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Introduction

The notion of a three-dimensional Heisenberg group is an abstract algebraic for-

mulation of a geometric phenomenon in everyday life. It occurs if we select a plane

in our three-dimensional space. For example, the page you are now reading is such

a plane and produces a Heisenberg group. If you take a photograph you are in

the middle of Heisenberg group theory; you have transmitted information along a

line and encoded it in a plane and hence you have established a Heisenberg group.

These few remarks indicate already some aspects of our program encoded in the

title. We will study Heisenberg groups and Heisenberg algebras as mathematical

objects in detail, identify them in several physical and mathematical areas and

thereby exhibit close relationships among them even though they look quite differ-

ent at the beginning of our discourse. This is to say we will build bridges between

fields by means of Heisenberg groups and Heisenberg algebras.

This short introductory look at our program hints that we like to invite both grad-

uate students of mathematics and mathematicians with some interest in physics

as well as graduate students of physics and physicists with some interest in math-

ematics on our journey through the very mathematics and physics of Heisenberg

groups.

Now we go into more detail. Looking at a Euclidean oriented three-dimensional

space E as a Heisenberg group or at a Heisenberg algebra amounts to a splitting of

E into an oriented plane F and an oriented real R·a line, say, orthogonal to F . Here

a ∈ S2. The orientation on E shall be made up by the orientations of the plane and

the real line, respectively. A constant symplectic structure on the plane determines

its orientation while the real line is oriented by a vector in it yielding a direction

of the plane’s oriented rotations. These geometric ingredients can be encoded in

detail by a specific non-commutative group operation on the Euclidean space, yield-

ing a Heisenberg group, a Lie group. Its center is the one-dimensional subspace.

Its Lie algebra is called a Heisenberg algebra. In fact any (2n + 1)-dimensional

Euclidean space admits a Heisenberg group structure for any integer n bigger than

zero. However, with the applications we have in mind we mainly concentrate on

three-dimensional Heisenberg groups and Heisenberg algebras. However, in field

quantization we have to pass over to infinite dimensional ones.

Heisenberg groups have a very remarkable property: By the Stone–von Neumann

theorem any Heisenberg group up to equivalence admits only one irreducible unitary

representation on an infinite dimensional Hilbert space, if its action is specified

on the center, i.e. on the real line introduced above. The rather simple looking

Schrödinger representation of a Heisenberg group on the L2-space of the real line

(the Hilbert space) is unitary and irreducible. Therefore, up to equivalence, the

Schrödinger representation is uniquely determined by its action on the center. To

ix



x INTRODUCTION

define the Schrödinger representation, a coordinate system is needed turning the

plane F into a phase space.

Together with the notion of time, requiring a fourth dimension, the oriented Eu-

clidean space immediately determines the skew field of quaternions H. This skew

field provides us with a convenient mathematical structure to treat three-dimensional

Heisenberg groups in a larger context. In fact, any Heisenberg algebra structure on

E emanates from the multiplication of the quaternions. Moreover, the various ways

of turning the oriented Euclidean space into a Heisenberg group determine the skew

field H, its three-sphere, i.e. the spin group SU(2), and the Hopf bundles on the

two-sphere. These Hopf bundles fibring S3 over S are uniquely described by their

respective Chern numbers. In addition, the skew field structure yields a natural

Minkowski metric (which can be rescaled to meet the needs of special relativity) on

H which intertwines Minkowski geometry with Euclidean geometry. This is nicely

seen by computing the rotation angles of the inner automorphisms of H since any

inner automorphism amounts to an oriented rotation on the Euclidean space. In

fact, any Minkowski metric on an oriented four-dimensional linear space emanates

from the natural Minkowski metric on H.

Now it is conceivable that the modeling based on Heisenberg groups naturally

involves the mathematical structures just described above. Let us shortly review

three applications of the Heisenberg group, each of which reveals clearly this group

as underlying mathematical background.

