Eigenvalue Distribution of Large Random Matrices

Leonid Pastur
Mariya Shcherbina
Eigenvalue Distribution of Large Random Matrices
Eigenvalue Distribution of Large Random Matrices

Leonid Pastur
Mariya Shcherbina
Contents

Preface ix

Chapter 1. Introduction 1
1.1. Objectives and Problems 1
1.2. Example 13
1.3. Comments and Problems 21

Part 1. Classical Ensembles 33

Chapter 2. Gaussian Ensembles: Semicircle Law 35
2.1. Technical Means 35
2.2. Deformed Semicircle Law 43
2.3. The Case of Random $H^{(0)}$ 54
2.4. Problems 59

Chapter 3. Gaussian Ensembles: Central Limit Theorem for Linear Eigenvalue Statistics 69
3.1. Covariance for Traces of the Resolvent 69
3.2. Central Limit Theorem for Linear Eigenvalue Statistics of Differentiable Test Functions 74
3.3. Central Limit Theorem for $(\varphi(M))_{jj}$ 90
3.4. Problems 94

Chapter 4. Gaussian Ensembles: Joint Eigenvalue Distribution and Related Results 101
4.1. Joint Eigenvalue Probability Density 101
4.2. Orthogonal Polynomial Techniques 107
4.3. Simplest Applications 113
4.4. Comments and Problems 118

Chapter 5. Gaussian Unitary Ensemble 129
5.1. Hermite Polynomials 129
5.2. Bulk of the Spectrum 131
5.3. Edges of the Spectrum 147
5.4. Problems 152

Chapter 6. Gaussian Orthogonal Ensemble 159
6.1. Correlation and Cluster Functions 159
6.2. Bulk of the Spectrum 166
6.3. Edges of the Spectrum 171
6.4. Problems 175
CONTENTS

14.2. Fluctuations of Linear Eigenvalue Statistics 451
14.3. Intermediate and Local Regimes 464
14.4. Problems 466

Chapter 15. Universality for Real Symmetric Matrix Models 469
15.1. Generalities 469
15.2. Invertibility of $M^{(0,n)}$ 472
15.3. Universality for Real Symmetric Matrix Models 478
15.4. Problems 483

Chapter 16. Unitary Matrix Models 485
16.1. Global Regime 485
16.2. Bulk Universality for Unitary Matrix Models 494
16.3. Problems 498

Part 3. Ensembles with Independent and Weakly Dependent Entries 499

Chapter 17. Matrices with Gaussian Correlated Entries 501
17.1. Definition and Finite-n Results 501
17.2. Limiting Equations 504
17.3. Parametric Limits for Certain Ergodic Operators 509
17.4. Problems 522

Chapter 18. Wigner Ensembles 525
18.1. Generalities 525
18.2. Martingale Bounds for Moments of Spectral Characteristics 531
18.3. Deformed Semicircle Law 535
18.4. Central Limit Theorem for Linear Eigenvalue Statistics 539
18.5. Further Asymptotic Results on Linear Eigenvalue Statistics 556
18.6. Limits of Extreme Eigenvalues 559
18.7. Other Results 565
18.8. Problems 580

Chapter 19. Sample Covariance and Related Matrices 583
19.1. Limiting Normalized Counting Measure of Eigenvalues 583
19.2. Central Limit Theorem for Linear Eigenvalue Statistics 597
19.3. Other Results 607

Bibliography 611

Index 631
Preface

Random matrices is an active field of mathematics and physics. Initiated in the 1920s–1930s by statisticians and introduced in physics in the 1950s–1960s by Wigner and Dyson, the field, after about two decades of the "normal science" development restricted mainly to nuclear physics, has became very active since the end of the 1970s under the flow of accelerating impulses from quantum field theory, quantum mechanics (quantum chaos), statistical mechanics, and condensed matter theory in physics, probability theory, statistics, combinatorics, operator theory, number theory, and theoretical computer science in mathematics, and also telecommunication theory, qualitative finances, structural mechanics, etc. In addition to its mathematical richness random matrix theory was successful in describing various phenomena of these fields, providing them with new concepts, techniques, and results.

