Potential Theory and Dynamics on the Berkovich Projective Line

Matthew Baker
Robert Rumely

American Mathematical Society
Potential Theory and Dynamics on the Berkovich Projective Line
Potential Theory and Dynamics on the Berkovich Projective Line

Matthew Baker
Robert Rumely
Contents

Preface ix
History x
Related works xi
Acknowledgments xii
Differences from the preliminary version xiii
Introduction xv
Notation xxix

Chapter 1. The Berkovich unit disc 1
 1.1. Definition of $\mathcal{D}(0,1)$ 1
 1.2. Berkovich’s classification of points in $\mathcal{D}(0,1)$ 2
 1.3. The topology on $\mathcal{D}(0,1)$ 7
 1.4. The tree structure on $\mathcal{D}(0,1)$ 9
 1.5. Metrizability 17
 1.6. Notes and further references 18

Chapter 2. The Berkovich projective line 19
 2.1. The Berkovich affine line $\mathbb{A}^1_{\text{Berk}}$ 19
 2.2. The Berkovich “Proj” construction 23
 2.3. The action of a rational map φ on $\mathbb{P}^1_{\text{Berk}}$ 30
 2.4. Points of $\mathbb{P}^1_{\text{Berk}}$ revisited 35
 2.5. The tree structure on \mathbb{H}_{Berk} and $\mathbb{P}^1_{\text{Berk}}$ 38
 2.6. Discs, annuli, and simple domains 40
 2.7. The strong topology 42
 2.8. Notes and further references 47

Chapter 3. Metrized graphs 49
 3.1. Definitions 49
 3.2. The space CPA(Γ) 50
 3.3. The potential kernel $j_z(x, y)$ 52
 3.4. The Zhang space Zh(Γ) 54

v
3.5. The space BDV(Γ) 56
3.6. The Laplacian on a metrized graph 61
3.7. Properties of the Laplacian on BDV(Γ) 68

Chapter 4. The Hsia kernel 73
4.1. Definition of the Hsia kernel 73
4.2. The extension of $j_z(x, y)$ to $\mathbb{P}^1_{\text{Berk}}$ 76
4.3. The spherical distance and the spherical kernel 79
4.4. The generalized Hsia kernel 81
4.5. Notes and further references 85

Chapter 5. The Laplacian on the Berkovich projective line 87
5.1. Continuous functions 87
5.2. Measures on $\mathbb{P}^1_{\text{Berk}}$ 91
5.3. Coherent systems of measures 95
5.4. The Laplacian on a subdomain of $\mathbb{P}^1_{\text{Berk}}$ 97
5.5. Properties of the Laplacian 101
5.6. The Dirichlet pairing 104
5.7. Favre–Rivera-Letelier smoothing 113
5.8. The Laplacians of Favre, Jonsson, and Rivera-Letelier, and of Thuillier 116
5.9. Notes and further references 119

Chapter 6. Capacity theory 121
6.1. Logarithmic capacities 121
6.2. The equilibrium distribution 123
6.3. Potential functions attached to probability measures 128
6.4. The transfinite diameter and the Chebyshev constant 136
6.5. The Fekete-Szegő theorem 141
6.6. Notes and further references 144

Chapter 7. Harmonic functions 145
7.1. Harmonic functions 145
7.2. The Maximum Principle 150
7.3. The Poisson formula 155
7.4. Uniform convergence 161
7.5. Harnack’s principle 162
7.6. Green’s functions 163
7.7. Pullbacks 174
7.8. The multi-center Fekete-Szegő theorem 177
7.9. A Bilu-type equidistribution theorem 184
7.10. Notes and further references 191

Chapter 8. Subharmonic functions 193
8.1. Subharmonic and strongly subharmonic functions 193
8.2. Domination subharmonicity 199
8.3. Stability properties 207
8.4. The Domination Theorem 213
8.5. The Riesz Decomposition Theorem 214
8.6. The topological short exact sequence 219
8.7. Convergence of Laplacians 227
8.8. Hartogs’s lemma 230
8.9. Smoothing 234
8.10. The Energy Minimization Principle 240
8.11. Notes and further references 248

Chapter 9. Multiplicities 249
9.1. An analytic construction of multiplicities 249
9.2. Images of segments and finite graphs 271
9.3. Images of discs and annuli 278
9.4. The pushforward and pullback measures 285
9.5. The pullback formula for subharmonic functions 287
9.6. Notes and further references 290

Chapter 10. Applications to the dynamics of rational maps 291
10.1. Construction of the canonical measure 293
10.2. The Arakelov-Green’s function $g_{\mu_\omega}(x, y)$ 299
10.3. Adelic equidistribution of dynamically small points 306
10.4. Equidistribution of preimages 318
10.5. The Berkovich Fatou and Julia sets 328
10.6. Equicontinuity 333
10.7. Fixed point theorems and their applications 340
10.8. Dynamics of polynomial maps 354
10.9. Rational dynamics over \mathbb{C}_p 357
10.10. Examples 370
10.11. Notes and further references 374

Appendix A. Some results from analysis and topology 377
A.1. Convex functions 377
A.2. Upper and lower semicontinuous functions 378
A.3. Nets 379
A.4. Measure-theoretic terminology 381
A.5. Radon measures 381
A.6. Baire measures 382
A.7. The Portmanteau theorem 383
A.8. The one-point compactification 384
A.9. Uniform spaces 385
A.10. Newton polygons 387

Appendix B. \mathbb{R}-trees and Gromov hyperbolicity 393
B.1. Definitions 393
B.2. An equivalent definition of \mathbb{R}-tree 394
B.3. Geodesic triangles 395
B.4. The Gromov product 397
B.5. \mathbb{R}-trees and partial orders 401
B.6. The weak and strong topologies 402

Appendix C. A Brief overview of Berkovich’s theory 405
C.1. Motivation 405
C.2. Seminorms and norms 406
C.3. The spectrum of a normed ring 406
C.4. Affinoid algebras and affinoid spaces 409
C.5. Global k-analytic spaces 412
C.6. Properties of k-analytic spaces 414

Bibliography 417

Index 423
Preface

This book is a revised and expanded version of the authors’ manuscript “Analysis and Dynamics on the Berkovich Projective Line” ([91], July 2004). Its purpose is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line.

The theory developed here has applications in arithmetic geometry, arithmetic intersection theory, and arithmetic dynamics. In an effort to create a reference which is as useful as possible, we work over an arbitrary complete and algebraically closed non-Archimedean field. We also state our global applications over an arbitrary product formula field whenever possible. Recent work has shown that such generality is essential, even when addressing classical problems over \(\mathbb{C} \). As examples, we note the first author’s proof of a Northcott-type finiteness theorem for the dynamical height attached to a nonisotrivial rational function of degree at least 2 over a function field [5] and his joint work with Laura DeMarco [6] on finiteness results for preperiodic points of complex dynamical systems.

We first give a detailed description of the topological structure of the Berkovich projective line. We then introduce the Hsia kernel, the fundamental kernel for potential theory (closely related to the Gromov kernel of [47]). Next we define a Laplacian operator on \(\mathbb{P}^1_{\text{Berk}} \) and construct theories of capacities, harmonic functions, and subharmonic functions, all strikingly similar to their classical counterparts over \(\mathbb{C} \). We develop a theory of multiplicities for rational maps and give applications to non-Archimedean dynamics, including the construction of a canonical invariant probability measure on \(\mathbb{P}^1_{\text{Berk}} \) analogous to the well-known measure on \(\mathbb{P}^1(\mathbb{C}) \) constructed by Lyubich and by Freire, Lopes, and Mañé. Finally, we investigate Berkovich space analogues of the classical Fatou-Julia theory for rational iteration over \(\mathbb{C} \).

In §7.8, we give an updated treatment (in the special case of \(\mathbb{P}^1 \)) of the Fekete and Fekete-Szegö theorems from [88], replacing the somewhat esoteric notion of “algebraic capacitability” with the simple notion of compactness. In §7.9, working over an arbitrary product formula field, we prove a generalization of Bilu’s equidistribution theorem [24] for algebraic points which are ‘small’ with respect to the height function attached to a compact Berkovich adelic set. In §10.3, again working over a product formula field, we prove an adelic equidistribution theorem for algebraic points which are ‘small’ with respect to the dynamical height attached to a rational function of degree at least 2, extending results in [9], [35], and [47].
A more detailed overview of the results in this book can be found in the first author’s lecture notes from the 2007 Arizona Winter School [4], and in the Introduction below.

History

This book began as a set of lecture notes from a seminar on the Berkovich projective line held at the University of Georgia during the spring of 2004. The purpose of the seminar was to develop the tools needed to prove an adelic equidistribution theorem for small points with respect to the dynamical height attached to a rational function of degree \(d \geq 2 \) defined over a number field (Theorem 10.24). Establishing such a theorem had been one of the main goals in our 2002 NSF proposal DMS-0300784.

In [8], the first author and Liang-Chung Hsia had proved an adelic equidistribution theorem for points of \(\mathbb{P}^1(\mathbb{Q}) \) having small dynamical height with respect to the iteration of a polynomial map. Two basic problems remained after that work. First, there was the issue of generalizing the main results of [8] to rational functions, rather than just polynomials. It occurs frequently in complex dynamics and potential theory that one needs heavier machinery to deal with rational maps than with polynomials. Second, because the filled Julia set in \(\mathbb{P}^1(\mathbb{C}_p) \) of a polynomial over \(\mathbb{C}_p \) is often non-compact, the authors of [8] were unable to formulate their result as a true “equidistribution” theorem. Instead, they introduced a somewhat artificial notion of “pseudo-equidistribution” and showed that when the filled Julia set is compact, then pseudo-equidistribution coincides with equidistribution.

The second author, upon learning of the results in [8], suggested that Berkovich’s theory might allow those results to be formulated more cleanly. Several years earlier, in [36], he had proposed that Berkovich spaces would be a natural setting for non-Archimedean potential theory.

We thus set out to generalize the results of [8] to a true equidistribution theorem on \(\mathbb{P}^1_{\text{Berk}} \), valid for arbitrary rational maps. An important step in this plan was to establish the existence of a canonical invariant measure on \(\mathbb{P}^1_{\text{Berk}} \) attached to a rational function of degree at least 2 defined over \(\mathbb{C}_p \), having properties analogous to those of the canonical measure in complex dynamics (see [54, 72]). It was clear that even defining the canonical measure would require significant foundational work.

At roughly the same time, Antoine Chambert-Loir posted a paper to the arXiv preprint server proving (among other things) non-Archimedean Berkovich space analogues of Bilyu’s equidistribution theorem and the Szpiro-Ullmo-Zhang equidistribution theorem for abelian varieties with good reduction. In the summer of 2003, the first author met with Chambert-Loir in Paris and learned that Chambert-Loir’s student Amaury Thuillier had recently defined a Laplacian operator on Berkovich curves. Not knowing exactly what Thuillier had proved, nor when his results might be publicly available, we undertook to develop a measure-valued Laplacian and a theory
of subharmonic functions on $\mathbb{P}^1_{\text{Berk}}$ ourselves, with a view toward applying them in a dynamical setting. The previous year, we had studied Laplacians and their spectral theory on metrized graphs, and that work made it plausible that a Laplacian operator could be constructed on $\mathbb{P}^1_{\text{Berk}}$ by taking an inverse limit of graph Laplacians.

The project succeeded, and we presented our equidistribution theorem at the conference on Arithmetical Dynamical Systems held at CUNY in May 2004. To our surprise, Chambert-Loir, Thuillier, and Pascal Autissier had proved the same theorem using an approach based on Arakelov theory. At the same conference, Rob Benedetto pointed us to the work of Juan Rivera-Letelier, who had independently rediscovered the Berkovich projective line and used it to carry out a deep study of non-Archimedean dynamics. Soon after, we learned that Charles Favre and Rivera-Letelier had independently proved the equidistribution theorem as well.

The realization that three different groups of researchers had been working on similar ideas slowed our plans to develop the theory further. However, over time it became evident that each of the approaches had merit: for example, our proof brought out connections with arithmetic capacities; the proof of Chambert-Loir, Thuillier, and Autissier was later generalized to higher dimensions; and Favre and Rivera-Letelier’s proof yielded explicit quantitative error bounds. Ultimately, we, at least, have benefitted greatly from the others’ perspectives.

Thus, while this book began as a research monograph, we now view it mainly as an expository work whose goal is to give a systematic presentation of foundational results in potential theory and dynamics on $\mathbb{P}^1_{\text{Berk}}$. Although the approach to potential theory given here is our own, it has overlaps with the theory developed by Thuillier for curves of arbitrary genus. Many of the results in the final two chapters on the dynamics of rational functions were originally discovered by Rivera-Letelier, though some of our proofs are new.

Related works

Amaury Thuillier, in his doctoral thesis [94], established the foundations of potential theory for Berkovich curves of arbitrary genus. Thuillier constructs a Laplacian operator and theories of harmonic and subharmonic functions and gives applications of his work to Arakelov intersection theory. Thuillier’s work has great generality and scope, but it is written in a sophisticated language and assumes a considerable amount of machinery. Because this book is written in a more elementary language and deals only with \mathbb{P}^1, it may be a more accessible introduction to the subject for some readers.