We begin these presentations by signal theory. As formulated in the seminal book

of Groechenig [47], for example, the general framework of signal theory consists

of three main steps, namely analysis, processing and synthesis of a signal. Since

already the first step, namely signal analysis, is a rather huge field, for our purpose

we need to restrict our scope. To show where Heisenberg groups and Heisenberg

algebras appear in signal analysis, we focus on one of its branches, namely on time-

frequency analysis, which from a mathematical point of view is a branch of harmonic

analysis. Later, we describe in a rather rough fashion what time-frequency analysis

focuses on by means of an analogy (cf. [47]) and consider a musical score. Time

behavior is encoded horizontally whereas the frequency information is expressed

vertically. The score represents an analysis of the signal in terms of time-frequency

information. Playing the music is the synthesis or reconstruction of the signal.

Truncation is a form of signal processing, for example. Expressed in a more abstract

fashion, the time axis and the frequency axis generate the time frequency plane and

a signal is given by a quadratically integrable, complex-valued function on the real

line, the time axis, say. Its values give time information. Frequency information in

the signal is visible in the Fourier transform of the function.

Methods of the analysis of a signal involve various technical tools, in particular

various sorts of transformations of signals which exhibit specific properties. One

of them is the ambiguity function (defined on the time-frequency plane), a funda-

mental tool, as for instance in radar engineering or in geometric optics in terms

of its Fourier transform, the Wigner function. The ambiguity function compares

two signals with each other, for example an outgoing with an incoming one. This

situation is typical for radar. In the case of a plane the outgoing signal hitting the

object is known in detail. The incoming signal contains information on position
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and velocity. Formulated in a simplified fashion one can extract this information

from the ambiguity function built up by the outgoing and the reflected signal.

As a first highlight in this discourse let us demonstrate the appearance of the

Heisenberg group in time frequency analysis by means of the ambiguity function.

From a technical point of view it is a simple but beautiful insight based on the

Schrödinger representation first mentioned by W. Schempp in [71]: The first Fourier

coefficient of the Schrödinger representation of the three-dimensional Heisenberg

group is nothing more than the ambiguity function. Similar results on other tools

can be found in [47]. The relation of the Heisenberg group with such a fundamental

tool in time-frequency plane shows that this group is omnipotent in time-frequency

analysis, as is also expressed in [47].

The time frequency plane is the Cartesian product of two axes, the time axis and

the frequency axis. One goal of time-frequency analysis seems to be to resolve a

point in this plane arbitrarily well by means of signals treated by various tools.

Surprisingly, such a resolution process is not possible since time and frequency

information of a signal are encoded in the signal itself, respectively in its Fourier

transform. Uncertainty relations are obstructing it. These relations can be derived

from a Heisenberg algebra and its infinitesimal Schrödinger representation, too.

In geometric optics in 3-space, the effect of an optical system placed in between

two parallel planes can nicely be described by the Wigner function exhibiting a

symplectic transformation A acting on the first plane, i.e. by a linear map of this

plane which preserves a symplectic structure, as shown for example in [24]. The

same linear map can be found by arguing in terms of wave optics as done in [41].

In our presentation of the appearance of the Heisenberg group in geometric optics

we partly follow [50] since this approach naturally carries on to the quantization

of homogeneous quadratic polynomials. To describe geometric optics a little more

precisely, let the plane F be mapped by light rays to another plane F ′ parallel to

F . In between these two planes an optical system is placed. A symplectic structure

on F is caused by the (2+1)-splitting of the Euclidean 3-space E initiated by the

choice of F and its orthogonal complement in E. The choice of a coordinate system

turns the symplectic plane into a phase space. As mentioned above, the image in

F ′ caused by the light rays passing the optical system is described by a symplectic

transformation A of F . Vice versa, any map in the group Sp(F ), consisting of all

symplectic transformations of F , corresponds to an optical system. What happens

with a light distribution on F? Associated with a light distribution on F is a phase

distribution. The image of this phase distribution on F ′ caused by the optical

system is computed by Fresnel integrals, a tool in wave optics (cf. [41]). These

Fresnel integrals are very closely related to metaplectic representations, i.e. rep-

