Elliptic Equations in Polyhedral Domains
Elliptic Equations in Polyhedral Domains

Vladimir Maz'ya
Jürgen Rossmann
Contents

Introduction 1

Part 1. The Dirichlet problem for strongly elliptic systems in polyhedral domains 7

Chapter 1. Prerequisites on elliptic boundary value problems in domains with conical points 9
 1.1. Elliptic boundary value problems in domains with smooth boundaries 9
 1.2. Elliptic boundary value problems in angles and cones 16

Chapter 2. The Dirichlet problem for strongly elliptic systems in a dihedron 23
 2.1. Weighted Sobolev spaces in a dihedron 24
 2.2. Variational solutions of the Dirichlet problem 32
 2.3. The parameter-depending problem in a 2-dimensional wedge 39
 2.4. Solvability of the Dirichlet problem in weighted L_2 Sobolev spaces 53
 2.5. Green’s matrix of the Dirichlet problem in a dihedron 58
 2.6. Solvability in weighted L_p Sobolev spaces 64
 2.7. Weighted Hölder spaces in a dihedron 72
 2.8. Solvability in weighted Hölder spaces 75
 2.9. The problem with variable coefficients in a dihedron 81

Chapter 3. The Dirichlet problem for strongly elliptic systems in a cone with edges 89
 3.1. Weighted Sobolev spaces in a cone 90
 3.2. Operator pencils generated by the Dirichlet problem 96
 3.3. Solvability in weighted L_2 Sobolev spaces 99
 3.4. Green’s matrix of the Dirichlet problem in a cone 110
 3.5. Solvability in weighted L_p Sobolev spaces 117
 3.6. Solvability in weighted Hölder spaces 129
 3.7. The boundary value problem with variable coefficients in a cone 137

Chapter 4. The Dirichlet problem in a bounded domain of polyhedral type 141
 4.1. Solvability of the boundary value problem in weighted Sobolev spaces 141
 4.2. Solvability of the boundary value problem in weighted Hölder spaces 150
 4.3. Examples 153

Chapter 5. The Miranda-Agmon maximum principle 161
 5.1. Green’s matrix for the Dirichlet problem in a bounded domain 162
 5.2. The Miranda-Agmon maximum principle in domains of polyhedral type 174
5.3. The Miranda-Agmon maximum principle for generalized solutions in domains with conical points 188
5.4. The Miranda-Agmon maximum principle for smooth solutions in a domain with a conical point 198

Part 2. Neumann and mixed boundary value problems for second order systems in polyhedral domains 211

Chapter 6. Boundary value problems for second order systems in a dihedron 213
6.1. Solvability in weighted Sobolev spaces with homogeneous norms 214
6.2. Weighted Sobolev spaces with nonhomogeneous norms 222
6.3. Parameter-dependent problems in an angle 239
6.4. Solvability of the boundary value problem in the dihedron in weighted L_2 Sobolev spaces 245
6.5. Regularity results for solutions of the boundary value problem 251
6.6. Green’s matrix for the problem in the dihedron 262
6.7. Weighted Hölder spaces with nonhomogeneous norms 270
6.8. Some estimates of the solutions in weighted Hölder spaces 280

Chapter 7. Boundary value problems for second order systems in a polyhedral cone 289
7.1. The boundary value problem and corresponding operator pencils 290
7.2. Weighted Sobolev spaces in a cone 295
7.3. Solvability of the boundary value problem in weighted L_2 Sobolev spaces 298
7.4. Regularity results for variational solutions 304
7.5. Green’s matrix of the boundary value problem in a polyhedral cone 310
7.6. Solvability in weighted L_p Sobolev spaces 320
7.7. Weak solutions in weighted L_p Sobolev spaces 326
7.8. Solvability in weighted Hölder spaces 339

Chapter 8. Boundary value problems for second order systems in a bounded polyhedral domain 355
8.1. Solvability of the boundary value problem in weighted Sobolev spaces 355
8.2. Solvability of the boundary value problem in weighted Hölder spaces 368
8.3. Examples 371

Part 3. Mixed boundary value problems for stationary Stokes and Navier-Stokes systems in polyhedral domains 379

Chapter 9. Boundary value problem for the Stokes system in a dihedron 381
9.1. Existence of weak solutions of the boundary value problem 382
9.2. Compatibility conditions on the edge 388
9.3. The model problem in an angle 394
9.4. Solvability in weighted L_2 Sobolev spaces 400
9.5. Green’s matrix of the problems in a half-space 412
9.6. Green’s matrix for the boundary value problem in a dihedron 425
9.7. Some estimates of solutions in weighted Hölder spaces 433
Historical remarks

1. Bibliographical notes to chapters

Chapter 1 (smooth domains and isolated singularities). In addition to the references given in Sections 1.1 and 1.2, we note that a historical survey on elliptic boundary value problems in domains with smooth boundaries and in domains with isolated singularities on the boundary can be found in the book [84], which contains many references related to this topic. Therefore, in what follows, we will refer only to works dealing with boundary singularities of positive dimension.

Chapter 2 (Dirichlet problem, nonintersecting edges). The material in this chapter is an adaption to the Dirichlet problem of a more general framework in the papers [118, 119, 120] by Maz'ya and Plamenevskii. The main difference is that, in contrast to these papers, we allow the right-hand side of the differential equation to belong to a weighted Sobolev or Hölder space of negative order. An earlier exposition of solvability and regularity results in Hilbert-Sobolev spaces of integer order was given by the same authors in [114]. A theory of the Dirichlet problem in Hilbert-Sobolev spaces of fractional order was developed by Dauge [31]. In [118, 119, 120], arbitrary elliptic equations supplied with different boundary conditions on the faces of a n-dimensional dihedron were considered.

In particular, as shown in [118], the boundary value problem is solvable in the weighted Sobolev space $V^{s,p}_\delta$ if the kernel and cokernel of the operator of the corresponding parameter-depending model problem in the plane cross-section angle (cf. Section 2.3) are trivial. This condition can be easily checked for the Dirichlet problem and for a broad class of strongly elliptic problems. In general, the algebraic verification of the triviality of the kernel and cokernel just mentioned is an open problem, but the answer is known in some special cases, see Maz'ya and Plamenevskii [112, 114, 115], Maz'ya [103], Komech [73], Eskin [51]. It is proved by Kozlov [77] that, under some requirements on the elliptic operator, one can achieve the triviality of the kernel of the model problem in question by prescribing a finite number of complementary conditions on the edge.

Note that the results in [118] were derived using an operator multiplier theorem for the Fourier transform. The approach in the present book goes up to the paper [119], where estimates of solutions in weighted Hölder spaces were obtained by means of point estimates for Green’s functions.

Various aspects of the elliptic theory for manifolds with edges (parametrices, Fredholm property, index) were studied in numerous works by Schulze and his collaborators by methods of the theory of pseudo-differential operators (see for example the monograph by Nazarovskii, Savin, Schulze and Sternin [154]).
Properties of the Dirichlet problem for the Laplacian stated in Subsections 2.6.6 and 2.8.6 are corollaries of the general Theorems 2.6.5 and 2.8.8. However, particular cases of these results were obtained previously by specific methods of the theory of second order elliptic equations with real coefficients. For instance, coercive estimates of solutions of the Dirichlet problem for second order elliptic equations in the weighted spaces $V^{2,2}_d$ were obtained by Kondrat’ev [75]. The paper [12] of Apushkinskaya and Nazarov is dedicated to Hölder estimates for solutions to the Dirichlet problem for quasilinear elliptic equations in domains with smooth closed edges of arbitrary dimension.