Juan Rivera-Letelier, in his doctoral thesis [81] and subsequent papers [82, 83, 84, 80], has carried out a profound study of the dynamics of rational maps on the Berkovich projective line (though his papers are written in a rather different terminology). Section 10.9 contains an exposition of Rivera-Letelier’s work.
Using Rivera-Letelier’s ideas, we have simplified and generalized our discussion of multiplicities in Chapter 9 and have greatly extended our original results on the dynamics of rational maps in Chapter 10. It should be noted that Rivera-Letelier’s proofs are written with \mathbb{C}_p as the ground field. One of the goals of this book is to establish a reference for parts of his theory which hold over an arbitrary complete and algebraically closed non-Archimedean field.

Charles Favre and Mattias Jonsson [45] have developed a Laplacian operator, and parts of potential theory, in the general context of \mathbb{R}-trees. Their definition of the Laplacian, while ultimately yielding the same operator on $\mathbb{P}^1_{\text{Berk}}$, has a rather different flavor from ours. As noted above, Chambert-Loir [35] and Favre and Rivera-Letelier [46, 47] have given independent proofs of the adelic dynamical equidistribution theorem, as well as constructions of the canonical measure on $\mathbb{P}^1_{\text{Berk}}$ attached to a rational function. Recently Favre and Rivera-Letelier [48] have investigated ergodic theory for rational maps on $\mathbb{P}^1_{\text{Berk}}$. In Section 10.4, we prove a special case of their theorem on the convergence of pullback measures to the canonical measure, which we use as the basis for our development of Fatou-Julia theory.

Acknowledgments

We would like to thank all the people who assisted us in the course of this project, in particular our wives for their patience and understanding.

We thank Robert Varley and Mattias Jonsson for useful suggestions and Sheldon Axler, Antoine Chambert-Loir, Robert Coleman, Xander Faber, William Noorduin, Daeshik Park, Clay Petsche, Juan Rivera-Letelier, Joe Silverman, and Steve Winburn for proofreading parts of the manuscript. Aaron Abrams and Brian Conrad gave useful suggestions on Appendices B and C, respectively. Charles Favre suggested several improvements in Chapter 8. The idea for the Hsia kernel as the fundamental kernel for potential theory on the Berkovich line was inspired by a manuscript of Liang-Chung Hsia [62]. We thank Rob Benedetto for directing us to the work of Juan Rivera-Letelier. We also thank Rivera-Letelier for many stimulating conversations about dynamics of rational maps and the Berkovich projective line. Finally, we thank the anonymous referees who read through this work and made a number of valuable suggestions and everyone at the AMS who assisted with the production of this book, including Marcia Almeida, Barbara Beeton, and Ina Mette. We especially thank Arlene O’Sean for her careful and thorough editing.

We are grateful to the National Science Foundation for its support of this project, primarily in the form of the research grant DMS-0300784, but also through research grants DMS-0600027 and DMS-0601037, under which the bulk of the writing was carried out. Any opinions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Differences from the preliminary version

There are several differences between the present manuscript and the preliminary version [91] posted to the arXiv preprint server in July 2004. For one thing, we have corrected a number of errors in the earlier version.

In addition, we have revised all of the statements and proofs so that they hold over an arbitrary complete, algebraically closed field K endowed with a nontrivial non-Archimedean absolute value, rather than just over the field C_p. The main difference is that the Berkovich projective line over C_p is metrizable and has countable branching at every point, whereas in general the Berkovich projective line over K is nonmetrizable and has uncountable branching. Replacing C_p by K throughout required a significant reworking of many of our original proofs, since [91] relies in several places on arguments valid for metric spaces but not for an arbitrary compact Hausdorff space. Consequently, the present book makes more demands on the reader in terms of topological prerequisites; for example we now make use of nets rather than sequences in several places.

In some sense, this works against the concrete and “elementary” exposition that we have striven for. However, the changes seem desirable for at least two reasons. First, some proofs become more natural once the crutch of metrizability is removed. Second, and perhaps more importantly, the theory for more general fields is needed for many applications. The first author’s paper [5] is one example of this: it contains a Northcott-type theorem for dynamical canonical heights over a general field k endowed with a product formula; the theorem is proved by working locally at each place v on the Berkovich projective line over C_v (the smallest complete and algebraically closed field containing k and possessing an absolute value extending the given one $|\cdot|_v$ on k). As another example, Kontsevich and Soibelman [68] have recently used Berkovich’s theory over fields such as the completion of an algebraic closure of $C((T))$ to study homological mirror symmetry. We mention also the work of Favre and Jonsson [45] on the valuative tree, as well as the related work of Jan Kiwi [66], both of which have applications to complex dynamics.

Here is a summary of the main differences between this work and [91]:

- We have added a detailed Introduction summarizing the work.
- We have added several appendices in order to make the presentation more self-contained.
- We have added a symbol table and an index and updated the bibliography.
- We give a different construction of \mathbb{P}^1_{Berk} (analogous to the “Proj” construction in algebraic geometry) which makes it easier to understand the action of a rational function.
- We have changed some of our notation and terminology to be compatible with that of the authors mentioned above.
• We have added sections on the Dirichlet pairing and Favre–Rivera-Letelier smoothing.
• We compare our Laplacian with those of Favre, Jonsson, and Rivera-Letelier, and of Thuillier.
• We have included a discussion of \mathbb{R}-trees, and in particular of $\mathbb{P}^1_{\text{Berk}}$ as a “profinite \mathbb{R}-tree”.
• We have expanded our discussion of the Poisson formula on $\mathbb{P}^1_{\text{Berk}}$.
• We have added a section on Thuillier’s short exact sequence describing subharmonic functions in terms of harmonic functions and positive σ-finite measures.
• We have added a section on Hartogs’s lemma, a key ingredient in the work of Favre and Rivera-Letelier.
• We state and prove Berkovich space versions of Bilu’s equidistribution theorem, the dynamical equidistribution theorem for small points, and the arithmetic Fekete-Szegö theorem for \mathbb{P}^1.
• We have simplified and expanded the discussion in Chapter 9 on analytic multiplicities.
• We have greatly expanded the material on dynamics of rational maps, incorporating the work of Rivera-Letelier and the joint work of Favre and Rivera-Letelier, and including a section on examples.
Introduction

This book has several goals. The first goal is to develop the foundations of potential theory on \mathbb{P}_Berk^1, including the definition of a measure-valued Laplacian operator, capacity theory, and a theory of harmonic and subharmonic functions. A second goal is to give applications of potential theory on \mathbb{P}_Berk^1, especially to the dynamics of rational maps defined over an arbitrary complete and algebraically closed non-Archimedean field K. A third goal is to provide the reader with a concrete introduction to Berkovich’s theory of analytic spaces by focusing on the special case of the Berkovich projective line.

We now outline the contents of the book.

The Berkovich affine and projective lines. Let K be an algebraically closed field which is complete with respect to a nontrivial non-Archimedean absolute value. The topology on K induced by the given absolute value is Hausdorff, but it is also totally disconnected and not locally compact. This makes it difficult to define a good notion of an analytic function on K. Tate dealt with this problem by developing the subject now known as rigid analysis, in which one works with a certain Grothendieck topology on K. This leads to a satisfactory theory of analytic functions, but since the underlying topological space is unchanged, difficulties remain for other applications. For example, using only the topology on K, there is no evident way to define a Laplacian operator analogous to the classical Laplacian on \mathbb{C} or to work sensibly with probability measures on K.

However, these difficulties, and many more, can be resolved in a very satisfactory way using Berkovich’s theory. The Berkovich affine line A^1_{Berk} over K is a locally compact, Hausdorff, and path-connected topological space which contains K (with the topology induced by the given absolute value) as a dense subspace. One obtains the Berkovich projective line $\mathbb{P}^1_{\text{Berk}}$ by adjoining to A^1_{Berk} in a suitable manner a point at infinity; the resulting space $\mathbb{P}^1_{\text{Berk}}$ is a compact, Hausdorff, path-connected topological space which contains $\mathbb{P}^1(K)$ (with its natural topology) as a dense subspace. In fact, A^1_{Berk} and $\mathbb{P}^1_{\text{Berk}}$ are more than just path-connected: they are uniquely path-connected, in the sense that any two distinct points can be joined by a unique arc. The unique path-connectedness is closely related to the fact that A^1_{Berk} and $\mathbb{P}^1_{\text{Berk}}$ are endowed with a natural tree structure. (More specifically, they are \mathbb{R}-trees, as defined in §1.4.) The tree structure on A^1_{Berk} (resp. $\mathbb{P}^1_{\text{Berk}}$) can
be used to define a \textit{Laplacian operator} in terms of the classical Laplacian on a finite graph. This in turn leads to a theory of harmonic and subharmonic functions which closely parallels the classical theory over \(\mathbb{C} \).

The definition of \(\mathbb{A}_{\text{Berk}}^1 \) is quite simple and makes sense with \(K \) replaced by an arbitrary field \(k \) endowed with a (possibly Archimedean or even trivial) absolute value. As a set, \(\mathbb{A}_{\text{Berk},k}^1 \) consists of all multiplicative seminorms on the polynomial ring \(k[T] \) which extend the usual absolute value on \(k \). (A \textit{multiplicative seminorm} on a ring \(A \) is a function \([\]_x : A \to \mathbb{R}_{\geq 0} \) satisfying \([0]_x = 0, [1]_x = 1, [fg]_x = [f]_x \cdot [g]_x \), and \([f+g]_x \leq [f]_x + [g]_x \) for all \(f, g \in A \).)

By an aesthetically desirable abuse of notation, we will identify seminorms \([\]_x \) with points \(x \in \mathbb{A}_{\text{Berk},k}^1 \), and we will usually omit explicit reference to the field \(k \), writing simply \(\mathbb{A}_{\text{Berk}}^1 \). The topology on \(\mathbb{A}_{\text{Berk},k}^1 \) is the weakest one for which \(x \mapsto [f]_x \) is continuous for every \(f \in k[T] \).

To motivate this definition, we observe that in the classical setting, every multiplicative seminorm on \(\mathbb{C}[T] \) which extends the usual absolute value on \(\mathbb{C} \) is of the form \(f \mapsto |f(z)| \) for some \(z \in \mathbb{C} \). (This can be deduced from the well-known Gelfand-Mazur theorem from functional analysis.) It is then easy to see that \(\mathbb{A}_{\text{Berk},\mathbb{C}}^1 \) is homeomorphic to \(\mathbb{C} \) itself and also to the Gelfand spectrum (i.e., the space of all maximal ideals) of \(\mathbb{C}[T] \).

In the non-Archimedean world, \(K \) can once again be identified with the Gelfand space of maximal ideals in \(K[T] \), but now there are many more multiplicative seminorms on \(K[T] \) than just the ones given by evaluation at a point of \(K \). The prototypical example arises by fixing a closed disc \(D(a,r) = \{ z \in K : |z-a| \leq r \} \) in \(K \) and defining \([\]_{D(a,r)} \) by

\[
[f]_{D(a,r)} = \sup_{z \in D(a,r)} |f(z)| .
\]

It is an elementary consequence of Gauss’s lemma that \([\]_{D(a,r)} \) is \textit{multiplicative}, and the other axioms for a seminorm are trivially satisfied. Thus each disc \(D(a,r) \) gives rise to a point of \(\mathbb{A}_{\text{Berk}}^1 \). Note that this includes discs for which \(r \notin |K^\times| \), i.e., “irrational discs” for which the set \(\{ z \in K : |z-a| = r \} \) is empty. We may consider the point \(a \) as a “degenerate” disc of radius zero. (If \(r > 0 \), then \([\]_{D(a,r)} \) is not only a seminorm, but a norm.) It is not hard to see that distinct discs \(D(a,r) \) with \(r \geq 0 \) give rise to distinct multiplicative seminorms on \(K[T] \), and therefore the set of all such discs embeds naturally into \(\mathbb{A}_{\text{Berk}}^1 \).

Suppose \(x, x' \in \mathbb{A}_{\text{Berk}}^1 \) are distinct points corresponding to the (possibly degenerate) discs \(D(a,r), D(a',r') \), respectively. The unique path in \(\mathbb{A}_{\text{Berk}}^1 \) between \(x \) and \(x' \) has a very intuitive description. If \(D(a,r) \subset D(a',r') \), it consists of all points of \(\mathbb{A}_{\text{Berk}}^1 \) corresponding to discs containing \(D(a,r) \) and contained in \(D(a',r') \). The set of all such “intermediate discs” is totally ordered by containment, and if \(a = a' \), it is just \(\{ D(a,t) : r \leq t \leq r' \} \). If \(D(a,r) \) and \(D(a',r') \) are disjoint, the unique path between \(x \) and \(x' \) consists of all points of \(\mathbb{A}_{\text{Berk}}^1 \) corresponding to discs which are either of the form \(D(a,t) \) with \(r \leq t \leq |a-a'| \) or of the form \(D(a',t) \) with \(r' \leq t \leq |a-a'| \).
The disc $D(a, |a - a'|) = D(a', |a - a'|)$ is the smallest one containing both $D(a, r)$ and $D(a', r')$, and if $x \lor x'$ denotes the point of $\mathbb{A}^1_{\text{Berk}}$ corresponding to $D(a, |a - a'|)$, then the path from x to x' is just the path from x to $x \lor x'$ followed by the path from $x \lor x'$ to x'.