resentations of the metaplectic group Mp(F ) of F with the L2-space of the real

line as representation space (cf. [50]). The metaplectic group Mp(F ) is a twofold

covering of the symplectic group Sp(F ) of the plane. Back to the Wigner function

mentioned above, it detects A also and is the Fourier transform of the ambiguity

function. Therefore, geometric optics are based on a Heisenberg group as well. It

is determined by the (2+1)-splitting of E produced by the symplectic plane F and

its orthogonal complement in E. This is to say the array naturally yields a Heisen-

berg group H . The symplectic map A on F (characterizing the optical system)

is extended to all of H by the identity on the center of H (still called A). It is
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a Heisenberg group isomorphism and hence determines a new Heisenberg group,

namely A(H ). Due to the famous Stone–von Neumann theorem, its Schrödinger

representation ρ ◦ A is equivalent to the Schrödinger representation ρ of H and

causes the Wigner function on F describing the optical system. This is the content

of chapter 8, so you can see we are already right in the middle of our manuscript.

Now let us pass on to ordinary quantum mechanics. There are several different

looking approaches to it. For example, one way of formulating quantum mechanics

is by concentrating more on analytic aspects such as Wigner functions and operator

theory (cf. [4], [37], [47] and [32]). Another one is based directly on symplectic

geometry (cf. [50] and [75]); operator theory enters here via representation theory.

In the very beautiful book [32] it becomes clear how these approaches are inter-

twined. Since we concentrate on the appearance of the Heisenberg group and other

geometric structures based on them, it is natural to focus on a geometric basis of

Quantum mechanics. In doing so, in our investigations we adopt the view point

taken in [50].

Keeping the role of time and frequency in time-frequency analysis in mind, in

classical mechanics the analogous object of the time-frequency plane is the phase

space of a line, which is a plane F , say. F is equipped with a coordinate system in

which one coordinate axis is identified with the line, on which a point is thought

to move. Let us call it the q-axis. At any instant this point has a position q and

a momentum p, say, visualized on the second coordinate axis, the p-axis. Hence

the pair (q, p) of coordinates characterizes a point in phase space F . As in time-

frequency analysis, F is equipped with a symplectic structure, hence determines a

Heisenberg group structure on E.

Quantization of position and momentum in classical mechanics is achieved by means

of the infinitesimal Schrödinger representation dρ multiplied by −i where i is the

imaginary unit of the complex plane. Hence −i · dρ converts each element of the

Heisenberg algebra into a self-adjoint operator acting on the L2-space of the real

line, a Hilbert space. It consists of all quadratically integrable, complex-valued

functions of the real line. The quantization of q and p yields two non-commuting

operators, obeying Heisenberg’s uncertainty relations.

Kinetic energy (a classical observable) of the moving point is a homogeneous qua-

dratic polynomial. The quantization of this type of polynomials (called classical

observables) defined on the phase space F is in a sense an infinitesimal version of

geometric optics. Here is why: The infinitesimal metaplectic representation multi-

plied by −i represents the Lie-algebra of the metaplectic group Mp(F ) in the space

of the self-adjoint operators of the L2-space of the real line. This Lie algebra is

identical with the Lie algebra sp(F ) of Sp(F ) and the Lie algebra (F ) made up of

all trace-free linear maps of F . Now the Lie algebra sl(F ) is naturally isomorphic to

the Poisson algebra of homogeneous quadratic polynomials on the plane F , an alge-

bra of classical observables of the moving point. Thus any homogeneous quadratic

polynomial on F is converted to a self-adjoint operator acting on the L2-space of

the real line. Of course the definition of a homogeneous quadratic polynomial re-

quires the coordinate system on F . This resembles the situation of the Schrödinger

representation, and in fact, the metaplectic representation can be constructed out

of the Schrödinger representation. Representing all quadratic polynomials of the

plane requires a representation of the semidirect product of the Heisenberg group
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with the metaplectic group and the Lie algebra of this product. At this stage we

point out that the collection of quantized homogeneous quadratic polynomials to-

gether with the identity allows the reconstruction of the field of quaternions and

hence of a Minkowski space. This is found in chapter 9.