Random matrices in statistics have arisen as sample covariance matrices and have provided unbiased estimators for the population covariance matrices. About twenty years later physicists began to use random matrices in order to model the energy spectra of complex quantum systems and later the systems with complex dynamics. These, probabilistic and spectral, aspects have been widely represented and quite important in random matrix theory until the present flourishing state of the theory and its applications to a wide variety of seemingly unrelated domains, ranging from room acoustics and financial markets to zeros of the Riemann ζ-function.

One more aspect of the theory concerns integrals over matrix measures defined on various sets of matrices of an arbitrary (mostly large) dimension. Matrix integrals proved to be partition functions of models of quantum field theory and statistical mechanics and generating functions of numerical characteristics of combinatorial and topological objects; they satisfy certain finite-difference and differential identities connected to many important integrable systems. However, the matrix integrals themselves, their dependence on parameters, etc., can often be interpreted in spectral terms related to random matrices whose probability law is a matrix measure in the integral.

Thus, random matrix theory can be viewed as a branch of random spectral theory, dealing with situations where operators involved are rather complex and one has to resort to their probabilistic description. It is worth noting that approximately at the same time as Wigner and Dyson, i.e., in the 1950s, Anderson, Dyson, and Lifshitz proposed to use finite-difference and differential operators with random coefficients, i.e., again certain random matrices, to describe the dynamics of elementary excitations in disordered media (crystals with impurities, amorphous substances), thereby creating another branch of random spectral theory, known
now as random operator theory (see e.g. [396]) and its theoretical physics counterpart, the theory of disordered systems (see e.g. [345]). The statistical approach in both cases goes a step further from that of quantum statistical mechanics, where traditionally the operators (Hamiltonians and observables) are not random but the quantum states are random and their probability law (Gibbs measure) is determined by the corresponding Hamiltonian. Note that even this tradition was broken in the 1970s, when the intensive studies of disordered magnets, spin glasses in particular, began and the random statistical mechanics Hamiltonians, hence the randomized Gibbs measures, were introduced; see e.g. [93, 357].

However, as in statistical mechanics, the infinite size limit and related asymptotic regimes play a quite important role in random spectral theory, random matrix theory in particular. This is also in agreement with principal settings of probability theory, since, according to the classics, "... the epistemological value of the theory of probability is revealed only by limit theorems. Moreover, without limit theorems it is impossible to understand the real content of the primary concept of all our sciences – the concept of probability" [238, Preface].

By the way, the large size asymptotic regimes, which are used almost everywhere in this book, can also be applied to draw a borderline between random operators and random matrices. In our opinion, this can be inferred from the large-n behavior of the number ν_n of the entries of the same order of magnitude of an $n \times n$ matrix on its principal and adjacent diagonals (these matrices are known as the band matrices). If ν_n/n has a finite integer limit as $n \to \infty$, then there exists a limiting object, a random operator in $L^2(\mathbb{Z})$. In particular, in the case of hermitian $n \times n$ matrices, if the limit is an odd positive integer $2p + 1$, then we have a hermitian finite-difference operator of order $2p$ with random coefficients and the spectral properties of this "limiting" operator are strongly related to those of its "finite box" restriction. This approach to the spectral analysis of selfadjoint operators in $L^2(\mathbb{Z}^d)$ and $L^2(\mathbb{R}^d)$, $d \geq 1$, dates back to the work by H. Weyl of the 1910s and has proved to be quite efficient since then. If, however, $\nu_n/n \to \infty$, $n \to \infty$, then we have a "genuine" random matrix and have to deal with various asymptotic regimes or just estimates, despite the fact that many of them can be used to characterize certain infinite-dimensional operators, as, for example, in the quantum chaos studies since the 1970s or in recent studies of asymptotic eigenvalue spacing as possible tools to distinguish between the pure point and the absolutely continuous spectrum of random operators. Besides, there exists a variety of results in both theories which allow one to say, by using the terminology of statistical mechanics, that random matrix theory can often be viewed as the mean field version of random operator theory.