Chapters 3 and 4 (Dirichlet problem in domains of polyhedral type). Pointwise estimates for Green’s matrix of the Dirichlet problem for strongly elliptic equations of higher order were obtained in our paper [129]. In the same paper, one can find estimates of solutions in weighted L_p-Sobolev spaces similar to those in Sections 3.5 and 4.1. The Hölder estimates in Sections 3.6 and 4.2 were not published before.

In the paper [113] Maz’ya and Plamenevskii introduced a large class of multi-dimensional manifolds with edges of different dimensions intersecting under nonzero angles. This class of manifolds contains polyhedra in \mathbb{R}^N as a very special case. A solvability theory for general elliptic boundary value problems on such manifolds in weighted L_2-Sobolev spaces was developed in [116] by an induction argument in dimensions of singular strata. It is assumed in this paper that kernels and cokernels of all model problems generated by edges of different dimensions are trivial, which is the case, in particular, for the Dirichlet problem. This material is reproduced in the book by Nazarov and Plamenevskii [160].

A L_2-theory for the Dirichlet problem for general elliptic equations in three-dimensional polyhedral domains was also established in the papers by Lubuma, Nicaise [92] and Nicaise [164]. Some regularity results related to the Dirichlet problem for the Laplace equation in a polyhedral domain were obtained by Hanna and Smith [65], Grisvard [58, 60], Dauge [31], Ammann and Nistor [11]. Buffa, Costabel and Dauge [18] stated regularity assertions for the Laplace and Maxwell equations in isotropic and anisotropic weighted Sobolev spaces. The Dirichlet problem for the Lamé system (and for the Laplace equation as a particular case) in a broad class of piecewise smooth domains without cusps was investigated in detail by Maz’ya and Plamenevskii [124].

Chapter 5 (Miranda-Agmon maximum principle). The main results of this chapter were obtained in our papers [129] and [130], the Hölder estimates for the derivatives of Green’s matrix in convex polyhedral type domains presented in Subsection 5.1.5 were proved by Guzman, Leykekhman, Rossmann and Schatz [64].

The history starts with the estimate

\[(11.6.29) \quad ||u||_{C^{m-1}G} \leq c \left(\sum_{k=1}^{m} \left\| \frac{\partial^{k-1} u}{\partial n^{k-1}} \right\|_{C^{m-k} (\partial G)} + ||u||_{L_1(G)} \right),\]

for solutions of strongly elliptic equations $Lu = 0$ of order $2m > 2$ proved in the case of smooth boundaries by Miranda [144, 145] for two-dimensional and by Agmon
for higher-dimensional domains. Schulze [182, 183] justified analogous C^k estimates for solutions of strongly elliptic systems and for more general boundary conditions $D^m g = f$ on ∂G, where $m \leq 2m - 1$.

Maz’ya and Plamenevskii [122] proved the estimate (11.6.29) for solutions of the biharmonic equation in a three-dimensional domain with conical vertices. As shown independently in Maz’ya, Rossman [130] and Pipher, Verchota [169], this estimate fails if the dimension is greater than 3. In [169, 170] Pipher and Verchota proved the estimate (11.6.29) for solutions of the biharmonic and polyharmonic equations in Lipschitz domains.

Chapter 6 (systems of second order, nonintersecting edges). The results of this chapter are borrowed from our paper [133]. Even when dealing only with the Dirichlet problem, we obtain new results in comparison with Chapter 2. Here the data and the solutions belong to a wider class of spaces with nonhomogeneous norms which include classical nonweighted Sobolev spaces. These spaces were earlier used in the paper [128] of Maz’ya and Rossmann, where general elliptic boundary value problems were considered under the assumption of the unique solvability of model problems in a plane cross-section angle.

The first treatment of the Neumann problem for the equation $\Delta u = 0$ in the presence of a smooth edge on the boundary was given as early as 1916 by Carleman [19], who used methods of potential theory. For the same problem see the works by Maz’ya and Plamenevskii [112, 115] and Solonnikov and Zajaczkowski [204], where solutions in the spaces $W^{1,2}_q$ were considered. Analogous results in the weighted Sobolev spaces $W^{1,p}_q$ and weighted Hölder spaces C^{α}_q were obtained in the preprint [190] by Solonnikov. Furthermore, the Green’s function for the Neumann problem was estimated in [190]. An L_2-theory for more general boundary value problems including the Neumann problem was developed in papers by Nazarov [155, 156], Rossman [177], Nazarov, Plamenevskii [158, 159] (see also the book of Maz’ya and Plamenevskii [160]). The elliptic oblique derivative problem in domains with nonintersecting edges was treated by Maz’ya and Plamenevskii [112].

Nazarov and Sweers [161] investigated the $W^{2,2}$-solvability of the biharmonic equation with prescribed boundary value of the solution and its Laplacian in a three-dimensional domain with variable opening at the edge, where some interesting effects arise for a critical opening.

If the domain is smooth and the role of an edge is played by a smooth surface of codimension 1 in the boundary separating different boundary conditions, another approach to mixed problems based on the Wiener-Hopf method was used starting in the 1960s (see the monograph by Eskin [50]). A similar approach proved to be effective in the study of boundary value problems for domains with two-dimensional cracks and interior cuspidal edges (see Duduchava and Wendland [39], Duduchava and Natroshvili [38], Chkadua [20], Chkadua, Duduchava [21] et al.). In particular in [39], the Wiener-Hopf method was developed for systems of boundary pseudo-differential equations which allowed to manage without the factorization of corresponding matrix symbols and to investigate the asymptotics of the solution to the crack problem in an anisotropic medium.

Exterior cuspidal edges which require different methods were studied by Dauge [35], Schulze, Tarkhanov [187], Rabinovich, Schulze, Tarkhanov [173, [5] for higher-dimensional domains. Schulze [182, 183] justified analogous C^k estimates for solutions of strongly elliptic systems and for more general boundary conditions $D^m g = f$ on ∂G, where $m \leq 2m - 1$. Maz’ya and Plamenevskii [122] proved the estimate (11.6.29) for solutions of the biharmonic equation in a three-dimensional domain with conical vertices. As shown independently in Maz’ya, Rossman [130] and Pipher, Verchota [169], this estimate fails if the dimension is greater than 3. In [169, 170] Pipher and Verchota proved the estimate (11.6.29) for solutions of the biharmonic and polyharmonic equations in Lipschitz domains.

Chapter 6 (systems of second order, nonintersecting edges). The results of this chapter are borrowed from our paper [133]. Even when dealing only with the Dirichlet problem, we obtain new results in comparison with Chapter 2. Here the data and the solutions belong to a wider class of spaces with nonhomogeneous norms which include classical nonweighted Sobolev spaces. These spaces were earlier used in the paper [128] of Maz’ya and Rossmann, where general elliptic boundary value problems were considered under the assumption of the unique solvability of model problems in a plane cross-section angle.

The first treatment of the Neumann problem for the equation $\Delta u = 0$ in the presence of a smooth edge on the boundary was given as early as 1916 by Carleman [19], who used methods of potential theory. For the same problem see the works by Maz’ya and Plamenevskii [112, 115] and Solonnikov and Zajaczkowski [204], where solutions in the spaces $W^{1,2}_q$ were considered. Analogous results in the weighted Sobolev spaces $W^{1,p}_q$ and weighted Hölder spaces C^{α}_q were obtained in the preprint [190] by Solonnikov. Furthermore, the Green’s function for the Neumann problem was estimated in [190]. An L_2-theory for more general boundary value problems including the Neumann problem was developed in papers by Nazarov [155, 156], Rossmann [177], Nazarov, Plamenevskii [158, 159] (see also the book of Maz’ya and Plamenevskii [160]). The elliptic oblique derivative problem in domains with nonintersecting edges was treated by Maz’ya and Plamenevskii [112].