Of a quite different nature is the quantization associated with a vector field in 3-

space, elaborated in chapter 10. The goal here is to specify a collection of classical

observables of the vector field and to associate field operators (on some infinite

dimensional Hilbert space) to them. But first let us analyze the vector field in

order to single out a collection of classical observables.

Given a vector field on a possibly bounded three-dimensional submanifold in the

oriented Euclidean space E we may cut out all its singularities and obtain a sin-

gularity free vector field X on a smaller topological space of which we assume that

it is a manifold M in E with or without boundary, say. A complex line bundle F

on M is obtained by taking the orthogonal complement in E of each field vector as

fibres. The points in F are called internal variables of the vector field. Each fibre

of F admits a constant symplectic form determined by inserting the respective field

vector into the volume form of E. Thus at each point in M , the fibre together with

the line containing the field vector yields a three-dimensional Heisenberg group and

hence in total a Heisenberg group bundle Ha as well as a Heisenberg algebra bundle

on M . The bundle Ha ⊂ M×E determines the vector field and vice versa. Passing

on to the collection ΓHa of all Schwartz sections and integrating up the fibrewisely

given symplectic forms yields an infinite dimensional commutative Weyl algebra, a

C∗-algebra whose involution sends a section into its negative and which in addition

contains a natural Poisson algebra. The elements of this Poisson algebra P a are

called the classical observables of the vector field. This natural Poisson algebra

determines the vector field and vice versa, as shown in chapter 6.

Now we begin to describe the quantization procedure of the vector field X as

done in chapter 10. Here this procedure is split up into two steps, namely into a

prequantization and into the specification of the physical observables reached by

representations. The Poisson algebra P a is the domain of the quantization map

Qh̄, called here the prequantization. The quantization map Qh̄ represents the ∗-
algebra P a on the C∗-algebra W h̄ΓHa, involving a parameter h̄ varying on the real

line. It may in particular assume the value of Planck’s constant. If this parameter

differs from zero, the multiplication (an h̄ dependent deformed convolution) of

the Weyl algebra W h̄ΓHa is non-commutative. This construction yields a real

parameterized family of Weyl algebras W h̄ΓHa with parameter h̄ and the Poisson

algebra P a for vanishing h̄. In fact, Qh̄ is a strict and continuous deformation

quantization in the sense of Rieffel (cf. [55]). The range of the map Qh̄ can be

reproduced from a C∗-group algebra C∗H ∞ of the infinite dimensional Heisenberg

group H ∞ := ΓHa + R · e. This group is characteristic for the vector field, too. On

R ·e in H ∞ varies the deformation parameter h̄ mentioned above. If this parameter

approaches 0 the Heisenberg group deforms to W 0ΓHa containing the Poisson

algebra P a. This family of Weyl algebras mentioned determines a C∗-algebra of

so-called Weyl fields, ∗-isomorphic to C∞H ∞.

A representation of W h̄ΓHa or in some cases also of C∗H ∞ represents these C∗-
algebras on the C∗-algebra BH, the C∗-algebra of all bounded operators of H.

The respective images are called the collection of physical quantum observables.
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From here we construct the field operators and derive the canonical commutation

relations (CCR). This construction is called the Weyl quantization of the vector

field.

Thus the infinite dimensional Heisenberg group H ∞ governs the Weyl quantization

and allows a classical limit as h̄ tends to 0 in a continuous rigorous fashion.

We close chapter 10 by studying the influence of the topology of the three-manifold

M to the quantization of the vector field X defined on M.

Now we have already alluded to the content of the later chapters of these notes.

But let us start from the beginning. The first two chapters collect and prepare the

mathematical material for the later ones. We intend to show that the quaternions

H are a convenient tool to describe the geometry in three- and four-space naturally

hidden in SU(2). In particular, we investigate the automorphisms of H; these

automorphisms provide a link between the natural Minkowski geometry on H and

the Euclidean one on E. These studies open the doors to the Hopf bundles on S2.

