The Geometry of Heisenberg Groups

With Applications in Signal Theory, Optics, Quantization, and Field Quantization

Ernst Binz
Sonja Pods

with an Appendix by
Serge Preston

The Geometry of Heisenberg Groups

With Applications in Signal Theory, Optics, Quantization, and Field Quantization

The Geometry of Heisenberg Groups

With Applications in Signal Theory, Optics, Quantization, and Field Quantization

Ernst Binz
Sonja Pods

with an Appendix by
Serge Preston

EDITORIAL COMMITTEE

Jerry L. Bona
Ralph L. Cohen J. T. Stafford, Chair

Benjamin Sudakov
2000 Mathematics Subject Classification. Primary 22B05, 22E70, 43A40, 43A65, 46L05, 46L65, 53D55, 57R25, 78A05, 80M99.

For additional information and updates on this book, visit
www.ams.org/bookpages/surv-151

Library of Congress Cataloging-in-Publication Data

Binz, Ernst, 1939-

The geometry of Heisenberg groups : with applications in signal theory, optics, quantization, and field quantization / Ernst Binz, Sonja Pods ; with an appendix by Serge Preston.
p. cm. - (Mathematical surveys and monographs ; v. 151)

Includes bibliographical references and index.
ISBN 978-0-8218-4495-3 (alk. paper)

1. Heisenberg uncertainty principle-Mathematics. 2. Quantum theory-Mathematics. I. Pods, Sonja, 1974- II. Title.

QC174.17.H4B53 2008
512'.482-dc22
2008030289

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2008 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
(@) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Introduction ix
Chapter 1. The Skew Field of Quaternions 1
1.1. Definition of the Field of Quaternions \mathbb{H} and Elementary Formulae 1
1.2. Embeddings of \mathbb{C} into the Quaternions and Natural Unitary Groups 7
1.3. \mathbb{C}-linear Structures, Symplectic Structures and Orientation, Pauli Elements 9
1.4. Inner Automorphisms of \mathbb{H} 12
1.5. The Oriented Rotation Angle of the Inner Automorphism with Respect to the Natural Minkowski Metric 18
1.6. Link between Space-Time Geometry and Euclidean Geometry on the Quaternions 20
Chapter 2. Elements of the Geometry of S^{3}, Hopf Bundles and Spin Representations 25
2.1. One-Parameter Groups of $\mathrm{SU}(2)$ and $\mathrm{SO}(E)$ 25
2.2. Parallels of Latitude and Meridians on S^{3} 27
2.3. One-Parameter Subgroups of $\mathrm{SU}(2)$ and Hopf Bundles 28
2.4. Spin Representations 40
2.5. The Infinitesimal Spin $\frac{1}{2}$-Representation 43
Chapter 3. Internal Variables of Singularity Free Vector Fields in a Euclidean Space 47
3.1. The Complex Line Bundle $\mathbb{F}^{\text {a }}$ 47
3.2. Symplectic and Hermitian Structures on $\mathbb{F}^{\mathbf{a}}$ 52
3.3. Gradient Fields 54
3.4. Curvature Forms on Level Surfaces 56
3.5. Vector Fields Defined by Two-Forms 58
3.6. The Principal bundle $\dot{\mathbb{F}}^{\mathbf{a}}$ and its Natural Connection Form 60
3.7. The Characteristic Principal Bundle 65
3.8. Horizontal and Periodic Lifts of Integral Curves 69
Chapter 4. Isomorphism Classes, Chern Classes and Homotopy Classes of Singularity Free Vector Fields in 3-Space 73
4.1. Isomorphism Classes of Characteristic Principal Bundles of Vector Fields 73
4.2. The Structure of Isomorphism Classes 77
4.3. Chern Classes 80
4.4. Mapping Degree and First Chern-de Rham Classes 94
4.5. Hodge-Morrey Decomposition 100
Chapter 5. Heisenberg Algebras, Heisenberg Groups, Minkowski Metrics, Jordan Algebras and $\operatorname{SL}(2, \mathbb{C})$ 107
5.1. Natural Symplectic Structure on a Plane in 3-Space 107
5.2. The Notion of a Heisenberg Algebra 112
5.3. Heisenberg Group and its Lie Algebra 115
5.4. $\mathcal{H}_{\text {red }}^{a}$ as a Semi-direct Product 119
5.5. A Heisenberg Algebra Structure on $\operatorname{sp}(F)$ 121
5.6. The Spin Group and the Skew Field of Quaternions are Determined by Only One Heisenberg Group 124
5.7. Scalar Products and Minkowski Metrics on the Heisenberg Algebra 126
5.8. Symplectic Group, Special Linear Groups and Lorentz group 128
Chapter 6. The Heisenberg Group and Natural C^{*}-Algebras of a Vector Field in 3-Space 131
6.1. The Heisenberg Group Bundle of a Vector Field 132
6.2. Infinite Dimensional Heisenberg Algebras and Infinite Dimensional Heisenberg Groups of Vector Fields 135
6.3. Maps Determined by Homomorphisms 140
6.4. Group Algebras of Infinite Dimensional Heisenberg Groups 143
6.5. The C^{*}-Group Algebra and the Twisted Convolution, the Weyl Algebra and the Poisson Algebra 153
Chapter 7. The Schrödinger Representation and the Metaplectic Representation 161
7.1. Definition of the Schrödinger Representation and Phase Space 161
7.2. Characteristic Ingredients of the Schrödinger Representation 166
7.3. The Infinitesimal Schrödinger Representation and Phase Space 175
7.4. Projective Representations of the Symplectic Group Constructed via the Schrödinger Representation 176
7.5. A Realization of the Metaplectic Group and the Metaplectic Representation 180
Chapter 8. The Heisenberg Group: A Basic Geometric Background of Signal Analysis and Geometric Optics 191
8.1. The Notion of a Signal 192
8.2. Time-Frequency Analysis and the Uncertainty Principle 193
8.3. Further Tools of Time-Frequency Analysis 196
8.4. Reconstruction Formulae 201
8.5. The Geometry Underlying Time-Frequency Analysis 202
8.6. The Radar Ambiguity Function 204
8.7. The Stone-von Neumann Theorem in Time-Frequency Analysis 205
8.8. Geometric Optics 206
8.9. Holography 210
Chapter 9. Quantization of Quadratic Polynomials 215
9.1. Elementary Observations on Information and its Transmission 215
9.2. Preservation of Information 217
9.3. The Poisson Algebra of all Homogeneous Quadratic Polynomials in Two Variables 221
9.4. The Quantization of Inhomogeneous Quadratic Polynomials 230
9.5. The Schrödinger Equation 237
9.6. State Spaces and Observables, Elements of Stochastic Interpretation 238
Chapter 10. Field Theoretic Weyl Quantization of a Vector Field in 3-Space 247
10.1. The Mathematical Setting 247
10.2. The Idea of Weyl Quantization of X 248
10.3. Weyl Quantization of Singularity Free Vector Fields in 3-Space 251
10.4. The Relation to the GNS Representation 258
10.5. The Influence of the Topology on the Weyl Quantization 263
Appendix A. Thermodynamics, Geometry and the Heisenberg Group by Serge Preston 269
A.1. Introduction 269
A.2. The Contact Structure of Homogeneous Thermodynamics 270
A.3. Gibbs Space. Legendre Surfaces of Equilibrium 270
A.4. Thermodynamical Metrics of Weinhold and Ruppeiner 271
A.5. Indefinite Thermodynamical Metric G of R. Mrugala 272
A.6. Levi-Civitá Connection of the Metric G 273
A.7. Curvature Properties of G 274
A.8. The Heisenberg Group as the Thermodynamical Phase Space 275
A.9. Geodesics of the Metric G 279
A.10. Symplectization of the Manifold (P, θ, G) 281
A.11. Properties of the Metric \tilde{G} 282
A.12. Constitutive Hypersurface and its Lift to \tilde{P} 283
A.13. Hyperbolic Rotations and the Projectivization of \tilde{P} 284
A.14. Group Action of \mathcal{H}_{n} and the "Partial Orbit Structure" of \hat{P} 285
Appendix. Bibliography 289
Bibliography 291
Index 295

Introduction

The notion of a three-dimensional Heisenberg group is an abstract algebraic formulation of a geometric phenomenon in everyday life. It occurs if we select a plane in our three-dimensional space. For example, the page you are now reading is such a plane and produces a Heisenberg group. If you take a photograph you are in the middle of Heisenberg group theory; you have transmitted information along a line and encoded it in a plane and hence you have established a Heisenberg group. These few remarks indicate already some aspects of our program encoded in the title. We will study Heisenberg groups and Heisenberg algebras as mathematical objects in detail, identify them in several physical and mathematical areas and thereby exhibit close relationships among them even though they look quite different at the beginning of our discourse. This is to say we will build bridges between fields by means of Heisenberg groups and Heisenberg algebras.