Nazarov and Sweers [161] investigated the $W^{2,2}$-solvability of the biharmonic equation with prescribed boundary value of the solution and its Laplacian in a three-dimensional domain with variable opening at the edge, where some interesting effects arise for a critical opening.

If the domain is smooth and the role of an edge is played by a smooth surface of codimension 1 in the boundary separating different boundary conditions, another approach to mixed problems based on the Wiener-Hopf method was used starting in the 1960s (see the monograph by Eskin [50]). A similar approach proved to be effective in the study of boundary value problems for domains with two-dimensional cracks and interior cuspidal edges (see Duduchava and Wendland [39], Duduchava and Natroshvili [38], Chkadua [20], Chkadua, Duduchava [21] et al.). In particular in [39], the Wiener-Hopf method was developed for systems of boundary pseudo-differential equations which allowed to manage without the factorization of corresponding matrix symbols and to investigate the asymptotics of the solution to the crack problem in an anisotropic medium.

Exterior cuspidal edges which require different methods were studied by Dauge [35], Schulze, Tarkhanov [187], Rabinovich, Schulze, Tarkhanov [173,
Chapters 7 and 8 (second order systems in domains of polyhedral type). These chapters contain a somewhat extended exposition of the results obtained by the authors in [133, 134, 135]. New features in comparison with Chapters 3 and 4 are the use of nonhomogeneous Sobolev and Hölder norms, and the inclusion of the Neumann problem.

The Neumann problem for the Laplace equation in a polyhedral cone was earlier studied in the preprint [57] of Grachev and Maz’ya, where the authors obtained estimates for the solutions in weighted Sobolev and Hölder spaces and pointwise estimates of the Green’s matrix. Daube [34] proved regularity assertions for solutions of the Neumann problem for second order elliptic equations with real coefficients in nonweighted L_p-Sobolev spaces. Regularity results in weighted L_2-Sobolev spaces for general self-adjoint systems were proved by Nazarov and Plamenevskii [157]. The behavior of the solution of the Neumann problem for the Lamé system near the vertex of a polyhedron is studied in the book by Grisvard [62].

Mixed boundary value problems for the Laplace equation with Dirichlet and Neumann conditions are considered e.g. in the above mentioned works by Daube [34] and Grisvard [62]. The same problems were studied by Ebmeier [44], Ebmeier and Frehse [45] for nonlinear second order equations in N-dimensional domains, $N \geq 3$, with piecewise smooth boundaries. Nicaise [163] obtained regularity results for solutions of mixed boundary value problems to the Lamé system in L_2-Sobolev spaces.

Maz’ya [102, 103] and Daube [32] studied oblique derivative problems in domains of polyhedral type. Transmission problems in polyhedral domains were handled in papers by Costabel, Daube, Nicaise [29], Chikouche, Mercier, Nicaise [22, 23], Knees [72], Elschnier, Rehberg, Schmidt [48], Elschnier, Kaiser, Rehberg, Schmidt [47].

The conditions ensuring the solvability and regularity of solutions near the vertices depend on information about eigenvalues of the operator pencils $\mathcal{A}_k(\lambda)$ and $\mathcal{A}_j(\lambda)$ introduced in Section 8.1. Information of this nature is collected in the book by Kozlov, Maz’ya and Rossman [85]. The pencil generated by the Neumann problem for elliptic differential operators of arbitrary order was investigated by Kozlov and Maz’ya [80]. Assuming that the cone is convex, it was shown by Escobar [49] and in another way by Maz’ya [107] that the first positive eigenvalue of the pencil $\delta + \lambda(\lambda + N - 2)$ with zero Neumann conditions satisfies the sharp inequality $\lambda_1 \geq 1$. Earlier Daube [34] found a rougher estimate $\lambda_1 > (\sqrt{5} - 1)/2$ in the three-dimensional case.

For special problems and special domains, eigenvalues of operator pencils generated by the Neumann problem were calculated numerically by Leguillon and Sanchez-Palencia [90], Dimitrov [40], Dimitrov, Andrá and Schnack [41] et al.

Chapter 9 (Stokes and Navier-Stokes systems, nonintersecting edges). This chapter is an extended version of our paper [136] concerning the mixed boundary value problem for the Stokes system in a dihedron. Some related results can be found in the earlier paper of Solonnikov [189] and Maz’ya, Plamenevskii and Stupelis [125], where the Dirichlet problem and a particular mixed boundary
value problem were studied in connection with a nonlinear hydrodynamical problem with free boundary. A detailed exposition of the results obtained in [125] can be found in Stupelis [193]. In contrast to [136], the paper [125] deals with solutions in weighted Sobolev and Hölder spaces with homogenous norms.

Chapters 10 and 11 (Stokes and Navier-Stokes systems, domains of polyhedral type). These chapters contain results obtained by the authors in [136]–[140] and [179]. The starting point for the development of this theory was the paper by Maz’ya and Plamenevskiǐ [124] dedicated to the Dirichlet problem.

The inequality (11.3.3) for the eigenvalues of the pencil generated by the Dirichlet problem for the Stokes system obtained by Maz’ya and Plamenevskiǐ in [123] was the first result of this nature. More estimates for the eigenvalues can be found in the paper by Dauge [33]. A detailed analysis of these eigenvalues including a variational principle for real ones was developed by Kozlov, Maz’ya and Schwaß [86] (see also the book [85]). The only paper, where the eigenvalues corresponding to the Neumann were touched upon, is that of Kozlov and Maz’ya [79]. Some results corresponding to various mixed type problems were obtained by Kozlov, Maz’ya and Rossmann [83] (see also the book [85]).

The results in Section 11.5 have a long history which begins with Odquist’s inequality

\[\|u\|_{L^\infty(G)} \leq c \|u\|_{L^\infty(\partial G)} \]

for the solutions of the Stokes system (11.6.1) (see [166]). A proof of this inequality for domains with smooth boundaries is given e.g. in the book by Ladyzhenskaya [89]. We refer also to the papers of Maz’ya and Kresin [108], Naumann [153], Kratz [87] and Maremonti [93]. Using point estimates of the Green’s matrix, Maz’ya and Plamenevskiǐ [123, 124] proved this inequality for solutions of the Stokes system in three-dimensional domains with conical points and in domains of polyhedral type.

For the nonlinear problem (11.6.1), (11.6.2), Solonnikov [191] showed that solutions satisfy the estimate (11.6.21) with a certain unspecified function \(F \) if the boundary \(\partial G \) is smooth. An estimate of this form can be also deduced from the results in a paper of Maremonti and Russo [94]. Maz’ya and Plamenevskiǐ [124] proved for domains of polyhedral type that the solution \(u \) of (11.6.1), (11.6.2) with finite Dirichlet integral is continuous in \(\overline{G} \) if \(h \) is continuous on \(\partial G \). However, the paper [124] contains no estimates for the maximum modulus of \(u \). In our paper [140], we proved the inequality (11.6.21) for domains of polyhedral type and obtained the representation \(F(t) = c_0 t^\nu e^{c_1 t^\nu} \) for the function \(c \).

