Subgroup Complexes
Subgroup Complexes

Stephen D. Smith
To my mother, Anna Elizabeth Yust Smith Kirn
Contents

Preface and Acknowledgments xi

Introduction 1
 Aims of the book 1
 Optional tracks (B,S,G) in reading the book 1
 A preview via some history of subgroup complexes 2

Part 1. Background Material and Examples 7

Chapter 1. Background: Posets, simplicial complexes, and topology 9
 1.1. Subgroup posets 10
 1.2. Subgroup complexes 17
 1.3. Topology for subgroup posets and complexes 23
 1.4. Mappings for posets, complexes, and spaces 26
 1.5. Group actions on posets, complexes, and spaces 28
 1.6. Some further constructions related to complexes 31

Chapter 2. Examples: Subgroup complexes as geometries for simple groups 39
 Introduction: Finite simple groups and their “natural” geometries 40
 2.1. Motivating cases: Projective geometries for matrix groups 45
 2.2. (Option B): The model case: Buildings for Lie type groups 59
 Exhibiting the building via parabolic subgroups 61
 Associating the Dynkin diagram to the geometry of the building 75
 2.3. (Option S): Diagram geometries for sporadic simple groups 82
 A general setting for geometries with associated diagrams 82
 Some explicit examples of sporadic geometries 86

Part 2. Fundamental Techniques 101

Chapter 3. Contractibility 103
 Preview: Cones and contractibility in subgroup posets 104
 3.1. Topological background:
 Homotopy of maps, and homotopy equivalence of spaces 104
 3.2. Cones (one-step contractibility) 111
 3.3. Conical (two-step) contractibility 116
 3.4. Multi-step contractibility and collapsibility 127
 3.5. (Option G): G-homotopy equivalence and G-contractibility 137

Chapter 4. Homotopy equivalence 141
 4.1. Topological background: Homotopy via a contractible carrier 141
 4.2. Equivalences via Quillen’s Fiber Theorem 147
4.3. Equivalences via simultaneous removal 151
4.4. Equivalences via closed sets in products 153
4.5. Equivalences via the Nerve Theorem 160
4.6. Summary: The “standard” homotopy type determined by $S_p(G)$ 165

Part 3. Basic Applications 167

Chapter 5. The reduced Euler characteristic $\tilde{\chi}$ and variations on vanishing 169
5.1. Topological background: Chain complexes and homology 169
5.2. Contractibility and vanishing of homology and $\tilde{\chi}$ 176
5.3. Vanishing of $\tilde{\chi}(S_p(G)) \mod |G|$: Brown’s Theorem 178
5.4. Vanishing of $\tilde{\chi}(K)$ for suitable K modulo other divisors of $|G|$ 184
5.5. Other results on vanishing and non-vanishing 188
5.6. (Option G): The G-equivariant Euler characteristic 193

Chapter 6. The reduced Lefschetz module \tilde{L} and projectivity 197
6.1. Algebraic background: Projectivity and vanishing of cohomology 197
6.2. The Brown-Quillen result on projectivity of $\tilde{L}(S_p(G))$ 201
6.3. Webb’s projectivity conditions for a more general complex K 204
6.4. (Option B): The Steinberg module for a Lie type group 214
6.5. (Option S): Analogous projective modules for other simple groups 217
6.6. Weaker conditions on K giving relative projectivity of $\tilde{L}(K)$ 219

Chapter 7. Group cohomology and decompositions 225
7.1. Topological background: Group cohomology $H^*(G)$ and the classifying space BG 225
7.2. Webb’s decomposition of $H^*(G)$ as an alternating sum over K/G 228
7.3. (Option G): Approaching $H^*(G)$ via equivariant cohomology of K 236
7.4. Decomposing BG via a homotopy colimit over K/G 245
7.5. (Option S): Applications to cohomology of sporadic groups 252