We now comment on basic terminology, conventions, and the contents of the book. Since random matrix theory is largely asymptotic theory, it deals not with random matrices of a fixed size n, but rather with sequences of random matrices defined for all positive integer n's, despite the fact that we write quite often, together with the random matrix community, "random matrix", i.e., the singular form of our main object. Moreover, to make our formulas, often long, more readable, we do not write the subindex n in matrices to indicate their size, excepting the cases where it can lead to misunderstandings. It is always understood that we deal with $n \times n$ matrices and that we are interested mostly in the large-n behavior of their spectral characteristics.
Next is the term *ensemble* or *random matrix ensemble*, whose meaning is sometimes a bit vague in random matrix texts. The term seems to be borrowed from the early days of probability theory and statistical mechanics (where it is widely used until now). We use the term just to designate the sequence of matrix probability laws determining the random matrix in the above meaning. We also use quite often the term *spectrum*, while discussing the large size limit of random matrices, despite the fact that according to the above, there is no limiting operator, as is the case in random operator theory. In this book the term is just a synonym for the support of the limiting Normalized Counting (or empirical) Measure of eigenvalues of the random matrix in question. This has to be compared with random operator theory that deals with differential and finite-difference operators with random ergodic coefficients and where also there exists the limiting Normalized Counting Measure of eigenvalues of the finite box restrictions of corresponding operators. Here the spectrum of the "limiting" operator does indeed coincide with probability 1 with the support of the limiting measure [396, Sections 4.C and 5.C]. Moreover, there exist certain families of random ergodic operators interpolating between the two cases; see e.g. Section 17.3 of the book.

Now we comment on the contents of the book. The detailed contents can be seen from the Contents and from the introductions to the chapters. We will therefore restrict ourselves to general remarks. The book treats three main themes: the existence and the properties of the nonrandom limiting Normalized Counting Measure of eigenvalues, the fluctuation laws of linear eigenvalue statistics, and the local regimes. The first two themes are often referred to as the global (or macroscopic) regime and require the scaling of matrix entries (or the spectral axis) guaranteeing the existence of the well-defined limit of the Normalized Counting Measure of eigenvalues in question. The themes are similar to those in probability theory on the Law of Large Numbers and the Central Limit Theorem for the sums of independent or weakly dependent random variables. The main difference here is that the eigenvalues of a random matrix are strongly dependent even if its entries are independent; thus one needs new techniques or, at least, appropriately extended and treated versions of existing probabilistic techniques.

The third theme is entirely the random matrix theme. It is on the local regimes, i.e., on the statistics of eigenvalues falling into intervals, whose length is of order of magnitude of typical spacing between eigenvalues and thus tends to zero with an appropriate rate as the size of the matrix tends to infinity.

In treating the above themes, we confine ourselves to the normal random matrices, more precisely, to real symmetric, hermitian, orthogonal, and unitary matrices. Random matrix theory studies also quaternion real and symplectic matrices, which are, roughly speaking, the hermitian and unitary matrices with quaternion (2×2 matrix) entries. They possess a number of interesting properties that can be found in [217] and [356] and references therein.

We do not consider complex matrices, the random matrix jargon term for real, but not real symmetric or orthogonal, and complex, but not hermitian or unitary, matrices. This is a big and fast developing field with a lot of interesting recent results and it deserves a separate book.

The book consists of an introduction and three parts. In the introduction we discuss first the archetype *Gaussian Ensembles* of random matrix theory, deriving
them from the requirements of orthogonal or unitary invariance (for the real symmetric and hermitian matrices, respectively). We also discuss briefly other widely used (but not all) ensembles. We then introduce certain notions, objects, and settings of random matrix theory by using an elementary example of diagonal matrices with i.i.d. random diagonal entries, i.e., in fact, the standard probabilistic set up. In particular, we introduce the main asymptotic regimes of the theory.

Part 1 is devoted to classical ensembles, i.e., the Gaussian Ensembles for real symmetric and hermitian matrices, introduced by Wigner in the 1950s, the Wishart Ensemble for the real symmetric matrices, well known in statistics since the late 1920s, its hermitian analog, known as the Laguerre Ensemble, and the ensembles of real symmetric, hermitian, orthogonal, and unitary matrices whose randomness is due to the classical groups (orthogonal, unitary) and related symmetric spaces, seen as the matrix probability spaces, with the normalized to unity Haar measure or its restrictions.