2. Bibliographical notes to other related material

The whole theme of elliptic boundary value problems in nonregular domains is so rich that obviously we could touch upon only a small part of it. In order to illustrate the variety of results in this area, we give here some references related to topics outside of this book without aiming at complete satisfaction to a certain extent.

Asymptotics of solutions near edges and vertices. The asymptotic expansions of solutions near boundary singularities are not treated in this book, but
this theme was thoroughly studied simultaneously with solvability properties and became a broad area of research. The asymptotics of solutions of the Dirichlet problem for elliptic equations of second order in a neighborhood of an edge was described by Kondrat’ev [76] and Nikishkin [165] and for the Laplace equation by Grisvard [61]. Asymptotic formulas for solutions to general elliptic boundary value problems were proved by Maz’ya and Plamenevskii [114], Maz’ya and Rossman [127, 128], Dauge [30], Nazarov and Plamenevskii [160]. It was assumed in the last works that the edges do not contain “critical” points, i.e. that there is no bifurcation in singularities. The case of critical edge points was discussed in the papers by Rempp and Schulze [175], and Schulze [184, 185]. Explicit asymptotic formulas for such cases were derived by Costabel and Dauge [25], Maz’ya and Rossman [132]. The asymptotics of solutions near polyhedral vertices was studied by von Petersdorff and Stephan [202] and Dauge [36] for second order equations. The last paper is a masterful survey of the area. We also mention a comprehensive study of singularities of solutions to the Maxwell equation by Costabel and Dauge [26, 27, 28].

Lipschitz graph and other domains. Needless to say, there are other areas in the theory of elliptic boundary value problems differing both by classes of domains and the methods of research. First of all, there exists a rich theory dealing with Lipschitz graph boundaries and based on refined methods of harmonic analysis. We refer only to the survey monograph by Kenig [71] and more recent works by Adolphsson, Pipher [4], Brown, Perry, Shen [17], Brown [15], Brown, Shen [16], Deuring, von Wahl [37], Dindoš, Mitrea [42], Ebmeyer [44], Ebmeyer, Frehse [45, 46], Jakab, Mitrea, Mitrea [66], Jerison, Kenig [67], Mayboroda, Mitrea [95, 96], Mitrea [146], Mitrea, Monniaux [147], Mitrea, Taylor [148]–[151], Pipher, Verchota [168, 171], Shen [180, 181] and Verchota [198, 199].

Successful attempts to apply these methods, which are based on the so-called Rellich’s identity, to non-Lipschitz graph polyhedral domains in \(\mathbb{R}^3\) and \(\mathbb{R}^4\) were undertaken by Verchota [197], Verchota and Vogel [200, 201], Venouziou and Verchota [196].

Asymptotic formulas for solutions of the Dirichlet problem for strongly elliptic equations of arbitrary order near the Lipschitz graph boundary were found by Kozlov and Maz’ya [82]. The same boundary value problem with data in Besov spaces was treated in Maz’ya, Mitrea and Shaposhnikova [109] under an assumption on the boundary formulated in terms of the space BMO. Sharp conditions of the \(W^{2,2}\)-solvability of the Dirichlet problem for the Laplace equation in a domain in \(C^1\) but not in \(C^2\) were derived in Maz’ya [101].

Additional information was derived for boundary value problems in arbitrary convex domains (Kadlec [68], Adolphsson [1, 2], Adolphsson, Jerison [3], Fromm [52, 53], Fromm, Jerison [54], Kozlov, Maz’ya [82], Maz’ya [107], Mayboroda, Maz’ya [97]).

Introducing classes of Lipschitz graph domains characterized in terms of Sobolev multipliers, Maz’ya and Shaposhnikova obtained sharp results on solutions in \(W^{1,p}(\Omega)\) ([141], [142], [143]).

It proved to be possible to obtain substantial information on properties of elliptic boundary value problems without imposing a priori restrictions on the class of
domains, such as criteria of solvability and discreteness of spectrum formulated with the help of isoperimetric and isocapacitary inequalities, capacitary inner diameter and other potential theoretic terms (see Maz’ya [99, 100, 104, 106], Alvino, Cianchi, Maz’ya, Mercaldo [10], Cianchi, Maz’ya [24]). Wiener type criteria of regularity of a boundary point and pointwise estimates for solutions and their derivatives in unrestricted domains belong to another direction in the same area (see Maz’ya [105], Mayboroda, Maz’ya [98]).

In conclusion, we only list as key words some other classes of nonsmooth domains which appear in the studies of elliptic boundary value problems: nontangentially accessible domains, uniform domains, John domains, Jordan domains, Nikodym domains, Sobolev domains, extension domains etc.
Bibliography

List of Symbols

Chapter 1

\(\mathbb{R} \) set of real numbers
\(\mathbb{C} \) set of complex numbers
\(\partial_{x_j}, D_{x_j} \) derivatives, 9
\(\partial^2_{x_j}, D^2_{x_j} \) higher order derivatives, 9
\(C^0(\Omega) \) set of functions with bounded, continuous derivatives of order \(l \), 10
\(C^{l,\sigma}(\Omega) \) Hölder space, 10
\(L_p(\Omega) \) Lebesgue space, 10
\(W^{1,p}(\Omega), W^{1,p}_{0}(\Omega) \) Sobolev spaces, 10
\(W^{1,1-p,p}(\partial\Omega) \) trace space, 10
\(L(x, D_x) \) linear differential operator, 11
\(B(x, D_x) \) differential operator, 11
\(L^+ \) principal part of \(L \), 11
\(\ker\mathcal{A} \) kernel of the operator \(\mathcal{A} \), 13
\(\mathcal{R}(\mathcal{A}) \) range of \(\mathcal{A} \), 13
\(K \) cone or angle, 16
\(\Omega \) subdomain of the unit sphere, 16
\(\rho = |x| \) distance from the origin, 16
\(\partial\Omega \) boundary of \(\Omega \), 17
\(C^{\infty}_0(\overline{\mathcal{K}\setminus\{0\}}) \) set of infinitely differentiable functions with compact support vanishing near the origin, 17
\(V^{1,p}_\delta(K) \) weighted Sobolev space, 17
\(V^{1,1-p,p}_\delta(\partial\mathcal{K}\setminus\{0\}) \) trace space, 18

Chapter 2

\(K \) two-dimensional wedge, 24
\(x' = (x_1, x_2) \) point in \(K \), 24
\(r, \varphi \) polar coordinates, 24
\(\theta \) opening angle of \(K \), 24
\(\gamma^\pm \) sides of \(K \), 24
\(D = K \times \mathbb{R} \) dihedron, 24
\(\Gamma^\pm = \gamma^\pm \times \mathbb{R} \) faces of \(D \), 24
\(M \) edge of \(D \), 24
\(V^{1,p}_\delta(K) \) weighted Sobolev space, 24
\(V^{1,p}_\delta(D) \) weighted Sobolev space, 24
\(C^{\infty}_0(\overline{D\setminus M}) \) set of infinitely differentiable functions with compact support in \(\overline{D\setminus M} \), 24
\(V^{1,p}_\delta(D) \) weighted Sobolev space, 28
\((\cdot, \cdot)_D \) scalar product in \(L_2(D) \), 28
\(V^{1,1-p,p}_\delta(D) \) weighted Sobolev space, 28
\(V^{1,1-p,p}_\delta(\Gamma^\pm) \) trace space, 30
\(L(D_x) \) differential operator, 32
\(n \) outer unit normal vector, 32
\(L^+(D_x) \) formally adjoint operator, 37
\(L(D_{x^\epsilon}, \eta) \) parameter-dependent operator, 39