In particular, if a, a' are distinct points of K, one can visualize the path in $\mathbb{A}^1_{\text{Berk}}$ from a to a' as follows: increase the “radius” of the degenerate disc $D(a, 0)$ until a disc $D(a, r)$ is reached which also contains a'. This disc can also be written as $D(a', s)$ with $s = |a - a'|$. Now decrease s until the radius reaches zero. This “connects” the totally disconnected space K by adding points corresponding to closed discs in K. In order to obtain a compact space, however, it is necessary in general to add even more points, for K may not be spherically complete (this happens, e.g., when $K = \mathbb{C}_p$): there may be decreasing sequences of closed discs with empty intersection. Intuitively, we need to add in points corresponding to such sequences in order to obtain a space which has a chance of being compact. More precisely, returning to the definition of $\mathbb{A}^1_{\text{Berk}}$ in terms of multiplicative seminorms, if $\{D(a_i, r_i)\}$ is any decreasing nested sequence of closed discs, then the map

$$f \mapsto \lim_{i \to \infty} [f]_{D(a_i, r_i)}$$

defines a multiplicative seminorm on $K[T]$ extending the usual absolute value on K. One can show that two sequences of discs with empty intersection define the same seminorm if and only if the sequences are cofinal. This yields a large number of additional points of $\mathbb{A}^1_{\text{Berk}}$. According to Berkovich’s classification theorem, we have now described all the points of $\mathbb{A}^1_{\text{Berk}}$: each point $x \in \mathbb{A}^1_{\text{Berk}}$ corresponds to a decreasing nested sequence $\{D(a_i, r_i)\}$ of closed discs, and we can categorize the points of $\mathbb{A}^1_{\text{Berk}}$ into four types according to the nature of $D = \bigcap D(a_i, r_i)$:

1. D is a point of K.
2. D is a closed disc with radius belonging to $|K^\times|$.
3. D is a closed disc with radius not belonging to $|K^\times|$.
4. $D = \emptyset$.

As a set, $\mathbb{P}^1_{\text{Berk}}$ can be obtained from $\mathbb{A}^1_{\text{Berk}}$ by adding a type I point denoted ∞. The topology on $\mathbb{P}^1_{\text{Berk}}$ is that of the one-point compactification.

Following Rivera-Letelier, we write $\mathbb{H}^0_{\text{Berk}}$ for the subset of $\mathbb{P}^1_{\text{Berk}}$ consisting of all points of type II, III, or IV (Berkovich “hyperbolic space”). Note that $\mathbb{H}^0_{\text{Berk}}$ consists of precisely the points in $\mathbb{P}^1_{\text{Berk}}$ for which $| \cdot |_x$ is a norm. We also write $\mathbb{H}^1_{\text{Berk}}$ for the set of type II points and $\mathbb{H}^2_{\text{Berk}}$ for the set of points of type II or III.

The description of points of $\mathbb{A}^1_{\text{Berk}}$ in terms of closed discs is very useful, because it allows one to visualize quite concretely the abstract space of multiplicative seminorms which we started with. It also allows us to understand in a more concrete way the natural partial order on $\mathbb{A}^1_{\text{Berk}}$ in which $x \leq y$ if and only if $[f]_x \leq [f]_y$ for all $f \in K[T]$. In terms of discs, if x, y are points of type I, II, or III, one can show that $x \leq y$ if and only if the disc
corresponding to \(x \) is contained in the disc corresponding to \(y \). (We leave it as an exercise to the reader to extend this description of the partial order to points of type IV.) For any pair of points \(x, y \in \mathbb{A}^1_{\text{Berk}} \), there is a unique least upper bound \(x \lor y \in \mathbb{A}^1_{\text{Berk}} \) with respect to this partial order. We can extend the partial order to \(\mathbb{P}^1_{\text{Berk}} \) by declaring that \(x \leq \infty \) for all \(x \in \mathbb{A}^1_{\text{Berk}} \).

Writing
\[
[x, x'] = \{ z \in \mathbb{P}^1_{\text{Berk}} : x \leq z \leq x' \} \cup \{ z \in \mathbb{P}^1_{\text{Berk}} : x' \leq z \leq x \},
\]
it is easy to see that the unique path between \(x, y \in \mathbb{P}^1_{\text{Berk}} \) is just
\[
[x, x \lor y] \cup [x \lor y, y].
\]

There is a canonical metric \(\rho \) on \(\mathbb{H}_{\text{Berk}} \) which is of great importance for potential theory. To define it, we first define a function \(\text{diam} : \mathbb{A}^1_{\text{Berk}} \to \mathbb{R}_{\geq 0} \) by setting \(\text{diam}(x) = \lim r_i \) if \(x \) corresponds to the nested sequence \(\{ D(a_i, r_i) \} \). This is easily checked to be well-defined, independent of the choice of nested sequence. If \(x \in \mathbb{H}_{\text{Berk}} \), then \(\text{diam}(x) \) is just the diameter (= radius) of the corresponding closed disc. Because \(K \) is complete, if \(x \) is of type IV, then \(\text{diam}(x) > 0 \). Thus \(\text{diam}(x) = 0 \) for \(x \in \mathbb{A}^1_{\text{Berk}} \) of type I, and \(\text{diam}(x) > 0 \) for \(x \in \mathbb{H}_{\text{Berk}} \).

If \(x, y \in \mathbb{H}_{\text{Berk}} \) with \(x \leq y \), we define
\[
\rho(x, y) = \log_{q_v} \frac{\text{diam}(y)}{\text{diam}(x)},
\]
where \(\log_v \) denotes the logarithm to the base \(q_v \), with \(q_v > 1 \) a fixed real number chosen so that \(-\log_v | \cdot | \) is a prescribed normalized valuation on \(K \).

More generally, for \(x, y \in \mathbb{H}_{\text{Berk}} \) arbitrary, we define the path distance metric \(\rho(x, y) \) by
\[
\rho(x, y) = \rho(x, x \lor y) + \rho(y, x \lor y).
\]

It is not hard to verify that \(\rho \) defines a metric on \(\mathbb{H}_{\text{Berk}} \). One can extend \(\rho \) to a singular function on \(\mathbb{P}^1_{\text{Berk}} \) by declaring that if \(x \in \mathbb{P}^1(K) \) and \(y \in \mathbb{P}^1_{\text{Berk}} \),
we have $\rho(x, y) = \infty$ if $x \neq y$ and 0 if $x = y$. However, we usually only consider ρ as being defined on \mathbb{H}_{Berk}.

It is important to note that the topology on \mathbb{H}_{Berk} defined by the metric ρ is not the subspace topology induced from the Berkovich (or Gelfand) topology on \mathbb{P}^1_{Berk}; it is strictly finer than the subspace topology.

The group $\text{PGL}(2, K)$ of Möbius transformations acts continuously on \mathbb{P}^1_{Berk} in a natural way compatible with the usual action on $\mathbb{P}^1(K)$, and this action preserves $\mathbb{H}_{Berk}, \mathbb{Q}^1_{Berk}$, and \mathbb{R}^1_{Berk}. Using the definition of \mathbb{P}^1_{Berk} in terms of multiplicative seminorms (and extending each $\lbrack \cdot \rbrack$ to a seminorm on its local ring in the quotient field $K(T)$), we have $\lbrack f \rbrack_{M(x)} = [f \circ M]_x$ for each $M \in \text{PGL}(2, K)$. The action of $\text{PGL}(2, K)$ on \mathbb{P}^1_{Berk} can also be described concretely in terms of Berkovich's classification theorem, using the fact that each $M \in \text{PGL}(2, K)$ takes closed discs to closed discs. An important observation is that $\text{PGL}(2, K)$ acts isometrically on \mathbb{H}_{Berk}, i.e.,

$$\rho(M(x), M(y)) = \rho(x, y)$$

for all $x, y \in \mathbb{H}_{Berk}$ and all $M \in \text{PGL}(2, K)$. This shows that the path distance metric ρ is "coordinate-free".

The diameter function diam can also be used to extend the usual distance function $|x - y|$ on K to A^1_{Berk}. We call this extension the *Hsia kernel* and denote it by $\delta(x, y)_{\infty}$. Formally, for $x, y \in A^1_{Berk}$ we have

$$\delta(x, y)_{\infty} = \text{diam}(x \lor y).$$

It is easy to see that if $x, y \in K$, then $\delta(x, y)_{\infty} = |x - y|$. More generally, one has the formula

$$\delta(x, y)_{\infty} = \limsup_{(x_0, y_0) \to (x, y)} |x_0 - y_0|,$$

where $(x_0, y_0) \in K \times K$ and the convergence implicit in the lim sup is with respect to the product topology on $\mathbb{P}^1_{Berk} \times \mathbb{P}^1_{Berk}$. The Hsia kernel satisfies all of the axioms for an ultrametric with one exception: we have $\delta(x, x)_{\infty} > 0$ for $x \in \mathbb{H}_{Berk}$.

The function $-\log_v \delta(x, y)_{\infty}$, which generalizes the usual potential theory kernel $-\log_v |x - y|$, leads to a theory of capacities on \mathbb{P}^1_{Berk} which generalizes that of \cite{88} and which has many features in common with classical capacity theory over \mathbb{C}.

There is also a *generalized Hsia kernel* $\delta(x, y)_{\zeta}$ with respect to an arbitrary point $\zeta \in \mathbb{P}^1_{Berk}$; we refer the reader to §4.4 for details.

We now come to an important description of \mathbb{P}^1_{Berk} as a *profinite \mathbb{R}-tree*. An \mathbb{R}-tree is a metric space (T, d) such that for each distinct pair of points $x, y \in T$, there is a unique arc in T from x to y, and this arc is a geodesic. (See Appendix B for a more detailed discussion of \mathbb{R}-trees.) A *branch point* is a point $x \in T$ for which $T \setminus \{x\}$ has either one or more than two connected components. A *finite \mathbb{R}-tree* is an \mathbb{R}-tree which is compact and has only finitely many branch points. Intuitively, a finite \mathbb{R}-tree is just a finite tree.
in the usual graph-theoretic sense, but where the edges are thought of as line segments having definite lengths. Finally, a profinite \mathbb{R}-tree is an inverse limit of finite \mathbb{R}-trees.

Let us consider how these definitions play out for $\mathbb{P}^1_{\text{Berk}}$. If $S \subset \mathbb{P}^1_{\text{Berk}}$, define the convex hull of S to be the smallest path-connected subset of $\mathbb{P}^1_{\text{Berk}}$ containing S. (This is the same as the set of all paths between points of S.) By abuse of terminology, a finite subgraph of $\mathbb{P}^1_{\text{Berk}}$ will mean the convex hull of a finite subset $S \subset \mathbb{P}^1_{\text{Berk}}$. Every finite subgraph Γ, when endowed with the induced path distance metric ρ, is a finite \mathbb{R}-tree, and the collection of all finite subgraphs of $\mathbb{P}^1_{\text{Berk}}$ is a directed set under inclusion. Moreover, if $\Gamma \preceq \Gamma'$, then by a basic property of \mathbb{R}-trees, there is a continuous retraction map $r_{\Gamma'}: \Gamma' \to \Gamma$. In §1.4, we will show that $\mathbb{P}^1_{\text{Berk}}$ is homeomorphic to the inverse limit $\lim_{\leftarrow} \Gamma$ over all finite subgraphs $\Gamma \subset \mathbb{P}^1_{\text{Berk}}$. (Intuitively, this is just a topological formulation of Berkovich’s classification theorem.)

This description of $\mathbb{P}^1_{\text{Berk}}$ as a profinite \mathbb{R}-tree provides a convenient way to visualize the topology on $\mathbb{P}^1_{\text{Berk}}$: two points are “close” if they retract to the same point of a “large” finite subgraph. For each Γ, we let $r_{\mathbb{P}^1_{\text{Berk}}, \Gamma}$ be the natural retraction map from $\mathbb{P}^1_{\text{Berk}}$ to Γ coming from the universal property of the inverse limit.

A fundamental system of open neighborhoods for the topology on $\mathbb{P}^1_{\text{Berk}}$ is given by the open affinoid subsets, which are the sets of the form $r_{\mathbb{P}^1_{\text{Berk}}, \Gamma}(V)$ for Γ a finite subgraph of $\mathbb{H}^R_{\text{Berk}}$ and V an open subset of Γ. We will refer to a connected open affinoid subset of $\mathbb{P}^1_{\text{Berk}}$ as a simple domain. Simple domains can be completely characterized as the connected open subsets of $\mathbb{P}^1_{\text{Berk}}$ having a finite (nonzero) number of boundary points, all of which are contained in $\mathbb{H}^R_{\text{Berk}}$. If U is an open subset of $\mathbb{P}^1_{\text{Berk}}$, a simple subdomain of U is defined to be a simple domain whose closure is contained in U.