We first study in detail the global regime. This is carried out by using basically two technical tools: certain versions of integration by parts, which we call the differential formulas, and the Poincaré-type inequalities, providing an efficient bound for the variance of relevant random objects. In particular, the inequalities lead almost immediately to the bound of the variance of linear eigenvalue statistics, which is of the order $O(1)$ as $n \to \infty$, unlike $O(n)$ for i.i.d. Gaussian random variables. This is a first manifestation of strong statistical dependence of eigenvalues, one of the principal sources of new and often highly nontrivial results of random matrix theory.

We then pass to the local (bulk and edge) regimes and establish basic facts about them, thereby presenting a considerable part of the random matrix "arsenal" both for random matrix theory itself and for numerous applications.

This part of the book is rather traditional. We only mention that our presentation of the global regime is based on the systematic use of the Stieltjes and the Fourier transforms of the Normalized Counting Measure, providing the links with the resolvent and the unitary group for the matrices in question, and is rather efficient in the context. The main technical tool for the local regimes here is the orthogonal polynomial techniques, introduced in random matrix theory by Gaudin, Mehta, Wigner, and Dyson, based in fact on observations of analysts of the nineteenth century.

Part 2 is on the Matrix Models (known also as the invariant ensembles) of hermitian and real symmetric matrices. This class of random matrix ensembles shares with the Gaussian Ensembles the property of invariance with respect to orthogonal or unitary transformations; however their entries are strongly dependent, unlike those for the Gaussian Ensembles. The main technical tools here are variational methods and so-called determinantal formulas for marginal densities (correlation functions in statistical mechanics) of the joint eigenvalue distribution whose essential ingredients are special orthogonal polynomials, known as the polynomials orthogonal with respect to varying weights. This leads to important representations for relevant spectral characteristics, quite convenient for the large-n asymptotic analysis of local regimes. One can then use the asymptotics of orthogonal polynomials to complete the analysis. This strategy is used in Part 1, where one deals with the classical polynomials whose asymptotics are well known. To use the
strategy in the case of Matrix Models, one needs the asymptotics for the polynomials orthogonal with respect to varying weights. They are obtained and applied to the study of the local regime of the Matrix Models in a series of recent works (see e.g. \[152, 154, 162\] and Chapter 14). We use these new asymptotics to study the fluctuations of linear eigenvalue statistics of Matrix Models in Chapter 14. As for their local regimes, we carry out a direct analysis of determinantal formulas based essentially on spectral properties of Jacobi matrices, associated with the corresponding orthogonal polynomials, rather than on their asymptotics.

Part 3 deals with ensembles determined by independent but not necessarily Gaussian random variables, mostly with real symmetric and hermitian Wigner matrices, whose upper triangular entries are independent, and with sample covariance matrices, for which the corresponding data matrices have independent entries. We study in detail the existence and properties of the limiting Normalized Counting Measure of eigenvalues and the fluctuation of linear eigenvalue statistics by using the differentiation formulas, martingale-type bounds (instead of Poincaré-type inequalities of Part 1), and an "interpolation trick", allowing us to use results on the classical ensembles. As for the local regime, where considerable progress has been achieved recently, we present a brief review of results obtained and methods used in Sections 18.7 and 19.3.

Random matrix theory is the result of a nontrivial synthesis of ideas and constructions from several branches of mathematics and physics. Therefore it employs a wide range of often specialized concepts and methods belonging to various fields that have been traditionally only very tenuously related. For the same reason, it attracts the interest of scientists from a number of branches of mathematics and related sciences. Finally, the theory has accumulated a good deal of profound facts and interrelations between them, some of which have not yet been rigorously proved in the generality in which they are believed to be true. Because of the above and the wide variety of recent developments, it seems hardly possible to present the essentials of the theory in a book of reasonable size by using the traditional style of mathematical writing, where everything is proved in detail, thus comprising a reasonably complete and self-contained text. We therefore depart sometimes from this style, basically in two cases. The first case is where we need certain results of analysis, probability, operator theory, etc. They are formulated without proof or with just the sketch of a proof, however with the appropriate references. Such statements are called propositions, in contrast to theorems and lemmas, which are proved in full. Other results, especially those obtained quite recently, are also just formulated or described, and their proofs, which are as a rule cumbersome and technically complicated, are replaced by discussions of the main ideas involved. Results of this type are either presented as remarks, comments, sometimes problems and special sections that are more survey-like: for example, Comments 1.3.1 and 7.6.1, Section 18.7, and Problem 2.4.13. Note also that the importance and driving force of random matrix theory are mostly due to its numerous and diverse applications. Their sufficiently comprehensive description requires much more space and expertise than we possess. This is why we mention this or that application and/or link and provide a selection of references (mostly recent) after the presentation of the corresponding result.
We are aware that this type of presentation may not satisfy everyone, but we hope that our intention of giving a comprehensive impression of the subject will serve as at least a partial justification.