Chapter 3

\(L(D_x) \) differential operator, 89
\(\mathcal{K} \) cone in \(\mathbb{R}^3 \), 90
\(M_1, \ldots, M_d \) edges of \(\mathcal{K} \), 90
\(\Gamma_1, \ldots, \Gamma_d \) faces of \(\mathcal{K} \), 90
\(\Omega = \mathcal{K} \cap S^2 \) subdomain of the unit sphere \(S^2 \), 90
\(\gamma_1, \ldots, \gamma_d \) sides of \(\Omega \), 90
\(S \) set of singular boundary points, 90
\(V^{1,p}_{\delta,\sigma}(K) \) weighted Sobolev space, 90
\(\rho(x) \) distance from the vertex of \(\mathcal{K} \), 90
\(r_k(x) \) distance from the edge \(M_k \), 90
\(r(x) \) distance from \(S \), 90
\(V^{1,p}_{\delta,\sigma}(K) \) weighted Sobolev space, 90
\((\cdot, \cdot)_K \) scalar product in \(L_2(K) \), 91
\(V^{1,1-p,p}_{\delta,\sigma}(K) \) weighted Sobolev space, 91
\(V^{1,1-p,p}_{\delta,\sigma}(\Gamma^\pm) \) trace space, 94
\(\theta_k \) angle at the edge \(M_k \), 96
Chapter 4

$L(x, D_x)$ differential operator, 141
\(G \) domain of polyhedral type, 142
\(\Gamma_1, \ldots, \Gamma_N \) faces of \(G \), 142
\(M_1, \ldots, M_d \) edges of \(G \), 142
\(x^{(i)}, \ldots, x^{(d)} \) vertices of \(G \), 142
\(S \) set of all vertices and edge points, 142
\(r_k(x) \) distance from \(M_k \), 142
\(r_j(x) \) distance from \(x^{(j)} \), 142
\(X_j \) set of all indices \(k \) such that \(x^{(j)} \in M_k \), 142
\(V^i_{\beta, \delta}(G) \) weighted Sobolev space, 142
\(V^j_{\beta, \delta}(G) \) weighted Sobolev space, 143
\(V^i_{\beta, \delta}(G) \) weighted Sobolev space, 143
\(\langle \cdot, \cdot \rangle \) scalar product in \(L^2(G) \), 143
\(V^j_{\beta, \delta}(\Gamma_j) \) trace space, 144
\(A(\lambda) \) operator pencil, 146
\(\delta(\lambda), \delta(\mu) \) positive real numbers, 146
\(A(\lambda) \) operator pencil, 146
\(A_{l, \beta, \delta, \lambda} \) operator of the boundary value problem, 146
\(N^\beta_{\beta, \delta} \) weighted Hölder space, 151
\(N^\beta_{\beta, \delta}(\Gamma_j) \) weighted Hölder space, 151

Chapter 5

\(G(x, \xi) \) Green’s matrix, 162
\(L^T(x, D_x) \) formally adjoint operator, 162
\(\Lambda^+ \), \(\Lambda^- \) real numbers, 163
\(L^T_{\beta, \delta}(\bar{G}) \) weighted \(L^\infty \) space, 175
\(V^\infty_{\beta, \delta}(\bar{G}) \) weighted Sobolev space, 175
\(V^\infty_{\beta, \delta}(\bar{G}) \) weighted Sobolev space, 175
\(V^\infty_{\beta, \delta}(\bar{G}) \) weighted Sobolev space, 175
\(S_{j,k}(x, D_x), T_{j,k}(x, D_x) \) differential operators on \(\Gamma_j \), 176
\(G \) domain in \(\mathbb{R}^N \) with conical points, 188
\(S \) set of the vertices, 188
\(\rho_j(x) \) distance from the vertex \(x^{(j)} \), 188
\(A(\lambda) \) operator pencil, 189
\(\Lambda^+ \), \(\Lambda^- \) real numbers, 189
\(V^\infty_{\beta, \delta}(\bar{G}) \) weighted Sobolev space, 190
\(V^\infty_{\beta, \delta}(\bar{G}) \) weighted Sobolev space, 190
\(V^\infty_{\beta, \delta}(\bar{G}) \) weighted Sobolev space, 190
\(S_{j,k}(x, D_x), T_{j,k}(x, D_x) \) differential operators on \(\partial G \), 191
\(H(x, \xi) \) column of the adjoint Green’s matrix, 191

Chapter 6

\(D \) dihedron, 213
\(L(D_x) \) differential operator, 214
\(A_{l,k} \) coefficients of \(L(D_x) \), 214
\(b_D(\cdot, \cdot) \) sesquilinear form, 214
\(N^\pm(D_x) \) conormal derivative on \(\Gamma^\pm \), 215
\(n^\pm \) outer unit normal to \(\Gamma^\pm \), 215
\(d^\pm \) numbers of the set \(\{0, 1\} \), 215
\(B^\pm(D_x) \) differential operator in the boundary conditions, 215
\(L^1,2(D) \) function space, 215
\(H_D \) subspace of \(L^{1,2}(D) \), 215
\(\mathcal{H}_D \) dual space of \(\mathcal{H}_D \), 215
\((\cdot, \cdot)_D \) scalar product in \(L^2(D)^d \), 215
\(L_0(\lambda), B_0^\pm(\lambda) \) parameter-dependent differential operators, 216
\(x' = (x_1, x_2) \) 217
LIST OF SYMBOLS

\(A(\lambda) \) operator pencil, 217
\(\delta_+, \delta_- \) positive real numbers, 217
\(L^+(D_x) \) formally adjoint differential operator to \(L(D_x) \), 217
\(C^+(D_x) \) differential operator, 217
\(\mathcal{L}^a_0(\lambda), \mathcal{C}_a^0(\lambda) \) parameter-depending differential operators, 217
\(A^+(\lambda) \) operator pencil, 217
\(K \) two-dimensional angle, 218
\(\gamma^\pm \) sides of \(K \), 218
\(L(D_{x^+}, \xi), N^+(D_{x^+}, \xi) \) parameter-depending differential operators, 218
\(B^+(D_{x^+}, \xi) \) parameter-depending differential operators, 218
\(b_K(\cdot, \cdot, \xi) \) parameter-depending sesquilinear form, 218
\(\langle \cdot, \cdot \rangle_K \) scalar product in \(L_2(K) \), 218
\(A_k \) operator of the boundary value problem, 219
\(M \) edge of the dihedron, 223
\(r(x) = |x'| \) distance from the edge, 223
\(L_{1,p}^p(D) \) weighted Sobolev space, 223
\(W_{1,p}^p(D) \) weighted Sobolev space, 223
\(W_{1,p}^p(\mathbb{R}) \) Sobolev-Slobodetskii space, 223
\(\circ \) average of \(u \) with respect to the angle \(\varphi \), 224
\(E \) extension operator, 226
\(\mathbb{R}_+^2 = (0, \infty) \times \mathbb{R} \) half-plane, 231
\(V_{1,p}^p(\mathbb{R}_+^2) \) weighted Sobolev space, 231
\(W_{1,p}^p(\mathbb{R}_+^2) \) weighted Sobolev space, 231
\(\mathcal{E} \) operator on \(W_{1,p}^p(\mathbb{R}_+^2) \), 233
\(L_{1,p}^p(K) \) weighted Sobolev space, 236
\(W_{1,p}^p(K) \) weighted Sobolev space, 236
\(p_k(u) \) Taylor polynomial of \(u \), 236
\(\mathbb{R} = (0, \infty) \) half-axis, 237
\(W_{1,p}^p(\mathbb{R}_+) \) weighted Sobolev space, 237
\(\mathcal{E} \) operator on \(W_{1,p}^p(\mathbb{R}_+) \), 237
\(L_{1-1/p,p}^{1-1/p,p} \) trace space, 237
\(W_{1-1/p,p}^{1-1/p,p} \) trace space, 237
\(\sigma(u) \) stress tensor, 261
\(\varepsilon(u) \) strain tensor, 261
\(\theta \) opening of the angle (dihedron), 262
\(G(x, \xi) \) Green’s matrix, 262
\(\mu_+ \) real number, 269
\(C_{a,\sigma}^0(K) \) weighted Hölder space, 270
\(C_{\sigma}^0(\Gamma^\pm) \) weighted Hölder space, 274
\(C_{a,\sigma}^0(\Gamma^\pm) \) weighted Hölder space, 274