Laplacians. The profinite \mathbb{R}-tree structure on $\mathbb{P}^1_{\text{Berk}}$ leads directly to the construction of a Laplacian operator. On a finite subgraph Γ of $\mathbb{P}^1_{\text{Berk}}$ (or, more generally, on any ‘metrized graph’; see Chapter 3 for details), there is a natural Laplacian operator Δ_{Γ} generalizing the well-known combinatorial Laplacian on a weighted graph. If $f: \Gamma \to \mathbb{R}$ is continuous, and C^2 except at a finite number of points, then there is a unique Borel measure $\Delta_{\Gamma}(f)$ of total mass zero on Γ such that

$$
\int_{\Gamma} \psi \Delta_{\Gamma}(f) = \int_{\Gamma} f'(x)\psi'(x) \, dx
$$

for all continuous, piecewise affine functions ψ on Γ. The measure $\Delta_{\Gamma}(f)$ has a discrete part and a continuous part. At each $P \in \Gamma$ which is either a branch point of Γ or a point where $f(x)$ fails to be C^2, $\Delta_{\Gamma}(f)$ has a point mass equal to the negative of the sum of the directional derivatives of $f(x)$ on the edges emanating from P. On the intervening edges, it is given by $-f''(x)dx$. (See Chapter 3 for details.)
We define $\text{BDV}(\Gamma)$ to be the space of all continuous real-valued functions f on Γ for which the distribution defined by
\begin{equation}
\psi \mapsto \int_{\Gamma} f \Delta_{\Gamma}(\psi),
\end{equation}
for all ψ as above, is represented by a bounded signed Borel measure $\Delta_{\Gamma}(f)$. A simple integration by parts argument shows that this measure coincides with the one defined by (0.1) when f is sufficiently smooth. The name “BDV” is an abbreviation for “Bounded Differential Variation”. We call the measure $\Delta_{\Gamma}(f)$ the Laplacian of f on Γ.

The Laplacian satisfies an important compatibility property with respect to the partial order on the set of finite subgraphs of $\mathbb{P}_1^{\text{Berk}}$ given by containment: if $\Gamma \leq \Gamma'$ and $f \in \text{BDV}(\Gamma')$, then
\begin{equation}
\Delta_{\Gamma}(f|\Gamma) = (r_{\Gamma',\Gamma})_* \Delta_{\Gamma'}(f).
\end{equation}

We define $\text{BDV}(\mathbb{P}_1^{\text{Berk}})$ to be the collection of all functions $f : \mathbb{P}_1^{\text{Berk}} \to \mathbb{R} \cup \{\pm \infty\}$ such that:
\begin{itemize}
 \item $f|\Gamma \in \text{BDV}(\Gamma)$ for each finite subgraph Γ.
 \item The measures $|\Delta_{\Gamma}(f)|$ have uniformly bounded total mass.
\end{itemize}
Note that belonging to $\text{BDV}(\mathbb{P}_1^{\text{Berk}})$ imposes no condition on the values of f at points of $\mathbb{P}_1^{\mathbb{P}_1^{\text{Berk}}}(K)$.

Using the compatibility property (0.3), one shows that if $f \in \text{BDV}(\mathbb{P}_1^{\text{Berk}})$, then the collection of measures $\{\Delta_{\Gamma}\}$ “cohere” to give a unique Borel measure $\Delta(f)$ of total mass zero on the inverse limit space $\mathbb{P}_1^{\mathbb{P}_1^{\text{Berk}}}$ satisfying
\begin{equation}
(r_{\mathbb{P}_1^{\text{Berk}},\Gamma})_* \Delta(f) = \Delta_{\Gamma}(f)
\end{equation}
for all finite subgraphs Γ of $\mathbb{P}_1^{\text{Berk}}$. We call $\Delta(f)$ the Laplacian of f on $\mathbb{P}_1^{\text{Berk}}$.

Similarly, if U is a domain (i.e., a nonempty connected open subset) in $\mathbb{P}_1^{\text{Berk}}$, one defines a class $\text{BDV}(U)$ of functions $f : U \to \mathbb{R} \cup \{\pm \infty\}$ for which the Laplacian $\Delta_{\mathbb{P}_1^{\text{Berk}}}(f)$ is a bounded Borel measure of total mass zero supported on the closure of U. The measure $\Delta_{\mathbb{P}_1^{\mathbb{P}_1^{\text{Berk}}}}(f)$ has the property that
\begin{equation}
(r_{\mathbb{P}_1^{\mathbb{P}_1^{\text{Berk}}},\Gamma})_* \Delta(f) = \Delta_{\Gamma}(f)
\end{equation}
for all finite subgraphs Γ of $\mathbb{P}_1^{\text{Berk}}$ contained in U.

As a concrete example, fix $y \in A_1^{\text{Berk}}$ and let $f : \mathbb{P}_1^{\text{Berk}} \to \mathbb{R} \cup \{\pm \infty\}$ be defined by $f(\infty) = -\infty$ and
\begin{equation}
f(x) = -\log_v \delta(x,y)_{\infty}
\end{equation}
for $x \in A_1^{\text{Berk}}$. Then $f \in \text{BDV}(\mathbb{P}_1^{\text{Berk}})$, and
\begin{equation}
\Delta f = \delta_y - \delta_{\infty}
\end{equation}
is a discrete measure on $\mathbb{P}_1^{\text{Berk}}$ supported on $\{y, \infty\}$. Intuitively, the explanation for the formula (0.4) is as follows. The function f is locally constant away from the path $\Lambda = [y, \infty]$ from y to ∞; more precisely, we have $f(x) = f(r_{\mathbb{P}_1^{\text{Berk}},\Lambda}(x))$. Moreover, the restriction of f to Λ is linear (with
respect to the distance function ρ with slope -1. For every suitable test function ψ, we therefore have the “heuristic” calculation

$$
\int_{\mathbb{P}^1_{\text{Berk}}} \psi \Delta f = \int_{\Lambda} f'(x)\psi'(x) \, dx = -\int_{-\infty}^{\infty} \psi'(x) \, dx = \psi(y) - \psi(\infty).
$$

(To make this calculation rigorous, one needs to exhaust $\Lambda = [y, \infty]$ by an increasing sequence of line segments $\Gamma \subset \mathbb{H}^R_{\text{Berk}}$ and then observe that the corresponding measures $\Delta \Gamma f$ converge weakly to $\delta_y - \delta_\infty$.)

Equation (0.4) shows that $-\log v \delta(x,y)$, like its classical counterpart $-\log |x-y|$ over \mathbb{C}, is a fundamental solution (in the sense of distributions) to the Laplace equation. This “explains” why $-\log v \delta(x,y)$ is the correct kernel for doing potential theory.

More generally, let $\varphi \in K(T)$ be a nonzero rational function with zeros and poles given by the divisor $\text{div}(\varphi)$ on $\mathbb{P}^1(K)$. The usual action of φ on $\mathbb{P}^1(K)$ extends naturally to an action of φ on $\mathbb{P}^1_{\text{Berk}}$, and there is a continuous function $-\log v [\varphi]_x : \mathbb{P}^1_{\text{Berk}} \to \mathbb{R} \cup \{\pm\infty\}$ extending the usual map $x \mapsto -\log v [\varphi(x)]$ on $\mathbb{P}^1(K)$. One derives from (0.4) the following version of the Poincaré-Lelong formula:

$$
\Delta_{\mathbb{P}^1_{\text{Berk}}} (-\log v [\varphi]_x) = \delta_{\text{div}(\varphi)}.
$$

Capacities. Fix $\zeta \in \mathbb{P}^1_{\text{Berk}}$, and let E be a compact subset of $\mathbb{P}^1_{\text{Berk}} \setminus \{\zeta\}$. (For concreteness, the reader may wish to imagine that $\zeta = \infty$.) By analogy with the classical theory over \mathbb{C} and also with the non-Archimedean theory developed in [88], one can define the logarithmic capacity of E with respect to ζ. This is done as follows.

Given a probability measure ν on $\mathbb{P}^1_{\text{Berk}}$ with support contained in E, we define the energy integral

$$
I_\zeta(\nu) = \int_{E \times E} -\log v \delta(x,y) \zeta \, d\nu(x)d\nu(y).
$$

Letting ν vary over the collection $\mathbb{P}(E)$ of all probability measures supported on E, one defines the Robin constant

$$
V_\zeta(E) = \inf_{\nu \in \mathbb{P}(E)} I_\zeta(\nu).
$$

The logarithmic capacity of E relative to ζ is then defined to be

$$
\gamma_\zeta(E) = q_v^{-V_\zeta(E)}.
$$

For an arbitrary set H, the logarithmic capacity $\gamma_\zeta(H)$ is defined by

$$
\gamma_\zeta(H) = \sup_{\text{compact } E \subset H} \gamma_\zeta(E).
$$

A countably supported probability measure must have point masses, and $\delta(x,x) = 0$ for $x \in \mathbb{P}^1(K) \setminus \{\zeta\}$; thus $V_\zeta(E) = +\infty$ when $E \subset \mathbb{P}^1(K)$ is countable, so every countable subset of $\mathbb{P}^1(K)$ has capacity zero. On the other hand, for a “nonclassical” point $x \in \mathbb{H}^R_{\text{Berk}}$ we have $V_\zeta(\{x\}) < +\infty$,
since $\delta(x, x)_{\zeta} > 0$, and therefore $\gamma_{\zeta}(\{x\}) > 0$. In particular, a singleton set can have positive capacity, a phenomenon which has no classical analogue. More generally, if $E \cap \mathbb{H}_{\text{Berk}} \neq \emptyset$, then $\gamma_{\zeta}(E) > 0$.

As a more elaborate example, if $K = \mathbb{C}_p$ and $E = \mathbb{Z}_p \subset A^1(\mathbb{C}_p) \subset A^1_{\text{Berk}, \mathbb{C}_p}$, then $\gamma_{\infty}(E) = p^{-1/(p-1)}$. Since $\delta(x, y)_{\infty} = |x - y|$ for $x, y \in K$, this follows from the same computation as in [88, Example 4.1.24].

For fixed E, the property of E having capacity 0 relative to ζ is independent of the point $\zeta \notin E$.

If E is compact and $\gamma_{\zeta}(E) > 0$, we show that there is a unique probability measure $\mu_{E, \zeta}$ on E, called the equilibrium measure of E with respect to ζ, which minimizes energy (i.e., for which $I_{\zeta}(\mu_{E, \zeta}) = V_{\zeta}(E)$). As in the classical case, $\mu_{E, \zeta}$ is always supported on the boundary of E.

Closely linked to the theory of capacities is the theory of potential functions. For each probability measure ν supported on $\mathbb{P}^1_{\text{Berk}} \{\zeta\}$, one defines the potential function $u_{\nu}(z, \zeta)$ by

$$u_{\nu}(z, \zeta) = \int -\log \nu \delta(z, w)_{\zeta} d\nu(w).$$

As in classical potential theory, potential functions need not be continuous, but they do share several of the distinguishing features of continuous functions. For example, $u_{\nu}(z, \zeta)$ is lower semicontinuous, and it is continuous at each $z \notin \text{supp}(\nu)$. Potential functions on $\mathbb{P}^1_{\text{Berk}}$ satisfy the following analogues of Maria’s theorem and Frostman’s theorem from complex potential theory:

Theorem (Maria). If $u_{\nu}(z, \zeta) \leq M$ on $\text{supp}(\nu)$, then $u_{\nu}(z, \zeta) \leq M$ for all $z \in \mathbb{P}^1_{\text{Berk}} \{\zeta\}$.

Theorem (Frostman). If a compact set E has positive capacity, then the equilibrium potential $u_E(z, \zeta)$ satisfies $u_E(z, \zeta) \leq V_{\zeta}(E)$ for all $z \in \mathbb{P}^1_{\text{Berk}} \{\zeta\}$, and $u_E(z, \zeta) = V_{\zeta}(E)$ for all $z \in E$ outside a set of capacity zero.

As in capacity theory over \mathbb{C}, one can also define the transfinite diameter and the Chebyshev constant of E, and they both turn out to be equal to the logarithmic capacity of E. (In fact, we define three different variants of the Chebyshev constant and prove that they are all equal.)

As an arithmetic application of the theory of capacities on $\mathbb{P}^1_{\text{Berk}}$, we formulate generalizations to $\mathbb{P}^1_{\text{Berk}}$ of the Fekete and Fekete-Szegő theorems from [88]. The proofs are easy, since they go by reducing the general case to the special case of RL-domains, which was already treated in [88]. Nonetheless, the results are aesthetically pleasing because in their statement, the simple notion of compactness replaces the awkward concept of “algebraic capacity”. The possibility for such a reformulation is directly related to the fact that $\mathbb{P}^1_{\text{Berk}}$ is compact, while $\mathbb{P}^1(K)$ is not.
Harmonic functions. If U is a domain in $\mathbb{P}_1^{1\text{Berk}}$, a real-valued function $f : U \to \mathbb{R}$ is called **strongly harmonic** on U if it is continuous, belongs to $BDV(U)$, and if $\Delta_U^\mathbb{P}(f)$ is supported on ∂U. The function f is **harmonic** on U if every point $x \in U$ has a connected open neighborhood on which f is strongly harmonic.