Part 4. Some More Advanced Topics 257

Chapter 8. Spheres in homology and Quillen’s Conjecture 259
8.1. Topological background: Homology via top-dimensional spheres 259
8.2. Quillen dimension: Non-vanishing top homology for $A_p(G)$ 261
8.3. Robinson subgroups: Non-vanishing Lefschetz module for $A_p(G)$ 272
8.4. The Aschbacher-Smith result on Quillen’s Conjecture 274

Chapter 9. Connectivity, simple connectivity, and sphericality 281
9.1. Topological background: Homotopy groups, n-connectivity, and sphericality 281
9.2. 0-connectivity: Disconnectedness of $S_p(G)$ and strong p-embedding 284
9.3. 1-connectivity: Simple connectivity (and its failure) for $A_p(G)$ 286
9.4. n-connectivity: Spherical and Cohen-Macaulay complexes 297

Chapter 10. Local-coefficient homology and representation theory 307
10.1. Topological background: Coefficient systems and their homology 307
10.2. (Option B): Presheaves on buildings 312
10.3. (Option S): Presheaves on sporadic geometries 322
Chapter 11. Orbit complexes and Alperin’s Conjecture 327
 11.1. The role(s) of the orbit complex 327
 11.2. Orbit-poset formulations of Alperin’s Conjecture 328

Bibliography 333

Index 345
Preface and Acknowledgments

As will be indicated in a moment in the Introduction, this book is primarily intended as an exposition—which hopes to bring a wider audience into contact with an area of research that I have enjoyed working in, over many years.

But of course during those years, I gained much of my own experience by benefiting from the knowledge of very many colleagues. So in this preface, I would first like to take the opportunity to thank them—apologizing in advance to anyone I may have left out. (Of course the reader will see the work of these experts emerging, as the later exposition in the book proceeds.)

Some personal acknowledgments. My introduction to the methods of finite geometry dates mainly to my collaboration with Mark Ronan, beginning around 1979. I also learned a great deal about geometries from Bill Kantor, Jon Hall, Don Higman, Ernie Shult, Francis Buekenhout, and Bruce Cooperstein.

During the 1980s, many experts in finite group theory, motivated partly by the work of Tits on buildings, became interested in geometries underlying simple groups. I particularly benefited from long-term contact with Michael Aschbacher, Franz Timmesfeld, and Geoff Robinson.

Discussions with Peter Webb and Jacques Thévenaz were instrumental in leading me into the more specifically topological methods underlying subgroup complexes; and in effect led to my later collaboration with Dave Benson. Many other topologists helped educate me in their area; particular Alejandro Adem, Jim Milgram, Bill Dwyer, Bob Oliver, and Jesper Grodal. Especially in recent years it has been a pleasure to discuss developments made by John Maginnis and Silvia Onofrei.

Also during the 1970s and 1980s, many combinatorialists (notably Stanley) were also developing similar techniques for the combinatorics of posets (partially ordered sets). Some of my initial contacts with that area were around 1981 with Jim Walker and Bob Proctor. Soon thereafter I began a particularly valuable ongoing correspondence with Anders Björner. Over the years I have also profited from discussions with other experts—notably Volkmar Welker, Michelle Wachs, and John Shareshian.

And of course we also learn from our students: It was a pleasure to work with Peter Johnson, Andrew Mathas, Matt Bardoe, Kristin Umland, and Phil Grizzard—who wrote their theses with me at the University of Illinois at Chicago (UIC), in aspects of this general research area. I also had some involvement in the thesis work of Tony Fisher under George Glauberman, and of Paul Hewitt under Jon Hall.
In a similar vein, it was a pleasure to work in this area with several postdoctoral scholars at UIC: namely Alex Ryba, Satoshi Yoshiara, and Masato Sawabe; and indeed with Yoav Segev, even before completion of his Ph.D.

The more specific history of this book. I first collected much of the present material while on sabbatical at Notre Dame, in preparation for a Fall 1990 graduate course there: Math 671, *Subgroup Complexes*.