Likewise, we did our best to write a book that is of interest to a sufficiently wide audience, but we could not avoid being subjective in the choice of results and references, determined to a large extent by our points of view and our works (mostly due to spectral theory and mathematical physics) and the lack of space. We apologize strongly for not including or/and mentioning many important contributions.

Our final remark concerns notation: throughout the book we write the integral without limits for the integral in the whole line and C, C_1, etc., and c, c_1, etc., for generic quantities which do not depend on the matrix size, special parameters, etc., but whose values may be different in different formulas.

We would also like to thank the coauthors of our joint papers and numerous colleagues with whom many ideas and results were obtained and discussed.
Bibliography

BIBLIOGRAPHY 617

Index

Airy kernel, 149, 199
Anderson model, 511, 522

band matrices, 64
Bessel kernel, 201
Bogolyubov inequality, 322
Boltzmann-Gibbs distribution, 122
bulk, 26
bulk of spectrum, 15
Burkholder inequality, 528

Casimir operator, 214
Cauchy distribution, 59, 218
Cauchy Ensemble, 218
Cayley transform, 217
centered linear statistics, 17
chiral random matrix, 181
Christoffel-Darboux formula, 108
Circular Ensembles, 211
circular law, 24
cluster functions, 8
Combes-Thomas estimates, 431
concentration inequalities, 215
condition number, 181
contracted zero distribution, 349
correlation functions, xii, 8
Counting Measure of eigenvalues, 6
cumulants, 528
deformed GUE, 43
deformed semicircle law, 43, 44, 535
determinantal formulas, 110
differentiation formula, 39, 212, 528
distribution function, 12
double scaling limit, 29
Duhamel formula, 75
Dyson Brownian Motion, 121
eigenvalue repulsion, 145
empirical eigenvalue distribution, 54
ensemble, xi
equilibrium measure, 318
ergodic operators, 442, 512
finite band Jacobi matrices, 440
fractile, 66
Fredholm determinant, 109
free convolution, 275
free probability, 275
gap probability, 7, 112
Gaussian Ensembles, xi
Gaussian Orthogonal Ensemble (GOE), 2
Gaussian Symplectic Ensemble (GSE), 2
Gaussian Unitary Ensemble (GUE), 2
Gaussian universality classes, 22
generating functional, 8
Glivenko-Cantelli theorem, 54
global (or macroscopic) regime, 16
global regime, 12
Gram theorem, 110, 111
Gumbell distribution, 582

