leqslant \mu$ by Lemma C.31(1). Finally, choose $y \in \mathrm{C}(\lambda)$ such that $\beta_{\lambda}(y, z)=1$, and define a map

$$
\gamma: \operatorname{Hom}_{A}(\mathrm{C}(\lambda), \mathrm{C}(\lambda)) \longrightarrow \mathcal{R}, \quad f \longmapsto \beta_{\lambda}(y, f(z)) .
$$

Since, for $f \in \operatorname{Hom}_{A}(\mathrm{C}(\lambda), \mathrm{C}(\lambda))$,

$$
f(z)=f\left(z \beta_{\lambda}(y, z)\right)=m_{\lambda}(z \otimes y) f(z)=\beta_{\lambda}(y, f(z)) z
$$

$\mathrm{C}(\lambda)=A z$ implies that γ is an isomorphism of algebras.
In the rest of the section, let $\mathcal{R}=\mathcal{K}$ be a field. We discuss the representation theory of finite dimensional cellular algebras over k.

Theorem C.33. Suppose A is a finite dimensional cellular \mathcal{K}-algebra having cellular datum (Λ, I, C, τ) and let $\Lambda_{1}=\left\{\lambda \in \Lambda \mid \beta_{\lambda} \neq 0\right\}$.
(1) For any $\lambda \in \Lambda_{1}$,

$$
\operatorname{rad}(\mathrm{C}(\lambda))=\left\{v \in \mathrm{C}(\lambda) \mid \beta_{\lambda}(y, v)=0, \text { for all } y \in \mathrm{C}(\lambda)^{\tau}\right\}
$$

and $L(\lambda):=\mathrm{C}(\lambda) / \operatorname{rad}(\mathrm{C}(\lambda))$ is simple.
(2) Let $\lambda \in \Lambda_{1}$. If $L(\lambda)$ is a composition factor of $\mathrm{C}(\mu)$, then $\lambda \leqslant \mu$. Also, $[\mathrm{C}(\lambda): L(\lambda)]=1$.
(3) For any $\lambda \in \Lambda_{1}, L(\lambda)$ is absolutely simple.
(4) $\left\{L(\lambda) \mid \lambda \in \Lambda_{1}\right\}$ is a complete set of all nonisomorphic simple A modules.
(5) If A is semisimple, then $L(\lambda)=\mathrm{C}(\lambda)$, for all $\lambda \in \Lambda=\Lambda_{1}$. Therefore, A is split semisimple.

Proof. Let $\mathfrak{r}=\left\{v \in \mathrm{C}(\lambda) \mid \beta_{\lambda}(y, v)=0\right.$, for all $\left.y \in \mathbb{C}(\lambda)^{\tau}\right\}$. If $\lambda \in \Lambda_{1}$, then $\mathfrak{r} \neq \mathrm{C}(\lambda)$. For $0 \neq z \in \mathrm{C}(\lambda) / \mathfrak{r}$, write $z=z_{1}+\mathfrak{r}$. Since $z_{1} \notin \mathfrak{r}$, there exists an element $y \in \mathrm{C}(\lambda)^{\tau}$ such that $\beta_{\lambda}\left(y, z_{1}\right)=1$. So, for any $x \in \mathrm{C}(\lambda)$, Lemma C.32(2) implies $x=x \beta_{\lambda}\left(y, z_{1}\right)=m_{\lambda}(x \otimes y) z_{1} \in A z_{1}$. This shows that $\mathrm{C}(\lambda)=A z_{1}=A^{\lambda} z_{1}$ and $\mathrm{C}(\lambda) / \mathfrak{r}=A z$. Hence, $\mathrm{C}(\lambda) / \mathfrak{r}$ is a simple left A module, and, consequently, $\mathfrak{r} \supseteq \operatorname{rad}(C(\lambda))$. If $\operatorname{rad}(C(\lambda)) \neq \mathfrak{r}$, then there is a simple module L in $\operatorname{top}(\mathrm{C}(\lambda))$ such that the A-module epimorphism $\eta: \mathrm{C}(\lambda)$ $\rightarrow L$ does not map \mathfrak{r} to zero. Therefore, $\eta(\mathfrak{r})=L$. Thus, $\eta\left(z_{1}\right)=\eta(u)$, for some $u \in \mathfrak{r}$, but $\beta_{\lambda}(y, u)=0$ as $u \in \mathfrak{r}$. By Lemma C.32(2) again,

$$
\begin{aligned}
\eta\left(z_{1}\right) & =\eta\left(z_{1} \beta_{\lambda}\left(y, z_{1}\right)\right)=m_{\lambda}\left(z_{1} \otimes y\right) \eta\left(z_{1}\right) \\
& =\eta\left(m_{\lambda}\left(z_{1} \otimes y\right) u\right)=\eta\left(z_{1} \beta_{\lambda}(y, u)\right)=0
\end{aligned}
$$

So $\eta(C(\lambda))=0$, a contradiction. Therefore, $\operatorname{rad}(C(\lambda))=\mathfrak{r}$, proving (1).
We now prove (2). If $L(\lambda)$ is a composition factor of $\mathrm{C}(\mu)$, then there is a nonzero A-module homomorphism $\varphi: \mathrm{C}(\lambda) \rightarrow \mathrm{C}(\mu) / N$, for some A submodule $N \subset \mathrm{C}(\mu)$ such that $\operatorname{Im}(\varphi) \cong L(\lambda)$. Since $\mathrm{C}(\lambda)=A^{\lambda} z_{1}$, for some $z_{1} \in \mathrm{C}(\lambda)$ as above, Lemma C.31(1) immediately implies that $\mu \geqslant \lambda$. Now assume that $\mu=\lambda$, and let $\bar{\varphi}: \mathrm{C}(\lambda) / \mathfrak{r} \rightarrow \mathrm{C}(\lambda) / N$ be the map induced by φ. Given $0 \neq z \in \mathrm{C}(\lambda) / \mathfrak{r}$, write $\bar{\varphi}(z)=z^{\prime}+N$, for some $z^{\prime} \in \mathrm{C}(\lambda)$. Then, for any $x \in \mathrm{C}(\lambda)$,

$$
\begin{aligned}
\varphi(x) & =\varphi\left(x \beta_{\lambda}\left(y, z_{1}\right)\right)=m_{\lambda}(x \otimes y) \varphi(z) \\
& =m_{\lambda}(x \otimes y)\left(z^{\prime}+N\right)=\beta_{\lambda}\left(y, z^{\prime}\right) x+N .
\end{aligned}
$$

The fact that $\varphi \neq 0$ implies that $\beta_{\lambda}\left(y, z^{\prime}\right) \neq 0$. Thus, φ is surjective, and, hence, $\mathrm{C}(\lambda) / N=\operatorname{Im}(\varphi) \cong L(\lambda)$, forcing $N=\operatorname{rad}(\mathrm{C}(\lambda))$ by (1). Consequently, $[\mathrm{C}(\lambda): L(\lambda)]=1$.

As for (3), $\operatorname{Hom}_{A}(L(\lambda), L(\lambda)) \subseteq \operatorname{Hom}_{A}(\mathrm{C}(\lambda), L(\lambda))$. By the argument above for $(2), \operatorname{Hom}_{A}(\mathrm{C}(\lambda), L(\lambda)) \cong \mathcal{K}$. Hence, $\operatorname{End}_{A}(L(\lambda)) \cong \mathcal{K}$.

Given $\lambda, \mu \in \Lambda_{1}$, we have, by (2), $L(\lambda) \cong L(\mu)$ implies $\lambda \leqslant \mu \leqslant \lambda$. Take a linear ordering $\lambda_{1}, \lambda_{2}, \ldots$ on Λ such that $i \leqslant j$ whenever $\lambda_{i} \geqslant \lambda_{j}$ and let \mathfrak{J}_{s} be spanned by all $C_{i, j}^{\lambda_{l}}$ with $l \leqslant s$ and $i, j \in I\left(\lambda_{l}\right)$. Then

$$
\begin{equation*}
0=\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{m}=A \tag{C.6.7}
\end{equation*}
$$

is a filtration of two-sided ideals such that $\mathfrak{J}_{s} / \mathfrak{J}_{s-1} \cong A^{\lambda_{s}}$. If L is a simple A-module, choose s minimal so that $\mathfrak{J}_{s} L \neq 0$. Then $A^{\lambda_{s}} L$ makes sense and is not zero. By Lemma C.31(2), there exists a $j \in I\left(\lambda_{s}\right)$ such that the A submodule $A_{\bullet, j}^{\lambda_{s}} L$ of L is nonzero. Thus, $L=A_{\bullet, j}^{\lambda_{s}} L=A_{\bullet, j}^{\lambda_{s}} v$, for some $v \in L$, and the map $x \mapsto x v$ defines an A-module epimorphism $A_{\bullet, j}^{\lambda_{s}} \rightarrow L$. Now, if $C_{i, j}^{\lambda_{s}} v \neq 0$, for some $i \in I(\lambda)$, this epimorphism implies that there exists an $i^{\prime} \in I(\lambda)$ such that $C_{i, j}^{\lambda_{s}} C_{i^{\prime}, j}^{\lambda_{s}} \not \equiv 0 \bmod A^{>\lambda_{s}}$. In other words, $\beta_{\lambda_{s}} \neq 0$. Hence, $\lambda_{s} \in \Lambda_{1}$ and $L \cong \operatorname{top} \mathrm{C}\left(\lambda_{s}\right) \cong L\left(\lambda_{s}\right)$, proving (4).

Finally, if A is semisimple then any left A-module is semisimple. Thus, $\operatorname{rad}(\mathrm{C}(\lambda))=0$, and hence, $L(\lambda)=\mathrm{C}(\lambda)$, for any $\lambda \in \Lambda=\Lambda_{1}$. Now $\operatorname{End}_{A}(L(\lambda))=\mathcal{K}$ implies that A is split semisimple.

Remarks C.34. (1) If A is a cellular algebra, then the opposite algebra A^{op} is also cellular with the same cellular datum. We can identify A^{op}-mod with the category mod- A of finite dimensional right A-modules. Let $\mathrm{C}(\lambda)^{\mathrm{op}}$ be the cell module corresponding to $\lambda \in \Lambda$. Then, $\mathrm{C}(\lambda)^{\text {op }}$ has an \mathcal{R}-basis $\left\{\mathrm{b}_{i}^{\lambda}\right\}_{i \in I(\lambda)}$ with the right A-action defined by

$$
\mathrm{b}_{i}^{\lambda} \cdot a=\sum_{i^{\prime} \in I(\lambda)} f_{\tau(a)}\left(i^{\prime}, i\right) \mathrm{b}_{i^{\prime}}^{\lambda}
$$

(cf. (C.6.2)). Thus, the map $\mathrm{b}_{i}^{\lambda} \mapsto \mathrm{c}_{i}^{\lambda}$ defines a right A-module isomorphism $\mathrm{C}(\lambda)^{\mathrm{op}} \cong \mathrm{C}(\lambda)^{\tau}$.
(2) Given a cellular algebra A over a field K, the anti-involution τ on A defines naturally a contravariant equivalence

$$
\mathfrak{d}: A-\bmod \longrightarrow A-\bmod
$$

such that, for an A-module $M, \mathfrak{d}(M)=\left(M^{*}\right)^{\tau}=\left(M^{\tau}\right)^{*}$. We claim that $\mathfrak{d}(L) \cong L$, for every simple A-module L. Indeed, by Theorem C.33(4), we assume $L=L(\lambda)$, for some $\lambda \in \Lambda_{1}$. Then $L(\lambda)=\mathrm{C}(\lambda) / \operatorname{rad}(\mathrm{C}(\lambda))$, where the rad is defined by the bilinear form

$$
\beta_{\lambda}: C(\lambda)^{\mathrm{op}} \times \mathrm{C}(\lambda) \longrightarrow k .
$$

Let $L(\lambda)^{\mathrm{op}}=\mathrm{C}(\lambda)^{\mathrm{op}} / \operatorname{rad}\left(\mathrm{C}(\lambda)^{\mathrm{op}}\right)$. Then β_{λ} induces a nondegenerate bilinear form

$$
\bar{\beta}_{\lambda}: L(\lambda)^{\mathrm{op}} \times L(\lambda) \longrightarrow \kappa
$$

Hence, there is a linear isomorphism $L(\lambda) \xrightarrow{\sim}\left(L(\lambda)^{\mathrm{op}}\right)^{*}, v \mapsto \bar{\beta}_{\lambda}(-, v)$. By Lemma C.32(1), this linear isomorphism is an A-modules isomorphism. Hence, $\mathfrak{d} L(\lambda) \cong L(\lambda)$. Thus, the module ${ }^{\mathfrak{d}} \mathrm{C}(\lambda):=\mathfrak{d}(\mathrm{C}(\lambda))$ has socle $L(\lambda)$ and the same composition factors as $C(\lambda)$.

The functor \mathfrak{d} is called a strong duality functor in the sense that $\mathfrak{d}^{2} \cong$ $\operatorname{id}_{A \text {-mod }}$ and $\mathfrak{d}(L) \cong L$, for every simple A-module L.

As usual, denote the projective cover of $L(\lambda)$ by $P(\lambda)$. A sequence of submodules of an A-module M

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

is called a cell filtration of M if every section M_{i} / M_{i-1} is isomorphic to $\mathrm{C}(\lambda)$, for some $\lambda \in \Lambda$.

Theorem C.35. Suppose A is a finite dimensional cellular \mathcal{K}-algebra having cellular datum (Λ, I, C, τ). For $\lambda \in \Lambda_{1}$, there exists a cell filtration of the projective cover $P(\lambda)$ such that if $[P(\lambda): C(\mu)]$ denotes the number of sections of the filtration isomorphic to $\mathrm{C}(\mu)$, then $[P(\lambda): \mathrm{C}(\mu)] \neq 0 \Rightarrow \mu \geqslant \lambda$ and $[P(\lambda): C(\lambda)]=1$.

Proof. By the proof of Theorem C.33(4), for $\lambda \in \Lambda_{1}, A^{\geqslant \lambda} L(\lambda)$ makes sense and equals $L(\lambda)$. Thus, $A \geqslant \lambda P(\lambda)=P(\lambda)$, since it is a submodule of $P(\lambda)$ which covers the top $L(\lambda)$. Now, for any projective A-module P and any ideal \mathfrak{J} of $A, \mathfrak{J} \otimes_{A} P \cong \mathfrak{J} P$. Thus, $A \geqslant \lambda \otimes P(\lambda)$ is isomorphic under multiplication to $P(\lambda)$. If we order $\{\mu \in \Lambda \mid \mu \geqslant \lambda\}=\left\{\lambda_{1}, \ldots, \lambda_{t}=\lambda\right\}$ such that $i<j$ whenever $\lambda_{i}>\lambda_{j}$, then we have a filtration of $A \geqslant \lambda$ as in (C.6.7) with $t=m$. Tensoring this filtration with $P(\lambda)$ gives a filtration of $P(\lambda)$ by the projectivity of $P(\lambda)$. Now the sections of this filtration are of the
form $A^{\lambda_{i}} \otimes_{A} P(\lambda) \cong \mathrm{C}\left(\lambda_{i}\right) \otimes_{K} \mathrm{C}\left(\lambda_{i}\right)^{\tau} \otimes_{A} P(\lambda)(1 \leqslant i \leqslant t)$, which is isomorphic to a direct sum of copies of $\mathrm{C}\left(\lambda_{i}\right)$, by Lemma C.31. In particular, $A^{\lambda} \otimes_{A} P(\lambda) \cong \mathrm{C}(\lambda)$, since, as a K-space,

$$
\begin{aligned}
\mathrm{C}(\lambda)^{\tau} \otimes_{A} P(\lambda) & \cong \operatorname{Hom}_{k}\left(\mathrm{C}(\lambda)^{\tau} \otimes_{A} P(\lambda), \mathcal{K}\right) \\
& \cong \operatorname{Hom}_{A}\left(\mathrm{C}(\lambda)^{\tau}, P(\lambda)^{*}\right) \\
& \cong \operatorname{Hom}_{A}\left(P(\lambda),{ }^{\mathfrak{D}} \mathrm{C}(\lambda)\right) \cong \mathcal{K},
\end{aligned}
$$

by Remark C.34(2). All the assertions now follow easily.
Corollary C.36. Let A be a finite dimensional cellular algebra over a field $\mathcal{R}=\kappa$ with a cellular datum (Λ, I, C, τ) and assume $\beta_{\lambda} \neq 0$, for all $\lambda \in \Lambda$. Then A is a (split) quasi-hereditary algebra.

Proof. By Theorems C.33(2) and C.35, the category A-mod is a highest weight category. The assertion now follows from Theorem C.10.

