Connective Real K-Theory of Finite Groups

Robert R. Bruner
J. P. C. Greenlees
Connective Real K-Theory of Finite Groups

Robert R. Bruner
J. P. C. Greenlees

American Mathematical Society
Providence, Rhode Island
Contents

Chapter 1. Introduction
 1.1. Motivation 1
 1.2. Forms of K-theory 2
 1.3. The complex case 4
 1.4. Highlights of Chapter 2 6
 1.5. Highlights of Chapter 3 7
 1.6. Highlights of Chapter 4 7
 1.7. Highlights of Chapter 5 8
 1.8. Highlights of Chapter 6 9
 1.9. Highlights of Chapter 7 10
 1.10. Highlights of Chapter 8 11
 1.11. Highlights for elementary abelian groups 11
 1.12. Conclusions 13
 1.13. History and comparisons with other methods 13
 1.14. Comparisons with other theories 15
 1.15. Prerequisites 16
 1.16. Reading this book 17
 1.17. Thanks 17

Chapter 2. K-Theory with Reality
 2.1. Representation theory 19
 2.2. The periodic case 21
 2.3. Clifford modules 24
 2.4. The connective case 30
 2.5. The local cohomology and completion theorems 32
 2.6. Calculations 34
 2.7. The local cohomology theorem and positive scalar curvature 35
 2.8. Periodic K-theory and maps into classical fibrations 36
 2.9. Near the edge of periodicity 41

Chapter 3. Descent, Twisting and Periodicity
 3.1. Fixed points, homotopy fixed points and geometric fixed points 49
 3.2. Descent 50
 3.3. Statement of periodicity for equivariant connective real K-theory 52
 3.4. Periodicity for connective real K-theory 54
 3.5. Twistings of $k\mathbb{R}$ 56
 3.6. Splittings 60
 3.7. The $RO(Q)$-graded homotopy of $k\mathbb{R}$ 61
 3.8. Six truncations of the periodic Tate spectral sequence 63
 3.9. Three twists of the homotopy fixed point spectral sequence 66
CONTENTS

3.10. Three twists of the homotopy orbit spectral sequence

Chapter 4. The Bockstein Spectral Sequence
4.1. Constructions
4.2. The periodic case
4.3. The connective case

Chapter 5. Characteristic Classes
5.1. Preliminaries
5.2. Tori
5.3. Symplectic groups
5.4. Special unitary groups
5.5. Unitary groups
5.6. Orthogonal groups
5.7. Special orthogonal groups

Chapter 6. Examples for Cohomology
6.1. Description of the method
6.2. The conclusion
6.3. Cyclic groups
6.4. Quaternion groups
6.5. Klein 4-group
6.6. The alternating group \(A_4 \)

Chapter 7. Examples for Homology
7.1. Comparison of methods
7.2. Our preferred method
7.3. Cyclic groups
7.4. The quaternion group of order 8
7.5. The quaternion group of order 16
7.6. Klein 4-group
7.7. The alternating group \(A_4 \)

Chapter 8. Dihedral Groups
8.1. Recollections
8.2. The real equivariant connective \(K \)-theory, \(ko^*_D \)
8.3. Representation theory
8.4. The \(ku \)-homology of \(D, ku_*(BD) \)
8.5. The \(ko \)-homology of \(D, ko_*(BD) \)

Chapter 9. The \(ko \)-Cohomology of Elementary Abelian 2-Groups
9.1. Summary of calculations
9.2. Recollections about \(ku^*BV \)
9.3. Deducing \(ko^*_V \)
9.4. Homology of \(QU \)
9.5. The \(J \)-adic filtration for elementary abelian 2-groups
9.6. The action of \(Sq^2 \) on \(PC \)
9.7. The action of \(Sq^2 \) on \(TU \)
9.8. The action of \(Sq^2 \) on the resolution of \(TU_n \)
9.9. Module pictures
Bibliography

[33] Donald Davis, private conversation (July 2010).
[37] L. Fajstrup “Periodic equivariant real K-theories have rational Tate theory” Manuscripta Math. 91 (1996) no. 2, 211–221.
[76] Mark Mahowald, email communication (February 2010).
[97] Robert E. Stong “Determination of $H^\ast(BO(k,\ldots,\infty),\mathbb{Z}_2)$ and $H^\ast(BU(k,\ldots,\infty),\mathbb{Z}_2)$” Trans. Amer. Math. Soc. 107 (1963) 526–544.
Titles in This Series