This short introductory look at our program hints that we like to invite both graduate students of mathematics and mathematicians with some interest in physics as well as graduate students of physics and physicists with some interest in mathematics on our journey through the very mathematics and physics of Heisenberg groups.

Now we go into more detail. Looking at a Euclidean oriented three-dimensional space E as a Heisenberg group or at a Heisenberg algebra amounts to a splitting of E into an oriented plane F and an oriented real $\mathbb{R} \cdot a$ line, say, orthogonal to F. Here $a \in S^{2}$. The orientation on E shall be made up by the orientations of the plane and the real line, respectively. A constant symplectic structure on the plane determines its orientation while the real line is oriented by a vector in it yielding a direction of the plane's oriented rotations. These geometric ingredients can be encoded in detail by a specific non-commutative group operation on the Euclidean space, yielding a Heisenberg group, a Lie group. Its center is the one-dimensional subspace. Its Lie algebra is called a Heisenberg algebra. In fact any $(2 n+1)$-dimensional Euclidean space admits a Heisenberg group structure for any integer n bigger than zero. However, with the applications we have in mind we mainly concentrate on three-dimensional Heisenberg groups and Heisenberg algebras. However, in field quantization we have to pass over to infinite dimensional ones.

Heisenberg groups have a very remarkable property: By the Stone-von Neumann theorem any Heisenberg group up to equivalence admits only one irreducible unitary representation on an infinite dimensional Hilbert space, if its action is specified on the center, i.e. on the real line introduced above. The rather simple looking Schrödinger representation of a Heisenberg group on the L_{2}-space of the real line (the Hilbert space) is unitary and irreducible. Therefore, up to equivalence, the Schrödinger representation is uniquely determined by its action on the center. To
define the Schrödinger representation, a coordinate system is needed turning the plane F into a phase space.

Together with the notion of time, requiring a fourth dimension, the oriented Euclidean space immediately determines the skew field of quaternions \mathbb{H}. This skew field provides us with a convenient mathematical structure to treat three-dimensional Heisenberg groups in a larger context. In fact, any Heisenberg algebra structure on E emanates from the multiplication of the quaternions. Moreover, the various ways of turning the oriented Euclidean space into a Heisenberg group determine the skew field \mathbb{H}, its three-sphere, i.e. the spin group $S U(2)$, and the Hopf bundles on the two-sphere. These Hopf bundles fibring S^{3} over S are uniquely described by their respective Chern numbers. In addition, the skew field structure yields a natural Minkowski metric (which can be rescaled to meet the needs of special relativity) on \mathbb{H} which intertwines Minkowski geometry with Euclidean geometry. This is nicely seen by computing the rotation angles of the inner automorphisms of \mathbb{H} since any inner automorphism amounts to an oriented rotation on the Euclidean space. In fact, any Minkowski metric on an oriented four-dimensional linear space emanates from the natural Minkowski metric on \mathbb{H}.

Now it is conceivable that the modeling based on Heisenberg groups naturally involves the mathematical structures just described above. Let us shortly review three applications of the Heisenberg group, each of which reveals clearly this group as underlying mathematical background.

We begin these presentations by signal theory. As formulated in the seminal book of Groechenig [47], for example, the general framework of signal theory consists of three main steps, namely analysis, processing and synthesis of a signal. Since already the first step, namely signal analysis, is a rather huge field, for our purpose we need to restrict our scope. To show where Heisenberg groups and Heisenberg algebras appear in signal analysis, we focus on one of its branches, namely on timefrequency analysis, which from a mathematical point of view is a branch of harmonic analysis. Later, we describe in a rather rough fashion what time-frequency analysis focuses on by means of an analogy (cf. [47]) and consider a musical score. Time behavior is encoded horizontally whereas the frequency information is expressed vertically. The score represents an analysis of the signal in terms of time-frequency information. Playing the music is the synthesis or reconstruction of the signal. Truncation is a form of signal processing, for example. Expressed in a more abstract fashion, the time axis and the frequency axis generate the time frequency plane and a signal is given by a quadratically integrable, complex-valued function on the real line, the time axis, say. Its values give time information. Frequency information in the signal is visible in the Fourier transform of the function.

Methods of the analysis of a signal involve various technical tools, in particular various sorts of transformations of signals which exhibit specific properties. One of them is the ambiguity function (defined on the time-frequency plane), a fundamental tool, as for instance in radar engineering or in geometric optics in terms of its Fourier transform, the Wigner function. The ambiguity function compares two signals with each other, for example an outgoing with an incoming one. This situation is typical for radar. In the case of a plane the outgoing signal hitting the object is known in detail. The incoming signal contains information on position
and velocity. Formulated in a simplified fashion one can extract this information from the ambiguity function built up by the outgoing and the reflected signal.
As a first highlight in this discourse let us demonstrate the appearance of the Heisenberg group in time frequency analysis by means of the ambiguity function. From a technical point of view it is a simple but beautiful insight based on the Schrödinger representation first mentioned by W. Schempp in [71]: The first Fourier coefficient of the Schrödinger representation of the three-dimensional Heisenberg group is nothing more than the ambiguity function. Similar results on other tools can be found in $[\mathbf{4 7}]$. The relation of the Heisenberg group with such a fundamental tool in time-frequency plane shows that this group is omnipotent in time-frequency analysis, as is also expressed in [47].

The time frequency plane is the Cartesian product of two axes, the time axis and the frequency axis. One goal of time-frequency analysis seems to be to resolve a point in this plane arbitrarily well by means of signals treated by various tools. Surprisingly, such a resolution process is not possible since time and frequency information of a signal are encoded in the signal itself, respectively in its Fourier transform. Uncertainty relations are obstructing it. These relations can be derived from a Heisenberg algebra and its infinitesimal Schrödinger representation, too.

In geometric optics in 3-space, the effect of an optical system placed in between two parallel planes can nicely be described by the Wigner function exhibiting a symplectic transformation A acting on the first plane, i.e. by a linear map of this plane which preserves a symplectic structure, as shown for example in [24]. The same linear map can be found by arguing in terms of wave optics as done in [41].