Exercises and notes

Exercises

§§C.1-C. 2

C.1. Let A be a finite dimensional algebra over \mathbb{K} with Jacobson radical \mathfrak{N}. Suppose that $\bar{e} \in \bar{A}=A / \mathfrak{N}$ is an idempotent. Show there exists an idempotent $e \in A$ lifting \bar{e}, i.e., satisfying $\pi(e)=\bar{e}$ if $\pi: A \rightarrow \bar{A}$ is the quotient morphism.

Hint: By induction on the degree of nilpotency of \mathfrak{N}, we can assume that $\mathfrak{N}^{2}=0$. In this case, let $a \in A$ satisfy $\pi(a)=\bar{e}$. Show that $e:=-3 a^{4}+4 a^{3}$ is an idempotent in A satisfying $\pi(e)=\bar{e}$.
C.2. (1) Complete the dimension shifting argument in the proof of Proposition C. 5 (2).
(2) Under the hypothesis of Proposition C.5, let N be a simple A-module such that $\mathfrak{J} N \neq 0$. Define an inclusion $N \hookrightarrow \operatorname{Hom}_{e A e}(e A, e N)$ of left A-modules. Show that there is an isomorphism

$$
\operatorname{Hom}_{A}\left(-, \operatorname{Hom}_{e A e}(e A, e N)\right) \cong \operatorname{Hom}_{e A e}\left(e A \otimes_{A}-, e N\right)
$$

of functors on A-mod. Using the semisimplicity of $e A e$, conclude that the right-hand side of this expression is exact, and so $\operatorname{Hom}_{e A e}(e A, e N)$ is an injective A-module.
C.3. Complete the proof of Theorem C. 10 by showing that if A-mod is a highest weight category, then A is a quasi-hereditary algebra.

Hint: Choose a maximal element $\lambda \in \Lambda$. Thus, $\Delta(\lambda)$ is projective; hence, $\Delta(\lambda) \cong A e$, for some primitive idempotent $e \in A$. Let \mathfrak{J}_{1} be the ideal in A which is generated by the images of all A-module morphisms $\Delta(\lambda)$
$\rightarrow{ }_{A} A$. Show that $\mathfrak{J}_{1} \cong n \Delta(\lambda)$, for some positive integer n. Thus, \mathfrak{J}_{1} is the image of the evaluation map $\operatorname{Hom}_{A}(A e, A) \otimes A e \rightarrow A, f \otimes x \mapsto f(x)$. But $\operatorname{Hom}_{A}(A e, A) \cong e A$, so $\mathfrak{J}_{1} \cong A e A$. Also, $e A e \cong \operatorname{Hom}_{A}(A e, A e) \cong$ $\operatorname{End}_{A}(\Delta(\lambda)) \cong \operatorname{End}_{A}\left(L(\lambda)\right.$ is a division ring. Conclude that \mathfrak{J}_{1} is a heredity ideal. Continue with A replaced by A / \mathfrak{J}_{1}.
C.4. Prove Lemma C.12.
C.5. Let \mathcal{C} be a highest weight category with weight poset Λ. Let Γ be an order ideal in Λ, i.e., if $\lambda \in \Gamma$, and $\mu \in \Lambda$ satisfies $\mu \leqslant \lambda$, then $\mu \in \Gamma$. Let $\Omega=\Lambda \backslash \Gamma$ be the complementary order coideal.
(1) For $\omega \in \Omega$, let $e_{\omega} \in A$ be a primitive idempotent such that $P(\omega) \cong A e_{\omega}$. Form the idempotent $e=e_{\Omega}=\sum_{\omega \in \Omega} e_{\omega}$, and let $\mathfrak{J}=A e A$. Show that A / \mathfrak{J}-mod identifies with the full subcategory $\mathcal{C}[\Gamma]$ of \mathcal{C} consisting of all objects which have composition factors $L(\gamma), \gamma \in \Gamma$. Show that $\mathcal{C}[\Gamma]$ is a highest weight category with weight poset Γ.
(2) Let $\mathcal{C}(\Omega)=e A e$-mod. Show that $\mathcal{C}(\Omega)$ is a highest weight category with weight poset Ω. Let $j^{*}: \mathcal{C} \rightarrow \mathcal{C}(\Omega)$ be the (exact) functor defined by $j^{*}(M)=e M$. Determine the effect of j^{*} on standard and costandard objects in \mathcal{C}.
C.6. Let $\mathcal{C}=A$-mod be a highest weight category with weight poset Λ.
(1) Let $M \in \mathcal{C}(\Delta)$. Show that if $F_{\bullet}: M=F_{0} \supset F_{1} \supset \cdots \supset F_{t}=0$ is any Δ-filtration of M and $\lambda \in \Lambda$, prove that the number $[M: \Delta(\lambda)]_{F_{\mathbf{\bullet}}}$ of occurrences of $\Delta(\lambda)$ as a section F_{i} / F_{i+1} in F_{\bullet} equals

$$
\operatorname{dim} \operatorname{Hom}_{A}(M, \nabla(\lambda)) / \operatorname{dim} \operatorname{End}_{A}(L(\lambda)) .
$$

Hence, $[M: \Delta(\lambda)]_{F_{\bullet}}$ is independent of F_{\bullet}; denote this multiplicity by $[M: \Delta(\lambda)]$. Formulate a similar result for the multiplicity $[N: \nabla(\lambda)]$ of $\nabla(\lambda)$ as a section in a ∇-filtration of N.
(2) Prove Brauer-Humphreys reciprocity: For $\lambda, \mu \in \Lambda$,

$$
[P(\lambda): \Delta(\mu)]=[\nabla(\mu): L(\lambda)] \text { and }[I(\lambda): \nabla(\mu)]=[\Delta(\mu): L(\lambda)] .
$$

Suppose that \mathcal{C} has a strong duality, i.e., a contravariant equivalence $\mathfrak{d}: \mathcal{C} \xrightarrow{\sim} \mathcal{C}^{\text {op }}$ satisfying $\mathfrak{d}^{2} \cong \mathrm{id}_{\mathcal{C}}$ and $\mathfrak{d} L(\lambda) \cong L(\lambda)$, for all $\lambda \in \Lambda$. Show that $\mathfrak{d} \nabla(\lambda) \cong \Delta(\lambda)$, so that $[\nabla(\mu): L(\lambda)]=[\Delta(\mu): L(\lambda)]$.
(3) Let $\mathcal{C}(\Delta)$ (resp., $\mathcal{C}(\nabla)$) be the full subcategory of \mathcal{C} consisting of all objects M which have a filtration $M=F_{0} \supset F_{1} \supset \cdots \supset F_{t}=0$ with sections $F_{i} / F_{i+1} \cong \Delta(\lambda)$ (resp., $\cong \nabla(\lambda)$), for some $\lambda \in \Lambda$. If $M \in \mathcal{C}(\Delta)$ (resp., $\mathcal{C}(\nabla)$), we say that M has a Δ - (resp., ∇-) filtration. Prove the Donkin-Scott criterion that $M \in \mathcal{C}$ has a Δ-filtration (resp., ∇-filtration) if and only if $\operatorname{Ext}_{A}^{1}(M, \nabla(\lambda))=0\left(\right.$ resp., $\left.\operatorname{Ext}_{A}^{1}(\Delta(\lambda), M)=0\right)$, for all $\lambda \in \Lambda$.

Hint: Suppose M satisfies $\operatorname{Ext}_{A}^{1}(M, \nabla(\lambda))=0$, for all λ. Choose $\lambda \in \Lambda$ minimal for which there exists a nonzero morphism $f: M \rightarrow \nabla(\lambda)$. Show $\operatorname{Im}(f) \cong L(\lambda)$. Apply $\operatorname{Hom}_{A}(M,-)$ to the exact sequence $0 \rightarrow Q \rightarrow$ $\Delta(\lambda) \rightarrow L(\lambda) \rightarrow 0$, and conclude that there exists a surjective morphism
$F: M \rightarrow \Delta(\lambda)$ since $\operatorname{Hom}_{A}(M, Q)=0$. By the long exact sequence of cohomology, conclude that $\operatorname{Ext}_{A}^{1}(F, \nabla(\mu))=0$, for all μ. Conclude by induction on $\operatorname{dim} M$ that M has a Δ-filtration.
(4) Let $\mathcal{C}(\$)=\mathcal{C}(\Delta) \cap \mathcal{C}(\nabla)$. Any $M \in \mathcal{C}(\$)$ is called a tilting module. Show that if M, N are tilting modules, then $\operatorname{Ext}_{A}^{n}(M, N)=0$, for all positive n.
(5) Show that, for $\lambda \in \Lambda$, there exists a unique (up to isomorphism) indecomposable tilting module $X(\lambda)$ such that λ is the maximal $\mu \in \Lambda$ with $[X(\lambda): L(\mu)] \neq 0$. Necessarily, $[X(\lambda): L(\lambda)]=1$.

Hint: Fix λ and choose a listing $\lambda_{1}, \ldots, \lambda_{t}$ of the order ideal $(-\infty, \lambda]$ such that $\lambda_{i}>\lambda_{j} \Rightarrow i<j$. Thus, $\lambda_{1}=\lambda$. The group $\operatorname{Ext}_{A}^{1}\left(\Delta\left(\lambda_{2}\right), \Delta\left(\lambda_{1}\right)\right)$ is a right module over the division algebra $\mathcal{D}:=\operatorname{End}_{A}\left(\Delta\left(\lambda_{2}\right)\right)$. Let $m_{1}=\operatorname{dim}_{\mathcal{D}} \operatorname{Ext}_{A}^{1}\left(\Delta\left(\lambda_{2}\right), \Delta\left(\lambda_{1}\right)\right)_{\mathcal{D}}$, and choose an extension

$$
0 \longrightarrow \Delta(\lambda) \longrightarrow E_{2} \longrightarrow m_{1} \Delta\left(\lambda_{2}\right) \longrightarrow 0,
$$

so that the various pullbacks through the maps $\Delta\left(\lambda_{2}\right) \rightarrow m_{1} \Delta\left(\lambda_{2}\right)$ form a \mathcal{D}-basis for $\operatorname{Ext}_{A}^{1}\left(\Delta\left(\lambda_{2}\right), \Delta\left(\lambda_{1}\right)\right)_{\mathcal{D}}$. Continue this process to obtain a module $E_{t} \in \mathcal{C}(\Delta)$ such that $\operatorname{Ext}_{A}^{1}\left(\Delta(\mu), E_{t}\right)=0$, for all μ. By (3), E_{t} is a tilting module.
(6) Let X be a tilting module. Prove that $X \cong \bigoplus m_{\lambda} X(\lambda)$, for nonnegative integers m_{λ}. If each $m_{\lambda} \neq 0$, then X is called a complete tilting module. If X is a complete tilting module, prove that the endomorphism algebra $B=\operatorname{End}_{A}(X)$ is a quasi-hereditary algebra. In fact, B-mod is a highest weight category with weight poset the opposite poset Λ^{op}.
(7) Assume κ is algebraically closed. Let $M \in \mathcal{C}(\Delta)$. Prove, for $\lambda \in \Lambda$, the multiplicity $[M: \Delta(\lambda)]$ equals the rank of the bilinear form

$$
\operatorname{Hom}_{A}(M, X(\lambda)) \otimes_{k} \operatorname{Hom}_{A}(P(\lambda), M) \longrightarrow \operatorname{Hom}_{A}(P(\lambda), X(\lambda)) \cong \kappa
$$

defined by composition.
(8) Suppose that each tilting module $X(\lambda), \lambda \in \Lambda$, is projective (resp., injective) in \mathcal{C}. Also, assume that, given any $\lambda, \Delta(\lambda)$ and $\nabla(\lambda)$ have the same image in the Grothendieck group $\mathscr{K}_{0}(\mathcal{C})$ - e.g., \mathcal{C} has a duality in the sense of (2) above. Prove that A is a semisimple algebra.

Hint: Argue by induction on the "height" of λ to show that $\Delta(\lambda)=$ $\nabla(\lambda)=I(\lambda)$. Give an example to show that if the Grothendieck hypothesis is dropped, the result fails.
(9) Let X be a complete tilting module, for \mathcal{C} as above, and let $\operatorname{Add} X$ be the full additive subcategory of \mathcal{C} having as objects direct summands of finite direct sums of copies of X. Prove that A has a finite resolution $0 \rightarrow$ $A \rightarrow X^{\bullet} \rightarrow 0$ in which each $X^{i} \in \operatorname{Add} X$. (This property, together with the fact that X has finite projective dimension in \mathcal{C} and the fact that $\operatorname{Ext}_{A}^{n}(X, X)=0$, for positive n, are usually taken as the characterizing property of tilting modules in the theory of finite dimensional algebras.)

§C. 3

C.7. Let \mathcal{R} be a commutative, noetherian ring. Prove the following statements directly (or look them up in a textbook on commutative algebra).
(1) \mathcal{R} is regular if and only if the polynomial ring $\mathcal{R}[X]$ is regular. Also, $K \operatorname{dim} \mathcal{R}[X]=1+\mathrm{K} \operatorname{dim} \mathcal{R}$.
(2) \mathcal{R} is regular if and only if $\mathcal{R}_{\mathfrak{m}}$ is regular, for all maximal ideals \mathfrak{m} in \mathcal{R}.
(3) If $S \subset \mathcal{R}$ is a multiplicative set and if \mathcal{R} is regular, then the localization $S^{-1} \mathcal{R}$ is also regular.
(4) The ring $Z=\mathbb{Z}\left[v, v^{-1}\right]$ of integral Laurent polynomials in an indeterminate v is regular of Krull dimension 2.
C.8. Assume that A is an algebra over a discrete valuation ring \mathcal{R} having residue field $K=\mathcal{R} /(\pi)$. Assume that A is a finitely generated \mathcal{R}-module. Let X, Y be finitely generated A-modules such that $\operatorname{Ext}_{A}^{1}(X, Y) \neq 0$. Show that $\operatorname{Ext}_{A_{k}}^{1}\left(X_{k}, Y_{k}\right) \neq 0$.

Hint: First, check that $\operatorname{Ext}_{A_{k}}^{1}\left(X_{k}, Y_{k}\right) \cong \operatorname{Ext}_{A}^{1}(X, Y)_{k}$. Show that multiplication by π induces an exact sequence

$$
\operatorname{Ext}_{A}^{1}(X, Y) \xrightarrow{\pi} \operatorname{Ext}_{A}^{1}(X, Y) \longrightarrow \operatorname{Ext}_{A}^{1}(X, Y / \pi Y),
$$

so that if the desired conclusion fails, $\operatorname{Ext}_{A}^{1}(X, Y)=0$ by the Nakayama lemma.

The goal of Exercises C.9-C. 10 is to establish a Brauer theory over a regular local ring \mathcal{R} of Krull dimension at most 2 . Let \mathcal{K} be the fraction field and $\mathcal{K}=\mathcal{R} / \mathfrak{m}$ the residue field of \mathcal{R}. Let A be an \mathcal{R}-algebra which is \mathcal{R}-free of finite rank. Suppose that $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{m}$ are the distinct (up to isomorphism) simple $A_{\mathcal{K}}$-modules. By Corollary C.18, $\boldsymbol{X}_{i} \cong X_{i, \mathcal{K}}$, for A-lattices $X_{i}, 1 \leqslant i \leqslant m$.
C.9. Prove that
(1) Any simple $A_{\mathfrak{k}}$-module L is a composition factor of some $X_{i, \kappa}, 1 \leqslant i \leqslant m$.
(2) If $\boldsymbol{X} \cong X_{\mathcal{K}} \cong X_{\mathcal{K}}^{\prime}$, for A-lattices X and X^{\prime}, then $X_{\mathcal{K}}$ and X_{κ}^{\prime} have the same A_{k}-composition factors (with the same multiplicities).
Hint: First, replace \mathcal{R} by $\hat{\mathcal{R}}:=\lim \mathcal{R} / \mathfrak{m}^{i}$, and \mathcal{K} by the fraction field $\hat{\mathcal{K}}$ of $\hat{\mathcal{R}}$. Thus, \mathcal{R} and $\hat{\mathcal{R}}$ have the same residue field k. Then consider a projective cover $P \rightarrow L$ of $A_{\mathfrak{k}}$-modules and, by [112, 12.9], lift P to a projective A-module \tilde{P} such that $P=\tilde{P}_{k}$. Now, use the isomorphism $\operatorname{Hom}_{A_{\kappa}}\left(P, X_{i, k}\right) \cong \operatorname{Hom}_{A}\left(\tilde{P}, X_{i}\right)_{k}$.
C.10. Let $L(1), \ldots, L(n)$ be the distinct simple $A_{\mathfrak{k}}$-modules. By (2) in the above exercise, the multiplicities $d_{i, j}=\left[X_{j, k}: L(i)\right]$ are independent of the choice of X_{j}. Let $D=\left(d_{i, j}\right)$ be the corresponding $n \times m$ decomposition matrix. Also, let $C=\left(c_{i, j}\right)$ be the $n \times n$ Cartan matrix of A_{k}, i.e., if $P(j)$ denotes the projective cover of $L(j)$ in A_{k}-mod, then $c_{i, j}=[P(j): L(i)]$. Suppose that both $A_{\mathcal{K}}$ and $A_{\kappa} / \operatorname{rad}\left(A_{\nwarrow}\right)$ are split semisimple. Show that $C=D \cdot D^{t}$.
§§C.4-C. 5
C.11. Let \mathcal{R} be an arbitrary commutative, noetherian domain, and let E be an \mathcal{R}-algebra and let $e \in E$ be an idempotent. Suppose that E is a (split) semisimple algebra over \mathcal{R}. Show that $e E e$ is a (split) semisimple algebra over \mathcal{R}.