During Fall 1994, I revised and expanded those old notes, to use as the text for the UIC graduate course Math 532 (Topics in Algebra): *Subgroup Complexes*. I would like to thank the students in that course for their questions and corrections, and for their general interest: Matt Bardoe, Joe Fields, Venketraman Ganesan, Julianne Rainbolt, and Kristin Umland.

A preliminary draft of the book was provisionally accepted for *Surveys of the AMS* in 1995. At that time, I received many detailed and very helpful suggestions from various colleagues, particularly Satoshi Yoshiara and Jacques Thévenaz, which strongly influenced the overall structure of the final version.

However, the book went to the back burner for some years, when I was involved in more urgent collaborations on books with Michael Aschbacher, Dave Benson, Richard Lyons, and Ron Solomon; and I have only managed to complete this book recently. (I particularly thank Sergei Gelfand and his staff at the American Mathematical Society, for their patience with me during this lengthy delay.)

During July 2005, the material of the book was again used as a text—for the summer graduate seminar Math 593 at UIC. Again I thank the students in the course for their willingness to assist me in the final revision process: Hossein Andikfar, Chris Atkinson, Chris Cashen, Phil Grizzard, Jason Karcher, Dean Leonardi, Jing Tao, and Klaus Weide. Their suggestions in particular led me to try to make a clearer distinction between the more elementary exposition, and the more advanced examples. This essentially resulted in the “optional tracks” for reading the book, described below in the Introduction.

I received helpful suggestions on the final (2011) draft of the book from a number of colleagues, including Matt Bardoe, Anders Björner, Jesper Grodal, Jon Hall, Bill Kantor, Ian Leary, Silvia Onofrei, Geoff Robinson, Masato Sawabe, Jacques Thévenaz, Rebecca Waldecker, Satoshi Yoshiara, and Peter Webb. I also thank the anonymous referees contacted by the AMS.

Institutional acknowledgments. Parts of this book were developed during several sabbatical periods at Caltech, as well as at Notre Dame and U. Illinois–Urbana. I am also grateful to All Souls College-Oxford, for a Visiting Fellowship during Hilary Term 2009, when some of the final work was carried out.

My overall work has been partially supported over the years by summer grants, first from NSF and more recently from NSA.

Dedication. Of course the support and encouragement of my wife Judy Baxter have been unflagging.

Finally I'd like to formally dedicate this book to my mother, Anna Elizabeth Yust Smith Kirn: who at various times earlier in my career asked when I was going to write a book (as opposed to the usual journal articles).

So, although several other books have actually appeared since I started this one, I'm finally in a position to say: Well, Mom—here it is.
Bibliography

[Bir40] Garrett Birkhoff, Lattice Theory, American Mathematical Society, New York, 1940. MR0001959 (1,325f)

[Coh94] Steve M. Cohen, *A geometric presentation of the λ_2-modules of $C_n(q)$ and $D_n(q)$*, J. Algebra 170 (1994), no. 2, 470–486. MR1302851 (96a:20019)

BIBLIOGRAPHY

[Tho67] John G. Thompson, Defect groups are Sylow intersections, Math. Z. 100 (1967), 146. MR0213432 (35 #4296)

[Tho68] John G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437. MR0230809 (37 #6367)

[Yos05b] Radical 2-subgroups of the Monster and the Baby Monster, J. Algebra 287 (2005), no. 1, 123–139. MR2134261

Index

Page locations for definitions, as well as for references which are particularly fundamental, are indicated in **boldface**.