In our presentation of the appearance of the Heisenberg group in geometric optics we partly follow [50] since this approach naturally carries on to the quantization of homogeneous quadratic polynomials. To describe geometric optics a little more precisely, let the plane F be mapped by light rays to another plane F^{\prime} parallel to F. In between these two planes an optical system is placed. A symplectic structure on F is caused by the $(2+1)$-splitting of the Euclidean 3 -space E initiated by the choice of F and its orthogonal complement in E. The choice of a coordinate system turns the symplectic plane into a phase space. As mentioned above, the image in F^{\prime} caused by the light rays passing the optical system is described by a symplectic transformation A of F. Vice versa, any map in the group $\operatorname{Sp}(F)$, consisting of all symplectic transformations of F, corresponds to an optical system. What happens with a light distribution on F ? Associated with a light distribution on F is a phase distribution. The image of this phase distribution on F^{\prime} caused by the optical system is computed by Fresnel integrals, a tool in wave optics (cf. [41]). These Fresnel integrals are very closely related to metaplectic representations, i.e. representations of the metaplectic group $\operatorname{Mp}(F)$ of F with the L_{2}-space of the real line as representation space (cf. [50]). The metaplectic group $\operatorname{Mp}(F)$ is a twofold covering of the symplectic group $\operatorname{Sp}(F)$ of the plane. Back to the Wigner function mentioned above, it detects A also and is the Fourier transform of the ambiguity function. Therefore, geometric optics are based on a Heisenberg group as well. It is determined by the $(2+1)$-splitting of E produced by the symplectic plane F and its orthogonal complement in E. This is to say the array naturally yields a Heisenberg group \mathcal{H}. The symplectic map A on F (characterizing the optical system) is extended to all of \mathcal{H} by the identity on the center of \mathcal{H} (still called A). It is
a Heisenberg group isomorphism and hence determines a new Heisenberg group, namely $A(\mathcal{H})$. Due to the famous Stone-von Neumann theorem, its Schrödinger representation $\rho \circ A$ is equivalent to the Schrödinger representation ρ of \mathcal{H} and causes the Wigner function on F describing the optical system. This is the content of chapter 8 , so you can see we are already right in the middle of our manuscript.

Now let us pass on to ordinary quantum mechanics. There are several different looking approaches to it. For example, one way of formulating quantum mechanics is by concentrating more on analytic aspects such as Wigner functions and operator theory (cf. [4], $[\mathbf{3 7}],[\mathbf{4 7}]$ and $[\mathbf{3 2}]$). Another one is based directly on symplectic geometry (cf. [50] and [75]); operator theory enters here via representation theory. In the very beautiful book [32] it becomes clear how these approaches are intertwined. Since we concentrate on the appearance of the Heisenberg group and other geometric structures based on them, it is natural to focus on a geometric basis of Quantum mechanics. In doing so, in our investigations we adopt the view point taken in [50].

Keeping the role of time and frequency in time-frequency analysis in mind, in classical mechanics the analogous object of the time-frequency plane is the phase space of a line, which is a plane F, say. F is equipped with a coordinate system in which one coordinate axis is identified with the line, on which a point is thought to move. Let us call it the q-axis. At any instant this point has a position q and a momentum p, say, visualized on the second coordinate axis, the p-axis. Hence the pair (q, p) of coordinates characterizes a point in phase space F. As in timefrequency analysis, F is equipped with a symplectic structure, hence determines a Heisenberg group structure on E.

Quantization of position and momentum in classical mechanics is achieved by means of the infinitesimal Schrödinger representation $d \rho$ multiplied by $-i$ where i is the imaginary unit of the complex plane. Hence $-i \cdot d \rho$ converts each element of the Heisenberg algebra into a self-adjoint operator acting on the L_{2}-space of the real line, a Hilbert space. It consists of all quadratically integrable, complex-valued functions of the real line. The quantization of q and p yields two non-commuting operators, obeying Heisenberg's uncertainty relations.
Kinetic energy (a classical observable) of the moving point is a homogeneous quadratic polynomial. The quantization of this type of polynomials (called classical observables) defined on the phase space F is in a sense an infinitesimal version of geometric optics. Here is why: The infinitesimal metaplectic representation multiplied by $-i$ represents the Lie-algebra of the metaplectic group $\mathrm{Mp}(F)$ in the space of the self-adjoint operators of the L_{2}-space of the real line. This Lie algebra is identical with the Lie algebra $\operatorname{sp}(F)$ of $\operatorname{Sp}(F)$ and the Lie algebra (F) made up of all trace-free linear maps of F. Now the Lie algebra $s l(F)$ is naturally isomorphic to the Poisson algebra of homogeneous quadratic polynomials on the plane F, an algebra of classical observables of the moving point. Thus any homogeneous quadratic polynomial on F is converted to a self-adjoint operator acting on the L_{2}-space of the real line. Of course the definition of a homogeneous quadratic polynomial requires the coordinate system on F. This resembles the situation of the Schrödinger representation, and in fact, the metaplectic representation can be constructed out of the Schrödinger representation. Representing all quadratic polynomials of the plane requires a representation of the semidirect product of the Heisenberg group
with the metaplectic group and the Lie algebra of this product. At this stage we point out that the collection of quantized homogeneous quadratic polynomials together with the identity allows the reconstruction of the field of quaternions and hence of a Minkowski space. This is found in chapter 9.

Of a quite different nature is the quantization associated with a vector field in 3space, elaborated in chapter 10. The goal here is to specify a collection of classical observables of the vector field and to associate field operators (on some infinite dimensional Hilbert space) to them. But first let us analyze the vector field in order to single out a collection of classical observables.
Given a vector field on a possibly bounded three-dimensional submanifold in the oriented Euclidean space E we may cut out all its singularities and obtain a singularity free vector field X on a smaller topological space of which we assume that it is a manifold M in E with or without boundary, say. A complex line bundle \mathbb{F} on M is obtained by taking the orthogonal complement in E of each field vector as fibres. The points in \mathbb{F} are called internal variables of the vector field. Each fibre of \mathbb{F} admits a constant symplectic form determined by inserting the respective field vector into the volume form of E. Thus at each point in M, the fibre together with the line containing the field vector yields a three-dimensional Heisenberg group and hence in total a Heisenberg group bundle $\mathbf{H}^{\mathbf{a}}$ as well as a Heisenberg algebra bundle on M. The bundle $\mathbf{H}^{\mathbf{a}} \subset M \times E$ determines the vector field and vice versa. Passing on to the collection $\Gamma \mathbf{H}^{\mathrm{a}}$ of all Schwartz sections and integrating up the fibrewisely given symplectic forms yields an infinite dimensional commutative Weyl algebra, a C^{*}-algebra whose involution sends a section into its negative and which in addition contains a natural Poisson algebra. The elements of this Poisson algebra P^{a} are called the classical observables of the vector field. This natural Poisson algebra determines the vector field and vice versa, as shown in chapter 6 .

Now we begin to describe the quantization procedure of the vector field X as done in chapter 10. Here this procedure is split up into two steps, namely into a prequantization and into the specification of the physical observables reached by representations. The Poisson algebra P^{a} is the domain of the quantization map Q_{\hbar}, called here the prequantization. The quantization map Q_{\hbar} represents the *algebra $P^{\mathbf{a}}$ on the C^{*}-algebra $\mathcal{W}^{\hbar} \Gamma \mathbf{H}^{\mathbf{a}}$, involving a parameter \hbar varying on the real line. It may in particular assume the value of Planck's constant. If this parameter differs from zero, the multiplication (an \hbar dependent deformed convolution) of the Weyl algebra $W^{\hbar} \Gamma \mathbf{H}^{\text {a }}$ is non-commutative. This construction yields a real parameterized family of Weyl algebras $W^{\hbar} \Gamma \mathbf{H}^{\mathbf{a}}$ with parameter \hbar and the Poisson algebra $P^{\mathbf{a}}$ for vanishing \hbar. In fact, Q_{\hbar} is a strict and continuous deformation quantization in the sense of Rieffel (cf. [55]). The range of the map Q_{\hbar} can be reproduced from a C^{*}-group algebra $C^{*} \mathcal{H}^{\infty}$ of the infinite dimensional Heisenberg group $\mathcal{H}^{\infty}:=\Gamma \mathbf{H}^{\mathrm{a}}+\mathbb{R} \cdot e$. This group is characteristic for the vector field, too. On $\mathbb{R} \cdot e$ in \mathcal{H}^{∞} varies the deformation parameter \hbar mentioned above. If this parameter approaches 0 the Heisenberg group deforms to $W^{0} \Gamma \mathbf{H}^{\text {a }}$ containing the Poisson algebra $P^{\text {a }}$. This family of Weyl algebras mentioned determines a C^{*}-algebra of so-called Weyl fields, $*$-isomorphic to $C^{\infty} \mathcal{H}^{\infty}$.
A representation of $W^{\hbar} \Gamma \mathbf{H}^{\text {a }}$ or in some cases also of $C^{*} \mathcal{H}^{\infty}$ represents these C^{*} algebras on the C^{*}-algebra $\mathbf{B H}$, the C^{*}-algebra of all bounded operators of \mathcal{H}. The respective images are called the collection of physical quantum observables.