169 Robert R. Bruner and J. P. C. Greenlees, Connective real K-theory of finite groups, 2010
168 Michiel Hazewinkel, Nadiya Gubareni, and V. V. Kirichenko, Algebras, rings and modules: Lie algebras and Hopf algebras, 2010
167 Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebra and Poisson geometry, 2010
166 Kyung Bai Lee and Frank Raymond, Seifert fiberings, 2010
165 Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J. Julián Toledo-Melero, Nonlocal diffusion problems, 2010
164 Vladimir I. Bogachev, Differentiable measures and the Malliavin calculus, 2010
162 Vladimir Maz’ya and Jürgen Rossmann, Elliptic equations in polyhedral domains, 2010
161 Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan, Morse theoretic aspects of p-Laplacian type operators, 2010
160 Alexander S. Kechris, Global aspects of ergodic group actions, 2010
159 Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, 2010
158 D. R. Yafaev, Mathematical scattering theory: Analytic theory, 2010
157 Xia Chen, Random walk intersections: Large deviations and related topics, 2010
155 Yiannis N. Moschovakis, Descriptive set theory, 2009
154 Andreas Čap and Jan Slovák, Parabolic geometries I: Background and general theory, 2009
153 Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer potential techniques in spectral analysis, 2009
152 János Pach and Micha Sharir, Combinatorial geometry and its algorithmic applications: The Alcalá lectures, 2009
151 Ernst Binz and Sonja Pods, The geometry of Heisenberg groups: With applications in signal theory, optics, quantization, and field quantization, 2008
150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008
149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008
148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz’ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlăduț, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
TITLES IN THIS SERIES

137 **Mikhail G. Katz**, Systolic geometry and topology, 2007
136 **Jean-Michel Coron**, Control and nonlinearity, 2007
134 **Dana P. Williams**, Crossed products of C^*-algebras, 2007
133 **Andrew Knightly and Charles Li**, Traces of Hecke operators, 2006
132 **J. P. May and J. Sigurdsson**, Parametrized homotopy theory, 2006
131 **Jin Feng and Thomas G. Kurtz**, Large deviations for stochastic processes, 2006
130 **Qing Han and Jia-Xing Hong**, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
127 **Nikolai Chernov and Roberto Markarian**, Chaotic billiards, 2006
126 **Sen-Zhong Huang**, Gradient inequalities, 2006
125 **Anton Zettl**, Sturm-Liouville theory, 2005
124 **Goro Shimura**, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
123 **Michael Aschbacher and Stephen D. Smith**, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004
122 **Michael Aschbacher and Stephen D. Smith**, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
121 **Goro Shimura**, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
120 **Michael Farber**, Topology of closed one-forms, 2004
119 **Tian Ma and Shouhong Wang**, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 **Alexandru Buium**, Arithmetic differential equations, 2005
117 **Volodymyr Nekrashevych**, Self-similar groups, 2005
116 **Anton Zettl**, Sturm-Liouville theory, 2005
115 **Barry Simon**, Trace ideals and their applications, 2005
114 **Jens Carsten Jantzen**, Representations of algebraic groups, 2003
113 **Hiroaki Yoshida**, Absolute CM-periods, 2003
112 **Jens Carsten Jantzen**, Representations of algebraic groups, 2003
111 **Hiroyuki Yoshida**, Absolute CM-periods, 2003

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This book is about equivariant real and complex topological K-theory for finite groups. Its main focus is on the study of real connective K-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it. In the course of their study the authors define equivariant versions of connective KO-theory and connective K-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory. They prove local cohomology and completion theorems for these theories, giving a means of calculation as well as establishing their formal credentials. In passing from the complex to the real theories in the connective case, the authors describe the known failure of descent and explain how the η-Bockstein spectral sequence provides an effective substitute.

This formal framework allows the authors to give a systematic calculation scheme to quantify the expectation that $ko^*(BG)$ should be a mixture of representation theory and group cohomology. It is characteristic that this starts with $ku^*(BG)$ and then uses the local cohomology theorem and the Bockstein spectral sequence to calculate $ku_*(BG)$, $ko^*(BG)$, and $ko_*(BG)$. To give the skeleton of the answer, the authors provide a theory of ko-characteristic classes for representations, with the Pontrjagin classes of quaternionic representations being the most important.

Building on the general results, and their previous calculations, the authors spend the bulk of the book giving a large number of detailed calculations for specific groups (cyclic, quaternion, dihedral, A_4, and elementary abelian 2-groups). The calculations illustrate the richness of the theory and suggest many further lines of investigation. They have been applied in the verification of the Gromov-Lawson-Rosenberg conjecture for several new classes of finite groups.