Harmonic functions on domains $U \subseteq \mathbb{P}_1^{1\text{Berk}}$ satisfy many properties analogous to their classical counterparts over \mathbb{C}. For example, a harmonic function which attains its maximum or minimum value on U must be constant.

There is also an analogue of the Poisson formula: if f is a harmonic function on an open affinoid U, then f extends uniquely to the boundary ∂U, and the values of f on U can be computed explicitly in terms of $f|_{\partial U}$. A version of Harnack’s principle holds as well: the limit of a monotonically increasing sequence of nonnegative harmonic functions on U is either harmonic or identically $+\infty$. Even better than the classical case (where a hypothesis of uniform convergence is required), a pointwise limit of harmonic functions is automatically harmonic. As is the case over \mathbb{C}, harmonicity is preserved under pullbacks by meromorphic functions.

Fix $\zeta \in \mathbb{P}_1^{1\text{Berk}}$, and let E be a compact subset of $\mathbb{P}_1^{1\text{Berk}} \setminus \{\zeta\}$. We define the **Green's function of E relative to ζ** to be

$$G(z, \zeta; E) = V_\zeta(E) - u_E(z, \zeta)$$

for all $z \in \mathbb{P}_1^{1\text{Berk}}$. We show that the Green's function is everywhere nonnegative and that it is strictly positive on the connected component U_ζ of $\mathbb{P}_1^{1\text{Berk}} \setminus E$ containing ζ. Also, $G(z, \zeta; E)$ is finite on $\mathbb{P}_1^{1\text{Berk}} \setminus \{\zeta\}$, with a logarithmic singularity at ζ, and it is harmonic on $U_\zeta \setminus \{\zeta\}$. Additionally, $G(z, \zeta; E)$ is identically zero on the complement of U_ζ outside a set of capacity zero. The Laplacian of $G(z, \zeta; E)$ on $\mathbb{P}_1^{1\text{Berk}}$ is equal to $\delta_\zeta - \mu_{E, \zeta}$. As in the classical case, the Green's function is symmetric as a function of z and ζ: we have

$$G(z_1, z_2; E) = G(z_2, z_1; E)$$

for all $z_1, z_2 \not\in E$. In a satisfying improvement over the theory for $\mathbb{P}_1^{1}(\mathbb{C}_p)$ in [88], the role of $G(z, \zeta; E)$ as a reproducing kernel for the Berkovich space Laplacian becomes evident.

As an arithmetic application of the theory of Green’s functions and capacities on $\mathbb{P}_1^{1\text{Berk}}$, we prove a Berkovich space generalization of Bilu’s equidistribution theorem for a rather general class of adelic heights.

Subharmonic functions. We give two characterizations of what it means for a function on a domain $U \subseteq \mathbb{P}_1^{1\text{Berk}}$ to be subharmonic. The first, which we take as the definition, is as follows. We say that a function $f : U \to \mathbb{R} \cup \{-\infty\}$ is **strongly subharmonic** if it is upper semicontinuous, satisfies a further technical semicontinuity hypothesis at points of $\mathbb{P}_1^{1}(K)$, and if the positive part of $\Delta_U^\mathbb{P}(f)$ is supported on ∂U. We say that f is **subharmonic** on U if every point of U has a connected open neighborhood on which f is strongly subharmonic. We also say that f is **superharmonic** on U if $-f$ is subharmonic on U. As an example, if ν is a probability
measure on $\mathbb{P}^1_{\text{Berk}}$ and $\zeta \not\in \text{supp}(\nu)$, the potential function $u_\nu(x, \zeta)$ is strongly superharmonic on $\mathbb{P}^1_{\text{Berk}} \setminus \{\zeta\}$ and is strongly subharmonic on $\mathbb{P}^1_{\text{Berk}} \setminus \text{supp}(\nu)$. A function f is harmonic on U if and only if it is both subharmonic and superharmonic on U.

As a second characterization of subharmonic functions, we say that $f : U \to \mathbb{R} \cup \{-\infty\}$ (not identically $-\infty$) is domination subharmonic on the domain U if it is upper semicontinuous and if for each simple subdomain V of U and each harmonic function h on V for which $f \leq h$ on ∂V, we have $f \leq h$ on V. A fundamental fact, proved in §8.2, is that f is subharmonic on U if and only if it is domination subharmonic on U.

Like harmonic functions, subharmonic functions satisfy the Maximum Principle: if U is a domain in $\mathbb{P}^1_{\text{Berk}}$ and f is a subharmonic function which attains its maximum value on U, then f is constant. In addition, subharmonic functions on domains in $\mathbb{P}^1_{\text{Berk}}$ are stable under many of the same operations (e.g., convex combinations, maximum, monotone convergence, uniform convergence) as their classical counterparts. There is also an analogue of the Riesz Decomposition Theorem, according to which a subharmonic function on a simple subdomain $V \subset U$ can be written as the difference of a harmonic function and a potential function. We also show that subharmonic functions can be well-approximated by continuous functions of a special form, which we call smooth functions.

In §8.10, we define the notion of an Arakelov-Green’s function on $\mathbb{P}^1_{\text{Berk}}$ and establish an energy minimization principle used in the proof of the main result in [9]. We give two proofs of the Energy Minimization Principle, one using the theory of subharmonic functions and another using the Dirichlet pairing.

Multiplicities. If $\varphi \in K(T)$ is a nonconstant rational function, then as discussed above, the action of φ on $\mathbb{P}^1(K)$ extends naturally to an action of φ on $\mathbb{P}^1_{\text{Berk}}$. We use the theory of Laplacians to give an analytic construction of multiplicities for points in $\mathbb{P}^1_{\text{Berk}}$ which generalize the usual multiplicity of φ at a point $a \in \mathbb{P}^1(K)$ (i.e., the multiplicity of a as a preimage of $b = \varphi(a) \in \mathbb{P}^1(K)$). Using the theory of multiplicities, we show that the extended map $\varphi : \mathbb{P}^1_{\text{Berk}} \to \mathbb{P}^1_{\text{Berk}}$ is a surjective open mapping. We also obtain a purely topological interpretation of multiplicities, which shows that our multiplicities coincide with those defined by Rivera-Letelier. For each $a \in \mathbb{P}^1_{\text{Berk}}$, the multiplicity of φ at a is a positive integer, and if char(K) = 0, it is equal to 1 if and only if φ is locally injective at a. For each $b \in \mathbb{P}^1_{\text{Berk}}$, the sum of the multiplicities of φ over all preimages of b is equal to the degree of φ.

Using these multiplicities, we define the pushforward and pullback of a bounded Borel measure on $\mathbb{P}^1_{\text{Berk}}$ under φ. The pushforward and pullback measures satisfy the expected functoriality properties; for example, if f is subharmonic on U, then $f \circ \varphi$ is subharmonic on $\varphi^{-1}(U)$ and the Laplacian of $f \circ \varphi$ is the pullback under φ of the Laplacian of f.
Applications to the dynamics of rational maps. Though Berkovich introduced his theory of analytic spaces with rather different goals in mind, Berkovich spaces are well adapted to the study of non-Archimedean dynamics. The fact that the topological space $\mathbb{P}^1_{\text{Berk}}$ is both compact and connected means in practice that many of the difficulties encountered in “classical” non-Archimedean dynamics disappear when one defines the Fatou and Julia sets as subsets of $\mathbb{P}^1_{\text{Berk}}$. For example, the notion of a connected component is straightforward in the Berkovich setting, so one avoids the subtle issues involved in defining Fatou components in $\mathbb{P}^1(\mathbb{C}_p)$ (e.g., the D-components versus analytic components in Benedetto’s paper [14], or the definition by Rivera-Letelier in [83]).

Suppose $\varphi \in K(T)$ is a rational function of degree $d \geq 2$. In §10.1, we construct a canonical probability measure μ_{φ} on $\mathbb{P}^1_{\text{Berk}}$ attached to φ, whose properties are analogous to the well-known measure on $\mathbb{P}^1(\mathbb{C})$ first defined by Lyubich and by Freire, Lopes, and Mañé. The measure μ_{φ} is φ-invariant (i.e., satisfies $\varphi_*(\mu_{\varphi}) = \mu_{\varphi}$) and also satisfies the functional equation $\varphi^*(\mu_{\varphi}) = d \cdot \mu_{\varphi}$.

In §10.2, we prove an explicit formula and functional equation for the Arakelov-Green’s function $g_{\mu_{\varphi}}(x,y)$ associated to μ_{φ}. These results, along with the Energy Minimization Principle mentioned earlier, play a key role in applications of the theory to arithmetic dynamics over global fields (see [5] and [9]). In §10.3, we use these results to prove an adelic equidistribution theorem (Theorem 10.24) for the Galois conjugates of algebraic points of small dynamical height over a number field k.

We then discuss analogues for $\mathbb{P}^1_{\text{Berk}}$ of classical results in the Fatou-Julia theory of iteration of rational maps on $\mathbb{P}^1(\mathbb{C})$. In particular, we define the Berkovich Fatou and Julia sets of φ and prove that the Berkovich Julia set J_{φ} (like its complex counterpart, but unlike its counterpart in $\mathbb{P}^1(K)$) is always nonempty. We give a new proof of the Favre–Rivera-Letelier equidistribution theorem for iterated pullbacks of Dirac measures attached to nonexceptional points, and using this theorem, we show that the Berkovich Julia set shares many properties with its classical complex counterpart. For example, it is either connected or has uncountably many connected components, repelling periodic points are dense in it, and the “Transitivity Theorem” holds.

In $\mathbb{P}^1(K)$, the notion of equicontinuity leads to a good definition of the Fatou set. In $\mathbb{P}^1_{\text{Berk}}$, as was pointed out to us by Rivera-Letelier, this remains true when $K = \mathbb{C}_p$ but fails for general K. We explain the subtleties regarding equicontinuity in the Berkovich case and give Rivera-Letelier’s proof that over \mathbb{C}_p the Berkovich equicontinuity locus coincides with the Berkovich Fatou set. We also give an overview (mostly without proof) of some of Rivera-Letelier’s fundamental results concerning rational dynamics over \mathbb{C}_p. While some of Rivera-Letelier’s results hold for arbitrary K, others make special use of the fact that the residue field of \mathbb{C}_p is a union of finite fields.
Appendices. In Appendix A, we review some facts from real analysis and point-set topology which are used throughout the text. Some of these (e.g., the Riesz Representation Theorem) are well known, while others (e.g., the Portmanteau theorem) are hard to find precise references for. We have provided self-contained proofs for the latter. We also include a detailed discussion of nets in topological spaces: since the space $\mathbb{P}^1_{\text{Berk}, K}$ is not in general metrizable, sequences do not suffice when discussing notions such as continuity.

In Appendix B, we discuss \mathbb{R}-trees and their relation to Gromov’s theory of hyperbolic spaces. This appendix serves two main purposes. On the one hand, it provides references for some basic definitions and facts about \mathbb{R}-trees which are used in the text. On the other hand, it provides some intuition for the general theory of \mathbb{R}-trees by exploring the fundamental role played by the Gromov product, which is closely related to our generalized Hsia kernel.

Appendix C gives a brief overview of some basic definitions and results from Berkovich’s theory of non-Archimedean analytic spaces. This material is included in order to give the reader some perspective on the relationship between the special cases dealt with in this book (the Berkovich unit disc, affine line, and projective line) and the general setting of Berkovich’s theory.
Notation

We set the following notation, which will be used throughout unless otherwise specified. Symbols are listed roughly in the order they are introduced in the book, except that related notations are grouped together.