From here we construct the field operators and derive the canonical commutation relations (CCR). This construction is called the Weyl quantization of the vector field.

Thus the infinite dimensional Heisenberg group \mathcal{H}^{∞} governs the Weyl quantization and allows a classical limit as \hbar tends to 0 in a continuous rigorous fashion.

We close chapter 10 by studying the influence of the topology of the three-manifold M to the quantization of the vector field X defined on M.

Now we have already alluded to the content of the later chapters of these notes. But let us start from the beginning. The first two chapters collect and prepare the mathematical material for the later ones. We intend to show that the quaternions \mathbb{H} are a convenient tool to describe the geometry in three- and four-space naturally hidden in $S U(2)$. In particular, we investigate the automorphisms of $\mathbb{H} ;$ these automorphisms provide a link between the natural Minkowski geometry on \mathbb{H} and the Euclidean one on E. These studies open the doors to the Hopf bundles on S^{2}. We hence pay a little more attention to this skew field than the mere application of Heisenberg groups and Heisenberg algebras would require.

The C^{*}-quantization associated with a singularity free vector field in 3-space requires the notion of a Heisenberg algebra bundle associated with it. These bundles naturally contain the complex line bundles of such vector fields. The geometry of these line bundles is treated in chapter 3. A classification of them, in terms of homotopy theory and Chern classes, is the goal of chapter 4. It prepares the effect of the topology to the field quantization done in chapter 10 .

In chapter 5 Heisenberg groups and their Lie algebras are introduced. We need them in the quantization of homogeneous polynomials in two variables. We observe that the skew field of quaternions is determined by only one Heisenberg group or one Heisenberg algebra inside of \mathbb{H}. These groups and algebras link Euclidean and Minkowski geometry. The close ties of \mathbb{H} and Heisenberg algebras with Minkowski geometry are exhibited and group theoretically formulated. Here the symplectic group and $\operatorname{SL}(2, \mathbb{C})$ reproduce isometry groups of three- and four-dimensional Minkowski spaces.

The main tools of the quantization of vector fields in 3-space are their Heisenberg group bundles and the C^{*}-algebras of sections of them. The infinite dimensional C^{*}-Heisenberg group as well as a natural C^{*}-Weyl algebra emanate from the vector fields. Both are characteristic for the field. To show this is the topic of chapter 6.

The Schrödinger representation of Heisenberg groups and the metaplectic representation are the basic topics of chapter 7. These representations are essential for the quantization of inhomogeneous quadratic polynomials. Both representations influence signal analysis and geometric optics fundamentally.

The notes end with a remarkable appendix by Serge Preston. The deep relations between information theory and thermodynamics are well recognized and utilized as documented in the references of the appendix. Therefore, in the spirit of the approach of this monograph, one might expect the Heisenberg group to play some prominent role in geometrical structures of thermodynamics. This is beautifully presented in this appendix.

Hence after the applications in Chapters 8 to 10 described above, the appendix "Thermodynamics, Geometry and Heisenberg group" provides an answer to the following question: The energy-phase space (P, θ, G) of a homogeneous thermodynamical system, together with its contact structure θ and natural indefinite metric G introduced by R. Mrugala, is isomorphic to the Heisenberg group \mathcal{H}_{n} endowed with a right-invariant contact structure and the right-invariant indefinite metric G. Different properties of these structures are studied in terms of curvature and isometries of the metric G. Geodesics of the metric G are closely related with the three-dimensional Heisenberg subgroups \mathcal{H}_{1} of the group \mathcal{H}_{n}. A natural compactification $(\hat{P}, \hat{\theta}, \hat{G})$ of the triple (P, θ, G) with its stratification by the subgroups of the type $R_{k} \times \mathcal{H}_{n-k}, k=0, \ldots, n$ is investigated.

The above outlines of the chapters shall be complemented by a short description of the main interdependencies which are graphically visualized in the following diagram:

The first chapter provides the basis for the second one and presents techniques used throughout the book. Results of both of them are applied to smooth vector fields in 3 -space by means of complex line bundles in the third chapter. The classification of these vector fields in terms of complex line bundles in chapter 4 is based on the earlier chapters, however, new technical means are introduced and interrelated with earlier ones in order to understand and formulate the classifications mentioned. The techniques provided by the first two chapters are used in chapter 5 to interrelate the concept of a Heisenberg group and a Heisenberg algebra with Euclidean and Minkowski as well as with symplectic geometry. The Schrödinger and the metaplectic representations introduced in chapter 7 form the basis for all the later ones. Chapter 6 lays the foundation for chapter 10 and uses among newly introduced techniques the ones provided in the first three chapters. The Chapters 8 and 9 use the representation theory presented in chapter 7 and require material from chapter 5 . The last chapter on field quantization is based on chapter 6 and part of the study of the topological influence to this quantization relies on chapter 4.

Finally, a word on the prerequisites: The first three chapters as well as chapter 5 can easily be read with a background in linear algebra and elementary differential geometry as provided by senior undergraduate or low level graduate courses. Technically more involved are chapters 4,6 and 7 . With the prerequisites mentioned for chapter 4 , the reader has to invest some time reading the topological part involving the classification of complex line bundles and the section concerning the mapping degree. In chapter 6 different concepts are introduced and studied; it is partly selfcontained. However, it is technically more advanced than earlier ones. In chapter 7 some knowledge in representation theory would be helpful. The literature referenced contains all the technicalities which are used. Technically less involved are the self-contained parts of chapters 8 and 9 . Other, more advanced parts are complemented by references to standard literature. Some basic knowledge in functional
analysis would make the reading easier. Both chapters, however, require knowledge from earlier ones, in particular from chapter 7 on representation theory. More knowledge from the earlier chapters and from the literature referenced is needed to follow the last chapter. Together with the appendix on thermodynamics it is the most complex one.
Many valuable discussions with mathematicians and physicists have been the basis of these notes. We are particularly indebted to Karl-Heinz Brenner, Maurice de Gosson, Basil Hiley, Reinhard Honegger, Andrei Khrennikov, Alfred Rieckers and Hartmann Römer (in alphabetical order). Sincere thanks go to all of them. Very special thanks go to Serge Preston who read carefully through the manuscript, made many very helpful remarks and suggestions, and wrote the appendix.
Our colleague Serge Preston would like to thank Professor Michel Goze from the Université de Haute Alsace for the attention to his work and useful information and references.

Sincere thanks go to Mrs. S. Braak and Mrs. G. Nusser for typing many parts of this manuscript in LaTeX.