Hint: Use the isomorphism $e E e \cong \operatorname{End}_{E}(E e)^{\text {op }}$ to show that $e E e$ behaves well with respect to base change to a field \mathcal{K}.
C.12. (See [BAII, §3.12] for details dealing with parts (1)-(3).) Let A be an algebra over a commutative ring \mathcal{R}. Let P be a finitely generated progenerator for A-mod and put $A^{\prime}=\operatorname{End}_{A}(P)^{\mathrm{op}}$. Let $\mathscr{F}=\operatorname{Hom}_{A}(P,-): A-\bmod \rightarrow A^{\prime}-\bmod$. Let $Q=\mathscr{F}(A)$.
(1) Prove directly that $A^{\text {op }} \cong \operatorname{End}_{A^{\prime}}(Q)$. Show directly that Q is a finitely generated progenerator of A^{\prime}-mod.
(2) Let $\mathscr{G}:=\operatorname{Hom}_{A^{\prime}}(Q,-): A^{\prime}-\bmod \rightarrow A$-mod. Prove directly that \mathscr{F} and \mathscr{G} are inverse equivalences of categories.
(3) Show that $\mathfrak{J} \mapsto \mathscr{F}(\mathfrak{J} P)=\operatorname{Hom}_{A}(P, \mathfrak{J} P)$ defines a bijection between ideals of A and ideals of A^{\prime}.
(4) Suppose that \mathfrak{J} is an ideal in A and let $\mathfrak{J}^{\prime}=\mathscr{F}(\mathfrak{J} P)$. Show $\operatorname{End}_{A}(\mathfrak{J})$ is (split) semisimple if and only if $\operatorname{End}_{A^{\prime}}\left(\mathfrak{J}^{\prime}\right)$ is (split) semisimple. Show that \mathfrak{J} is projective as a left A-module if and only if \mathfrak{J}^{\prime} is projective as a left A^{\prime}-module. Finally, prove that \mathfrak{J} is an idempotent ideal if and only if \mathfrak{J}^{\prime} is an idempotent ideal. Conclude that \mathfrak{J} is a heredity ideal in A if and only if \mathfrak{J}^{\prime} is a heredity ideal in A^{\prime}.
(5) If \mathfrak{J} is an ideal in A, show that $P / \mathfrak{J} P$ is a progenerator for the \mathcal{R}-algebra A / \mathfrak{J}. Also, if $\mathfrak{J}^{\prime}=\mathscr{F}(\mathfrak{J} P)$, show that $A^{\prime} / \mathfrak{J}^{\prime} \cong \operatorname{End}_{A / \mathfrak{J}}(P / \mathfrak{J} P)$.
(6) Show that $0=\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{t}=A$ is a heredity chain in A if and only if $0=\mathfrak{J}_{0}^{\prime} \subset \mathfrak{J}_{1}^{\prime} \subset \cdots \subset \mathfrak{J}_{t}^{\prime}=A^{\prime}$ is a heredity chain in A^{\prime}, where $\mathfrak{J}_{i}^{\prime}=\mathscr{F}\left(\mathfrak{J}_{i} P\right)$, for $i=1, \ldots, t$. Hence, A is (split) quasi-hereditary over \mathcal{R} if and only if A^{\prime} is also.
C.13. Complete the details of the proof of Proposition C.25.

§C. 6

C.14. Suppose that A is a finite dimensional algebra over a field κ. Assume that A has an anti-involution τ. Prove that A is cellular in the sense of Definition C. 30 if and only if the following conditions hold: A has a filtration $0=$ $\mathfrak{J}_{0} \subset \mathfrak{J}_{1} \subset \cdots \subset \mathfrak{J}_{t}=A$ by a sequence of τ-stable ideals such that, for each $1 \leqslant i \leqslant t, \mathfrak{J}_{i} / \mathfrak{J}_{i-1}$ contains a left A / \mathfrak{J}_{i-1}-ideal W_{i}, giving rise to a commutative diagram

in which α is an isomorphism of A - A-bimodules, and $(1,2)$ is the "switching map" on the tensor products. We also assume that, for each i, \mathfrak{J}_{i-1} has a τ-stable complement in \mathfrak{J}_{i}.

Notes

§§C.1-C.2: The theory of quasi-hereditary algebras and highest weight categories was first developed in papers $[\mathbf{4 5}, \mathbf{2 3 4}, \mathbf{2 6 7}]$ by Cline-Parshall-Scott. The original idea was to model algebraically some of the geometric features of the theory of perverse sheaves used in the proof (by Brylinski-Kashiwara [30] and BeilinsonBernstein [15], independently) of the Kazhdan-Lusztig conjecture [177] for the category \mathcal{O} associated with a complex simple Lie algebra. For other early contributions to the theory of quasi-hereditary algebras, see $[\mathbf{7 7}, \mathbf{7 8}, \mathbf{8 0}, \mathbf{2 3 2}]$. Surveys of quasi-hereditary algebras can be found, for example, in $[\mathbf{8 1}, \mathbf{2 3 3}, \mathbf{7 2}]$.

The theory of stratified algebras, as defined in [47] (and studied there at both the field and integral level) provides an important extension of the theory of quasihereditary algebras that is useful in representation theory.

The theory of tilting modules for quasi-hereditary algebras was first developed by Ringel [$\mathbf{2 5 0}$]. For the fact that the Cartan matrix of a quasi-hereditary algebra has determinant 1 (discussed in Exercise C.6), see [31].
§C.3: Besides [HAII], the short book by Serre [269] is recommended for the theory of regular rings needed in this section. The Auslander-Buchsbaum formula (Proposition C.15) was first given in [9].

Exercises C. 9 and C. 10 are taken from Du-Parshall-Scott [105, 1.1.2-1.1.3]. The approach to the Brauer theory sketched in these Exercises was first given by Geck-Rouquier [127].
§C.4: The theory of integral quasi-hereditary algebras was introduced in [46]; see [110] for other applications of the theory. The converse of Proposition C. 23 is also true; see [46, 3.3(a)].
\S C.5: Although the formal notion of a Specht datum for an algebra is new, the ideas of this section are essentially contained in Du-Parshall-Scott [106].
§C.6: Cellular algebras were introduced by Graham-Lehrer [134]. The original idea came from the cellular property (Proposition 8.30) they observed from the Kazhdan-Lusztig basis of the Hecke algebra associated with a symmetric group. However, in contrast with the canonical bases, the definition of cellular bases directly reflects the structure of the algebra and is suitable for any ground ring. It turns out that many well-known algebras such as Brauer algebras and Ariki-Koike algebras are cellular algebras. Geck [126] recently proved that the Hecke algebras associated with finite Weyl groups are cellular.

Our treatment in the section largely follows from [134] with one exception where we replace the dual module $C(\lambda)^{*}$ of a cell module $C(\lambda)$, used in [134], by the module $C(\lambda)^{\mathrm{op}}$, used in [109]. With this modification, we establish the associativity relations given in Lemma C.32. Moreover, $C(\lambda)^{\text {op }}$ is the dual module of the co-standard module $\nabla(\lambda)$ in the quasi-hereditary case.

For further investigations on the representation theory of general cellular algebras, see König-Xi $[\mathbf{1 8 2}, \mathbf{1 8 3}]$. The idea of cellular bases has also been generalized to obtain a new formulation for quasi-hereditary algebras; see $[\mathbf{1 0 9}, \mathbf{9 9}]$. See also [47, $\S 1.2]$ for more on strong duality functors.

Exercise C. 14 is taken from König-Xi [182].

Bibliography

Preliminary References:

[CA] M. Atiyah and I. MacDonald, Commutative Algebra, Addison-Wesley, ReadingLondon, 1969.
[BAI] N. Jacobson, Basic Algebra I, 2nd ed., W. H. Freeman and Company, New York, 1985.
[BAII] N. Jacobson, Basic Algebra II, 2nd ed., W. H. Freeman and Company, New York, 1989.
[HAI] P. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, no. 4, Springer-Verlag, New York-Berlin 1971.
[HAII] C. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1997.
[LAI] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4-6, Translated from the 1968 French original by A. Pressley, Springer-Verlag, Berlin, 2002.
[LAII] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, no. 9, Springer-Verlag, New York-Berlin, 1972.
[1] F. Anderson and K. Fuller, Rings and Categories of Modules, 2nd ed., Graduate Texts in Mathematics, no. 13, Springer-Verlag, New York, 1992.
[2] H. H. Andersen, P. Polo and K. Wen, Representations of quantum algebras, Invent. Math. 104(1991), 1-59.
[3] G. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, no. 2, Addison-Wesley, Reading-London, 1976.
[4] S. Ariki, On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$, J. Math. Kyoto Uni. 36(1996), 789-808.
[5] S. Ariki, Robinson-Schensted correspondence and left cells, in: Combinatorial Methods in Representation Theory (Kyoto, 1998), Adv. Stud. Pure Math., 28, Kinokuniya, Tokyo, 2000, pp. 1-20.
[6] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z})$) \mathfrak{S}_{n} and construction of its irreducible representations, Adv. Math. 106(1994), 216-243.
[7] M. Artin, W. Schelter and J. Tate, Quantum deformations of GL_{n}, Comm. Pure Appl. Math. 44(1991), 879-895.
[8] I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras, vol. 1: Techniques of Representation Theory, Cambridge University Press, Cambridge, 2006.
[9] M. Auslander and D. A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85(1957), 390-405.
[10] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97(1960), 1-24.
[11] M. Auslander, M. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250(1979), 1-46.
[12] M. Auslander and I. Reiten, Stable equivalence of dualizing R-varieties, Adv. Math. 12(1974), 306-366.
[13] M. Auslander and I. Reiten, Representation theory of Artin algebras, III, Comm. Algebra 3(1975), 239-294; IV, 5(1977), 443-518; V, 5(1977), 519-554; VI, 6(1978), 257-300.
[14] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, no. 36, Cambridge University Press, Cambridge, 1995.
[15] A. Beilinson and J. Bernstein, Localisations des \mathfrak{g}-modules, C. R. Acad. Sci. Paris 292(1981), 15-18.
[16] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque, no. 100, Soc. Math. France, Paris, 1982.
[17] A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of GL_{n}, Duke Math. J. 61(1990), 655-677.
[18] D. Benson, Representations and Cohomology, vol. I, Cambridge Studies in Advanced Mathematics, no. 30, Cambridge University Press, Cambridge, 1995.
[19] I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspehi Math. Nauk 28(1973), 19-33.
[20] G. Bergman, Diamond lemma for ring theory, Adv. Math. 29(1987), 178-218.
[21] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, no. 231, Springer-Verlag, New York, 2005.
[22] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121(1996), 245-287.
[23] R. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115(1988), 501-512.
[24] A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics no. 126, Springer-Verlag, New York, 1991.
[25] R. Bose and D. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Stat. 30(1959), 21-38.
[26] N. Bourbaki, Algebra I, Ch. 1-3, translated from the French, reprint of the 1974 English translation, Springer-Verlag, Berlin, 1998.
[27] N. Bourbaki, Lie Groups and Lie Algebras, Ch. 1-3, translated from the French, reprint of the 1975 English translation, Springer-Verlag, Berlin, 1998.
[28] S. Brenner and M. C. R. Butler, The equivalence of certain functors occurring in the representation theory of Artin algebras and species, J. London Math. Soc. (2) 14(1976), 183-187.
[29] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-GelfandPonomarev reflection functors, in: Representation Theory II, V. Dlab \& P. Gabriel (eds.), Lecture Notes in Mathematics, no. 832, Springer-Verlag, Berlin-New York, 1980, pp. 103-169.
[30] J. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64(1981), 387-410.
[31] W. Burgess and K. Fuller, On quasi-hereditary rings, Proc. Amer. Math. Soc. 106(1989), 321-328.
[32] M. Cabanes and M. Enguehard, Representation Theory of Finite Reductive Groups, New Mathematical Monographs no. 1, Cambridge University Press, Cambridge, 2004.
[33] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81(2006), 595-616.
[34] P. Caldero and B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172(2008), 169-211.
[35] R. W. Carter, Simple Groups of Lie Type, John Wiley \& Sons, New York, 1972.
[36] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley \& Sons, New York, 1989.
[37] R. W. Carter, Lie Algebras of Finite and Affine Type, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2005.
[38] R. W. Carter and G. Lusztig, On the modular representations of general linear and symmetric groups, Math. Zeit. 136(1974), 193-242.
[39] V. Chari and A. N. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1995.
[40] V. Chari and N. Xi, Monomial bases of quantized enveloping algebras, in: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math. 248(1999), 69-81.
[41] J. Chen and B. Deng, Fundamental relations in Ringel-Hall algebras, J. Algebra 320(2008), 1133-1149.
[42] C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7(1955), 14-66.
[43] C. Chevalley, Sur les décompositions cellularies des espaces G / B, With a foreword by Armand Borel, in: Algebraic Groups and Their Generalizations: Classical Methods, Proc. Symp. Pure Math., no. 56, Part 1, W. Haboush \& B. Parshall (eds.), Amer. Math. Soc., Providence, 1994, pp. 1-23,
[44] E. Cline, B. Parshall and L. Scott, On the tensor product theorem for algebraic groups, J. Algebra 63(1980), 264-267.
[45] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight categories, J. reine angew. Math. 391(1988), 85-99.
[46] E. Cline, B. Parshall and L. Scott, Integral and graded quasi-hereditary algebras, J. Algebra 131(1990), 126-160.
[47] E. Cline, B. Parshall and L. Scott, Stratifying endomorphism algebras, Memoirs Amer. Math. Soc., no. 591, Amer. Math. Soc., Providence, 1996.
[48] C. de Concini and C. Procesi, A characteristic free approach to invariant theory, Adv. Math. 21(1976), 330-354.
[49] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56(1988), 451-483.
[50] W. Crawley-Boevey, Lectures on representations of quivers, Lecture Notes at Oxford University, 1992 (available at http://www.maths.leeds.ac.uk/~pmtwc).
[51] W. Crawley-Boevey, Geometry of representations of algebras, Lecture Notes at Oxford University, 1993 (available at http://www.maths.leeds.ac.uk/~pmtwc).
[52] C. W. Curtis, On Lusztig's isomorphism theorem for Hecke algebras, J. Algebra 92(1985), 348-365.
[53] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, no. XI, Interscience Publisher, New YorkLondon, 1962.
[54] C. W. Curtis and I. Reiner, Methods of Representation Theory, vol. I, John Wiley \& Sons, New York, 1981.
[55] C. W. Curtis and I. Reiner, Method of Representation Theory, vol. II, John Wiley \& Sons, New York, 1987.
[56] M. Demazure and P. Gabriel, Groupes Algébriques, Tome I: Géométrie algébrique, Généralités, Groupes commutatifs, Masson et Cie, Paris, éditeur; North-Holland, Amsterdam, 1970.
[57] B. Deng and J. Du, Monomial bases for quantum affine $\mathfrak{s l}_{n}$, Adv. Math. 191(2005), 276-304.
[58] B. Deng and J. Du, Bases of quantized enveloping algebras, Pacific J. Math. 220(2005), 33-48.
[59] B. Deng and J. Du, Frobenius morphisms and representations of algebras, Trans. Amer. Math. Soc. 358(2006), 3591-3622.
[60] B. Deng and J. Du, Algebras, representations and their derived categories over finite fields, in: Representations of Algebraic Groups, Quantum Groups, and Lie Algebras, Contemp. Math. 413(2006), 25-41.
[61] B. Deng and J. Du, Folding derived categories with Frobenius morphisms, J. Pure Appl. Algebra 208(2007), 1023-1050.
[62] B. Deng, J. Du and J. Xiao, Generic extensions and canonical bases for cyclic quivers, Canad. J. Math. 59(2007), 1260-1283.
[63] B. Deng, A. Obul and Y. Pang, Representations of quivers with automorphisms over finite fields, preprint (available at http://www.paper.edu.cn/paper.php? serial_number=200804-931).
[64] B. Deng and J. Xiao, On double Ringel-Hall algebras, J. Algebra 251(2002), 110149.
[65] B. Deng and J. Xiao, Ringel-Hall algebras and Lusztig's symmetries, J. Algebra 255(2002), 357-372.
[66] V. Deodhar, Some characterization of Bruhat ordering on a Coxeter group and determination of relative Möbius function, Invent. Math. 39(1977), 187-198.
[67] F. Digne and J. Michel, Representations of Finite Groups of Lie Type, London Math. Soc. Student Texts, no. 21, Cambridge University Press, Cambridge, 1991.
[68] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. 52(1986), 20-52.
[69] R. Dipper and G. James, The q-Schur algebra, Proc. London Math. Soc. 59(1989), 23-50.
[70] R. Dipper and G. James, q-Tensor spaces and q-Weyl modules, Trans. Amer. Math. Soc. 327(1991), 251-282.
[71] R. Dipper and S. Donkin, Quantum GL ${ }_{n}$, Proc. London Math. Soc. 63(1991), 165211.
[72] V. Dlab, Quasi-hereditary algebras, Appendix to [90], 1993.
[73] V. Dlab, P. Heath, and F. Marko, Quasi-heredity of endomorphism algebras, C. R. Math. Rep. Acad. Sci. Canada 16(1994), 277-282.
[74] V. Dlab and C. M. Ringel, On algebras of finite representation type, J. Algebra 33(1975), 306-394.
[75] V. Dlab and C. M. Ringel, Indecomposable Representations of Graphs and Algebras, Memoirs Amer. Math. Soc., no. 173, Amer. Math. Soc., Providence, 1976.
[76] V. Dlab and C. M. Ringel, The representations of tame hereditary algebras, in: Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, 1976), Lecture Notes in Pure Appl. Math. vol. 37, Dekker, New York, 1978, pp. 329-353.
[77] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Illinois J. Math. 33(1989), 280-291.
[78] V. Dlab and C. M. Ringel, Every semiprimary ring is the endomorphism ring of a projective module over a quasi-hereditary ring, Proc. Amer. Math. Soc. 107(1989), 1-5.
[79] V. Dlab and C. M. Ringel, Filtrations of right ideals related to projectiviity of left ideals, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin M.-P. Malliavin (ed.), Lecture Notes in Mathematics, no. 1404, Springer-Verlag, Berlin, 1989, pp. 95-107.
[80] V. Dlab and C. M. Ringel, A construction for quasi-hereditary algebras, Compositio Math. 70(1989), 155-175.
[81] V. Dlab and C. M. Ringel, The dimension of a quasi-hereditary algebra, in: Topics in Algebra, Part 1, S. Balcerzyk et al. (eds.), Banach Center Publications, no. 26, 1988, pp. 263-271.
[82] S. Donkin, Rational Representations of Algebraic Groups, Lecture Notes in Mathematics, no. 1140, Springer-Verlag, Berlin, 1985.
[83] S. Donkin, Invariants of several matrices, Invent. Math. 110(1992), 389-401.
[84] S. Donkin, The q-Schur Algebra, Cambridge University Press, Cambridge, 1998.
[85] P. W. Donovan and M. R. Freislich, The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes, no. 5, 1973.
[86] S. Doty and A. Giaquinto, Presenting Schur algebras, Int. Math. Res. Not. 36(2002), 1907-1944.
[87] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet. Math. Dokl. 32(1985), 254-258.
[88] V. G. Drinfeld, Quantum groups, in: Proceedings of the International Congress of Mathematicians, (Berkeley, California, 1986), Amer. Math. Soc., Providence, 1987, pp. 798-820.
[89] J. A. Drozd, Tame and wild matrix problems, in: Representations and Quadratic Forms, Akad. Nauk. USSR, Inst. Matem., Kiev 1979, 39-74 (in Russian).
[90] J. A. Drozd and V. V. Kirichenko, Finite-Dimensional Algebras, Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab, Springer-Verlag, Berlin, 1994.
[91] J. Du, The modular representation theory of q-Schur algebras, Trans. Amer. Math. Soc. 329(1992), 253-271.
[92] J. Du, Kazhdan-Lusztig bases and isomorphism theorem for q-Schur algebras, Comtemp. Math. 139(1992), 121-140.
[93] J. Du, IC bases and quantum linear groups, Proc. Sympos. Pure Math. 56(1994), 135-148.
[94] J. Du, Canonical bases for irreducible representations of quantum GL_{n}, II, J. London Math. Soc. 51(1995), 461-470.
[95] J. Du, A note on the quantized Weyl reciprocity at roots of unity, Alg. Colloq. 2(1995), 363-372.
[96] J. Du, q-Schur algebras, asymptotic forms and quantum SL_{n}, J. Algebra 177(1995), 385-408.
[97] J. Du, Cells in certain sets of matrices, Tôhoku Math. J. 48(1996), 417-427.
[98] J. Du, A new proof for the canonical bases of type A, Alg. Colloq. 6(1999), 377-383.
[99] J. Du, Finite dimensional algebras and standard systems, Algebr. Represet. Theory 6(2003), 461-475.
[100] J. Du, Robinson-Schensted algorithm and Vogan equivalence, J. Combin. Theory Ser. A 112(2005), 165-172.
[101] J. Du and Q. Fu, Quantum $\mathfrak{g l}_{\infty}$, infinite q-Schur algebras and their representations, preprint.
[102] J. Du, Q. Fu and J. -p. Wang, Infinitesimal quantum $\mathfrak{g l}_{n}$ and little q-Schur algebras, J. Algebra 287 (2005), 199-233.
[103] J. Du and B. Parshall, Monomial bases for q-Schur algebras, Trans. Amer. Math. Soc. 355(2003), 1593-1620.
[104] J. Du and B. Parshall, Linear quivers and the geometric setting for quantum GL_{n}, Indag. Math. N. S. 13(2003), 459-481.
[105] J. Du, B. Parshall and L. Scott, Stratifying endomorphism algebras associated to Hecke algebras, J. Algebra, 203(1998), 169-210.
[106] J. Du, B. Parshall and L. Scott, Cells and q-Schur algebras, Transf. Groups 3(1998), 33-49.
[107] J. Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Comm. Math. Phys. 195(1998), 321-352.
[108] J. Du, B. Parshall and J. -p. Wang, Two-parameter quantum linear groups and the hyperbolic invariance of q-Schur algebras, J. London Math. Soc. 44(1991), 420-436.
[109] J. Du and H. Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc. 350(1998), 3207-3235.
[110] J. Du and L. Scott, Lusztig conjecture: old and new, I, J. reine. angew. Math. 455(1994), 141-182.
[111] L. Faddeev, N. Reshetkhin and L. Takhtadjian, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1(1990), 193-225.
[112] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[113] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras, Academic Press, San Diego, 1988.
[114] I. Frenkel, A. Malkin and M. Vybornov, Affine Lie algebras and tame quivers, Selecta Math. (N. S.) 7(2001), 1-56.
[115] E. M. Friedlander and A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127(1997), 209-270.
[116] Q. Fu, Little q-Schur algebras at even roots of unity, J. Algebra 311(2007) 202-215.
[117] W. Fulton, Young Tableaux, Cambridge University Press, Cambridge, 1997.
[118] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6(1972), 71-103.
[119] P. Gabriel, Indecomposable representations II, Symp. Math. 11(1973), 81-104.
[120] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I, V. Dlab \& P. Gabriel (eds.), Lecture Notes in Mathematics, no. 831, Springer-Verlag, Berlin-New York, 1980, pp. 1-71.
[121] P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras, with a chapter by B. Keller, Encyclopaedia Math. Sci., no. 73, Algebra, VIII, SpringerVerlag, Berlin, 1992.
[122] A. M. Garsia and T. J. McLarnan, Relations between Young's natural and the Kazhdan-Lusztig representations of S_{n}, Adv. Math. 69(1988), 32-92.
[123] M. Geck, Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters, Represent. Theory (electronic) 6(2002), 1-30.
[124] M. Geck, Introduction to Algebraic Geometry and Algebraic Groups, Oxford University Press, Oxford, 2004.
[125] M. Geck, Kazhdan-Lusztig cells and the Murphy basis, Proc. London Math. Soc. (3) 93(2006), 635-665.
[126] M. Geck, Hecke algebras of finite type are cellular, Invent. Math. 169(2007), 501517.
[127] M. Geck and R. Rouquier, Centers and simples modules for Iwahori-Hecke algebras, Prog. Math. 41(1997), 251-272.
[128] I. M. Gelfand and V. A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, Colloq. Math. Soc. Janos Bolyai 5(1972), 163-237.
[129] V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type A_{n}, Internat. Math. Res. Notices 1993, 67-85.
[130] F. M. Goodman and H. Wenzl, Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polynomials, Int. Math. Res. Notices, 1999, no. 5, 251-275.
[131] F. M. Goodman and H. Wenzl, Iwahori Hecke algebras of type A at roots of unity, J. Algebra 215(1999), 694-734.
[132] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, no. 40, Amer. Math. Soc., Providence, 1998.
[133] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19(1980), 135-162.
[134] J. Graham and G. Lehrer, Cellular algebras, Invent. Math. 123(1996), 1-34.
[135] J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80(1955), 402-447.
[136] J. A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120(1995), 361-377.
[137] J. A. Green, Polynomial Representations of GL_{n}, 2nd ed., with an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, J. A. Green and M. Schocker, Lecture Notes in Mathematics, no. 830, Springer-Verlag, Berlin, 2007.
[138] R. M. Green, q-Schur algebras as quotients of quantized enveloping algebras, J. Algebra 185(1996), 660-687.
[139] R. M. Green, A straightening formula for quantized codeterminants, Comm. Algebra, 24(1996), 2887-2913.
[140] R. M. Green, The affine q-Schur algebra, J. Algebra 215(1999), 379-411.
[141] C. Greene, Some partitions associated with a partially ordered set, J. Combinatorial Theory Ser. A 20(1976), 69-79.
[142] I. Grojnowski and G. Lusztig, A comparison of bases of quantized enveloping algebras, Contemp. Math. 153(1993), 11-19.
[143] J. Guo and L. Peng, Universal PBW-basis of Hall-Ringel algebras and Hall polynomials, J. Algebra, 198(1997), 339-351.
[144] P. Hall, The algebra of partitions, in: Proceedings of the 4 th Canadian Mathematical Congress, Banff 1957, University of Toronto Press, Toronto, 1959, pp. 147-159.
[145] D. Happel, U. Preiser, and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with application to $D \operatorname{Tr}$-periodic modules, in: Representation Theory II, V. Dlab \& P. Gabriel (eds.), Lecture Notes in Mathematics, no. 832, Springer-Verlag, Berlin-New York, 1980, pp. 280-294.
[146] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274(1982), 399-443.
[147] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, no. 52, Springer-Verlag, New York-Heidelberg, 1977.
[148] D. Higman, Coherent configurations I, Rend. Sem. Mat. Univ. Padova 44(1970), 1-25.
[149] J. Hong and S. -J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, no. 42, Amer. Math. Soc., Providence, 2002.
[150] R. Howlett and G. Lehrer, Induced cuspidal representations and generalized Hecke rings, Invent. Math. 80(1980), 37-64.
[151] J. Hu, Schur-Weyl reciprocity between quantum groups and Hecke algebras of type $G(r, 1, n)$, Math. Zeit. 238(2001), 505-521.
[152] J. Hua, Representations of quivers over finite fields, Ph.D. thesis, University of New South Wales, 1998.
[153] J. Hua, Numbers of representations of valued quivers over finite fields, preprint, Universität Bielefeld, 2000 (available at http://www.mathematik.uni-bielefeld.de/ ~sfb11/vquiver.ps).
[154] J. Hua and J. Xiao, On Ringel-Hall algebras of tame hereditary algebras, Algebr. Represent. Theory 5(2002), 527-550.
[155] A. Hubery, Quiver representations respecting a quiver automorphism: a generalisation of a theorem of Kac, J. London Math. Soc. (2) 69(2004), 79-96.