Chapter 7

\(K \) polyhedral cone, 290
\(\Omega \) domain on the unit sphere, 290
\(M_1, \ldots, M_d \) edges of \(K \), 290
\(\Gamma_1, \ldots, \Gamma_d \) faces of \(K \), 290
\(L(D_x) \) differential operator, 290
\(N(D_x) \) conormal derivative, 290
\(A_{l,k} \) coefficients of \(L(D_x) \), 290
\(I_0, I_1 \) sets of indices, 290
\(d_k \) numbers of the set \(\{0, 1\} \), 290
\(L^{1,2}(\Omega) \) function space, 290
\(L^{1/2,2}(\Gamma_j) \) trace space, 291
\(b_k(\cdot, \cdot) \) sesquilinear form, 291
\(\mathcal{H}_K \) subspace of \(L^{1,2}(K) \), 291
\(\langle \cdot, \cdot \rangle_k \) scalar product in \(L_2(K) \), 291
\(\theta_k \) angle at the edge \(M_k \), 291
\(L_k(\lambda), B_k^\pm(\lambda) \) parameter-depending differential operators, 291
\(A_k(\lambda) \) operator pencil, 291
\(\delta_{+}^{(k)}, \delta_{-}^{(k)} \) positive real numbers, 292
\(\mathcal{H}_\Omega \) subspace of \(W^{1,2}(\Omega)' \), 292
\(\gamma_j \) sides of \(\Omega \), 292
\(a(\cdot, \cdot; \lambda) \) parameter-dependent sesquilinear form, 292
\(\mathfrak{A}(\lambda) \) operator pencil, 292
\(\delta_{+}^{(k)}, \delta_{-}^{(k)} \) positive real numbers, 292
\(\mathcal{H}_\Omega \) subspace of \(W^{1,2}(\Omega)' \), 292
\(\gamma_j \) sides of \(\Omega \), 292
\(a(\cdot, \cdot; \lambda) \) parameter-dependent sesquilinear form, 292
\(\rho(x) \) distance from the vertex of \(K \), 295
\(r_k(x) \) distance from the edge \(M_k \), 295
\(S \) set of singular boundary points, 295
\(r(x) \) distance from \(S \), 295
\(W_{\beta,0}^{l,p}(K) \) weighted Sobolev space, 295
\(W_{\beta,0}^{l-1/p,p}(\Gamma_j) \) trace space, 295
\(V_{\beta}^{1,2}(K) = W_{\beta,0}^{1,2}(K) \) function space, 302
\(\mathcal{H}_\beta \) function space, 302
\(\mathcal{A}_3 \) operator of the boundary value
Chapter 8

$L(x, D_x)$ differential operator, 355
$A_{i,j}, A_i$ coefficients of $L(x, D_x)$, 355
$N(x, D_x)$ conormal derivative, 355
I_0, I_1 sets of indices, 356
d_j numbers of the set $\{0, 1\}$, 356
$B_j(D_x)$ operator in the boundary condition, 356
$b(\cdot, \cdot)$ sesquilinear form, 356
\mathcal{H} subspace of $W^{1,2}(\mathcal{G})^s$, 356
\mathcal{G} domain of polyhedral type, 356
Γ_j faces of \mathcal{G}, 356
M_k edges of \mathcal{G}, 356
$x^{(i)}$ vertices of \mathcal{G}, 356
\mathcal{S} set of singular boundary points, 356
$\tau_k(x)$ distance from M_k, 357
$\rho_j(x)$ distance from $x^{(i)}$, 357
$r(x)$ distance from \mathcal{S}, 357
X_j set of indices, 357
$W_{\beta,\delta}^{1,p}(\mathcal{G})$ weighted Sobolev space, 357
$W_{\beta,\delta}^{1-1/p,p}(\Gamma_j)$ trace space, 357
$L_{\beta,\delta}(x, D_x)$ principal part of $L(x, D_x)$, 358
$A_k(\lambda)$ operator pencil, 358
$\delta^{(k)}_l$, $\delta^{(k)}_r$ real numbers, 358
$\mathfrak{A}_l(\lambda)$ operator pencil, 358
$W_{\beta,\delta}^{1,p}(\mathcal{G})$ function space, 360
$\mathcal{H}_{\beta,\delta}(\mathcal{G})$ weighted Hölder space, 369
$C_{\beta,\delta}(\mathcal{G})$ trace space, 369

Chapter 9

D dihedron, 381
K two-dimensional angle, 381
θ opening of the angle K, 381
$\Gamma^+ \Gamma^-$ faces of D, 381
u outward normal vector, 381
u_n normal component of u, 381
u_t tangent component of u, 381
$\varepsilon(u)$ strain tensor, 381
$\varepsilon(n)u = \varepsilon(u)n$, 381
d^+, d^- integer numbers, 383
S^\pm, N^\pm operators in the boundary conditions on Γ^\pm, 383
$b_{D}(\cdot, \cdot)$ bilinear form, 383
$L^{1,2}(D)$ function space, 383
$\mathcal{H}^{1,2}(D)$ function space, 383
\mathcal{H}_D subspace of $L^{1,2}(D)$, 383
$L^{1,2}(D)$ dual space of $\mathcal{H}^{1,2}(D)$, 385
$A(\lambda)$ operator pencil, 394
δ^+ positive real number, 397
$\mathcal{H}_{\delta,\lambda,D}$ subspace of $V^{1,2}_{\delta,\lambda}(D)^1$, 402
μ_+ positive real number, 410
\mathbb{R}^3_+ half-space, 412
$G^+(x, \xi)$ Green’s matrix in \mathbb{R}^3_+, 412
$G(x, \xi)$ Green’s matrix in \mathbb{R}^3, 413
$\xi^* = (\xi_1, \xi_2, -\xi_3)$, 413
$G(x, \xi)$ Green’s matrix of the problem in a dihedron, 425