We hence pay a little more attention to this skew field than the mere application

of Heisenberg groups and Heisenberg algebras would require.

The C∗-quantization associated with a singularity free vector field in 3-space re-

quires the notion of a Heisenberg algebra bundle associated with it. These bundles

naturally contain the complex line bundles of such vector fields. The geometry of

these line bundles is treated in chapter 3. A classification of them, in terms of

homotopy theory and Chern classes, is the goal of chapter 4. It prepares the effect

of the topology to the field quantization done in chapter 10.

In chapter 5 Heisenberg groups and their Lie algebras are introduced. We need them

in the quantization of homogeneous polynomials in two variables. We observe that

the skew field of quaternions is determined by only one Heisenberg group or one

Heisenberg algebra inside of H. These groups and algebras link Euclidean and

Minkowski geometry. The close ties of H and Heisenberg algebras with Minkowski

geometry are exhibited and group theoretically formulated. Here the symplec-

tic group and SL(2, C) reproduce isometry groups of three- and four-dimensional

Minkowski spaces.

The main tools of the quantization of vector fields in 3-space are their Heisenberg

group bundles and the C∗-algebras of sections of them. The infinite dimensional

C∗-Heisenberg group as well as a natural C∗-Weyl algebra emanate from the vector

fields. Both are characteristic for the field. To show this is the topic of chapter 6.

The Schrödinger representation of Heisenberg groups and the metaplectic repre-

sentation are the basic topics of chapter 7. These representations are essential for

the quantization of inhomogeneous quadratic polynomials. Both representations

influence signal analysis and geometric optics fundamentally.

The notes end with a remarkable appendix by Serge Preston. The deep relations

between information theory and thermodynamics are well recognized and utilized

as documented in the references of the appendix. Therefore, in the spirit of the

approach of this monograph, one might expect the Heisenberg group to play some

prominent role in geometrical structures of thermodynamics. This is beautifully

presented in this appendix.
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Hence after the applications in Chapters 8 to 10 described above, the appendix

“Thermodynamics, Geometry and Heisenberg group” provides an answer to the

following question: The energy-phase space (P, θ, G) of a homogeneous thermody-

namical system, together with its contact structure θ and natural indefinite metric

G introduced by R. Mrugala, is isomorphic to the Heisenberg group Hn endowed

with a right-invariant contact structure and the right-invariant indefinite metric

G. Different properties of these structures are studied in terms of curvature and

isometries of the metric G. Geodesics of the metric G are closely related with the

three-dimensional Heisenberg subgroups H1 of the group Hn. A natural compact-

ification (P̂ , θ̂, Ĝ) of the triple (P, θ, G) with its stratification by the subgroups of

the type Rk × Hn−k, k = 0, . . . , n is investigated.

The above outlines of the chapters shall be complemented by a short description

of the main interdependencies which are graphically visualized in the following

diagram:
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The first chapter provides the basis for the second one and presents techniques used

throughout the book. Results of both of them are applied to smooth vector fields

in 3-space by means of complex line bundles in the third chapter. The classifica-

tion of these vector fields in terms of complex line bundles in chapter 4 is based

on the earlier chapters, however, new technical means are introduced and inter-

related with earlier ones in order to understand and formulate the classifications

mentioned. The techniques provided by the first two chapters are used in chapter

5 to interrelate the concept of a Heisenberg group and a Heisenberg algebra with

Euclidean and Minkowski as well as with symplectic geometry. The Schrödinger

and the metaplectic representations introduced in chapter 7 form the basis for all

the later ones. Chapter 6 lays the foundation for chapter 10 and uses among newly

introduced techniques the ones provided in the first three chapters. The Chapters

8 and 9 use the representation theory presented in chapter 7 and require material

from chapter 5. The last chapter on field quantization is based on chapter 6 and

part of the study of the topological influence to this quantization relies on chapter

4.