Bibliography

[1] Ralph Abraham and Jerrold E Marsden. Foundation of Mechanics. Benjamin/Cummings, Reading, 1978.
[2] Ralph Abraham, Jerrold E. Marsden, and Tudor Ratiu. Manifolds, Tensor Analysis, and Applications. Number 2 in Global Analysis Pure and Applied B. Addison-Wesley, London, Amsterdam, Don Mills (Ontario), Sydney, Tokyo, 1983.
[3] Erik Alfsen and Frederic Shultz. State Spaces of Operator Algebras. Birkhäuser, Basel, Boston, Berlin, 2001.
[4] Syed Twareque Ali, Jean-Pierre Antoine, and Jean-Pierre Gazeau. Coherent States, Wavelets and their Generalizations. Springer, New York, Berlin, Heidelberg, 2000.
[5] Michael Artin. Algebra. Birkhäuser, Basel, Boston, Berlin, 1993.
[6] H. Atmanspacher, T. Filk, and H Römer. Weak quantum theory: Formal framework and selected application. In Theo M. Nieuwenhuizen Guillome Adenier, Andrei Yu. Khrennikov, editor, Proceedings of "Quantum Theory: Reconsideration of Foundations - 3." Växjö (Sweden) June 6-11, 2005, pages 34-46, Melville, New York, 2006. American Institute of Physics.
[7] Heinz Bauer. Maß- und Integrationstheorie. de Gruyter, Berlin, 1992.
[8] R. Beattie and H. P. Butzmann. Convergence Structures and Applications to Functional Analysis. Kluwer Academic Publishers, Dordrecht, 2002.
[9] M. Berger and B. Gostiaux. Differential Geometry: Manifolds, Curves, and Surfaces. GTM 115. Springer, New York, 1988.
[10] Marcel Berger. Lectures on Geodesics in Riemannian Geometry. Tata Institute of Fundamental Research, Bombay, 1965.
[11] Ernst Binz. Two natural metrics and their covariant derivatives on a manifold of embeddings. Monatshefte für Mathematik, 89:275-288, 1980.
[12] Ernst Binz, Reinhard Honegger, Sonja Pods, and Alfred Rieckers. Heisenberg Algebra Bundles and Field Theoretic Weyl Quantization. (in preparation).
[13] Ernst Binz, Reinhard Honegger, and Alfred Rieckers. Construction and Uniqueness of the C^{*}-Weyl Algebra over a General Pre-Symplectic Space. J. Math. Phys., 45(7), 2004.
[14] Ernst Binz, Reinhard Honegger, and Alfred Rieckers. Field Theoretic Weyl Quantization as a Strict and Continuous Deformation Quantization. Annales Henri Poincaré 5, pages 327 346, 2004.
[15] Ernst Binz, Reinhard Honegger, and Alfred Rieckers. Infinite Dimensional Heisenberg Group Algebra and Field-Theoretic Strict Deformation Quantization. Intern. J. of Pure and Appl. Math., Vol. 38 No.1, pages $43-78,2007$.
[16] Ernst Binz and Sonja Pods. A Heisenberg Algebra bundle of a Vector Field in Three-Space and its Weyl Quantization in Quantum Theory. In AIP Proceedings, volume 810, Melville, New York, 2006.
[17] Ernst Binz, Sonja Pods, and Walter Schempp. Heisenberg groups - a unifying structure of signal theory, holography and quantum information theory. J. of Appl. Math. and Comp., 11(1-2):1-57, 2003.
[18] Ernst Binz, Jedrzej Sniatycki, and Hans Fischer. The Geometry of Classical Fields. Dover Publication Inc., Mineola, New York, 2006.
[19] Arno Bohm. Quantum Mechanics, Foundations and Applications. Springer, New York, Berlin, 1993.
[20] David Bohm and Basil Hiley. The Undivided Universe. Routledge, London, 1995.
[21] Max Born and Emil Wolf. Principle of Optics. Cambridge University Press, 1994.
[22] Helmut Boseck. Grundlagen der Darstellungstheorie. Deutscher Verlag der Wissenschaften, Berlin, 1973.
[23] Karl-Heinz Brenner. A Discrete Version of the Wigner Distribution Function. pages 307-310, 1983.
[24] Karl-Heinz Brenner. Phasendarstellung in Optik und Signalverarbeitung. PhD thesis, Universität Erlangen-Nürnberg, 1983.
[25] Karl-Heinz Brenner and Wodkiewicz K. Time Dependent Physical Spectrum of Light and Wigner Distribution Function. Opt. Comm., 43(2):103-106, 1982.
[26] Karl-Heinz Brenner and Xiyuan Liu. New Description of the Inhomogeneous Wave for Plane Wave Expansion in Absorbing Media. EOS Topical Meeting on Advanced Optical Imaging Techniques, 29.06.-01.07.2005, 2005.
[27] Karl-Heinz Brenner and A.W. Lohmann. Wigner Distribution Function Display of Complex 1d Signals. Opt. Comm., 42(5):310-314, 1982.
[28] Karl-Heinz Brenner and J Ojeda-Castaneda. The Ambiguity Function Applied to Partially Coherent Imagery. Optica Acta, 31(2):213-223, 1984.
[29] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum Mechanics, volume 1. John Wiley \& Sons, New York, 1977.
[30] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley \& Sons, New York, 1991.
[31] Maurice de Gosson. Maslow Classes, Metaplectic Representations and Lagrangian Quantization, volume 95 of Mathematical Reserch. Akademie Verlag, Berlin, 1997.
[32] Maurice de Gosson. Symplectic Geometry - Weyl - Moyal - Calculus, and Quantum Mechanics. Birkhäuser Verlag, Basel, Boston, Berlin, 2006.
[33] Serge de Gosson. Multioriented Symplectic Geometry and the Extension of Path Intersection, Indices, Thesis. PhD thesis, University of Växjö (Sweden), 2005.
[34] Manfredo P. do Carmo. Differential Forms and Applications. Springer, Berlin, Heidelberg, New York, 1994.
[35] Samuel Eilenberg and Norman Steenrod. Foundation of Algebraic Topology. Princeton University Press, Princeton, New Jersey, 1952.
[36] D. E. Evans and J. T. Lewis. Dilatations of Irreducible Evolutions in Algebraic Quantum Theory. Dublin Institute for Advanced Studies, Dublin, 1977.
[37] Gerald B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, 1989.
[38] Gerald B. Folland. Fourier Analysis and its Applications. Brooks / Cole, Pacific Grove, 1992.
[39] Daniel S. Freed and Karen K. Uhlenbeck. Instantons and Four-Manifolds, volume 1 of Mathematical Sciences Research Institute Publications. Springer, 1984.