Chapter 10

\mathcal{K} polyhedral cone, 444
Ω domain on the unit sphere, 444
M_k edges of \mathcal{K}, 444
Γ_j faces of \mathcal{K}, 444
S_j, N_j operators in the boundary conditions, 444
d_j integer numbers, 444
$V^{1,2}_{\delta,\lambda}(\mathcal{K})$ weighted Sobolev space, 444
$\mathcal{V}^{1,2}_{\delta,\lambda}(\mathcal{K})$ weighted Sobolev space, 444
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{H}_C</td>
<td>subspace of $V^{1,2}_0(K)$</td>
<td>444</td>
</tr>
<tr>
<td>$b_K(\cdot, \cdot)$</td>
<td>bilinear form</td>
<td>444</td>
</tr>
<tr>
<td>$A_k(\lambda)$</td>
<td>operator pencil</td>
<td>446</td>
</tr>
<tr>
<td>$\delta_x^{(k)}$</td>
<td>positive real number</td>
<td>446</td>
</tr>
<tr>
<td>$\mu_o^{(k)}$</td>
<td>positive real number</td>
<td>446</td>
</tr>
<tr>
<td>$\mathcal{H}(\Omega)$</td>
<td>subspace of $W^{1,2}(\Omega)^3$</td>
<td>446</td>
</tr>
<tr>
<td>$\mathfrak{A}(\lambda)$</td>
<td>operator pencil</td>
<td>446</td>
</tr>
<tr>
<td>$\mathfrak{A}_0(\lambda)$</td>
<td>restriction of $\mathfrak{A}(\lambda)$</td>
<td>446</td>
</tr>
<tr>
<td>\mathcal{H}_B</td>
<td>subspace of $V^{1,2}_\beta(K)^3$</td>
<td>453</td>
</tr>
<tr>
<td>A_B</td>
<td>operator of the boundary value problem</td>
<td>453</td>
</tr>
<tr>
<td>$G(x, \xi)$</td>
<td>Green’s matrix</td>
<td>462</td>
</tr>
<tr>
<td>δ_x</td>
<td>positive real number</td>
<td>467</td>
</tr>
<tr>
<td>μ_x</td>
<td>positive real number</td>
<td>467</td>
</tr>
<tr>
<td>κ</td>
<td>a fixed real number</td>
<td>468</td>
</tr>
<tr>
<td>Λ_+, Λ_-</td>
<td>real numbers</td>
<td>468, 471, 480, 493, 507</td>
</tr>
<tr>
<td>$\mathcal{H}_{\alpha,\beta,\delta}$</td>
<td>subspace of $W^{1,\alpha}_\beta(K)$</td>
<td>479</td>
</tr>
<tr>
<td>$C_{\beta,\delta}^{-\alpha}(K)$</td>
<td>function space</td>
<td>507</td>
</tr>
</tbody>
</table>

Chapter 11

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{G}</td>
<td>domain of polyhedral type</td>
<td>520</td>
</tr>
<tr>
<td>Γ_j</td>
<td>faces of \mathcal{G}</td>
<td>520</td>
</tr>
<tr>
<td>M_k</td>
<td>edges of \mathcal{G}</td>
<td>520</td>
</tr>
<tr>
<td>$x^{(i)}$</td>
<td>vertices of \mathcal{G}</td>
<td>520</td>
</tr>
<tr>
<td>S_j, N_j</td>
<td>operators in the boundary conditions</td>
<td>520, 528</td>
</tr>
<tr>
<td>d_j</td>
<td>natural numbers</td>
<td>520</td>
</tr>
<tr>
<td>\mathcal{H}</td>
<td>subspace of $W^{1,2}(\mathcal{G})^3$</td>
<td>521</td>
</tr>
<tr>
<td>\mathcal{H}_0</td>
<td>subspace of \mathcal{H}</td>
<td>521</td>
</tr>
<tr>
<td>$L_2\mathcal{H}$</td>
<td>subspace of $L_2\mathcal{H}$</td>
<td>521</td>
</tr>
<tr>
<td>$b(\cdot, \cdot)$</td>
<td>bilinear form</td>
<td>521, 528</td>
</tr>
<tr>
<td>$\mathcal{L}^2(\mathcal{G})$</td>
<td>subspace of $L^2(\mathcal{G})$</td>
<td>523</td>
</tr>
<tr>
<td>$\theta(\xi)$</td>
<td>angle at the edge point ξ</td>
<td>524</td>
</tr>
<tr>
<td>$A_\xi(\lambda)$</td>
<td>operator pencil</td>
<td>524</td>
</tr>
<tr>
<td>$\delta_\xi(\xi)$</td>
<td>positive real number</td>
<td>524</td>
</tr>
<tr>
<td>$\delta_\xi^{(k)}$</td>
<td>positive real number</td>
<td>524</td>
</tr>
<tr>
<td>$\mu_\xi(\xi)$</td>
<td>positive real number</td>
<td>524</td>
</tr>
<tr>
<td>$\mu_\xi^{(k)}$</td>
<td>positive real number</td>
<td>524</td>
</tr>
<tr>
<td>I_j</td>
<td>set of indices</td>
<td>524</td>
</tr>
<tr>
<td>K_j</td>
<td>cone</td>
<td>524</td>
</tr>
<tr>
<td>$\mathfrak{A}_j(\lambda)$</td>
<td>operator pencil</td>
<td>524</td>
</tr>
<tr>
<td>$\mathcal{H}_{\alpha,\beta,\delta,\mathcal{G}}$</td>
<td>subspace of $V^{1,\alpha}_\beta(\mathcal{G})^3$</td>
<td>525</td>
</tr>
<tr>
<td>X_j</td>
<td>set of indices</td>
<td>532</td>
</tr>
<tr>
<td>θ_k</td>
<td>angle at the edge M_k</td>
<td>539</td>
</tr>
<tr>
<td>$G(x, \xi)$</td>
<td>Green’s matrix</td>
<td>544</td>
</tr>
</tbody>
</table>

Λ_j^+ positive real number, 545
Λ_{ν} positive real number, 556
$\tilde{\Lambda}_\nu = \min(2, \Lambda_{\nu})$, 556
$\tilde{\mu}_k = \min(2, \mu_{o}^{(k)})$, 556
$\bar{\mu} = \min(\bar{\mu}_1, \ldots, \bar{\mu}_d)$, 559
$d(x) = \text{dist}(x, \partial \mathcal{G})$, 571

$d_j = \text{dist}(x, \partial \mathcal{G})$, 571
List of Examples

Laplace equation
- Dirichlet problem in a dihedron 71, 81
- Dirichlet problem in a domain of polyhedral type 154–155
- Dirichlet problem in a convex domain of polyhedral type 155
- Dirichlet problem in a cube 155
- Dirichlet problem in a domain with nonintersecting edges 372–373
- Neumann problem in a polyhedron 355, 376
- Neumann problem in a convex polyhedron 2, 376–377
- Neumann problem in a domain with nonintersecting edges 372–373
- Mixed boundary value problem in a domain with nonintersecting edges 372–373

Biharmonic equation
- Dirichlet problem in a domain of polyhedral type 157–160
- Dirichlet problem in a convex domain of polyhedral type 160
- Dirichlet problem in the polyhedron which arises by cutting out a small cube from a bigger one 159
- Dirichlet problem in a domain of \mathbb{R}^4 with a conical point 208–209

Lamé system
- Dirichlet problem in a domain of polyhedral type 155–156, 188
- Dirichlet problem in a convex domain of polyhedral type 141, 156
- Neumann problem in a dihedron 261–262
- Neumann problem in a polyhedral cone 310
- Neumann problem in a domain with nonintersecting edges 373–374
- Neumann problem in a polyhedron 374–376

Stokes and Navier-Stokes systems
- Dirichlet problem in a polyhedral cone 517–518
- Dirichlet problem in an arbitrary and in a convex polyhedron 519, 540
- Dirichlet problem in a step-shaped polyhedron 541
- Flow outside a regular polyhedron 2, 541–542
- Neumann problem in a polyhedron 519, 542
- Mixed boundary value problem with Dirichlet and Neumann conditions 519, 542
- Mixed problem with three different boundary conditions 520, 543–544