Finally, a word on the prerequisites: The first three chapters as well as chapter 5

can easily be read with a background in linear algebra and elementary differential

geometry as provided by senior undergraduate or low level graduate courses. Tech-

nically more involved are chapters 4, 6 and 7. With the prerequisites mentioned for

chapter 4, the reader has to invest some time reading the topological part involving

the classification of complex line bundles and the section concerning the mapping

degree. In chapter 6 different concepts are introduced and studied; it is partly self-

contained. However, it is technically more advanced than earlier ones. In chapter

7 some knowledge in representation theory would be helpful. The literature refer-

enced contains all the technicalities which are used. Technically less involved are

the self-contained parts of chapters 8 and 9. Other, more advanced parts are com-

plemented by references to standard literature. Some basic knowledge in functional
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analysis would make the reading easier. Both chapters, however, require knowl-

edge from earlier ones, in particular from chapter 7 on representation theory. More

knowledge from the earlier chapters and from the literature referenced is needed to

follow the last chapter. Together with the appendix on thermodynamics it is the

most complex one.

Many valuable discussions with mathematicians and physicists have been the basis

of these notes. We are particularly indebted to Karl-Heinz Brenner, Maurice de

Gosson, Basil Hiley, Reinhard Honegger, Andrei Khrennikov, Alfred Rieckers and

Hartmann Römer (in alphabetical order). Sincere thanks go to all of them. Very

special thanks go to Serge Preston who read carefully through the manuscript,

made many very helpful remarks and suggestions, and wrote the appendix.

Our colleague Serge Preston would like to thank Professor Michel Goze from the

Université de Haute Alsace for the attention to his work and useful information

and references.

Sincere thanks go to Mrs. S. Braak and Mrs. G. Nusser for typing many parts of

this manuscript in LaTeX.
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Heisenberg algebra bundle, 132, 133
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Heisenberg group bundle, 131, 134, 247, 251
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induced representation, 167, 168, 170, 171
inertia index, 185
infinite dimensional algebra, 158
infinite dimensional Heisenberg group, 131,

135, 137, 140, 144, 251
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intensity distribution, 212, 213

interferences, 243
intertwiner, 161, 164, 165, 176

inverse Fourier transform, 178, 192
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joint action, 35, 167, 169
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ket, 238

Kolmogorov decomposition, 261

level surface, 54, 55
Levi-Civitá covariant derivative, 56

Lie algebra, 4, 12, 13, 17, 18, 65, 74, 107,
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140, 179, 207, 220, 221, 223, 224, 227,
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lift, 69, 70, 72, 189, 269, 283–285, 287
light cone, 20, 128

light distribution, 191, 208–210, 235
light ray, 206, 208

linear isomorphism, 13, 128, 137, 155, 226,
264

linear optics, 206

linear space, 1–3, 8, 11, 27, 35, 36, 41, 44,
49, 62, 100, 107, 108, 114, 115, 123,
125, 126, 136, 140, 158, 161, 176, 215,
220, 225, 229, 236, 245, 251, 264

Lorentz boost, 21

Lorentz group, 6, 16, 128, 188

Lorentz metric, 21, 188

manifold, 33–36, 59, 64, 73, 77, 80, 86, 87,
93–95, 97, 100, 115, 119, 131, 134, 247,
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mapping degree, 73, 86, 94, 96–98, 137, 266

Maslov index, 185, 188

maximal level surface, 54

mean gray value, 218

measurable, 239
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metaplectic group, 161, 177, 180, 184, 187,
188, 231, 233, 234, 236, 237
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metaplectic representation, 161, 176, 177,
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Minkowski metric, 5, 6, 18, 19, 21, 126–130,
188, 220, 236
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module isomorphism, 141, 142, 150, 152

momentum, 10, 71, 162, 191, 198, 200

Moyal’s formula, 199, 200
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natural projection, 36, 139, 169, 173, 184
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normal bundle, 51, 132

normalized state, 239, 241–244
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optical path, 209
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Pauli matrices, 11, 12
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physical quantum observables, 252, 254

physical representation, 254
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Poisson algebra, 132, 153, 158, 221, 223,
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