Hadamard inequality, 145
hard edge, 202
Hastings-McLeod solution, 408, 409
heavy tails, 569
Heine formulas, 456
Hermite polynomials, 129
Integrated Density of States, 442, 513
intermediate regime, 18, 139
interpolating random matrix, 535
interpolation trick, xiii, 42
invariant ensembles, 101
isotropic vectors, 585
Itsykson-Zuber formula, 127
Itzykson–Zuber integral, 131
Jacobi Ensemble, 63, 195
Jacobi matrix, 109, 438, 440, 444
Kirkwood-Salzburg equations, 226
Laguerre Ensemble, 6, 181
Laguerre polynomials, 196
Langevin equation, 118
Laplace characteristic function, 455
Laplace characteristic functional, 8
large deviations, 15
linear statistic, 6
local bulk (or microscopic) regime, 16
local hard edge regime, 151, 202
local relaxation flow, 575
local semicircle law, 158, 570
local soft edge regime, 19, 150
log-concave measure, 585
logarithmic energy, 319
MANOVA, 180
Marchenko-Pastur law, 188
marginals, 7
martingale bounds, 526
Matrix Models, 5, 101
microscopic limits, 22
minimum energy problem, 318
modified Robin constant, 347
Nevanlinna functions, 36
noncommutative additive convolution, 287
noncommutative multiplicative convolution, 288
Normalized Counting Measure of eigenvalues, 6
null or white Wishart distribution, 178
operator norm, 37
Ornstein-Uhlenbeck process, 118
Painlevé equation, 29, 146, 152, 202, 409
Pfaffian, 165
Plancherel-Rotah formulas, 130
Poincaré-Nash inequality, 40
Poisson law, 15
population covariance matrix, 179
quarter-circle law, 188
quasi-Bloch generalized eigenfunctions, 441
R-transform, 287
random matrix ensemble, xi, 1
regular, 445
reproducing kernel, 108
resolvent, 37
Riemann theta function, 440
rigidity of spectrum, 147
sample, 178
sample covariance matrix, 178–180
sample mean, 180
scaling limits, 22
selfenergy, 523
semicircle law, 48
semicircle universality class, 23
sin-kernel, 143
sine-kernel, 142
singular values, 178, 607
special points, 15, 18
spectrum, xi, 15
spiked population covariance matrix, 200
Stieltjes transform, 35
Stieltjes-Perron inversion formula, 35
strong universality, 28
subexponential decay, 571
tight sequence, 13
tightness, 13
Toeplitz determinant, 26, 152, 222
unitary Matrix Models, 485
universality, 23, 140
universality classes, 21, 23
universality conjecture, 26
vague convergence, 13
Vandermonde determinant, 110
varying weight, 109
weak convergence, 12
weak universality, 577
Weibull distribution, 582
weight, 108
Wigner Ensembles, 5
Wishart distribution, 179
Wishart Ensemble, 5, 178, 179
Titles in This Series

171 Leonid Pastur and Mariya Shcherbina, Eigenvalue distribution of large random matrices, 2011
170 Kevin Costello, Renormalization and effective field theory, 2011
169 Robert R. Bruner and J. P. C. Greenlees, Connective real K-theory of finite groups, 2010
168 Michiel Hazewinkel, Nadiya Gubareni, and V. V. Kiritchenko, Algebras, rings and modules: Lie algebras and Hopf algebras, 2010
167 Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebra and Poisson geometry, 2010
166 Kyung Bai Lee and Frank Raymond, Seifert fiberings, 2010
165 Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J. Julián Toledo-Melero, Nonlocal diffusion problems, 2010
164 Vladimir I. Bogachev, Differentiable measures and the Malliavin calculus, 2010
162 Vladimir Maz’ya and Jürgen Rossmann, Elliptic equations in polyhedral domains, 2010
161 Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan, Morse theoretic aspects of p-Laplacian type operators, 2010
160 Alexander S. Kechris, Global aspects of ergodic group actions, 2010
159 Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, 2010
158 D. R. Yafaev, Mathematical scattering theory: Analytic theory, 2010
157 Xia Chen, Random walk intersections: Large deviations and related topics, 2010
155 Yiannis N. Moschovakis, Descriptive set theory, 2009
154 Andreas Čap and Jan Slovák, Parabolic geometries I: Background and general theory, 2009
153 Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer potential techniques in spectral analysis, 2009
152 János Pach and Micha Sharir, Combinatorial geometry and its algorithmic applications: The Alcâla lectures, 2009
151 Ernst Binz and Sonja Pods, The geometry of Heisenberg groups: With applications in signal theory, optics, quantization, and field quantization, 2008
150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008
149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008
148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz’ya and Gunther Schmidt, Approximate approximations, 2007
TITLEs IN THIS SERIES

140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
134 Dana P. Williams, Crossed products of C^*-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck’s FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004
111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries).

The text includes many of the authors’ results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach essentially based on the Stieltjes transform and orthogonal polynomials. The exposition is supplemented by numerous comments, remarks, and problems. This results in a book that presents a detailed and self-contained treatment of the basic random matrix ensembles and asymptotic regimes.

This book will be an important reference for researchers in a variety of areas of mathematics and mathematical physics. Various chapters of the book can be used for graduate courses; the main prerequisite is a basic knowledge of calculus, linear algebra, and probability theory.