Self-adjoint systems
- Dirichlet problem in a domain of polyhedral type 156
- Dirichlet problem for second order systems in a convex polyhedral domain 157
Index

adjoint operator pencil 97
Adolfsson, V. 586, 589
Agmon, S. 9, 161, 582, 589
Agranovich, M. S. 9, 589
Alvino, A. 587, 589
Ammann, B. 582, 589
Andrà, H. 584, 590
approximating sequence 175, 191, 568
Apushkinskaya, D. E. 582, 589
Bers, L. 589
Borsuk, M. 4, 589
Brown, R. 586, 589
Buffa, A. 582, 589
Carlson, T. 583, 589
Chakouche, W. 584, 590
Chkadua, O. 583, 589
Cianchi, A. 587, 589, 590
coercive form 356
commutator 46
complementing condition 12
Costabel, M. 582, 584, 586, 589, 590
Dauge, M. 3, 581–586, 589, 590
Deuring, P. 586, 590
dihedron 24
Dimitrov, A. 584, 590
Dindoš, M. 586, 590
Dirichlet problem 12, 215
Dirichlet system 34
Douglis, A. 9, 589
Dufaux, R. 583, 589, 590
Duvaut, G. 590
Ebmeyer, C. 584, 586, 590
Ehring’s lemma 27
elliptic system 11
elliptic boundary value problem 12
elliptic problem with parameter 15
Eschauer, J. 584, 590, 591
equivalence of norms 17
Escobar, J. F. 376, 584, 591
Eskin, G. 581, 583, 591
formally adjoint boundary value problem 217, 292
formally adjoint operator 37, 83, 162, 217
Fredholm operator 13, 46, 146
Frehse, J. 584, 586, 590
Fromm, S. J. 174, 586, 591
Gårding’s inequality 36
generalized solution 176, 191, 569
Girault, V. 528, 591
Gohberg, I. 591
Grachev, V. N. 584, 591
Green’s formula 176, 191, 383, 445, 464, 544, 545
Green’s matrix 15, 59, 110, 162, 262, 310, 425, 462, 544, 555
Grisvard, P. 3, 582, 584, 586, 591
Grüter, M. 170, 591
Guzman, J. 582, 591
Hanna, M. S. 582, 591
Hardy’s inequality 35
Hölder space 10
inverse Mellin transform 103
Jakab, T. 586, 591
Jerison, D. S. 586, 589, 591
John, F. 589
Kadlec, J. 586, 591
Kaiser, H.-C. 584, 590
Kalex, H.-U. 397, 591
Kenig, C. E. 586, 591
Knees, D. 584, 591
Komech, A. I. 581, 592
Kondrat’ev, V. A. 4, 16, 582, 586, 589, 592
Korn’s inequality 387
Kozlov, V. A. 3, 9, 170, 581, 584, 585, 592
Kratz, W. 585, 592
Kress, G. I. 585, 593
Kress, R. 592
Ladyzhenskaya, O. A. 528, 585, 592
Lamé system 12, 141, 155, 170, 188, 261, 270, 310, 373, 374
Laplace transform 103
Leguillon, D. 584, 592
Leykekhman, D. 582, 591
Lions, J.-L. 9, 590
Lubuma, J. M.-S. 582, 592
Magenes, E. 9, 592
Maremonti, P. 585, 592
Mayboroda, S. 586, 587, 592, 593
Mellin transform 103
Mercaldo, A. 587, 589
Mercier, D. 584, 590
Miranda, C. 161, 582, 595
Miranda-Agmon maximum principle 161, 181, 184, 582
Mitrea, I. 586, 591
Mitrea, M. 586, 590–593, 595
Monniaux, S. 586, 595
Morrey, C. B. 9, 595
Natroshvili, D. 583, 590
Naumann, J. 585, 595
Navier-Stokes system 519, 528, 568
Nazaikinski, V. E. 4, 581, 595
Nazarov, A. I. 582, 589
Nazarov, S. A. 3, 582–584, 586, 593, 595
Netrusov, Yu. V. 584, 593
Neumann problem 12, 215, 221
Nicaise, S. 3, 582, 584, 590, 592, 595, 596
Nikishkin, V. A. 586, 596
Nirenberg, L. 9, 589
Nistor, V. 582, 589
Odquist, F. K. G. 585, 596
Olt, M. 397, 596
operator pencil 16
Parseval’s equality 103
Perry, P. 586, 589
Pipher, J. 583, 586, 589, 596
Poborchii, S. 584, 593, 594
polyhedral type domain 142
properly elliptic 11
principal part of a differential operator 11, 146
Rabinovich, V. 583, 596
Raviart, P.-A. 528, 591
regularized distance 577
regularizer 148
Rehberg, J. 584, 590, 591
Rempel, S. 3, 586, 596
Roitberg, Ya. 596
Rozanskii, J. 4, 9, 582, 583, 585, 586, 591, 592, 594–596
Russo, R. 585, 592
Sanchez-Palencia, E. 584, 592
Sändig, A.-M. 397, 596
Savin, A. Yu. 4, 581, 595
Schatz, A. 582, 591
Schechter, M. 589
Schmidt, G. 584, 590, 591
Schmack, E. 584, 590
Schulze, B.-W. 3, 4, 581, 583, 587, 595, 596
Schwab, C. 585, 592
Shaposhnikova, T. O. 586, 593, 595
Shen, Z. 586, 589, 596
Sigal, E. I. 591
Smith, K. T. 582, 591
Sobolev space 10
Solonnikov, V. A. 9, 583, 584, 596, 597
Stein, E. M. 597
Stephan, E. P. 586, 597
Sternin, B. Yu. 4, 581, 595
Stokes system 12
stress tensor 261
stray tensor 261
strongly elliptic 12
Stupelis, L. 397, 412, 584, 585, 597
Swears, G. 583, 595
Tarkhanov, N. 583, 596
Taylor, M. 586, 595
Temam, R. 528, 597
Triebel, H. 9, 597
variational solution 32, 215, 218, 291, 326, 384, 444, 453, 479, 521, 528
Venouziou, M. 586, 597
V-elliptic form 35, 215, 291
Verchota, G. C. 583, 586, 596, 597
Vogel, A. L. 586, 597
von Petersdorff, T. 586, 597
von Wahl, W. 586, 590
Vishik, M. I. 9, 589
Wendland, W. 583, 590
Widman, K.-O. 170, 591
Wloka, J. 9, 597
Zajaczkowski, W. 583, 597
This is the first monograph which systemati-
cally treats elliptic boundary value problems
in domains of polyhedral type. The authors
mainly describe their own recent results
focusing on the Dirichlet problem for linear
strongly elliptic systems of arbitrary order,
Neumann and mixed boundary value problems
for second order systems, and on boundary
value problems for the stationary Stokes and
Navier–Stokes systems. A feature of the book
is the systematic use of Green’s matrices. Using estimates for the elements of these
matrices, the authors obtain solvability and regularity theorems for the solutions in
weighted and non-weighted Sobolev and Hölder spaces. Some classical problems of
mathematical physics (Laplace and biharmonic equations, Lamé system) are consid-
ered as examples. Furthermore, the book contains maximum modulus estimates for the
solutions and their derivatives.

The exposition is self-contained, and an introductory chapter provides background
material on the theory of elliptic boundary value problems in domains with smooth
boundaries and in domains with conical points.

The book is destined for graduate students and researchers working in elliptic partial
differential equations and applications.

For additional information
and updates on this book, visit

www.ams.org/bookpages/surv-162

AMS on the Web

www.ams.org