[40] A. Frölicher and A. Kriegl. Linear Spaces and Differentation Theory. John Wiley \& Sons, Chicester, 1988.
[41] A. Gerrard and J. M. Burch. Introduction to Matrix Methods in Optics. John Wiley \& Sons, 1975.
[42] Marvin J. Greenberg. Lectures on Algebraic Topology. Benjamin, 1971.
[43] Werner Greub. Linear Algebra. Springer, 4 edition, 1975.
[44] Werner Greub. Multilinear Algebra. Springer, 2 edition, 1978.
[45] Werner Greub, Stephen Halperin, and Ray Vanstone. Connections, Curvature, and Cohomology II. Number 47 in Pure and Applied Mathematics. Academic Press, New York, 1973.
[46] Werner Greub, Stephen Halperin, and Ray Vanstone. Connections, Curvature, and Cohomology. Vol. I $\mathcal{G} I I$. Number 47 in Pure and Applied Mathematics. Academic Press, New York, 1973.
[47] Karl-Heinz Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, Boston, 2000.
[48] Hans-Christoph Grunau. Abbildungsgrad und Fixpunktsätze. www-ian.math.uni-magdeburg.de/home/grunau/grunaupublic.html.
[49] Victor Guillemin and Alan Pollack. Differential Topology. Prentice-Hall, New Jersey, 1974.
[50] Victor Guillemin and Shlomo Sternberg. Symplectic Techniques in Physics. Cambridge University Press, 1991.
[51] J. Gutknecht. Die C_{Γ}^{∞}-Struktur aus der Diffeomorphsimengruppe einer kompakten Mannigfaltigkeit. PhD thesis, ETH Zürich, 1977.
[52] Eugene Hecht. Optics. Addison-Wesley Pub Co Inc, Reading, Mass, New York, London, Amsterdam, Don Mills (Ontario), Sydney, Tokio, third edition, 1998.
[53] Wolfgang Hein. Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen. Springer, Berlin, Heidelberg, 1990.
[54] F. Hirzebruch. Topological Methods in Algebraic Geometry. Springer, Berlin, Heidelberg, New York, third edition, 1978. Second, Corrected Printing.
[55] Reinhard Honegger and Alfred Rieckers. Photons in Fock Space and Beyond. (to appear).
[56] Sze-Tsen Hue. Homotopy Theory. Academic Press, New York, 1959.
[57] H. H. Keller. Differential Calculus in Locally Convex Spaces. Springer, Berlin, Heidelberg, 1974.
[58] Aleksandr A. Kirillov. Elements of the Theory of Representations. Springer, New York, 1974.
[59] N. P. Landsman. Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York, 1998.
[60] Jerrold E. Marsden and Tudor S. Ratiu. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics 17. Springer, Berlin, Heidelberg, New York, 1994.
[61] James R. Munkres. Elements of Algebraic topology. Addison-Wesley, Menlo Park, London, Amsterdam, 1984.
[62] Gregory L. Naber. Topology, Geometry, and Gauge Fields: Foundations. Number 25 in Texts in Applied Mathematics. Springer, New York, 1997.
[63] Gregory L. Naber. Topology, Geometry, and Gauge Fields: Interactions. Number 141 in Texts in Applied Mathematics. Springer, New York, 2000.
[64] Johann von Neumann. Mathematische Grundlagen der Quantenmechanik (Nachdruck). Springer, Berlin, Heidelberg, New York, 1968.
[65] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[66] Richard S. Palais. Seminar on the Atiyah-Singer Index Theorem. Princeton Univ. Pr, 1966.
[67] Stephen Parrott. Relativistic Electrodynamics and Differential Geometry. Springer, New York, Berlin, Heidelberg, 1987.
[68] Sonja Pods. Die Theorie der Heisenberggruppen zur Beschreibung einer Informationsübertragung insbesondere bei der Bildgebung in der Magnetresonanztomographie. PhD thesis, Universität Mannheim, Logos-Verlag, Berlin, 2003.
[69] A. Pressley and G. Segal. Loop Groups. Oxford Science Publication. Clarendon Press, 1990.
[70] I. Raeburn and D. P. Williams. Morita Equivalence and Continuous Trace C*-Algebras, volume 60. AMS Mathematical Surveys and. Monographs, Boston, 1991.
[71] Walter Johannes Schempp. Harmonic Analysis on the Heisenberg Nilpotent Lie Group with Applications to Signal Theory. Pitman Research Notes in Mathematics Series 147. Longman Scientific \& Technical, 1986.
[72] Walter Johannes Schempp. Magnetic Resonance Imaging, Mathematical Foundations and Applications. Wiley-Liss, 1998.
[73] Wolfgang P. Schleich. Quantum Optics in Phase Space. Wiley-VCH, Berlin, Weinheim, 2001.
[74] Günter Schwarz. Hodge Decomposition - A Method of Solving Boundary value Problems, volume 1607 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1995.
[75] Jedrzej Sniatycki. Geometric Quantization and Quantum Mechanics. Applied Math. Sciences 30. Springer, New York, 1980.
[76] Jedrzej Sniatycki. Geometric Quantization. Unpublished preprint, 1998.
[77] H. Spanier Edwin. Algebraic Topology. Series in Higher Mathematics. McGraw-Hill, 1966.
[78] Shlomo Sternberg. Group Theory and Physics. Cambridge University Press, 1994.
[79] Norbert Straumann. Thermodynamik, volume 265 of Lecture Notes in Physics. Springer, 1986.
[80] Masamichi Taksaki. Theory of Operator Algebras I. Springer, New York, Berlin, Heidelberg, 1979.
[81] Audrey Terras. Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts 43. Cambridge University Press, 1999.
[82] François Trèves. Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics 25. Academic Press, New York, 1967.
[83] Varadarajan. V.S. Lie Groups, Lie Algebras and their Representation. Springer, New York, Berlin, Heidelberg, Tokyo, 1984.
[84] Varadarajan. V.S. Geometry of Quantum Theory. Springer, New York, Berlin, Heidelberg, Tokyo, second edition, 1985.
[85] F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Springer, New York, 1983.
[86] Joachim Weidmann. Linear Operators in Hilbert Spaces. Springer, New York, 1980.
[87] Hermann Weyl. The Theory of Groups and Quantum Mechanics. Dover Publication, Inc., New York, 1950.
[88] Bernardo Wolf, Kurt. Geometric Optics on Phase Space. Springer, Berlin, Heidelberg, 2004.