- **\(\mathbb{Z} \)**: the ring of integers.
- **\(\mathbb{N} \)**: the set of natural numbers, \(\{ n \in \mathbb{Z} : n \geq 0 \} \).
- **\(\mathbb{Q} \)**: the field of rational numbers.
- **\(\overline{\mathbb{Q}} \)**: a fixed algebraic closure of \(\mathbb{Q} \).
- **\(\mathbb{R} \)**: the field of real numbers.
- **\(\mathbb{C} \)**: the field of complex numbers.
- **\(\mathbb{Q}_p \)**: the field of \(p \)-adic numbers.
- **\(\mathbb{Z}_p \)**: the ring of integers of \(\mathbb{Q}_p \).
- **\(\mathbb{C}_p \)**: the completion of a fixed algebraic closure of \(\mathbb{Q}_p \) for some prime number \(p \).
- **\(\mathbb{F}_p \)**: the finite field with \(p \) elements.
- **\(\overline{\mathbb{F}_p} \)**: a fixed algebraic closure of \(\mathbb{F}_p \).
- **\(K \)**: a complete, algebraically closed non-Archimedean field.
- **\(K^\times \)**: the set of nonzero elements in \(K \).
- **\(|\cdot| \)**: the non-Archimedean absolute value on \(K \).
- **\(\|\cdot\| \)**: the spherical distance on \(\mathbb{P}^1(K) \) associated to \(|\cdot| \), and also the spherical kernel, its canonical upper semicontinuous extension to \(\mathbb{P}^1_{\text{Berk}} \) (see §4.3).
- **\(\|(x,y)\| \)**: the norm \(\max(|x|,|y|) \) of a point \((x,y) \in K^2 \) (see §10.1).
- **\(q_v \)**: a fixed real number greater than 1 associated to \(K \), used to normalize \(|\cdot| \) and \(\text{ord}_v(\cdot) \).
- **\(\log_v(t) \)**: shorthand for \(\log_{q_v}(t) \).
- **\(\text{ord}_v(\cdot) \)**: the normalized valuation \(-\log_v(\cdot) \) associated to \(|\cdot| \).
- **\(|K^\times| \)**: the value group of \(K \), that is, \(\{|\alpha| : \alpha \in K^\times\} \).
- **\(\mathcal{O} \)**: the valuation ring of \(K \).
- **\(m \)**: the maximal ideal of \(\mathcal{O} \).
- **\(\bar{K} \)**: the residue field \(\mathcal{O}/m \) of \(K \).
- **\(\tilde{g}(T) \)**: the reduction, in \(\bar{K}(T) \), of a function \(g(T) \in \mathcal{O}(T) \).
- **\(K[T] \)**: the ring of polynomials with coefficients in \(K \).
- **\(K(T) \)**: the field of rational functions with coefficients in \(K \).
- **\(K[[T]] \)**: the ring of formal power series with coefficients in \(K \).
- **\(K\langle T \rangle \)**: the Tate algebra of formal power series converging on the closed unit disc.

xxix
\[A^1 \] the affine line over \(K \).
\[\mathbb{P}^1 \] the projective line over \(K \).
\[A^1_{\text{Berk}} \] the Berkovich affine line over \(K \).
\[\mathbb{P}^1_{\text{Berk}} \] the Berkovich projective line over \(K \).
\[\mathbb{H}_{\text{Berk}} \] the “hyperbolic space” \(\mathbb{P}^1_{\text{Berk}} \setminus \mathbb{P}^1(K) \).
\[\mathbb{H}_{\text{Berk}}^\mathbb{Q} \] the set of points of type II in \(\mathbb{H}_{\text{Berk}} \) (corresponding to rational discs in \(K \)).
\[\mathbb{H}_{\text{Berk}}^R \] the set of points of type II or III in \(\mathbb{H}_{\text{Berk}} \) (corresponding to either rational or irrational discs in \(K \)).
\[\zeta_{a,r} \] the point of \(A^1_{\text{Berk}} \) corresponding to \(D(a, r) \) under Berkovich’s classification theorem.
\[\zeta_{\text{Gauss}} \] the ‘Gauss point’ \(\zeta_{0,1} \), corresponding to \(D(0, 1) \).
\[[x] \] the seminorm associated to a point \(x \in \mathbb{P}^1_{\text{Berk}} \).
\[[x, y] \] the path (or arc) from \(x \) to \(y \).
\[x \lor \zeta y \] the point where the paths \([x, \zeta], [y, \zeta] \) first meet.
\[x \lor \infty y \] the point where the paths \([x, \infty], [y, \infty] \) first meet.
\[x \lor y \] shorthand for \(x \lor \zeta y \).
\[T_a \] the ‘projectivized tangent space’ at \(a \in \mathbb{P}^1_{\text{Berk}} \), the set of equivalence classes of paths emanating from \(a \) which share a common initial segment (see §B.6 in Appendix B).
\[\vec{v} \in T_a \] a tangent direction at \(a \) (see §B.6 in Appendix B).
\[\delta(x, y)_{\zeta} \] the generalized Hsia kernel with respect to \(\zeta \) (see §4.4).
\[\text{diam}_{\zeta}(x) \] the number \(\delta(x, x)_{\zeta} \).
\[\text{diam}_{\infty}(x) \] the number \(\delta(x, x)_{\infty} \), equal to \(\lim_{i \to \infty} r_i \) for any nested sequence of discs \(\{D(a_i, r_i)\} \) corresponding to \(x \in A^1_{\text{Berk}} \).
\[\text{diam}(x) \] the number \(\|x, x\| = \delta(x, x)_{\zeta_{\text{Gauss}}} \).
\[\rho(x, y) \] the path distance metric on \(\mathbb{H}_{\text{Berk}} \); see §2.7.
\[\ell(Z) \] the total path length of a set \(Z \subset \mathbb{H}_{\text{Berk}} \).
\[j_{\zeta}(x, y) \] the fundamental potential kernel relative to the point \(\zeta \), given by \(j_{\zeta}(x, y) = \rho(\zeta, x \lor \zeta y) \).
\[\mathcal{X} \] the closure of a set \(X \) in \(\mathbb{P}^1_{\text{Berk}} \).
\[X^c \] the complement \(\mathbb{P}^1_{\text{Berk}} \setminus X \).
\[\partial X \] the boundary of a set \(X \).
\[X(K) \] the set of \(K \)-rational points in \(X \), i.e., \(X \cap \mathbb{P}^1(K) \).
\[\text{cl}_{\mathbb{H}}(X) \] the closure of a set \(X \subset \mathbb{H}_{\text{Berk}} \), in the strong topology.
\[\partial_{\mathbb{H}}(X) \] the boundary of a set \(X \subset \mathbb{H}_{\text{Berk}} \), in the strong topology.
\[D(a, r) \] the closed disc \(\{x \in K : |x - a| \leq r\} \) of radius \(r \geq 0 \) centered at \(a \). If \(r \in |K^\times| \), we call the disc rational; if \(r \not\in |K^\times| \), we call it irrational.
\[D(a, r)^- \] the open disc \(\{x \in K : |x - a| < r\} \) of radius \(r \) about \(a \).
\[D(a, r) \] the closed Berkovich disc \(\{x \in A_{\text{Berk}} : [T - a]x \leq r\} \) corresponding to the classical disc \(D(a, r) \).
\[D(a, r)^- \] the open Berkovich disc \(\{x \in A_{\text{Berk}} : [T - a]x < r\} \) corresponding to the classical disc \(D(a, r)^- \).
\(B(a, r) \) the closed ball \(\{ x \in \mathbb{P}^1(K) : \| x, a \| \leq r \} \) of radius \(r \) about \(a \) in \(\mathbb{P}^1(K) \), relative to the spherical distance \(\| x, y \| \).

\(B(a, r)^- \) the open ball \(\{ x \in \mathbb{P}^1(K) : \| x, a \| < r \} \) of radius \(r \) about \(a \) in \(\mathbb{P}^1(K) \), relative to the spherical distance.

\(B(a, r)_\zeta \) the closed ball \(\{ z \in \mathbb{P}^1_{\text{Berk}} : \delta(x, y)_\zeta \leq r \} \).

\(B(a, r)^-_\zeta \) the open ball \(\{ z \in \mathbb{P}^1_{\text{Berk}} : \delta(x, y)_\zeta < r \} \).

\(B(a, r) \) the closed ball \(\{ x \in \mathbb{P}^1_{\text{Berk}} : \| x, a \| \leq r \} = B(a, r)_{\text{Gauss}} \).

\(B(a, r)^- \) the open ball \(\{ x \in \mathbb{P}^1_{\text{Berk}} : \| x, a \| < r \} = B(a, r)^-_{\text{Gauss}} \).

\(\widehat{B}(a, \delta)^- \) the set \(\{ z \in \mathbb{H}_{\text{Berk}} : \rho(a, z) \leq \delta \} \), a closed ball for the strong topology.

\(\widehat{B}(a, \delta) \) the set \(\{ z \in \mathbb{H}_{\text{Berk}} : \rho(a, z) < \delta \} \), an open ball for the strong topology.

\(\widehat{B}_X(a, \delta)^- \) for \(X \subset \mathbb{H}_{\text{Berk}} \), the set \(X \cap \widehat{B}(a, \delta)^- \).

\(X(\zeta, \delta) \) the set \(\{ z \in \mathbb{P}^1_{\text{Berk}} : \text{diam}_\zeta(x) \geq \delta \} = \widehat{B}(\zeta, -\log_\nu(\delta)) \).

\(\Gamma \) a finite metrized graph.

\(\text{CPA}(\Gamma) \) the space of continuous, piecewise affine functions on \(\Gamma \).

\(\text{Zh}(\Gamma) \) the Zhang space of \(\Gamma \) (see §3.4).

\(\text{BDV}(\Gamma) \) the space of functions of ‘bounded differential variation’ on \(\Gamma \) (see §3.5).

\(\langle f, g \rangle_{\Gamma, \text{Dir}} \) the Dirichlet pairing on \(\Gamma \), for \(f, g \in \text{BDV}(\Gamma) \).

\(d_{\vec{v}}(f) \) the derivative of \(f \) in the tangent direction \(\vec{v} \).

\(f'_+ \) the one-sided derivative of \(f \) in the positive direction along an oriented segment.

\(f'_{+\zeta} \) the derivative \(d_{\vec{v}}(f) \) in the direction \(\vec{v} \) towards \(\zeta \).

\(\Delta_\Gamma(f) \) the Laplacian of \(f \in \text{BDV}(\Gamma) \).

\(\Delta(f) \) in Chapter 3, the Laplacian \(\Delta_\Gamma(f) \); elsewhere, \(\Delta_{\mathbb{P}^1_{\text{Berk}}}(f) \).

\(r_{U,X} \) the retraction map from a domain \(U \) to a closed subset \(X \), often written \(r_X \).

\((r_{U,X})^*(\mu) \) the pushforward from \(U \) to \(X \) of a measure \(\mu \), under \(r_{U,X} \).

\(\mathcal{C}(U) \) the space of continuous functions on \(U \).

\(\mathcal{C}(\overline{U}) \) the space of continuous functions on the closure \(\overline{U} \).

\(\text{CPA}(U) \) the space of functions of the form \(f \circ r_{U,\Gamma} \), with \(f \in \text{CPA}(\Gamma) \) for some finite graph \(\Gamma \subset U \).

\(\text{BDV}(U) \) the space of functions of ‘bounded differential variation’ on a domain \(U \) (see §5.4).

\(\mathcal{C}(\overline{U}) \cap \text{BDV}(U) \) by abuse of notation, the space of functions \(f \in \mathcal{C}(\overline{U}) \) with \(f|_U \in \text{BDV}(U) \) (see Definition 5.13).

\(\mathcal{C}_c(U) \) the space of continuous functions vanishing outside a compact subset of \(U \).

\(\text{CPA}_c(U) \) the set of functions in \(\text{CPA}(U) \) vanishing outside a compact subset of \(U \).

\(\text{BDV}_c(U) \) the set of functions in \(\text{BDV}(U) \) vanishing outside a compact subset of \(U \).
\[\Delta_{\mathcal{P}}(f) \] the complete Laplacian of \(f \in \text{BDV}(U) \) (see §5.4).
\[\Delta_U(f) \] the Laplacian \(\Delta_{\mathcal{P}}(f)|_U \) of \(f \in \text{BDV}(U) \) (see §5.4).
\[\Delta_{\partial U}(f) \] the boundary derivative \(\Delta_{\mathcal{P}}(f)|_{\partial U} \) of \(f \in \text{BDV}(U) \).
\[\langle f, g \rangle_{U, \text{Dir}} \] the Dirichlet pairing on a domain \(U \).
\[\lambda \] the one-dimensional Hausdorff measure on \(\mathbb{H}_{\text{Berk}} \), which restricts to \(dx \) on each segment.
\[\text{supp}(\mu) \] the support of a measure \(\mu \).
\[|\mu| \] the measure \(\mu_1 + \mu_2 \), if the Jordan decomposition of the measure \(\mu \) is \(\mu_1 - \mu_2 \).
\[I_\zeta(\mu) \] the ‘energy integral’ \(\iint - \log_v(\delta(x,y)\zeta) \, d\mu(x)d\mu(y) \) for \(\mu \).
\[u_\mu(z, \zeta) \] the potential function \(\int - \log_v(\delta(x,y)\zeta) \, d\mu(y) \) for \(\mu \).
\[V_\zeta(E) \] the Robin constant of a set \(E \), relative to the point \(\zeta \).
\[\gamma_\zeta(E) \] the logarithmic capacity of a set \(E \), relative to \(\zeta \).
\[\mu_E \] the equilibrium distribution of a set \(E \).
\[u_E(z, \zeta) \] the potential function associated to \(\mu_E \).
\[G(x, \zeta; E) \] the Green’s function of a set \(E \) of positive capacity.
\[d_\infty(E)_\zeta \] the transfinite diameter of a set \(E \) relative to \(\zeta \) (see §6.4).
\[\text{CH}(E)_\zeta \] the Chebyshev constant of \(E \) relative to \(\zeta \) (see §6.4).
\[\text{CH}^*(E)_\zeta \] the restricted Chebyshev constant of \(E \) relative to \(\zeta \).
\[\text{CH}^a(E)_\zeta \] the algebraic Chebyshev constant of \(E \) relative to \(\zeta \).
\[E \] an ‘adelic set’ \(\prod_v E_v \) for a number field \(k \) (see §7.8).
\[\mathfrak{X} \] a finite, Galois-stable set of points in \(\mathbb{P}^1(\overline{k}) \).
\[\mathcal{P}^n \] the set of \(n \)-dimensional probability vectors.
\[\Gamma(E, \mathfrak{X}) \] the global Green’s matrix of \(E \) relative to \(\mathfrak{X} \).
\[V(E, \mathfrak{X}) \] the global Robin constant of \(E \) relative to \(\mathfrak{X} \).
\[\gamma(E, \mathfrak{X}) \] the global capacity of \(E \) relative to \(\mathfrak{X} \).
\[\mathcal{H}(U) \] the space of harmonic functions on an open set \(U \).
\[\mathcal{SH}(U) \] the space of subharmonic functions on an open set \(U \).
\[f^* \] the upper semicontinuous regularization of a function \(f \).
\[\mathcal{M}^+(U) \] the space of positive, locally finite Borel measures on an open set \(U \).
\[\mathcal{M}_1^+(U) \] the space of Borel probability measures on \(U \).
\[g_\mu(x, y) \] the Arakelov-Green’s function associated to a probability measure \(\mu \).
\[\mathcal{AG} [\zeta] \] the space of Arakelov-Green’s functions having a singularity at \(\zeta \).
\[\varphi(T) \] a rational function in \(K(T) \).
\[\varphi^*(\mu) \] the pullback of a measure \(\mu \) by the rational function \(\varphi \).
\[\varphi_*(\mu) \] the pushforward of a measure \(\mu \) by \(\varphi \).
\[\varphi^{(n)}(T) \] the \(n \)-fold iterate \(\varphi \circ \cdots \circ \varphi \).
\[\text{deg}(\varphi) \] the degree of the rational function \(\varphi(T) \in K(T) \).
\[m_\varphi(a) \] the multiplicity of \(\varphi(T) \) at \(a \in \mathbb{P}^1_{\text{Berk}} \).
\[m_\varphi(a, \vec{v}) \] the multiplicity of \(\varphi(T) \) at \(a \) in the tangent direction \(\vec{v} \).
\[r_\varphi(a, \vec{v}) \] the rate of repulsion of \(\varphi(T) \) at \(a \) in the direction \(\vec{v} \).
$N_\beta(V)$ the number of solutions to $\varphi(z) = \beta$ in V, counting multiplicities.