[156] A. Hubery, Representations of a quiver with automorphism: generalising a theorem of Kac, in: Representations of Algebras and Related Topics, R.-O. Buchweitz \& H. Lenzing (eds.), Fields Institute Communications, no. 45, Amer. Math. Soc., Providence, 2005, pp. 187-200.
[157] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[158] J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, no. 21, Springer-Verlag, New York, 1975.
[159] N. Iwahori, On the structure of the Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo 10(1964), 215-236.
[160] N. Jacobson, Lie Algebras, Pure and Applied Mathematics, no. 10, Interscience Publisher, New York-London, 1962.
[161] G. James, The Representation Theory of Symmetric Groups, Lecture Notes in Mathematics, no. 682, Springer-Verlag, Berlin, 1979.
[162] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, no. 6, Addison-Wesley, London, 1981.
[163] J. C. Jantzen, Einhülende Algebren halbeinfacher Lie-Algenren, Springer-Verlag, Berlin, 1983.
[164] J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Survey and Monographs, no. 107, Amer. Math. Soc., Providence, 2003.
[165] J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, no. 6, Amer. Math. Soc., Providence, 1996.
[166] M. Jimbo, A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phy. 10(1985), 63-69.
[167] M. Jimbo, A q-analogue of $U(\mathfrak{g l}(N+1))$, Hecke algebras, and the Yang-Baxter equation, Lett. Math. Phy. 11(1986), 247-252.
[168] A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), no. 29. Springer-Verlag, Berlin, 1995.
[169] D. D. Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210(2007), 635-706.
[170] V. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56(1980), 57-92.
[171] V. Kac, Root systems, representations of quivers and invariant theory, in: Invariant Theory, F. Gherardelli (ed.), Lecture Notes in Mathematics, no. 996, SpringerVerlag, New York, 1982, pp. 74-108.
[172] V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
[173] M. Kapranov, Eisenstein series and quantum affine algebras, J. Math. Sci. 84(1997), 1311-1360.
[174] M. Kapranov, Heisenberg doubles and derived categories, J. Algebra 202(1998), 712744.
[175] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133(1990), 249-260.
[176] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63(1991), 465-516.
[177] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53(1979), 165-184.
[178] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math. 36(1979), 185-203, Amer. Math. Soc. 1980.
[179] A. Kleshchev, Branching rules for symmetric groups and application, in: Algebraic Groups and Their Representations, R. W. Carter \& J. Xaxl (eds.), NATO ASI Series C, vol. 517, Kluwer, Dordrecht, 1998, pp. 103-133.
[180] A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge Tracts in Mathematics, no. 163, Cambridge University Press, Cambridge, 2005.
[181] D. E. Knuth, Permutations, matrices, and generalised Young tableaux, Pacific J. Math. 34(1970), 709-727.
[182] S. König and C. C. Xi, On the structure of cellular algebras, in: Algebras and Modules II, Canadian Mathematical Society Conference Proceedings, no. 24, Amer. Math. Soc., Providence, 1998, pp. 365-386.
[183] S. König and C. C. Xi, When a cellular algebra quasi-hereditary, Math. Ann. 315(1999), 281-293.
[184] B. Kostant, Groups over Z, algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math. 9(1966), Amer. Math. Soc., Providence.
[185] L. Kronecker, Algebraische Reduction der scharen bilinearen Formen, Sitzungsber. Akad. Berlin, 1890, 1225-1237.
[186] H. Kraft and C. Riedtmann, Geometry of representations of quivers, London Mathematical Society Lecture Note Series, no. 116, P. Webb ed., Cambridge University Press, Cambridge, 1986, pp. 109-145.
[187] S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory, Birkäuser, Boston, 2002.
[188] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkäuser, Boston, 1985.
[189] S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78(1956), 555-563.
[190] A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases, Comm. Math. Phys. 181(1996), 205-263.
[191] B. Leclerc, J.-Y. Thibon and E. Vasserot, Zelevinsky's involution at roots of unity, J. reine angew. Math. 513(1999), 33-51.
[192] R. Lidl and N. Niederreiter, Finite Fields, 2nd ed., Encyclopedia of Mathematics and Its Applications, no. 20, Cambridge University Press, Cambridge, 1997.
[193] Y. Lin and L. Peng, Elliptic Lie algebras and tubular algebras, Adv. Math. 196(2005), 487-530.
[194] Z. Lin, Lusztig's geometric approach to Hall algebras, in: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, V. Dlab \& C. M. Ringel (eds.), Fields Institute Communications, no. 40, Amer. Math. Soc., Providence, 2004, pp. 349-364,
[195] Z. Lin, J. Xiao and G. Zhang, Representations of tame quivers and affine canonical bases, preprint arXiv: 0706.1444v3.
[196] G. Lusztig, Some problem in the representation theory of finite Chevalley groups, in: The Santa Cruz Conference on Finite Groups, Proc. Symp. Pure Math., no. 37, Amer. Math. Soc., Providence, 1980, pp. 313-317.
[197] G. Lusztig, Left cells in Weyl groups, in: Lie Group Representations I, R. Herb, R. Lipsman, \& J. Rosenberg (eds.), Lecture Notes in Mathematics, no. 1024, SpringerVerlag, New York, 1983, pp. 99-111.
[198] G. Lusztig, Some examples of squares integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc., 277(1983), 623-653.
[199] G. Lusztig, Characters of Reductive Groups over a Finite Field, Annals of Mathematics Studies, no. 107, Princeton University Press, Princeton, 1984.
[200] G. Lusztig, Cells in affine Weyl groups, in: Algebraic Groups and Related Topics, R. Hotta (ed.), Advanced Studies in Pure Mathematics, no. 6, Mathematical Society of Japan, Tokyo, 1985, pp. 255-287.
[201] G. Lusztig, Cells in affine Weyl groups, II, J. Algebra 109(1987), 536-548.
[202] G. Lusztig, Quantum deformation of certain simple modules over enveloping algebras, Adv. Math. 70(1988), 234-249.
[203] G. Lusztig, Modular representations and quantum groups, Comtemp. Math. 82(1989), 59-77.
[204] G. Lusztig, Intersection cohomological methods in representation theory, in: Proceedings of the International Congress of Mathematicians, Kyoto 1990, Math. Soc. Japan, Tokyo, 1991, pp 155-174.
[205] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3(1990), 257-296.
[206] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3(1990), 447-498.
[207] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35(1990), 89-113.
[208] G. Lusztig, Quivers, perverse sheaves, and the quantized enveloping algebras, J. Amer. Math. Soc. 4(1991), 366-421.
[209] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, Boston, 1993.
[210] G. Lusztig, Canonical bases and Hall algebras, in: Representation Theories and Algebraic Geometry, Kluwer, Dordrecht, 1998, pp. 365-399.
[211] G. Lusztig, Aperiodicity in quantum affine $\mathfrak{g l}_{n}$, Asian J. Math. 3(1999), 147-177.
[212] G. Lusztig, Transfer maps for quantum affine $\mathfrak{s l}_{n}$, in: Representations and quantizations, Proceedings of the International Conference on Representation Theory, Shanghai, 1998, J.-p. Wang \& Z. Lin (eds.), China Higher Education Press \& Springer-Verlag, Beijing, 2000, pp. 341-356.
[213] G. Lusztig, Hecke Algebras with Unequal Parameters, Amer. Math. Soc., Providence, 2003.
[214] G. Lusztig and N. Xi, Canonical cells, Adv. Math. 72(1988), 284-288.
[215] Yu. I. Manin, Quantum Groups and Non-Commutative Geometry, CRM, Univ. de Montréal, Montréal, 1988.
[216] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford, 1995.
[217] S. MacLane, Homology, Die Grundlehren der Mathematischen Wissenschaften, Bd. 114, Springer, Berlin, 1963; Academic Press, New York, 1963.
[218] S. MacLane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag, New York-Berlin, 1998.
[219] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.
[220] S. Majid, A Quantum Groups Primer, London Mathematical Society Lecture Note Series, no. 292, Cambridge University Press, Cambridge, 2002.
[221] A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series, no. 15, Amer. Math. Soc., Providence, 1999.
[222] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, with the cooperation of L. W. Small, Revised edition, Graduate Studies in Mathematics, no. 30. Amer. Math. Soc., Providence, 2001.
[223] S. Montgomery, Hopf Algebras and Their Actions on Rings, Conference Board of the Mathematical Sciences, no. 82, Amer. Math. Soc., Providence, 1993.
[224] R. Moody and A. Pianzola, Lie Algebras with Triangular Decompositions, John Wiley \& Sons, New York, 1995.
[225] E. H. Moore, Concerning the abstract groups of order k ! and $\frac{1}{2} k$! holohedrically isomorphic with the symmetric and the alternating substitution-groups on k letters, Lond. S. M. Proc. 28(1897), 357-366.
[226] P. Müller, Algebraic groups over finite fields, a quick proof of Lang's theorem, Proc. Amer. Math. Soc. 131(2003), 369-370.
[227] G. E. Murphy, On the representation theory of the symmetric groups and associated Heck algebras, J. Algebra 152(1992), 492-513.
[228] G. E. Murphy, The representations of Hecke algebras of type A_{n}, J. Algebra 173(1995), 97-121.
[229] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91(1998), 515-560.
[230] L. A. Nazarova, Representations of quivers of infinite type, Math. USSR Izvestija Ser. Mat. 7(1973), 752-791.
[231] B. Parshall, Simulating algebraic geometry with algebra II: stratifying algebraic representation categories, in: The Arcata Coference on Representations of Finite Groups, Proc. Symp. Pure Math., no. 47, Amer. Math. Soc., Providence, 1987, pp. 263-269.
[232] B. Parshall, Finite dimensional algebras and algebraic groups, Contemp. Math. 82(1989), 97-114.
[233] B. Parshall, Some finite dimensional algebras arising in group theory, Canad. Math. Sci. Proc. 123(1998), 107-156.
[234] B. Parshall and L. Scott, Derived categories, quasi-hereditary algebras and algebraic groups, Carleton University Lecture Notes in Mathematics 3(1988), 1-104.
[235] B. Parshall and L. Scott, Extensions, Levi subgroups and character formulas, J. Algebra 319(2008), 680-701.
[236] B. Parshall and J. -p. Wang, Quantum Linear Groups, Memoirs Amer. Math. Soc., no. 439, Amer. Math. Soc., Providence, 1990.
[237] L. Peng, Some Hall polynomials for representation-finite trivial extension algebras, J. Algebra 197(1997), 1-13.
[238] L. Peng and J. Xiao, Triangulated categories and Kac-Moody algebras, Invent. Math. 140(2000), 563-603.
[239] M. Reineke, Generic extensions and multiplicative bases of quantum groups at $q=0$, Represent. Theory (electronic) 5(2001), 147-163.
[240] M. Reineke, Feigin's map and monomial bases for quantized enveloping algebras, Math. Zeit. 237(2001), 639-667.
[241] N. Yu. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular algebras, Lett. Math. Phys. 20(1990), 331-335.
[242] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. scient. Éc. Norm. Sup. 19(1986), 275-301.
[243] C. Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170(1994), 526-546.
[244] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41(1976), 269-302.
[245] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Zeit. 161(1978), 235-255.
[246] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, no. 1099, Springer-Verlag, Berlin, 1984.
[247] C. M. Ringel, Hall algebras and quantum groups, Invent. Math. 101(1990), 583-592.
[248] C. M. Ringel, Hall polynomials for the representation-finite hereditary algebras, Adv. Math. 84(1990), 137-178.
[249] C. M. Ringel, Hall algebras, in: Topics in Algebra, Part 1, S. Balcerzyk et al. (eds.), Banach Center Publications, no. 26, 1988, pp. 433-447.
[250] C. M. Ringel, The category of modules with a good filtration over a quasi-hereditary algebra has almost split sequences, Math. Zeit. 208(1991), 209-223.
[251] C. M. Ringel, Recent advances in the representation theory of finite-dimensional algebras, in: Representation Theory of Finite Groups and Finite-dimensional Algebras, G. O. Michler \& C. M. Ringel (eds.), Progress in Mathematics, no. 95, Birkhäuser, 1991, pp. 141-192.
[252] C. M. Ringel, From representations of quivers via Hall and Loewy algebras to quantum groups, Contemp. Math. 131(1992), 381-401.
[253] C. M. Ringel, Lie algebras arising in representation theory, in: Representations of Algebras and Related Topics, H. Tachikawa \& S. Brenner (eds.), London Mathematical Society Lecture Note Series, no. 168, Cambridge University Press, Cambridge, 1992, pp. 284-291.
[254] C. M. Ringel, The composition algebra of a cyclic quiver, Towards an explicit description of the quantum groups of type \tilde{A}_{n}, Proc. London Math. Soc. 66(1993), 507-537.
[255] C. M. Ringel, Hall algebras revisited, in Quantum Deformations of Algebras and Their Representations, A. Joseph \& S. Shnider (eds.), Israel Mathematical Conference Proceedings, no. 7, Bar-Ilan University, Bar-Ilan, 1993, pp. 171-176.
[256] C. M. Ringel, The Hall algebra approach to quantum groups, Aportaciones Matemáticas Comunicaciones 15(1995), 85-114.
[257] C. M. Ringel, PBW-bases of quantum groups, J. reine angew. Math. 470(1996), 51-88.
[258] C. M. Ringel, Green's theorem on Hall algebras, in: Representation Theory of Algebras and Related Topics, R. Bautista, R. Martínez-Villa, \& J. Peña (eds.), Canadian Mathematical Society Conference Proceedings, no. 19, Amer. Math. Soc., Providence, 1996, pp. 185-245.
[259] B. E. Sagan, The Symmetric Groups, Representations, Combinatorial Algorithms and Symmetric Functions, Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, 1991.
[260] M. Sakamoto and T. Shoji, Schur-Weyl reciprocity for Ariki-Koike algebras, J. Algebra 221(1999), 293-314.
[261] O. Schiffmann, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat. Math. Res. Notices 2000, 413-440.
[262] O. Schiffmann, Noncommutative projective curves and quantum loop algebras, Duke Math. J. 121(2004), 113-168.
[263] O. Schiffmann and E. Vasserot, Geometric construction of the global base of the quantum modified algebra of $\widehat{\mathfrak{g}}_{n}$, Transf. Groups $\mathbf{5}(2000), 351-360$.
[264] A. Schofield, Notes on constructing Lie algebras from finite-dimensional algebras, preprint, 1991.
[265] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnenlassen (1901), in: I. Schur, Gesammelte Abhandlungen I, Springer-Verlag, Berlin 1973, pp. 1-70.
[266] I. Schur, Über die rationalen Darstellungen der allgemeinen Gruppe (1927), in: I. Schur, Gesammelte Abhandlungen III, Springer-Verlag, Berlin 1973, pp. 68-85.
[267] L. Scott, Simulating algebraic geometry with algebra I: Derived categories and Morita theory, in: The Arcata Coference on Representations of Finite Groups, Proc. Symp. Pure Math., no. 47, Amer. Math. Soc., Providence, 1987, pp. 271-281.
[268] L. Scott, Linear and nonlinear group actions, and the Newton Institute program, in: Algebraic Groups and Their Representations (Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., no. 517, Kluwer, Dordrecht, 1998, pp. 1-23.
[269] J. -P. Serre, Local Algebra, Springer-Verlag, New York, 2000.
[270] B. Sevenhant and M. Van den Bergh, On the double of the Hall algebra of a quiver, J. Algebra 221(1999), 135-160.
[271] B. Sevenhant and M. Van den Bergh, A relation between a conjecture of Kac and the structure of the Hall algebra, J. Pure Appl. Algebra 160(2001), 319-332.
[272] R. Schafer, An Introduction to Nonassociative Algebras, Dover, New York, 1996.
[273] J. -y. Shi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes in Mathematics, no. 1179, Springer-Verlag, Berlin, 1986.
[274] J. -y. Shi, A two-sided cell in an affine Weyl group, II, J. London Math. Soc. 37(1988), 253-264.
[275] J. -y. Shi, The poset of two-sided cells on certain affine Weyl groups, J. Algebra 179 (1996), 607-621.
[276] J. -y. Shi, Left cells in certain Coxeter groups, in: Group Theory in China, Z. -x. Wan \& S.-m. Shi (eds.), Mathematics and Its Application (China Series), Science Press/Kluwer, Beijing-Dordrecht, 1996, pp. 130-148.
[277] D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras, vol. 2: Tubes and Concealed Algebras of Euclidean Type, Cambridge University Press, Cambridge, 2007.
[278] D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras, vol. 3: Representation-Infinite Tilted Algebras, Cambridge University Press, Cambridge, 2007.
[279] T. A. Springer, Quelques applications de la cohomologie d'intersection, Sém. Bourbaki 589(1982), 249-273.
[280] T. A. Springer, Linear Algebraic Groups, 2nd ed., Birkhäuser, Boston, 1998.
[281] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, no. 62, Cambridge University Press, Cambridge, 1999.
[282] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22(1963), 33-56.
[283] R. Steinberg, Lectures on Chevalley Groups, notes by J. Faulkner and R. Wilson, Yale University, New Haven, 1968.
[284] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs Amer. Math. Soc., no. 80, Amer. Math. Soc., Providence, 1968.
[285] R. Steinberg, Conjugacy Classes in Algebraic Groups, notes by V. Deodhar, Lecture Notes in Mathematics, no. 366, Springer-Verlag, New York, 1974.
[286] E. Steinitz, Zur Theorie der Abel'schen Gruppen, Jahrsber. Deutsch. Math-Verein. 9(1901), 80-85.
[287] A. Sudbery, Consistent multiparameter quantisation of GL(n), J. Phys. A: Math. Gen. 23(1990), 697-704.
[288] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[289] M. Takeuchi, A two-parameter quantization of GL(n) (summary), Japan Academy, Ser. A 66(1990), 112-114.
[290] T. Tanisaki, Foldings of root systems and Gabriel's theorem, Tsukuba J. Math. 4(1980), 89-97.
[291] T. Tanisaki, Character formulas of Kazhdan-Lusztig type, in: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, V. Dlab \& C. M. Ringel (eds.), Fields Institute Communications, no. 40, Amer. Math. Soc., Providence, 2004, pp. 261-276.
[292] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80(1964), 313-329.
[293] J. Tits, Le problèm des mots dans les groupes de Coxeter, in: Symposia Mathematica (INDAM, Rome, 1967-1968), vol. 1. Academic Press, London, 1969, pp. 175-185.
[294] B. Töen, Derived Hall algebras, Duke Math. J. 135(2006), 587-615.
[295] M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100(1999), 267-297.
[296] E. B. Vinberg, Discrete linear groups generated by reflections, Izvestija AN USSR (ser. mat.) 35(1971), 1072-1112.
[297] D. Vogan, A generalized τ-invariant for primitive spectrum of a semisimple Lie algebra, Math. Ann. 242(1979), 209-224.
[298] Z. -x. Wan, Introduction to Kac-Moody Algebra, World Scientific, Teaneck, 1991.
[299] N. Xi, The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group S_{n}, J. Algebra 285(2005), 136-145.
[300] J. Xiao, Hall algebra in a root category, SFB preprint 95-070, Universität Bielefeld, 1995.
[301] J. Xiao, Drinfeld double and Ringel-Green theory of Hall algebras, J. Algebra, 190(1997), 100-144.
[302] J. Xiao and F. Xu, Hall algebras associated to triangulated categories, Duke Math. J., to appear.
[303] J. Xiao and S. Yang, BGP-reflection functors and Lusztig's symmetries: a RingelHall algebra approach to quantum groups, J. Algebra 241(2001), 204-246.
[304] A. V. Zelevinsky, Representations of Finite Classical Groups, Lecture Notes in Mathematics, no. 869, Springer-Verlag, Berlin-New York, 1981.
[305] P. Zhang, $P B W$-basis of the composition algebra of the Kronecker algebra, J. reine angew. Math. $\mathbf{5 2 7}(2000), 97-116$.
[306] P. Zhang, Y. Zhang and J. Guo, Minimal generators of Ringel-Hall algebras of affine quivers, J. Algebra 239(2001), 675-704.
[307] P. Zhang, Skew differential operator algebras of twisted Hopf algebras, Adv. Math. 183(2004), 80-126.
[308] J. J. Zhang, The quantum Cayley-Hamilton theorem, J. Pure Appl. Algebra 129(1998), 101-109.
[309] G. Zwara, Degenerations of finite-dimensional modules are given by extensions, Compositio Math. 121(2000), 205-218.