Index

*-Heisenberg group algebra, 144
*-Poisson algebra, 158
*-algebra, 143, 158, 248
*-algebra homomorphism, 144
*-homomorphism, 144
*-representation, 153, 252
$2 f$-array, 208
C^{*}-Heisenberg group algebra, 154, 266
C^{*}-Weyl algebra, 158, 159, 258
C^{*}-algebra, 154
C^{*}-group algebra, 131, 143, 154, 248
C^{*}-isomorphism, 154, 252
C^{∞}-calculus, 136
Σ-representation, 262
q-cochain, 84
abelian group, 82, 164, 168
adjoint representation, 13,116
algebra of observables, 252
algebraic dual, 157
amplitude, 192
associated bundle, 35, 167, 169
auto-ambiguity function, 196, 201
band limited, 193
Bell states, 246
bicharacter, 252, 261
bit, 215
bra, 238
bundle isomorphism, $32,51,74,142,150$, 263
bundle map, 50, 62, 137
bundle of symplectic frames, 134
bundle projection, 61,62
canonical commutation relations, 249
canonical presheaf, 83
canonical symplectic form, 162
CCR, 249
center, 114
central frequency, 169
channel of information, 215
character, $41,147,165,169$
character group, 147
characteristic bundle, 67, 133, 265
Chern Number, 97
Chern-de Rham class, 88
Clairaut coordinates, 71
classical field observable, 255
classical observable, 230, 252, 253
classical quantum mechanics, 221
classical spin vector, 45
classical Weyl functional, 157, 255
classical Weyl system, 255
coadjoint action, 117
coadjoint orbit, 117, 118, 166, 220
cocycle, $33,73,81,176,220,248$
Codazzi-Mainardi equation, 57
coefficient function, 202
coherent states, 196
cohomological characteristics, 73
cohomology class, 65
commutation relations, 12, 249, 250
commutative group, $52,144,155,158,248$
commutator, $4,113,122,135,164,216,248$
commutator subgroup, 164
compact, 33, 64, 73, 123, 131, 142, 148, 156, 159, 180, 217, 264
completion, 131, 154, 192, 237, 248, 258
complex line bundle, $35,36,47,49,60,73$, 99, 132, 247, 267
complex linear vector space, 41
cone, $38,69,98,128$
cone angle, 38
configuration space, 10, 162, 194
conjugation, $7,10,13,16,27,29,76,78$, 116, 188
connection, 47, 60, 62, 65, 66, 248
connection form, $60,61,68$
constant function, 84
continuity equation, 218, 220
continuous field, 159
continuous quantization map, 254
continuous section, 81, 159
contragradient representation, 165
contragradient Schrödinger representation, 203
convolution, 143, 193, 253
coordinate function, 54, 223, 225
correlated systems, 243
cotangent bundle, 10, 162
Coulomb field, 67-69, 71, 94, 247
counting measure, 146
covariantly constant, $62,65,68$
covering map, 18, 33, 129
cross product, 4, 52, 102, 114, 223
cross-ambiguity function, 191, 196, 200, 202
curvature, 55-57, 87, 88, 91, 102
curvature field, 64,99
de Rham class, 88
de Rham cohomology groups, 64
decomposable state, 244
deformation quantization, 252
density matrix, 241
density operator, $241,242,262$
diffeomorphism, 74, 217
differentiable group, 77, 78
directional field, 48, 53, 86, 97
discrete topology, 82, 146, 147
discrete Weyl algebra, 157
divergence free, 64
double covering, 184
eigenspace, 239
eigenvalue, 41, 111, 185, 239
eigenvector, 111, 172
eikonal, 191, 209
encoding, 215
energy density spectrum, 193
entangled, 246
entropy, 215, 216, 218
equivalent cocycles, 81
equivalent representations, 165
equivalent vector fields, $54,73,152,156$
equivariant action, 168
Euclidean geometry, 20, 37, 114
evaluation map, 30
expectation value, $241,244,259$
exterior derivative, $48,53,62,90$
field operator, 249, 250, 252, 255
field strength, $47,51,54,133,156,265,266$
first Chern class, 86, 133, 248
fixed group, 174
Fourier conjugate pair, 192, 194
Fourier conjugate variables, 179
Fourier transform, 146, 157, 178, 180, 192, 196
free matrix, 183
frequency, $11,68,71,162,166,192,193$, 219
frequency shift, 200
frequency spectrum, 194
Fresnel integrals, 209
Fresnel optics, 206, 209
fundamental group, 92, 115, 180, 184
gauge theory, 99
Gauss equation, 57
Gauss map, 48, 51
Gaussian curvature, 58, 63, 91
general group algebra, 143
generating function, 187
geodesic, 69-71
geometric optics, 191, 200, 209, 219
gray scales, 215
group algebra, 131, 143, 158, 248
group homomorphism, $15,26,82,83,143$, 147, 163
group operation, 134, 135, 234
half spin operator, 42
Hamiltonian, 237
Hamiltonian vector field, 221
harmonic oscillator, 238
Heisenberg algebra, 1, 107, 112, 122, 133, $135,137,161,191,195,216,252,263$, 279
Heisenberg algebra bundle, 132, 133
Heisenberg algebra isomorphism, 142, 229
Heisenberg factor, 286
Heisenberg group, 1, 107, 115, 116, 119, $124,130,131,135,161,164-166,186$, 191, 202, 205, 237, 248, 263, 270, 275
Heisenberg group bundle, 131, 134, 247, 251
Heisenberg uncertainty relations, 194, see also uncertainty relations
helical phase, 68
Hermitian form, 53, 146
Hermitian line bundle, 53, 64, 80
Hermitian operator, 45, 230, 237
Hermitian product, 9, 41, 62, 162, 192, 202, 238, 261
Hermitian structure, 1, 47, 108, 109
Hodge-Morrey decomposition, 101
holography, 210, 212
homogeneous quadratic polynomials, 221, 236
homogeneous vector bundle, 168, 170
homomorphism, 26, 76, 81, 83, 85, 93, 146, $161,163,173,267$
homotopy class, $73,77,92,248$
homotopy equivalent, 65
Hopf bundle, 33, 34, 36, 49, 133
Hopf fibration, 25, 28, 31, 37, 40, 94
horizontal distribution, 62, 69, 270
horizontal lift, 68-70
hyperbolic rotation angle, 22
imaginary unit, $7,121,126,247$
impulse response, 193
induced representation, 167, 168, 170, 171
inertia index, 185
infinite dimensional algebra, 158
infinite dimensional Heisenberg group, 131, $135,137,140,144,251$
infinitesimal properties, 140
infinitesimal Schrödinger representation, $175,191,195,235$
infinitesimal transformation, 219
information, 192-195, 198, 215-217, 220, 221
information channel, 191, 216
information density, 215, 217-220
information preserving, 215, 217-219
information transmission, 107, 216, 217, 220
inhomogeneous quadratic polynomials, 215, $220,230,234,236$
injective, $11,12,77,87,88,90,92,93,137$, 139, 231, 237, 254
inner automorphism, 12-14, 25, 114
instantaneous time, 194
integrating factor, 54
intensity, 201, 210, 212, 213
intensity distribution, 212, 213
interferences, 243
intertwiner, $161,164,165,176$
inverse Fourier transform, 178, 192
involution, $7,143,153,154,158,248,261$
irreducible representation, $164,172,230$
isometrically isomorphic, $10,108,115,154$
isomorphism, $2,5,7,11,13,18,33,41,49$, $50,54,60,73,75-77,79,80,88,90$, $120,128,133,141,147-149,152,155$, $161,168,221,235,236,263,269,275$, 278
isomorphism class, $77,80,92$
isomorphism theorem, 79
isomorphism type, 60
joint action, 35, 167, 169
Jordan product, 6, 126
juxtaposition, 243
ket, 238
Kolmogorov decomposition, 261
level surface, 54, 55
Levi-Civitá covariant derivative, 56
Lie algebra, $4,12,13,17,18,65,74,107$, $110,112,113,116,124,129,136,137$, $140,179,207,220,221,223,224,227$, 231, 233-236, 275-278
Lie bracket, $45,114,116,135,136,224$, 227, 229, 234, 274
Lie product, $4,6,18,114,122,123,228$, 229
lift, 69, 70, 72, 189, 269, 283-285, 287
light cone, 20, 128
light distribution, 191, 208-210, 235
light ray, 206, 208
linear isomorphism, $13,128,137,155,226$, 264
linear optics, 206
linear space, $1-3,8,11,27,35,36,41,44$, $49,62,100,107,108,114,115,123$, $125,126,136,140,158,161,176,215$, $220,225,229,236,245,251,264$
Lorentz boost, 21
Lorentz group, 6, 16, 128, 188
Lorentz metric, 21, 188
manifold, $33-36,59,64,73,77,80,86,87$, $93-95,97,100,115,119,131,134,247$, $251,267,271,273,278,281,282,287$
mapping degree, $73,86,94,96-98,137,266$
Maslov index, 185, 188
maximal level surface, 54
mean gray value, 218
measurable, 239
meridian, 28, 69, 70
metaplectic group, $161,177,180,184,187$, $188,231,233,234,236,237$
metaplectic operator, $180,183,184,186$, 188
metaplectic representation, 161, 176, 177, $180,182,184,185,187,188,191,194$, $206,209,210,214,220,231,235$
Minkowski metric, $5,6,18,19,21,126-130$, 188, 220, 236
Minkowski space, 5, 6, 11, 16, 20, 23, 99, 127, 128, 236
module isomorphism, $141,142,150,152$
momentum, 10, 71, 162, 191, 198, 200
Moyal's formula, 199, 200
natural connection form, $61,65,66$
natural inclusion, $85,143,147$
natural projection, $36,139,169,173,184$
norm, $2,23,42,49,110,153,154,158,159$, $248,253,258,259,264,280$
normal bundle, 51, 132
normalized state, 239, 241-244
object wave, 210-213
observable, 237, 239-244, 257
obstruction, 194
one-parameter group, $25,26,28,231,232$, $237,250,255,256,283,284$
optical distance, 209
optical path, 209
optical system, 191, 192, 206, 207, 209, 219
optics, $107,191,206,210,215$
orientation, $4,9,10,14,15,53,94,108$, 111, 114, 172