$N_{\zeta,\beta}(V)$ the number $\max(0, N_\zeta(V) - N_\beta(V))$.

$A_{a,c}$ the open Berkovich annulus with boundary points a, c.

$\text{Mod}(\mathcal{A})$ the modulus of an annulus \mathcal{A}.

μ_φ the ‘canonical measure’ associated to $\varphi(T)$.

$g_\varphi(x, y)$ another name for the Arakelov-Green’s function $g_{\mu_\varphi}(x, y)$ (see §10.2).

$\hat{h}_{\varphi,v,(x)}$ the Call-Silverman local height function associated to $\varphi(T)$ and the point x.

H_F the homogeneous dynamical height function associated to $F = (F_1, F_2)$, where $F_1, F_2 \in K[X,Y]$ are homogenous polynomials.

$\text{Res}(F)$ the resultant of the homogeneous polynomials F_1, F_2.

$\text{GO}(x)$ the ‘grand orbit’ of a point $x \in \mathbb{P}^1_{\text{Berk}}$ under $\varphi(T) \in K(T)$.

E_φ the ‘exceptional set’ of all points in $\mathbb{P}^1_{\text{Berk}}$ having finite grand orbit under $\varphi(T)$.

F_φ the Berkovich Fatou set of $\varphi(T)$.

J_φ the Berkovich Julia set of $\varphi(T)$.

K_φ the Berkovich filled Julia set of a polynomial $\varphi(T) \in K[T]$.

\mathbb{H}_p the space \mathbb{H}_{Berk}, when $K = \mathbb{C}_p$.

$\mathcal{A}_x(\varphi)$ the immediate basin of attraction of an attracting fixed point x for $\varphi(T) \in \mathbb{C}_p(T)$.

$\mathcal{E}(\varphi)$ the domain of quasi-periodicity of a function $\varphi(T) \in \mathbb{C}_p(T)$.
Bibliography

Index

affinoid
 algebra, 409
 Berkovich, 9
 open, xx, 9, 29
 strict closed, 9, 29, 127, 140
 strict open, 9
 subdomain, 410
algebraically capacitable, ix, xxiii, 142, 181
analytic component, 364
annular segment, 274
annulus, 27
 Berkovich, 41, 265, 281
 open, 283
 rational, 283
 standard open, 284
Arkakevich-Green’s function, xxv, 225, 241, 246, 299, 305, 375
arbres, 147
arc, 393
arcwise connected, see also
 path-connected
attracting basin, 320, 337, 365
Attracting Fixed Point Theorem, 350
attracting periodic point, 319
Autissier, Pascal, xi, 191

\(B_x(v)^{-} \), 41
Baire set, 382
ball
 closed, 76, 81, 84
 open, 75, 81, 84
BDV(\(\Gamma \)), xxi, 57, 204
BDV(\(\mathbb{P}^1_{\text{Berk}} \)), xxi
BDV(\(U \)), 97, 217
Benedetto, Rob, xi, 292, 293, 303, 335, 357, 362, 364, 366, 367, 370, 374
Berkovich
 adelic neighborhood, 142, 178, 180
 adelic set, 141, 178, 184, 186
affine line, xv, 19, 413
classification theorem, xvii, 3, 21
curves, x, xi, 49, 117
equicontinuity locus, xxvi, 333
hyperbolic space, xvii, 38
projective line, ix, xv, 24
spaces, x, xv, xxvi, 410, 413
Berkovich, Vladimir, xxvi, 18, 47, 147, 405
Bézivin, J.-P., 354
Bilu’s equidistribution theorem, xxiv
boundary derivative, 235
boundary point, 56
bounded potentials, 109, 246–248
bouts, 358
branch point, 394
branching, 12
 countable, xiii
 of main dendrite, 147, 197
 uncountable, xiii
Call-Silverman local height, 295–297, 306
canonical distance, 83, 85
canonical height, 185, 306, 308
canonical measure, x, xii, xxvi, 240, 297
Cantor matrix, 156, 160
Cantor, David, 180
capacity, xxii
 global, 141, 178, 179, 182, 186
 logarithmic, xxii, 121
capped, 279, 281
Chambert-Loir, Antoine, x, 18, 191, 306, 374
Chebyshev constant, xxiii, 136
Christmas tree, inverted, 271
classical point, 5
cofinal, 379
coherent system of measures, 95, 98
completed residue field, 415
completely invariant, 329
component of injectivity, 359
continuous
 Hölder, 326–328
 Lipschitz, 271, 275, 326, 327
continuous potentials, 109, 240, 241, 298
convergence
 of Laplacians, 227
 pointwise, 219, 220, 225, 226
 weak, 123, 220, 223, 226, 382
converges
 moderately well, 63–66, 71
convex, 195, 377
convex hull, xx, 39
coordinate change, 32, 268, 283
CPA(Γ), 50

\(D(U) \), 147
\(D(\Gamma) \), 56
DeMarco, Laura, ix
derivative
 boundary, 98
 directional, 50, 202
diameter, xviii, 11, 43, 73, 82
Dini’s lemma, 229, 380
direct limit, 16, 21, 40
directed set, 379
Directional Multiplicity Formula, 265
Dirichlet pairing, 51, 69, 70, 105, 106, 246
Dirichlet problem, 155
disc
 Berkovich, 8, 20, 26, 279
 Berkovich closed, 74
 Berkovich open, 40, 74, 200
closed, xvi
 image of a, 279, 389
 irrational, xvi, 5
 rational, 5
discrepancy
 \(v \)-adic, 310
domain, 40, 87
 associated to a finite subgraph, 200
domain of quasi-periodicity, 337, 366, 368–370
Domination Theorem, 213

\(E_\varphi \), 318
electrical network, 52, 397
endpoint, 394
energy integral, xxii, 121

Energy Minimization Principle, xxv, 240, 242, 246, 299
equivocuity, xxv, 333, 336, 386
equidistribution theorem
 adelic, ix, x, xxvi, 184, 240, 306, 309
 Bilu’s, ix, xiv, 145, 184
 for compact adelic sets, 187
 for preimages, xxvi, 318
equilibrium
distribution, see also equilibrium measure
 measure, xxiii, 123, 160
 existence of, 124
 support of, 125, 169
 uniqueness of, 128, 153, 159
 potential, 132
equivalent
 multiplicative seminorms, 24
 paths, 12, 50
Evans function, 151
exceptional
 locus, 318, 324, 363
 point, 318
Fatou components, xxvi, 365
classification of, 338, 366
Fatou set
 Berkovich, xxvi, 328
classical, 333
Fatou-Julia theory, xxvi, 291, 375
Fekete-Szegö theorem, ix, xiv, xxiii, 141–143
 multi-center, 177, 180
finite subgraph, xx, 39, 76, 88
domain associated to a, 200
 image of a, 275
finite-dendrite domain, 41, 155, 193, 199–204, 206, 210, 211, 219, 220
Fixed Point Property, 348
Frostman’s theorem, xxiii, 132, 244
full subset, 11, 401
function
 CPA-smooth, 236
 piecewise affine, 50
 smooth, xxv, 118
function field, ix
functional equation
 for \(g_\varphi(x,y) \), xxvi, 303
 for the canonical measure, xxvi, 297
INDEX 425

\(g_{\mu,\varphi}(x, y)\), 299, 305
\(g_{\varphi}(x, y)\), 300, 301, 305
Gauss
 norm, 1, 37, 409
 point, 6, 18, 412
Gauss’s lemma, xvi
Gelfand topology, see also topology, Berkovich
Gelfand-Mazur theorem, xvi, 407
generic value, 35, 36
geodesic
 quadrilateral, 396
 segment, 393
 space, 393
 triangle, 395
grand orbit, 318
graph of discs, 14
Green’s function, xxiv, 164, 195
 lower, 181
 of a strict closed affinoid, 169
 pullback formula for, 174, 176, 289
Green’s matrix, 179
Green’s theorem, xvii, 38
Gromov product, 52, 116, 393, 397
 relation to generalized Hsia kernel, 82
Grothendieck topology, xv, 405
\(H_p\), 357
\(H_{Berk}\), xvii, 38
\(H_{Q Berk}^p\), xvii, 38
\(H_{R Berk}^p\), xvii, 38
Hadamard’s inequality, 314, 316
harmonic, xxiv, 145, 197
 not strongly, 149
 preserved under pullbacks, 174
 strongly, xxiv, 145
harmonic measure, 158, 160
Harnack’s
 inequality, 162
 principle, xxiv, 163
Hartogs’s lemma, 230, 231
 for Arakelov-Green’s functions, 233
height of an adelic set, 145, 186
Hermann ring, 368
Hölder continuous, 326–328
Hölder continuous potentials, 327
homoclinic orbit, 351
homogeneous dynamical height, 300, 308, 314
Hsia kernel, xix, xxii, 73, 85
 function-theoretic meaning, 76
 generalized, xix, 81, 194, 393
 geometric interpretation, 83
 relation to Gromov product, 82
Hsia’s theorem, 334
Hsia, Liang-Chung, x, xii, 73, 85, 292, 293
hyperbolic
 0-, 398
 Gromov, 398
 strongly, 396
immediate basin of attraction, 337, 365, 367
Incompressibility Lemma, 278, 360
indifferent periodic point, 340, 342, 360, 361, 363
induction
 transfinite, 277, 347, 348
inverse limit, xi, xx, 16, 40
iterated logarithm, 368
\(j_\varphi(x, y)\), 52
 extension to \(P^1_{Berk}\), 78
 relation with Hsia kernel, 76, 398
\(j_\nu(x, y)\), 67
Jonsson, Mattias, xii, 93, 116, 119, 219, 225, 226, 233
Jordan decomposition, 217, 227, 246, 381
Julia set
 Berkovich, xxvi, 328
 classical, 333
 filled, x, 354
 homogeneous filled, 314
Kani, Ernst, 191
Kiwi, Jan, xiii
Kontsevich, Maxim, xiii
\(\lambda\)-measure, 95
Laplacian, xv
 complete, 98
 generalized, 194
 is self-adjoint, 109
 on Berkovich curves, x
 on metrized graphs, xi, xvi, xx, 50, 54, 61
 on \(P^1_{Berk}\), xx
 on \(R\)-trees, xii
 on subdomains of \(P^1_{Berk}\), 98
 pullback formula for, 288
Laurent domain, 36, 410
least upper bound, 401
limit superior, 378
line of discs, 13
local degree, 258, 359
local ring, 22, 27
localization of a category, 414

$m_\varphi(a)$, 249, 256
$m_\varphi(a, \vec{v})$, 264

main dendrite, 147, 196, 197, 209, 215, 218, 239
and harmonic functions, 148
and subharmonic functions, 195
is finitely branched, 147
majorized by harmonic functions, 199–202, 204, 206, 210, 211, 219, 220
Maria's theorem, xxiii, 131, 243
Mass Formula, 55, 103