Index of notation

$\langle-,-\rangle,\langle-,-\rangle_{\Gamma},\langle-,-\rangle_{Q, \sigma}$, Euler form of quiver, $49,130,131$
$(-,-),(-,-)_{\Gamma},(-,-)_{Q, \sigma}$, symmetric
Euler form of quiver, 49, 130, 131
$(-,-)$, Lusztig form on Green algebra, 524
$(-)^{\diamond}$, diamond functor, 425
(I, \cdot), Cartan datum, 35, 523
(Q, σ), quiver with automorphism, 128
$(W, *)$, Hecke monoid, 211
(W, S), Coxeter system, 184
(Λ, I, C, τ), cellular datum, 720
(Λ, T, S), Specht datum, 719
$[1, n]=\{1,2, \ldots, n\}, 193$
[M], isoclass of module $M, 438$
$[n]=\left(v^{n}-v^{-n}\right) /\left(v-v^{-1}\right), 20$
$[n]^{!}=[1][2] \cdots[n], 20$
$\left[\begin{array}{c}n \\ m\end{array}\right]$, symmetric Gaussian polynomial, 20
[$\left.\begin{array}{c}K ; a \\ t\end{array}\right]$, Laurent polynomial in K over $\mathbb{Q}(v)$, 256, 309
$[x ; t]^{!}=(x-1)(x-v) \cdots\left(x-v^{t-1}\right), 578$
$\llbracket n \rrbracket=\left(q^{n}-1\right) /(q-1), 36$
$\llbracket n \rrbracket^{!}=\llbracket n \rrbracket \cdot \llbracket n-1 \rrbracket \cdots \llbracket 1 \rrbracket, 36$
$\llbracket \begin{aligned} & n \\ & m\end{aligned} \rrbracket$, ordinary Gaussian polynomial, 18
$\|\cdot\|, \mathbb{N}$-valued function on $\tilde{\Xi}(n), 559$
$|\cdot|: \Xi(n) \rightarrow \mathbb{N}$, entry sum map, 371,540
$\xrightarrow{\text { RSK }}$, RSK correspondence, 372
\leqslant, Chevalley-Bruhat ordering, 192, 416, 558, 644
\leqslant, partial ordering on weight lattice, 643
$\leqslant \mathrm{dg}$, degeneration ordering, 71
$\leqslant_{L}, \leqslant_{R}, \leqslant_{L R}$, preorders defining left, right, and two-sided cells, 335
$\preccurlyeq, \preccurlyeq_{\mathrm{rc}}$, partial orderings on $\tilde{\Xi}(n), 558$
\unlhd, dominance ordering, 395
\sim_{K}, Knuth equivalence, 339
\sim_{V}, Vogan equivalence, 342
$\mho(n, r)$, set of symmetric matrices in $\Xi(n, r), 418$
$\nabla(\lambda)$, costandard module, 426, 656, 708
$\Delta(\lambda)$, standard module, 261, 293, 415, 658, 707
$\Lambda_{v}(\Omega), v$-exterior algebra, 14
$\mathcal{A}=\mathbb{Z}[q]$, xxiii, 17
\mathbb{A}^{n}, affine n-space, 624
$A^{(-)}$, Lie algebra obtained from an associative algebra $A, 7$
$A_{n, v}=\mathcal{O}\left(\mathrm{M}_{n, v}\right), 671$
$A_{n, v}(r), r$ th homogeneous component of $A_{n, v}, 672$
$\tilde{A}_{n, v}=\mathcal{O}\left(\mathrm{GL}_{n, v}\right), \bar{A}_{n, v}=\mathcal{O}\left(\mathrm{SL}_{n, v}\right), 678$
$A_{n, v}^{q}=\mathcal{O}\left(\mathrm{M}_{n, v}^{q}\right), 683$
$A_{n, v}^{q}(r), r$ th homogeneous component of $A_{n, v}^{q}, 687$
$A(\boldsymbol{j})\left(A \in \Xi(n)^{ \pm}, \boldsymbol{j} \in \mathbb{Z}^{n}\right)$, basis element of V, 598
$\mathfrak{A}(Q, \sigma ; q), F_{Q, \sigma ; q}$-fixed point algebra, 150
ad, adjoint representation, 8, 239, 283
$\mathrm{Alg}_{\mathcal{R}}$, category of \mathcal{R}-algebras, 7
$\operatorname{Alg}_{\mathcal{R}}^{\Lambda}$, category of Λ-graded \mathcal{R}-algebras, 12
A-mod, category of finite dimensional left A-modules, $83,438,699$
$A-\bmod ^{F}$, category of finite dimensional F-stable left A-modules, 92
$B(-,-)$, bilinear form defined by a Coxeter matrix, 185
$\mathrm{B}_{w}=(-1)^{\ell(w)} \psi\left(\mathrm{C}_{w}\right)$, Kazhdan-Lusztig
basis element for $\mathcal{H}, 328$
$C=\left(c_{i, j}\right)$, Cartan matrix, 2
$C_{Q}, C_{\Gamma}, C_{Q, \sigma}$, (Cartan) matrix associated with quiver, 49, 131
C_{Φ}, Cartan matrix of root system $\Phi, 28$
$\mathscr{C}^{+}, \mathscr{C}^{-}$, Coxeter functors, 65
$\mathrm{C}_{w}=\sum_{y} p_{y, w} \mathcal{I}_{y}$, Kazhdan-Lusztig
(canonical) basis element for $\mathcal{H}, 328$
$\mathfrak{C}(A)$, composition algebra of $A, 446$
$\mathfrak{C}(Q, \sigma)$, generic composition algebra of $(Q, \sigma), 448$
$\mathrm{C}(\lambda)$, cell module, 423
ch M, character of $M, 647$
Coalg $_{\mathcal{R}}$, category of \mathcal{R}-coalgebras, 232
$\operatorname{col}(A)$, sequence of column sums of
$A \in \Xi(n), 196,372$
$\operatorname{cont}(T)$, content of tableau $T, 368$
$D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, symmetrization of a Cartan matrix, 2
D, set of distinguished involutions in a Coxeter group, 359
\mathfrak{d}, dual functor of $S(n, r, \mathcal{R})$-modules, 411
d_{μ}, Poincaré polynomial $\mathscr{P}_{\mathfrak{S}_{\mu}}(q), 411$
d_{J}, Poincaré polynomial $\mathscr{P}_{W_{J}}(q), 346$
$d(A), d_{1}(A)$, dimensions of orbit in $\mathfrak{F} \times \mathfrak{F}$ corresponding to $A \in \Xi(n, r)$ and its projection to the first factor, 541
D_{y}, dual Kazhdan-Lusztig basis element, 333
depth, depth of a module, 710
det_{q}, quantum determinant, 675, 689
$\operatorname{dim} V$, dimension vector, $45,141,438$
$\operatorname{Dyn}(C)$, generalized Dynkin diagram, 28
E_{i}, F_{i}, K_{h}, generators of a quantum enveloping algebra, 272
$E_{i}^{(s)}=E_{i}^{s} /[s]_{v_{i}}^{!}, F_{i}^{(s)}=F_{i}^{s} /[s]_{v_{i}}^{!}$, quantum divided powers, 273
$E^{\mathbf{t}}$, left cell module defined by $\mathbf{t}, 389$
Ev, evaluation map, 424, 427
$E_{\mathfrak{X}}^{(\lambda)}, E_{\mathbf{i}}^{(\lambda)}$, PBW-type basis element of $\mathbf{U}^{+}, 317,494$
E^{γ}, left cell module associated with left cell $\gamma, 349$
E^{λ}, left cell module associated with $\lambda \vdash r$, 390
$F_{Q, \sigma ; q}$, Frobenius morphism on path algebra, 150
$\mathscr{F}_{Q}, \mathscr{F}_{\Gamma}$, fundamental set, 56, 130
$\mathbf{f}=\mathbf{f}(I, \cdot),{ }^{\prime} \mathbf{f}={ }^{\prime} \mathbf{f}(I, \cdot), \mathbf{f}(Q, \sigma)$, Lusztig algebras, 527
$\mathfrak{F}=\mathfrak{F}(n, r, \mathcal{K})$, set of n-step flags in an r-dimensional k-space, 538
\mathfrak{F}_{λ}, set of n-step flags of shape λ, $\lambda \in \Lambda(n, r), 216,538$
$\mathfrak{F}_{\mathrm{cpl}}$, set of complete flags, 216
$\mathbb{G}_{a}, 1$-dimensional unipotent group, 634
\mathbb{G}_{m}, 1-dimensional torus, 634
$\mathfrak{g}(\mathfrak{R})$, Kac-Moody Lie algebra associated with root datum $\mathfrak{R}, 16$
\mathfrak{g}_{β}, root space, 26, 33
$\mathfrak{G}_{d}(M)$, Grassmannian variety, 631
$\mathfrak{g l}_{n}$, general linear Lie algebra, 25
GL_{n}, general linear group, 212, 626, 634
$\mathrm{GL}_{\mathbf{d}}(\mathcal{K})=\prod_{i} \mathrm{GL}_{d_{i}}(\mathcal{K})$ for dimension vector $\mathbf{d}=\left(d_{i}\right), 71$
$\mathrm{GL}_{n, v}$, standard quantum general linear group in parameter $v, 677$
gldim, global dimension of a ring, 710
G-mod, category of rational G-modules, 646
$H=H_{q}(W)$, Hecke algebra over $\mathcal{A}, 203$
$\mathcal{H}=H_{Z}$, Hecke algebra over $\mathcal{Z}, 207,208$
${ }_{I} \mathcal{H}_{J}:=x_{I} \mathcal{H} \cap \mathcal{H} x_{J}, 344$
$H_{0}=H_{\mathbb{Z}}, 0$-Hecke algebra, 211
\mathfrak{h}, Cartan subalgebra, 26
$f_{N_{1}, \ldots, N_{t}}^{M}, f_{\mu_{1}, \ldots, \mu_{t}}^{\lambda}=f_{M\left(\mu_{1}\right), \ldots, M\left(\mu_{t}\right)}^{M(\lambda)}$,
Hall number, 440, 506
$\mathfrak{H}(A)$, Ringel-Hall algebra of $A, 445$
$\mathfrak{H}^{\diamond}(A)$, integral Hall algebra of $A, 440$
$\mathfrak{H}(Q, \sigma)$, generic Ringel-Hall algebras of $(Q, \sigma), 457$
$\mathfrak{H}_{\mathcal{R}}(A)=\mathfrak{H}(A) \otimes_{\mathbb{Z}\left[v_{q}, v_{q}^{-1}\right]} \mathcal{R}$, (twisted)
Ringel-Hall algebra over $\mathcal{R}, 506$
$\mathfrak{H}(Q, \sigma)=\mathfrak{H}(Q, \sigma) \otimes_{\mathcal{Z}} \mathbb{Q}(v), 460$
Hopf $_{\mathcal{R}}$, category of Hopf algebras over \mathcal{R}, 237
ht (β), height of root, $213,247,316,640$
I, set of isoclasses of simple modules, 438
$I(n, r)=\left\{\left(i_{1}, i_{2}, \ldots, i_{r}\right) \mid 1 \leqslant i_{j} \leqslant n\right\}, 407$
$\mathscr{I}(X)$, ideal of regular functions vanishing on $X, 625$
$I(\lambda)$, injective hull of $L(\lambda), 705$
$\operatorname{Ind}_{H}^{G}, R^{i} \operatorname{Ind}_{H}^{G}$, induction functor and its derived functors, 655
$\operatorname{ip}(T \leftarrow k)$, insertion path, 369
$\operatorname{Irr}_{A}(M, N)$, space of irreducible morphisms, 114
\mathfrak{J}, radical of Lusztig form, 524
\jmath, bijection $\{(\lambda, w, \mu) \mid \lambda, \mu \in \Lambda(n, r)$, $\left.w \in{ }^{\lambda} \mathfrak{S}^{\mu}\right\} \longrightarrow \Xi(n, r), 409$

K, BLM algebra, 596
$\widehat{\mathbf{K}}$, completion of BLM algebra $\mathbf{K}, 598$
K_{λ}, two-sided cell in $\mathfrak{S}_{n}, 386,392$
K_{Z}, a Z-form of $\mathbf{K}, 597$
$\widetilde{K}_{i}=K_{d_{i} \alpha_{i}^{\vee}}, 272$
$\mathscr{K}_{0}(-)$, Grothendieck group, 438, 649
$K Q$, path algebra, 47
Kdim, Krull dimension, 627, 709
$K Q$-mod, category of finite dimensional left $k Q$-modules, 48
ℓ, length function on a Coxeter group, 185
$\mathfrak{L}=\bigoplus_{\mathrm{x} \in \mathbb{N} I} \mathfrak{L}_{\mathrm{x}}$, Green algebra of type (I, \cdot), 524
\mathscr{L}_{n}, linear quiver, 48
$\mathcal{L}(w)$, left set of $w, 210$
$L(\lambda)$, simple object (module), 705
Lie $\mathcal{R}_{\mathcal{R}}$, category of \mathcal{R}-Lie algebras, 7
$\mathrm{M}_{n}(-)$, set of $n \times n$ matrices with entries in the given set, xxiv, 47
$M=\left(m_{s, t}\right)$, Coxeter matrix, 184
$\mathbb{M}=\left(\left\{\mathcal{D}_{i}\right\}_{i \in \Gamma_{0}},\left\{M_{\rho}\right\}_{\rho \in \Gamma_{1}}\right)$, modulation of valued quiver, 141
$\mathcal{M}=\mathcal{M}_{Q}$, generic extension monoid, 73
$\mathcal{M}_{Q, \sigma}$, submonoid of \mathcal{M}_{Q} of F-stable representations, 468
$M * N$, generic extension of M by $N, 73$
$\mathfrak{m}^{\left(\mathbf{w}_{\lambda}\right)}(\lambda \in \mathfrak{P})$, basis element of $U^{+}, 481$
$M(\lambda)$, Verma module, 261, 277
$M(\lambda)=M_{q}(\lambda)$, module associated with $\lambda \in \mathfrak{P}, 456$
mult β, multiplicity of root, 34
$\mathfrak{n}^{+}, \mathfrak{n}^{-}$, positive and negative parts of a Kac-Moody Lie algebra, 30, 33
$\mathfrak{O}, \mathfrak{O}_{x}, \mathfrak{O}_{A}$, orbit, $71,354,540,637$
$\mathcal{O}(X)$, coordinate algebra of affine variety $X, 625$
\mathcal{O}_{X}, structure sheaf of $X, 624$
$\mathcal{O}(-)$, coordinate algebra of quantum space, group, etc., 671
$\mathfrak{P}=\mathfrak{P}(Q, \sigma)$, set of functions $\Phi^{+} \rightarrow \mathbb{N}$, $450,456,472$
\mathfrak{P}_{m}, set of functions $\psi: \Phi^{+} \longrightarrow \mathbb{N}$ with $\sum \psi(\beta) \operatorname{ht}(\beta)=m, 247,316$
$\mathfrak{P}_{q}=\mathfrak{P}(Q, \sigma ; q)$, set of isoclasses of finite dimensional $(\mathcal{K} Q)^{F_{Q, \sigma ; q_{-} \text {modules, }} 506}$
$\wp: \mathcal{W} \rightarrow \mathfrak{P}$, generic extension map, 473
P_{I}, parabolic subgroup, 644
\mathbb{P}^{n}, projective n-space, 624,630
$\mathscr{P}_{\mathfrak{S}_{n}}(q), \mathscr{P}_{W}(q)$, Poincaré polynomial, 195
$p_{y, w}$, polynomial in v^{-1} satisfying

$$
p_{y, w}=\sum_{y \leqslant y^{\prime} \leqslant w} r_{y, y^{\prime}} \bar{p}_{y^{\prime}, w}, 327
$$

