# Connective Real $K$-Theory of Finite Groups

### About this Title

**Robert R. Bruner**, *Wayne State University, Detroit, MI* and **J. P. C. Greenlees**, *University of Sheffield, Sheffield, UK*

Publication: Mathematical Surveys and Monographs

Publication Year:
2010; Volume 169

ISBNs: 978-0-8218-5189-0 (print); 978-1-4704-1396-5 (online)

DOI: https://doi.org/http://dx.doi.org/10.1090/surv/169

MathSciNet review: MR2723113

MSC: Primary 19L41; Secondary 13D45, 19-02, 19L47, 19L64, 55N15, 55N91

### Table of Contents

**Front/Back Matter**

**Chapters**

- 1. Introduction
- 2. $K$-theory with reality
- 3. Descent, twisting and periodicity
- 4. The Bockstein spectral sequence
- 5. Characteristic classes
- 6. Examples for cohomology
- 7. Examples for homology
- 8. Dihedral groups
- 9. The $ko$-cohomology of elementary abelian 2-groups
- 10. The $ko$-homology of elementary abelian groups (BSS)
- 11. The structure of $TO$
- 12. The $ko$-homology of elementary abelian groups (LCSS)
- 13. Ext charts
- 14. Conventions
- 15. Indices