oriented Euclidean space, $1,3,100,107$, $176,191,194,247$
oriented rotation angle, $14,18,19$
orthogonal complement, $8,9,14,18,49$, $107,121,127,168,188$
orthogonal splitting, 49, 121, 229
orthogonality relation, 197, 199
orthonormal basis, $28,43,44,57,58,104$, 121, 129, 239
parallel of latitude, 28
partition of unity, 265
Pauli elements, $9,11,12,45$
Pauli matrices, 11, 12
periodic lift, 68, 72
phase, 68, 71, 163, 210-212
phase difference, 68, 211
phase factor, $68,176-178,180,186,192$, 193, 200, 201, 204, 210, 239
phase space, $10,11,71,162,175,186,194$, 195, 197, 201, 202, 220, 236, 249, 250, 269, 270, 278, 287
physical *-algebra, 252, 254
physical quantum observables, 252, 254
physical representation, 254
Plancherel's theorem, 193
plane waves, 210, 211
point evaluation, 138, 151, 160, 254
Poisson algebra, 132, 153, 158, 221, 223, 230, 232, 237, 249, 252, 253, 255
Poisson bracket, 158, 221, 223-226, 228, $237,248,249,257$
Pontryagin's duality, 148, 155
position variable, 162, 198, 208
positive density function, 215,220
positive Schwartz function, 215
power density, 194
power distribution, 194
power of a signal, 192
prequantization, 252-254
preservation of information, 215-217, 220, 221
presheaf, 82, 83
presymplectic structure, $52,59,132,135$, $136,158,160,248,251,253,261$
principal bundle, 80, 169
probability amplitude, 242
probability amplitude density, 216
probability density, 216, 219, 220, 238, 239
product norm, 159
product state, 243-246
projective representation, $161,176,177$, $180,184,186,205,220,260,262$
pulse, 193
pure state, 239, 241
quadratic Fourier transform, 180-183, 185, 187, 209, 232
quantization, $107,119,134,158,161,191$, 192, 215, 220, 221, 230, 231, 233-238, 247, 248, 251-253, 255, 257
quantization map, 230, 235, 236, 248, 252-254, 257
quantization scheme, 132, 235
quantum field theory, 107, 143, 257, 258
quantum mechanics, 110, 111, 175, 182, $215,230,238,246$
quantum observable, 237
quantum optics, 200, 252, 255, 257
quasi-equivalent, 263
quaternions, $1-3,7,12,18,25,47,86,97$, 107, 121-123, 127, 128, 131, 135, 173, 174, 236, 247
radar, 200, 204, 205
radar ambiguity function, 191
radar detection, 204
radial vector field, 97
radial velocity, 204
real image, 213
reconstruction, 156, 201, 210, 212, 213, 265
reconstruction formula, 201
reduced Heisenberg group, 115, 120, 123, 124, 161, 162, 164-166, 175, 202
reduced Heisenberg group bundle, 134
reduction, 65,66
reference point, $32,37,47,74$
reference wave, 210-212
reflexive group, 148
regular representation, 255, 256
representation, $14,25,35,36,40-43,45,69$, $133,154,156,161,164,165,167-170$, 172-174, 177, 180, 186, 191, 196, 214, 227, 230, 250, 252, 256, 262, 271
representation space, 166, 168, 169
reverse conjugation, 76
Ricci tensor, 57
Riemannian curvature, 57, 58
Riemannian metric, 34, 56, 100, 101, 162, 269, 274, 282
rotation angle, 15, 19, 20, 22, 38, 39, 78, 114
rotation axis, $14,38,39,76,114$
sampling theorem, 193
scalar curvature, 58,272
scalar product, $2-4,10,27,42,47,53,56$, 59, 70, 110, 121, 123, 127, 136, 146, $162,172,216,220,222,228,236,275$
Schrödinger equation, 237, 238, 240, 241
Schrödinger representation, 161, 162, $164-168,172,175,176,191,195,202$, 203, 205, 206, 219, 220, 236
Schwartz functions, 131, 135, 215
Schwartz section, 131, 171, 174
Schwartz space, 162, 187, 192
self-adjoint, $5,48,53,54,154,194,236$, $238,239,248,256$
self-adjoint operator, 239
semidirect product, $120,166,167,170,171$, 234, 236, 275
semidirect product representation, 167
sheaf, $82-85,87$
sheaf homomorphism, 83
sheaf theory, 82
short time Fourier transform, 197
signal, 192-194, 196, 197, 199, 201, 204, 215
signal analysis, $11,107,161,162,176,191$, 196, 202, 205, 208
signal detection, 215
skew field of quaternions, see also quaternions
skew Hermitian, 43, 237
skew-symmetric, 7, 59, 220, 224, 231
space of sections, 131, 168
space-time geometry, 20
special unitary group, 4,40
spin $\frac{1}{2}$-operator, 42
spin $\frac{1}{2}$-representation, 25, 40, 41
spin representation, 161
spin structure, 35
spinor, 40,43
square integrable, 162
square integrable sections, 131
squaring operator, 6
stability group, 31,32
stalk, 82
state, 238, 239, 241, 242, 244, 245, 258, 259, 261-263
statistical mixture, 242
stereographic projection, 32, 89, 91
Stone-von Neumann theorem, 164, 165, 172, 176, 191, 205, 220, 252
strict deformation quantization, 254
structure group, $32,34-36,80,81,83,85$, 134, 167, 169
structure theorem, 79
sup-norm, 53, 146, 148
superposition, 192, 211-213, 242, 243
surjective, $6,14,15,26,31,33,34,79,137$, 160, 200, 201, 226
symplectic form, $46,52,54,101,107,115$, $118,119,121,128,132,133,163,176$, $186,188,207,216,217,219,220,247$, 249, 263, 270, 276, see also symplectic structure
symplectic geometry, 221
symplectic structure, $9,11,46,52,58,107$, $112,114,118,132,176,216,228,229$, 281, see also symplectic form
symplectomorphism, 221
system function, 193
tangent bundle, 10, 86, 162, 272, 283
tangent space, $10,34,110,138$
time shift, 200
time-frequency analysis, 191, 193, 194, 196, 202, 203, 206
time-frequency plane, 11, 194, 200
topology of pointwise convergence, 146-148, 156
total energy, 192, 199, 240
total information, 217
total power, 192, see also total energy
total state, 242
total system, 243
translation, 27, 207, 217, 276, 281
transmission, 193, 215-217, 219
transvection, 172, 208
twisted convolution, 157, 158, 258, 264
twisted group algebra, 157, 158, 258
twofold covering, $6,15,16,18,26,27,161$, 180, 184, 187
uncertainty principle, 191, 194, 197
uncertainty relations, $176,194,196,241$
unit normal bundle, 55
unitarily equivalent states, 262
unitary group, $7,25,98,162,173,174,237$, 260
unitary operator, 4, 232, 250
unitary representation, 40-42, 162, 165, 173, 186, 260
variance of an observable, 241
vector bundle, 35-37, 49-53, 80, 131, 132, $158,168,170,171,174,247,253,265$
vertical subbundle, 61
virtual image, 213
volume form, $4,53,100,108,122,135$, 216-218
wave function, 238
Weingarten map, 48, 55, 95
Weyl algebra, 132, 158, 159, 247, 249, 250, 252, 253, 260, 262, 263, 266
Weyl element, 157, 255, 261
Weyl form, 249
Weyl quantization, 131, 247-249, 251, 252, 257, 258, 260, 263, 266, 267
Weyl system, 255, 260-262
Wigner distribution, 198, 199
Wigner function, 191, 196, 198-203
Wigner transform, 198
window, 197
zero section, 60

Titles in This Series

151 Ernst Binz and Sonja Pods, The geometry of Heisenberg groups: With applications in signal theory, optics, quantization, and field quantization, 2008
150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008
149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008
148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008

147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
144 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part II: Analytic aspects, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz'ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007

139 Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007

138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
135 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part I: Geometric aspects, 2007
134 Dana P. Williams, Crossed products of C^{*}-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006

129 William M. Singer, Steenrod squares in spectral sequences, 2006
128 Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlevé transcendents, 2006

127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
125 Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy Transform, 2006
124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005

TITLES IN THIS SERIES

119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004

111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
97 V. A. Vassiliev, Applied Picard-Lefschetz theory, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002
93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002
92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002
91 Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, 2002
90 Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, 2002
89 Michel Ledoux, The concentration of measure phenomenon, 2001

The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations)
 and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered.
With no prerequisites beyond the standard mathematical curriculum, this book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics.

ISBN 978-0-8218-4495-3

SURV/I5I