$P_{y, w}=v_{y}^{-1} v_{w} p_{y, w}$, Kazhdan-Lusztig
polynomial, 330
$P(\lambda)$, projective cover of $L(\lambda), 705$
pdim, projective dimension of a module, 710
$q=v^{2}$, an indeterminate, xxiii, 17
$Q=\left(Q_{0}, Q_{1}, \mathrm{t}, \mathrm{h}\right)$, quiver, 44
$\mathscr{Q}=(\Gamma, \mathbb{M})$, modulated quiver, 141
\mathscr{Q}_{A}, Auslander-Reiten quiver, 144, 159
$\mathrm{q}_{Q}, \mathrm{q}_{\Gamma}, \mathrm{q}_{Q, \sigma}$, Tits form of quiver, 50,130 , 131
$\mathscr{Q}_{Q, \sigma ; q}, \mathbb{F}_{q}$-modulated quiver associated with $(Q, \sigma), 151$
$q_{x, z}$, polynomial in v^{-1} satisfying
$q_{x, y}=\sum_{z \leqslant z \leqslant y} \bar{q}_{x, z} r_{z, y}, 332$
$Q_{x, y}=v_{x}^{-1} v_{y} q_{x, y}$, inverse KazhdanLusztig polynomial, 333
$\mathfrak{R}=\left(\Pi, X, \Pi^{\vee}, X^{\vee}\right)$, root datum, 4
$R(\Pi)=\mathbb{Z} \Pi$, root lattice, 5,274
$R^{+}=\mathbb{N} \Pi$, positive cone of $R(\Pi), 33,274$
$R^{-}=-R^{+}, 33,274$
$\mathscr{R}_{k}^{+}, \mathscr{R}_{k}^{-}$, BGP reflection functors, 60
$R(\mathbf{d})=R(Q, \mathbf{d})$, representation variety, 70
$\mathcal{R}\langle\mathcal{X}\rangle$, free \mathcal{R}-algebra generated by $X, 9$
$r_{x, y}$, Laurent polynomial in v determined by $\mathcal{T}_{y^{-1}}^{-1}=\sum_{x \in W} r_{x, y} \mathcal{T}_{x}, 326$
$R_{x, y}=v_{x}^{-1} v_{y} r_{x, y}$, polynomial in q of degree $\leqslant \ell(y)-\ell(x), 327$
$\mathcal{R}(w)$, right set of $w, 210$
$\operatorname{rad}_{A}(-,-)$, radical bifunctor of A-mod, 100
$\operatorname{Rep}_{k} Q$, category of representations of quiver $Q, 45$
$\operatorname{Rep}_{k} Q\langle k\rangle$, full subcategory of $\operatorname{Rep}_{k} Q$ consisting of representations without direct summand $S_{k}, 64$
$\operatorname{Res}_{H}^{G}$, restriction functor, 655
Rng $_{\mathcal{R}}$, category of \mathcal{R}-rings, 7
$\operatorname{row}(A)$, sequence of row sums of $A \in \Xi(n)$, 196, 372
$\mathfrak{S}=\mathfrak{S}_{n}$, symmetric group on n letters, 193
\mathfrak{S}_{λ}, Young subgroup of $\mathfrak{S}_{n}, 196$
$\mathfrak{S}^{\lambda},{ }^{\lambda} \mathfrak{S}$, set of shortest coset representatives, 197
$\mathfrak{S}_{+}^{\lambda},{ }^{\lambda} \mathfrak{S}_{+}$, set of longest coset representatives, 391, 423
${ }^{\lambda} \mathfrak{S}^{\mu}$, set of shortest double coset representatives, 197
${ }^{\lambda} \mathfrak{S}_{+}^{\mu}$, set of longest double coset representatives, 398
S_{i}, simple representation or module, 45 , 141
$\mathfrak{s}_{k} Q$, quiver obtained from Q by reversing all arrows with one end at $k, 60$
$S(n, r)$, integral quantum Schur algebra over $\mathcal{A}, 407$
$\mathcal{S}(n, r)$, integral quantum Schur algebra over Z, 407
$\boldsymbol{\mathcal { S }}(n, r)$, quantum Schur algebra over $\mathbb{Q}(v)$, 572
$\mathrm{S}_{v}(\Omega), v$-symmetric algebra, 13
$\mathrm{S}_{\lambda}, \mathrm{S}^{\lambda}$, Specht module and twisted Specht module, 390
$\mathfrak{s l}_{n}$, special linear Lie algebra, 25
SL_{n}, special linear group, 635
$\mathrm{SL}_{n, v}$, standard quantum special linear group in parameter $v, 677$
$T=\left(T_{i, j}\right)$, Young tableau, 381
T_{s}, generator of Hecke algebra, 203
T_{w}, standard basis element of Hecke algebra, 204
$\mathcal{T}_{w}=v^{-\ell(w)} T_{w}$, element in normalized basis of $\mathcal{H}, 209$
$T_{D}=\sum_{w \in D} T_{w}$, for finite subset D of W, 342
$\mathcal{T}_{D}=v^{-\ell\left(w_{D}^{+}\right)} T_{D}$, for $D \in W_{I} \backslash W / W_{J}$, with $w_{D}^{+} \in D \cap{ }^{I} W_{+}^{J}, 345$
$\mathrm{t}_{i, \varepsilon}, \mathbf{s}_{i, \varepsilon}, \mathrm{t}_{i}, \mathbf{s}_{i}$, automorphisms of
Kac-Moody Lie algebras, 248
$\mathrm{T}_{i}, \mathrm{~T}_{w}, \mathrm{~S}_{i}$, symmetries on $\mathbf{U}, 306,308$
$\mathrm{T}_{i, \varepsilon}, \mathrm{~S}_{i, \varepsilon}, \mathrm{~T}_{i}, \mathrm{~S}_{i}$, symmetries on integrable U-modules, 302
$T \leftarrow k$, row-insertion, 369
$\mathrm{T}(V)$, tensor algebra, 10
$\mathrm{T}(\mathscr{Q})$, tensor algebra of modulated quiver, 142
$\mathfrak{T}(n, r)=\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} \mathcal{H}$, tensor space as module for Hecke algebra $\mathcal{H}, 412$
$\mathbf{T}(\lambda)$, set of standard tableaux of shape λ, 381
$\mathbf{t}^{\lambda}, \mathbf{t}_{\lambda}$, row and column superstandard λ-tableau, 381
$\mathbf{T}(\lambda, \mu)$, subset of semistandard tableaux in $\mathbf{t a b}(\lambda, \mu), 396$
$\boldsymbol{\operatorname { t a b }}(\lambda, \mu)$, set of λ-tableaux with content μ, 396
$\mathbb{U}(\mathfrak{g})$, universal enveloping algebra, 15,239
$\mathbb{U}^{-}, \mathbb{U}^{0}, \mathbb{U}^{+}$, negative, zero, and positive parts of $\mathbb{U}(\mathfrak{g}), 245$
$\mathbf{U}=\mathbf{U}_{v}(\mathfrak{R})$, quantum enveloping algebra associated with root datum $\mathfrak{R}, 272$
$\mathbf{U}_{v}\left(\mathfrak{g l}_{n}\right)$, quantum $\mathfrak{g l}_{n}, 274,591$
$\mathbf{U}_{v}\left(\mathfrak{s l}_{n}\right)$, quantum $\mathfrak{s l}_{n}, 274$
$\mathbf{U}^{-}, \mathbf{U}^{0}, \mathbf{U}^{+}$, negative, zero, and positive parts of $\mathbf{U}, 277$
$U=U_{Z}$, a Z-subalgebra of $\mathbf{U}, 308$
U^{-}, U^{0}, U^{+}, negative, zero, and positive parts of $U, 311$
\tilde{U}, a Z-form of $\mathbf{U}_{v}\left(\mathfrak{g l}_{n}\right), 609$
u_{w}, element in $\mathfrak{H}(Q, \sigma)$ corresponding to $\mathrm{w} \in \mathcal{W}, 480$
$u_{[M]}$, basis element for Hall algebra, 440
v, an indeterminate, $v=\sqrt{q}$, xxiii, 20
$v_{i}=v^{d_{i}}, D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ being the
symmetrization of $C, 272$
$v_{x}=v^{\ell(x)}, 327$
$V=\left(V_{i}, V_{\rho}\right)$, representation of quiver, 45
\mathbf{V}, a subalgebra of $\widehat{\mathbf{K}}, 602$
$\mathbf{V}^{+}, \mathbf{V}^{-}$, positive and negative parts of \mathbf{V}, 604
$\mathscr{V}(\mathfrak{a})$, zero set of ideal $\mathfrak{a}, 625,627$
$W(C)$, Weyl group associated with Cartan matrix $C, 5$
$W(Q), W(\Gamma), W(Q, \sigma)$, Weyl group of quiver, $55,130,131$
$W(\Phi)$, Weyl group of root system $\Phi, 27$
w_{0}, longest element in a finite Coxeter group, 186
w_{A}, element in ${ }^{\lambda} \mathfrak{S}^{\mu}$ corresponding to $A \in \Xi(n, r)$ via $\jmath, 410$
w_{A}^{+}, the unique longest element in $\mathfrak{S}_{\lambda} w_{A} \mathfrak{S}_{\mu}, 410$
W_{J}, parabolic subgroup of Coxeter group $W, 197$
$w_{0, J}, w_{0, \lambda}$, longest element in W_{J} or \mathfrak{S}_{λ}, 200, 332, 381, 413, 542
$W^{J},{ }^{J} W$, set of shortest coset representatives, 197
${ }^{I} W^{J}$, set of shortest double coset representatives, 199
${ }^{I} W_{+}^{J}$, set of longest double coset representatives, 345
\widetilde{W}, braid group associated with $W, 193$, 308
$\mathbf{w}(T)$, word of semistandard tableau $T, 379$
\mathcal{W}_{I}, set of words in alphabet $I, 371,472$
$\underline{X}=\sum_{x \in X} x \in \mathbb{Z} G$, for a subset X of a finite group $G, 220,547$
X^{+}, set of dominant weights, $31,292,642$, 643, 648
$X(G)$, character group of $G, 634$
$x^{(r)}=x^{r} / r$!, divided power, 245
$x_{J}=\sum_{w \in W_{J}} T_{w}, 343$
$X(\lambda)$, tilting module, 709
$y_{J}=\sum_{w \in W_{J}}(-1)^{\ell(w)} q^{-\ell(w)} T_{w}, 343$
$Z=\mathbb{Z}\left[v, v^{-1}\right]$, xxiii, 20
γ, antipode of a Hopf algebra, 237
$\Gamma(Q, \sigma),\left(\Gamma_{0}, \Gamma_{1}\right)$, valued quiver, 128
$\delta: \mathfrak{H}_{\mathcal{R}}(A) \rightarrow \mathfrak{H}_{\mathcal{R}}(A) \otimes \mathfrak{H}_{\mathcal{R}}(A)$, Green comultiplication, 506
$\delta_{Q}, \delta_{Q, \sigma}$, minimal positive imaginary root, 54, 140
Δ, comultiplication map of a coalgebra, 231
$\Delta^{(r)}$, multiple comultiplication, 232
ε, counit map of a coalgebra, 231
$\zeta_{\lambda, \mu}^{w}, \zeta_{A}$, standard basis element of Schur algebra $S(n, r, \mathcal{R}), 409$
Θ_{A}, canonical basis element of \mathbf{K} and $K_{\mathcal{Z}}$, 597
θ_{A}, canonical basis element of $\mathcal{S}(n, r), 416$
${ }^{\theta} M$, twist of module $M, 8$
$\Theta(r)$, set of two-sided cells in $\mathfrak{S}_{r}, 395$
$\boldsymbol{\vartheta}_{r}$, algebra homomorphism from $\mathbf{U}_{v}\left(\mathfrak{g l}_{n}\right)$ onto $\boldsymbol{\mathcal { S }}(n, r), 609$
ϑ_{r}, the restriction of $\boldsymbol{\vartheta}_{r}$ to $\tilde{U}, 610$
ι, involution of $\mathbf{U}^{+}, 496$
κ_{t}, Knuth class (= left cell) associated with $\mathbf{t} \in \mathbf{T}\left(\lambda^{\prime}\right), 382$
$\Lambda=\Lambda(\mathcal{C})$, finite set indexing simple objects in category $\mathcal{C}, 705$
$\Lambda(n, r)$, set of compositions of r into n parts, 406
$\Lambda^{+}(r)$, set of partitions of $r, 395$
$\Lambda^{+}(n, r)=\Lambda^{+}(r) \cap \Lambda(n, r)$, set of partitions of r having at most n nonzero parts, 412
$\lambda \models n, \lambda$ is a composition of $n, 195$
$\lambda \vdash n, \lambda$ is a partition of $n, 195$
μ, multiplication map of an algebra, 230
$\mu(y, w)$, constant term of $v p_{y, w}, 328$
$\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, set of simple roots, 5 , 28, 55
$\Pi^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right\}$, set of simple coroots, 5
$\Pi(n)$, set of standard words in alphabet $[1, n]^{2}, 371$
π_{A}, standard word in $\Pi(n)$ associated with $A \in \Xi(n), 371$
$\Pi(\infty)=\bigcup_{n \geqslant 1} \Pi(n), 371$
ϖ_{i}, fundamental dominant weight, 5
ϖ_{λ}, right cell containing $w_{0, \lambda}, 381$
$\Sigma(C)$, graph associated with a Cartan matrix $C, 3$
Σ_{Q}, underlying graph of quiver $Q, 52$
ς, anti-involution of Schur algebra, 411
ς, φ, ψ, (anti-)involutions of Hecke algebra, 206
$\Xi(n)$, set of $n \times n$ matrices over $\mathbb{N}, 196$, 370, 540
$\Xi(n)^{+}, \Xi(n)^{-}$, sets of strictly upper and lower triangular matrices in $\Xi(n), 582$
$\Xi(n)^{ \pm}$, set of matrices in $\Xi(n)$ with zero diagonal entries, 582
$\Xi(n, r)$, set of matrices in $\Xi(n)$ with entry sum $r, 409,540$
$\Xi(n, \leqslant r)^{ \pm}$, set of matrices in $\Xi(n)^{ \pm}$with entry sum $\leqslant r, 568$
$\Xi(\infty)=\bigcup_{n \geqslant 1} \Xi(n), 370$
$\tilde{\Xi}(n)$, set of $n \times n$ matrices over \mathbb{Z} with nonnegative off-diagonal entries, 556
ξ_{A}, normalized basis element of $\mathcal{S}(n, r), 415$
$\xi_{A ; j}$, element in $\mathcal{S}(n, r)$, for

$$
A \in \Xi(n, \leqslant r)^{ \pm}, j \in \mathbb{Z}^{n}, 568
$$

Φ, root system, 27
$\Phi(Q), \Phi(\Gamma), \Phi(Q, \sigma)$, root system of quiver, 55, 130, 131
Φ^{+}, Φ^{-}, positive and negative roots, 28,56
$\Phi_{\mathrm{re}}, \Phi_{\mathrm{im}}$, real and imaginary roots, 34,55
$\Phi_{1}=\Phi_{1}(W, S)$, root system of a Coxeter system, 185
Φ^{*}, direct partition of $\Phi^{+}, 475$
$\varphi_{\mu_{1}, \ldots, \mu_{t}}^{\lambda}(q), \varphi_{\mathrm{w}}^{\lambda}(q), \gamma_{\mathrm{w}}^{\lambda}(q)$, Hall polynomials, 454, 473
χ_{M}, image of module M in $\mathscr{K}_{0}(A), 438$
$\Psi_{\mathrm{G}}: \mathfrak{C}(Q, \sigma) \rightarrow \mathbf{f}(Q, \sigma)$, Green homomorphism, 527
$\Psi_{\mathrm{L}}: \mathbf{f}(Q, \sigma) \rightarrow \mathbf{U}^{+}$, Lusztig isomorphism, 527
$\Psi_{\mathrm{R}}: \mathrm{U}^{+} \rightarrow \mathfrak{C}(Q, \sigma) \otimes \mathbb{Q}(v)$, Ringel
homomorphism, 448

Index of terminology

action (of algebraic group on variety), 637
adjoint action, 637
admissible ideal, 142
admissible ordering, 450
affine algebraic group, 633
reductive $\sim, 636$
semisimple $\sim, 636$
algebra, 7, 230
associative law in an $\sim, 231$
basic $\sim, 167$
cellular $\sim, 720$
coordinate $\sim, 14$
graded $\sim, 11$
Green ~, 524
Hecke ~, 203
hereditary $\sim, 169,177$
Lusztig $\sim, 527$
quasi-hereditary $\sim, 704$
tensor $\sim, 10,142$
unit law in an $\sim, 231$
v-exterior $\sim, 14$
v-symmetric $\sim, 13$
almost split sequence, 83,107
asymptotic algebra, 360, 393
Auslander-Buchsbaum equality, 710
Auslander-Reiten sequence, 107
Auslander-Reiten translation, 112
basis verification trick, 15, 241, 259
BGP reflection functor, 60
bialgebra, 235
\sim homomorphism, 236
biideal in a $\sim, 236$
opposite $\sim, 237$
big cell, 641
BLM algebra, 596