Maximum Principle
for harmonic functions, 150
for subharmonic functions, xxv, 197
strong, 151

measure, 381
Baire, 93, 383
discrete, 62, 118, 236, 254
finite, 381
has bounded potentials, 109, 246
has continuous potentials, 109, 240, 241, 298
positive, 381
probability, 121
Radon, 91–93, 119, 381
regular, 381
signed, 381
total variation of a, 381

metric
big, 13, 44
path distance, xviii, 44
is canonical, xix, 46
small, 11, 43, 44
metrizability, xiii, 17, 19, 43
metrized graph, 49
model for a, 49
mirror symmetry, xiii
Möbius transformation, xix, 31, 47, 284

modulus of an open annulus, 46, 281, 284

multiplicity
algebraic, 249, 256
analytic, xiv, xxv, 256, 261, 269
in a tangent direction, 264
of a bout, 359

nest, 127
net, xiii, 19, 379
Neumann problem, 155

Newton polygon, 320, 341, 361, 387–390
Northcott finiteness property, 187, 309

one-dimensional Hausdorff measure, 95, 107
one-point compactification, xvii, 23, 384
Open Mapping Theorem, 257, 278

φ-saturated, see also saturated domain
φ-small neighborhood, see also small neighborhood

parametrized rooted tree, 11, 43, 401
partial order, xvii, 9, 401
path, 50, 393
path-connected, 14, 393
uniquely, xv, xvi, 12, 29, 404
Piñeiro, Jorge, 375
PL-domain, 181
Poincaré-Lelong formula, xxii, 99
Poisson formula, xxiv, 156, 158, 199
classical, 155
Poisson-Jensen measure, 158, 160
classical, 155
polar set, 215
Portmanteau theorem, 254, 383
potential function, xxiii, 100, 116, 128, 195, 214
continuity of, 218
generalized, 242
need not be continuous, 130
potential kernel, 52
extension to P^1_{Berk}, 78
relation with Hsia kernel, 76
potential theory, ix, xv
product formula, 141, 178, 186
field, 185
Prohorov’s theorem, 189, 311, 313, 382
Proj construction, xiii, 23
pseudo-equidistribution, x
pullback function, 285
pullback measure, xxv, 285
pushforward function, 258
pushforward measure, xxv, 285

quadripod, 396
quasar, 342

φ, xviii, 13, 44
is canonical, 46
$r_\varphi(a, \vec{v})$, 262

\mathbb{R}-tree, xv, xix, 9, 393
finite, 394
profinite, xiv, xix, 16
rooted, 393
ramification function, 270
rate of repulsion, 262
rational function
 action on $\mathbb{P}^1_{\text{Berk}}$, 31, 37
reduction
 good, 269, 292, 298, 299, 303, 363
 nonconstant, 33–35, 268, 269
 simple, 298, 324, 325, 329, 332, 366, 370
 with respect to a coordinate change, 268
repelling fixed point, 344, 362
repelling periodic point, 340, 342, 343, 354, 360, 361
reproducing kernel, xxiv, 172
Repulsion Formula, 262
resultant, 30, 293, 294, 300, 302–304, 356
retraction map, xx, 16, 39, 89, 90
 is continuous, 90
Riemann Extension Theorem, 153
Riemann-Hurwitz formula, 319
Riesz Decomposition Theorem, xxv, 215
Riesz Representation Theorem, 87, 97, 382
RL-domain, 140, 142, 181
Robin constant, xxii, 121, 181
 global, 179, 182
 relative to μ, 244
Rolle’s theorem, 322, 390
saturated domain, 259
saturation, 14
seminormal, 128, 378
 regularization, 207, 378
 strongly, 129, 195, 378
seminorm, 406
 bounded, 1, 406
 equivalent, 24
 evaluation, 3
 multiplicative, xvi, 1, 406
 normalized, 24
separability, 175, 360, 363, 364
separable space, 91, 93
sheaf of analytic functions, 19, 411
Shilov boundary, 412
Shishikura’s theorem, 363
Silverman, Joe, 18, 292, 293, 375
simple domain, xx, 9, 41, 87
 image of a, 257
 inverse image of a, 257
 strict, 41, 148
 simple subdomain, 159, 200
 skeleton, 147
 small neighborhood, 260
 smoothing
 CPA, 234, 236
 Favre–Rivera-Letelier, 113, 114, 234, 235
Soibelman, Yan, xiii
 special subset, 411
spectrum, 2, 406
spherical
 distance, 43, 79
 kernel, 79, 80
 geometric interpretation, 80
 spherically complete, xvii, 5
 strongly involutive, 344
subharmonic, xxiv, 119, 165, 193
 domination, xxv, 199, 206
 equals domination subharmonic, 200, 205
 strongly, xxiv, 193
subnet, 380
superattracting periodic point, 319
superharmonic, xxiv, 194
Szpiro, Lucien, 375
tangent
 direction, see also tangent vector
 space, 12, 41, 50, 402
 vector, 12, 41, 50, 261, 402
Tate algebra, 36, 409
Tate, John, xv, 405
test functions
 smooth, 118, 222
Thuillier, Amaury, x, xi, 116–119, 144, 147, 191, 219, 220, 248
 topology
 Berkovich, xvi, 2, 7, 17, 406, 407
 neighborhood base for, xx, 42, 260, 411, 415
 direct limit, 40
 observer’s, 402
 of pointwise convergence, 20, 219, 220, 225, 226
 of weak convergence, 220, 226
 on $\mathbb{A}^1_{\text{Berk}}$, 19
 on $\mathbb{P}^1_{\text{Berk}}$, 24, 28
 path distance, 42
 strong, 42, 45, 358, 402
 weak, 11, 16, 42, 382, 402
transfinite diameter, xxiii, 136
Transitivity Theorem, 332
tripod, 395
Tucker, Tom, 375
type, xvii, 5, 22
 preservation of, 32

\(U(x; \vec{v}) \), 12
Uniform Injectivity Criterion, 322
uniform space, 385, 386

vanishing chain, 358
Varley, Robert, 85
vertex set, 49

wandering
 component, 338
 domain, 366, 367
weak convergence, see also
 convergence, weak
Weierstrass Preparation Theorem, 2, 174
well-oriented subgraph, 200, 202, 204, 206
witch’s broom, 12

Yuan, Xinyi, 191

\(\zeta_{\text{Gauss}} \), 6
\(\zeta_{a,r} \), 5
Zh(\(\Gamma \)), 54
Titles in This Series

159 Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, 2010
158 D. R. Yafaev, Mathematical scattering theory: Analytic theory, 2010
157 Xia Chen, Random walk intersections: Large deviations and related topics, 2010
155 Yiannis N. Moschovakis, Descriptive set theory, 2009
154 Andreas Čap and Jan Slovák, Parabolic geometries I: Background and general theory, 2009
153 Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer potential techniques in spectral analysis, 2009
152 János Pach and Micha Sharir, Combinatorial geometry and its algorithmic applications: The Alcálà lectures, 2009
151 Ernst Binz and Sonja Pods, The geometry of Heisenberg groups: With applications in signal theory, optics, quantization, and field quantization, 2008
150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008
149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008
148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz’ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136-Jean-Michel Coron, Control and nonlinearity, 2007
134 Dana P. Williams, Crossed products of C^*-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cauchy Transform</td>
<td>Joseph A. Cima, Alec L. Matheson, and William T. Ross</td>
<td>2006</td>
</tr>
<tr>
<td>Valuations, orderings, and Milnor K-Theory</td>
<td>Ido Efrat, Editor</td>
<td>2006</td>
</tr>
<tr>
<td>Fundamental algebraic geometry: Grothendieck’s FGA explained</td>
<td>Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli</td>
<td>2005</td>
</tr>
<tr>
<td>Polynomial identities and asymptotic methods</td>
<td>Antonio Giambruno and Mikhail Zaicev, Editors</td>
<td>2005</td>
</tr>
<tr>
<td>Sturm-Liouville theory</td>
<td>Anton Zettl</td>
<td>2005</td>
</tr>
<tr>
<td>Trace ideals and their applications</td>
<td>Barry Simon</td>
<td>2005</td>
</tr>
<tr>
<td>Geometric theory of incompressible flows with applications to fluid dynamics</td>
<td>Tian Ma and Shouhong Wang</td>
<td>2005</td>
</tr>
<tr>
<td>Arithmetic differential equations</td>
<td>Alexandru Buium</td>
<td>2005</td>
</tr>
<tr>
<td>Self-similar groups</td>
<td>Volodymyr Nekrashevych</td>
<td>2005</td>
</tr>
<tr>
<td>Fourier analysis in convex geometry</td>
<td>Alexander Koldobsky</td>
<td>2005</td>
</tr>
<tr>
<td>Advanced analytic number theory: L-functions</td>
<td>Carlos Julio Moreno</td>
<td>2005</td>
</tr>
<tr>
<td>Conformally invariant processes in the plane</td>
<td>Gregory F. Lawler</td>
<td>2005</td>
</tr>
<tr>
<td>Homotopy limit functors on model categories and homotopical categories</td>
<td>William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith</td>
<td>2004</td>
</tr>
<tr>
<td>The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups</td>
<td>Michael Aschbacher and Stephen D. Smith</td>
<td>2004</td>
</tr>
<tr>
<td>The classification of quasithin groups I. Structure of strongly quasithin K-groups</td>
<td>Michael Aschbacher and Stephen D. Smith</td>
<td>2004</td>
</tr>
<tr>
<td>The Ricci flow: An introduction</td>
<td>Bennett Chow and Dan Knopf</td>
<td>2004</td>
</tr>
<tr>
<td>Arithmetic and analytic theories of quadratic forms and Clifford groups</td>
<td>Goro Shimura, Alf van der Poorten, Igor Shparlinski, and Thomas Ward</td>
<td>2004</td>
</tr>
<tr>
<td>Topology of closed one-forms</td>
<td>Michael Farber</td>
<td>2004</td>
</tr>
<tr>
<td>Representations of algebraic groups</td>
<td>Jens Carsten Jantzen</td>
<td>2003</td>
</tr>
<tr>
<td>Absolute CM-periods</td>
<td>Hiroyuki Yoshida</td>
<td>2003</td>
</tr>
<tr>
<td>Locally solid Riesz spaces with applications to economics, second edition</td>
<td>Charalambos D. Aliprantis and Owen Burkinshaw</td>
<td>2003</td>
</tr>
<tr>
<td>Lusternik-Schnirelmann category</td>
<td>Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré</td>
<td>2003</td>
</tr>
<tr>
<td>Spatial deterministic epidemics</td>
<td>Linda Rass and John Radcliffe</td>
<td>2003</td>
</tr>
<tr>
<td>Ergodic theory via joinings</td>
<td>Eli Glasner</td>
<td>2003</td>
</tr>
<tr>
<td>Bergman spaces</td>
<td>Peter Duren and Alexander Schuster</td>
<td>2004</td>
</tr>
<tr>
<td>Model categories and their localizations</td>
<td>Philip S. Hirschhorn</td>
<td>2003</td>
</tr>
<tr>
<td>Moment maps, cobordisms, and Hamiltonian group actions</td>
<td>Victor Guillemin, Viktor Ginzburg, and Yael Karshon</td>
<td>2002</td>
</tr>
<tr>
<td>Applied Picard-Lefschetz theory</td>
<td>V. A. Vassiliev</td>
<td>2002</td>
</tr>
<tr>
<td>Operads in algebra, topology and physics</td>
<td>Martin Markl, Steve Shnider, and Jim Stasheff</td>
<td>2002</td>
</tr>
<tr>
<td>Braid and knot theory in dimension four</td>
<td>Seiichi Kamada</td>
<td>2002</td>
</tr>
<tr>
<td>Invariant theory of finite groups</td>
<td>Mara D. Neusel and Larry Smith</td>
<td>2002</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The purpose of this book is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line over an arbitrary complete, algebraically closed non-Archimedean field. In addition to providing a concrete and “elementary” introduction to Berkovich analytic spaces and to potential theory and rational iteration on the Berkovich line, the book contains applications to arithmetic geometry and arithmetic dynamics. A number of results in the book are new, and most have not previously appeared in book form. Three appendices—on analysis, \mathbb{R}-trees, and Berkovich’s general theory of analytic spaces—are included to make the book as self-contained as possible.

The authors first give a detailed description of the topological structure of the Berkovich projective line and then introduce the Hsia kernel, the fundamental kernel for potential theory. Using the theory of metrized graphs, they define a Laplacian operator on the Berkovich line and construct theories of capacities, harmonic and subharmonic functions, and Green’s functions, all of which are strikingly similar to their classical complex counterparts. After developing a theory of multiplicities for rational functions, they give applications to non-Archimedean dynamics, including local and global equidistribution theorems, fixed point theorems, and Berkovich space analogues of many fundamental results from the classical Fatou-Julia theory of rational iteration. They illustrate the theory with concrete examples and exposit Rivera-Letelier’s results concerning rational dynamics over the field of p-adic complex numbers. They also establish Berkovich space versions of arithmetic results such as the Fekete-Szegö theorem and Bilu’s equidistribution theorem.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-159