BLM basis, 587, 606
\sim of $\boldsymbol{\mathcal { S }}(n, r), 587$
\sim of $\mathbf{U}, 606$
Borel fixed point theorem, 638
Borel subgroup, 212, 639
braid group, 193
Brauer theory, 729
Bruhat decomposition, 214, 641
canonical basis, 22
\sim for a Hecke algebra, 328
\sim for a quantum Schur algebra, 416
\sim for a quantum enveloping algebra, 497
\sim of a standard module, 423
Cartan datum, 35, 523
Cartan matrix, 2
\sim of affine type, 2
\sim of finite type, 2
\sim of wild type, 2
graph realization of $\sim, 4$
indecomposable $\sim, 4$
root datum realization of $\sim, 4$
symmetrizable $\sim, 2$
symmetrization of $\sim, 2$
Casimir element, 296
\sim of $\mathbf{U}_{v}\left(\mathfrak{s l}_{2}\right), 296$
cell, 325
\sim module, 349, 721
\sim representation, 721
filtration, 350
left $\sim, 335$
right $\sim, 335$
two-sided $\sim, 335$
cellular basis, 720
cellular datum, 720
cellular property, 389, 421
character, 634, 647
\sim group, 634
Chevalley basis, 247
Chevalley-Bruhat ordering, 192, 416, 644
coalgebra, 231
\sim homomorphism, 232
coassociative law in a $\sim, 231$
cocommutative $\sim, 233$
coideal in a $\sim, 232$
comultiplication of a $\sim, 231$
counit law in a $\sim, 231$
counit of a $\sim, 231$
opposite $\sim, 233,263$
comodule, 233, 646, 670
\sim homomorphism, 233
regular $\sim, 234$
composition (of a positive integer), 195
composition algebra, 446
generic $\sim, 448$
coordinate algebra, 625
\sim of a quantum group, 677
\sim of a quantum matrix space, 670
~ of affine variety, 625
costandard module, 426, 656, 716
integral $\sim, 716$
Coxeter functor, 65
Coxeter group, 5, 184
crystallographic $\sim, 228$
indecomposable $\sim, 184$
integral $\sim, 184$
Coxeter matrix, 184
Coxeter system, 184
Coxeter transformation, 66
degeneration, 71
\sim ordering, 71
deletion property, 191
derivation, 8
diamond functor, 425
differential, 628,636
\sim of a morphism of algebraic groups, 636
dimension
\sim vector, 45,141
global $\sim, 710$
Krull ~, 627, 709
projective $\sim, 710$
directed partition, 475
distinguished involution, 359
divided power
\sim for Lie algebras, 245
quantum $\sim, 273$
dominance ordering, 395
double centralizer property, 430
Drinfeld-Jimbo presentation, 272
Dynkin diagram, 29
extended $\sim, 29$
generalized $\sim, 28$
elementary Knuth transformation, 379
Euler form, 49, 130
\sim of a valued quiver, 130
symmetric $\sim, 49,130$
exchange condition, 191
strong $\sim, 189$
finite group of Lie type, 651
finite representation type, 97
flag, 38, 216
complete $\sim, 38,216,632$
F-periodic module, 89
\mathbb{F}_{q}-structure, 84
free object, 9
Frobenius kernel, 652
Frobenius map, 85
Frobenius morphism, 83, 86, 650, 682
\sim of an algebraic group, 650
quantum $\sim, 682$
Frobenius twist, 88, 653, 682
\sim action, 97
\sim equivalence, 88
\sim functor, 83,88
\sim functor (for \mathcal{K}-vector spaces), 87
\sim of rational module, 653
quantum ~ 682
F-stable module, 89
indecomposable $\sim, 93$
fundamental multiplication formula, 553
\sim in $\mathcal{S}(n, r), 553$
\sim in $\mathbf{V}, 598$
extended $\sim, 571$
modified \sim in K, 596
fundamental relation, 442
Gaussian polynomial, 19
classical $\sim, 19$
multinomial $\sim, 37$
ordinary $\sim, 19$
symmetric $\sim, 20$
generic extension, 73
graph, 2
\sim with automorphism, 3
Coxeter $\sim, 184$
Dynkin $\sim, 52$
extended Dynkin $\sim, 52$
non-simply laced Dynkin ~, 136
non-simply laced extended Dynkin \sim, 140
simply laced Dynkin ~, 136
simply laced extended Dynkin ~, 140
valued $\sim, 3$
Green algebra, 524
Lusztig form on $\sim, 524$
Green's formula, 508

Grothendieck group, 438, 649
Hall algebra, 440
integral $\sim, 440$
Hall polynomial, 454
Hecke algebra, 203 $0-\sim, 211$
basis of $\sim, 204,209$
Hecke monoid, 211
heredity chain, 704
heredity ideal, 701
integral $\sim, 715$
highest weight category, 658, 705
Hilbert's Nullstellensatz, 625
homomorphism
bialgebra $\sim, 236$
coalgebra $\sim, 232$
Hopf algebra $\sim, 237$
Hopf algebra, 237
\sim homomorphism, 237
antipode law in a $\sim, 237$
antipode of a $\sim, 237$
opposite $\sim, 237$
Hopf ideal, 237
hyperbolic invariance, 684
induction functor, 655
integral quasi-hereditary algebra, 715
involution, 7
anti-~, 7
Jacobi identity, 7
Kac-Moody Lie algebra, 16
negative part of $\sim, 33$
positive part of $\sim, 33$
triangular decomposition of $\sim, 33$
Kazhdan-Lusztig, 325
\sim basis, 328
\sim polynomial, 330
dual ~ basis, 332
inverse \sim polynomial, 333
Killing form, 25
Knuth class, 339, 382
Knuth equivalence, 339
right $\sim, 379$
Kostant \mathbb{Z}-form, 247
Lang-Steinberg theorem, 650
Laplace expansion, 676
length function, $\ell, 185$
Lie algebra, 7
\sim of an affine algebraic group, 636
Cartan subalgebra of $\sim, 26,33$
general linear $\sim, 25$
Kac-Moody ~, 16
reductive $\sim, 25$
restricted $\sim, 654$
semisimple $\sim, 25$
simple $\sim, 25$
special linear $\sim, 26$
toral subalgebra of $\sim, 26$
universal enveloping algebra of $\sim, 15$
loop, 2, 44
Lusztig integral form, 318
maximal vector, 290
minimal left almost split, 105
minimal right almost split, 105
minimal vector, 290
module, 7
bimodule, 8
cell $\sim, 721$
costandard $\sim, 656,708$
integral $\sim, 291$
radical of $\sim, 94$
regular $\sim, 8$
socle of $\sim, 94$
standard $\sim, 658,707$
tilting $\sim, 426,709,728$
top of $\sim, 94$
Verma ~, 261, 268, 277, 290
weight $\sim, 290$
monomial basis, 478
monomial basis theorem, 481
morphism
\sim of affine algebraic groups, 633
\sim of affine varieties, 626
comorphism, 623, 626, 633
irreducible $\sim, 112$
orbit, 97,637
Frobenius $\sim, 97$
$G-\sim, 637$
$\sigma-\sim$ in quiver with automorphism $(Q, \sigma), 128$
order coideal, 349
order ideal, 349
oriented cycle, 44
parabolic subgroup, 643
\sim of a Coxeter group, 197
\sim of a general linear group, 217
\sim of an affine algebraic group, 643
partition, 195
dual $\sim, 195$
path algebra, 47
PBW basis, 244
PBW-type basis, 317, 488, 489, 493
PBW-type basis theorem, 489
Poincaré polynomial, 195
Poincaré-Birkhoff-Witt theorem, 241
point derivation, 628,636
poset, 22
preorder, 335
preprojective (preinjective) component, 145
presentation, 9, 12
q-Schur algebra
see quantum Schur algebra
quantum determinant, 676,689
quantum enveloping algebra, 272
simply connected $\sim, 273$
triangular decomposition of $\sim, 259,288$
quantum linear group, 677
close subgroups of $\sim, 680$
infinitesimal $\sim, 682$
multiparameter $\sim, 690$
quantum general linear group, 679
quantum special linear group, 680
quantum matrix space, 670
multiparameter $\sim, 683$
standard $\sim, 673$
quantum minor, 676
quantum Schur algebra, 407, 691
\sim over $\mathbb{Q}(v), 572$
integral $\sim, 407,412$
standard basis of $\sim, 409$
quantumization, $17,222,449,456,548,595$
quiver, 44
\sim of finite representation type, 65
\sim with automorphism, 128
acyclic $\sim, 44$
affine $\sim, 54$
Auslander-Reiten $\sim, 144$
automorphism of $\sim, 44,87$
Dynkin ~, 54
finite $\sim, 44$
fundamental set of $\sim, 56$
k-modulation of a valued $\sim, 141$
linear $\sim, 48$
modulated $\sim, 141$
morphism of $\sim, 44$
path algebra of $\sim, 47$
path in $\sim, 44$
representation of $\sim, 45$
sub~, 44
tame $\sim, 54$
valuation of $\sim, 128$
valued $\sim, 128$
wild $\sim, 54$
quiver with automorphism, 128
valued quiver associated with $\sim, 128$
quotient functor, 99
rational module, 645
reduced expression, 185
reduced filtration, 473
regular local ring, 709
relation ideal, 10
representation, 7
\sim of quiver, 45
\sim variety (of quiver), 70
adjoint $\sim, 8,239,637$
indecomposable $\sim, 46$
nilpotent $\sim, 45,175$
rational \sim of affine algebraic group, 646
simple $\sim, 45,648,664$
Ringel dual, 709
Ringel-Hall algebra, 445
generic $\sim, 457$
root, $27,33,185,639$
~ lattice, 5
\sim space decomposition, 27, 33
~ system, 27, 33, 56, 130
height of $\sim, 213,247,316$
imaginary $\sim, 34,56,130$
multiplicity of $\sim, 34$
negative $\sim, 28,33,185$
positive $\sim, 28,33,56,185$
real, 34
real $\sim, 55,130$
simple $\sim, 5,28,55$
simple co $\sim, 5$
root datum, 4
\sim realization of Cartan matrix, 4
minimal \sim realization, 5
root system, 27, 33, 56, 130
\sim of quiver, 56
base of $\sim, 27$
finite abstract $\sim, 27$
indecomposable $\sim, 28$
row-insertion, 368
reversed $\sim, 369$
\mathcal{R}-ring, 6
RSK algorithm, 372
RSK correspondence, 372, 374
Schur-Weyl reciprocity, 591
Integral quantum $\sim, 614$
Serre relations, 16
\sim for Lie algebras, 16
\sim for universal enveloping algebras, 245
quantum $\sim, 272$
shortest coset representatives, 197, 198
double $\sim, 197,199$
left $\sim, 197,198$
right $\sim, 198$
simple functor, 99
simple reflection, $55,130,187$
sincere vector, 53
sink, 61
source, 61
Specht datum, 719
Specht module, 390
twisted $\sim, 390$
standard basis, 409, 672
\sim of $A_{n, v}, 672$
\sim of quantum Schur algebras, 409
standard module, 415, 658, 716
integral $\sim, 716$
subfunctor, 99
tableau, 368
exact $\sim, 368$
semistandard $\sim, 368$
standard $\sim, 368$
tangent space, 628
tensor product theorem, 653, 682
Steinberg $\sim, 653$
tilting module, 426, 709, 728
complete $\sim, 728$
integral $\sim, 718$
Tits form, 51, 130
\sim of a valued quiver, 130
radical of $\sim, 53$
torus, 634
maximal $\sim, 638$
triangular decomposition
~ of Kac-Moody Lie algebra, 33
\sim of quantum enveloping algebra, 288
\sim of universal enveloping algebra, 246
triangular relation, 564
\sim in $\mathcal{S}(n, r), 564$
\sim in V, 603
extended $\sim, 575$
modified \sim in K, 597
unitriangular matrix, 24
universal enveloping algebra
triangular decomposition of $\sim, 246$
valued quiver, 128
\sim associated with a quiver with automorphism, 128
variety, 630
affine $\sim, 624$
complete $\sim, 632$
flag $\sim, 632$
Grassmannian $\sim, 631$
projective $\sim, 631$
quasi-affine $\sim, 629$
quotient $\sim, 637$
representation \sim (of quiver), 70
Verma module, 261, 268, 277, 290
Vogan class, 342
Vogan equivalence, 342
weight, 274, 290, 705
\sim lattice, 5
\sim module, 290
\sim poset, 705
~ space, 31, 290
\sim space decomposition, 290
\sim vector, 290
dominant $\sim, 5,642$
fundamental dominant $\sim, 5,642$
highest $\sim, 31,648,656$
Weyl dimension formula, 658
Weyl character formula, 658
Weyl group, 5, 27, 130
\sim of a quiver, 55
\sim of a valued quiver, 130
word
\sim in tight form, 473
directed distinguished $\sim, 477$
distinguished $\sim, 473$
Yang-Baxter equation, 671
Young diagram, 368
Young subgroup, 196
Young's rule, 425
Zariski topology, 627
zero set, 625

Titles in This Series

150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008
149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008
148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
144 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part II: Analytic aspects, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz'ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlǎdut, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
135 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part I: Geometric aspects, 2007
134 Dana P. Williams, Crossed products of C^{*}-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
128 Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlevé transcendents, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
125 Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy Transform, 2006
124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005

TITLES IN THIS SERIES

117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004

111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
97 V. A. Vassiliev, Applied Picard-Lefschetz theory, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002
92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001
88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second edition, 2004
87 Bruno Poizat, Stable groups, 2001

The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $g f_{n}$.
The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups-Coxeter groups-and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $g \ell_{n}$ through a completion process of a limit algebra (the Beilinson-LusztigMacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature.

SURV/I50

[^0]: ${ }^{1}$ An element x in a bialgebra A (over an arbitrary ring \mathcal{R}) is called group-like if $\Delta(x)=x \otimes x$ and $\varepsilon(x)=1$. This is equivalent to saying that there is an A-comodule V which is free and of rank 1 over \mathcal{R} with $\tau(v)=v \otimes x$, for any $v \in V$, where $\tau: V \rightarrow V \otimes A$ is the comodule structure map.
 ${ }^{2}$ In some linear algebra textbooks, the (i, j)-minor $A_{i, j}$ of matrix $A=\left(x_{k, l}\right)$ is defined as the determinant of its submatrix obtained by deleting its i th row and j th column. Our definition here makes the exposition of its generalization to quantum linear groups more natural; see Corollary B. 9 and the definition before it.

[^1]: ${ }^{3}$ In the notation of Theorem A.34, $B^{\prime}=w_{0}^{-1} B w_{0}$.

[^2]: ${ }^{4}$ Besides the formal definition as an object in the category CommHopf ${ }^{\circ \mathrm{p}}$, an affine group scheme can also be defined more concretely as a representable functor from the category of commutative \mathcal{K}-algebras to the category of groups.

[^3]: ${ }^{5}$ Although the definition of Frobenius morphism presented in this section is compatible with that in Chapter 2, the Frobenius twist defined here is different from that defined in $\S 2.2$.

[^4]: ${ }^{6}$ A restricted Lie algebra \mathfrak{g} over a field \mathcal{K} of characteristic p is a k-Lie algebra with an additional operation $x \mapsto x^{[p]}$, called the p-operation of \mathfrak{g}, with the property that $\left[\mathrm{x}^{[p]}, \mathrm{y}^{[p]}\right]=[\mathrm{x}, \mathrm{y}]{ }^{[p]}$. The restricted enveloping algebra $\mathbf{u}(\mathfrak{g})$ of a restricted Lie algebra \mathfrak{g} is the quotient algebra of $U(\mathfrak{g})$ modulo its ideal generated by $x^{p}-x^{[p]}$, for all $x \in \mathfrak{g}$. In our case, the p-operation of the Lie algebra \mathfrak{g} of the group G is given by the p th power in $\mathcal{O}(G)^{*}$ - if x is a point derivation of $\mathcal{O}(G)$ at e, then x^{p}, where product is formed in $\mathcal{O}(G)^{*}$, is also a point derivation of $\mathcal{O}(G)$ at e.

[^5]: ${ }^{1}$ In Appendix B, we do not distinguish q from q and v from v.
 ${ }^{2}$ The tensor product of two matrices $A=\left(a_{i, j}\right)_{m \times n}$ and $B=\left(b_{k, l}\right)_{r \times s}$ (with coefficients in the same ring) is the matrix $A \otimes B:=\left(a_{i, j} b_{k, l}\right)_{m r \times n s}$, whose row indices (i, k) and column indices (j, l) are ordered lexicographically, respectively.

[^6]: ${ }^{3}$ Compare $\hat{\omega}_{i}$ with ω_{I} defined in Example 0.18. Here we use sequences with elements in $\{1, \ldots, n\}$ as indices; while in Example 0.18, the indices are subsets of $\{1, \ldots, n\}$.

[^7]: ${ }^{4}$ Here, we use the same term and notation as in the similar situation in the representation theory of algebraic groups in prime characteristic; see §A.6. However, there is a key difference between the Frobenius twist in the two contexts. The twist here depends on the parameter q rather than the characteristic of the ground field.

[^8]: ${ }^{5}$ Since we do not perform base change in the appendix, we write $S_{q}(n, r)$ instead of $S_{q}(n, r)_{\mathcal{R}}$. Also, we do not omit the subscript q to emphasize the role of the dominant parameter q.

[^9]: ${ }^{1}$ In defining finite global dimension, one can work with either the category of finite dimensional A-modules or the category of all A-modules. This well-known fact follows easily from [HAII, Th. 4.1.2].

[^10]: ${ }^{2}$ For convenient comparison with quasi-hereditary algebras, the order used in the definition here is opposite to the one used in Graham-Lehrer's original definition.