* (asterisk),
as central product \(H \ast J \) of groups, 260
as join \(K \ast L \) of simplicial complexes, 35

\(\ast \) (5-point star), point as topological space, 238

\(\ast = \), (initial) definition, 11
bydef \(= \), by (earlier) definition, 11
\(\approx \), isomorphism, 26
\(\cong \), as homotopy \(f \approx g \) of maps, 105
as homotopy equivalence of spaces, 109
\(\cong_G \), as \(G \)-homotopy \(f \approx g \) of maps, 138
as \(G \)-homotopy equivalence of spaces, 138
\(\leq \), as dominance relation \(f \leq g \) on poset maps, 107
as inclusion \(A \leq B \) of subgroups, 13
as order relation \(x \leq y \) in a poset \(P \), 10
\(\leq \), notation for normal subgroup, 16
\(| - |\),
as geometric realization
of a poset, 26
of a simplex via convex hull of vertices, 24
of a simplicial complex, 24
as order of a group, 3, 15
\(| - |_p\), \(p \) part of group order, 15

\(A_6 \), alternating group, 41, 42, 189, 233, 292
\(A_5 \), 39, 87, 158, 178, 185, 202, 209, 210, 215–217
isomorphisms, see also \(L_2(4) \), \(\Omega_4^+(2) \)
\(A_6 \), 86, 90, 91, 93–96, 158, 216, 323
isomorphism, see also \(Sp_4(2)' \)
\(3A_6 \), nonsplit triple cover of \(A_6 \), 86, 93
\(A_7 \), 88, 211, 293, 294
\(C_3 \)-geometry for \(- \), 90, 91, 92, 133, 158, 179, 210, 218, 234, 255, 272, 292, 294, 303, 305, 320, 323–325
\(A_8 \), 39, 218, 323
isomorphisms, see also \(L_4(2) \), \(\Omega_8^+(2) \)

Abels, H.
- Abramenko, subcomplexes of buildings [AA93], 302
Abramenko, P.
- Abels—, subcomplexes of buildings [AA93], 302
- Brown, buildings book (expanded) [AB08], 43, 59, 292
abstract
characteristic \(p \), 85
minimal parabolic subgroup, 286
simplex, 18
simplicial complex, 18
action, 28
admissible —, 30
coprime —, 191, 263, 266
faithful —, 265
flag-transitive, 46, 49, 53, 55, 58, 71, 83, 115, 233, 234, 245, 253, 293, 327, 328
free —, 180
type-preserving —, 30
acyclic, 176
carrier, 144
Acyclic Carrier Theorem, 144
Adem, A., xi, 5, 234, 235
- Maginnis-Milgram, cohomology of \(M_{12} \) [AMM91], 235, 236, 256, 304
- Milgram, cohomology of \(M_{22} \) [AM95a], 204, 235
- Milgram, cohomology of \(McL \) [AM97], 235
- Milgram, group cohomology book [AM04], 103, 155, 159, 205, 225, 228, 234, 235, 239, 243
- Milgram, rank 3 groups have Cohen-Macaulay cohomology [AM95b], 304
admissible action, 30
affine
building, 81, 88, 92, 272, 292, 292, 293, 302
Dynkin diagram, 81, 92, 292, 293
Weyl group, 81, 92
Aleksandrov, P.
discrete spaces [Ale37], 20
algebraic group, 41, 292, 293

almost
simple \((F^*(G)\) is simple), 271, 273
strongly p-embedded subgroup, 286
Alperin, J., 161, 190–192, 212, 265, 276, 329
-Glauberman, coverings of complexes [AG94], 295
Lie approach to finite groups [Alp90], 163, 265
’s conjecture [Alp87], 329
Sylow intersections and fusion [Alp67], 162
unpublished lecture notes on complexes [Alp89], 163, 261, 265, 269
Alperin Conjecture, 5, 121, 212, 213, 308, 327–329, 330–332

ALSS
Aschbacher-Lyons-Smith-Solomon
outline of CFSG [ALSS11], 285, 286, 289, 296
alternating group, 41, see also \(A_n\)
Alvis, D.
duality for Lie representations [Alv79], 317
ample, 194, 238, 239, 242, 246, 247, 249, 251, 252, 255
An, J., 121
-O’Brien, strategy for Alperin-Dade conjectures [AO98], 332
Andikfar, H., xii
anti-collapse, elementary —, 131
apartment, 59, 71, 72, 72, 73–75, 81, 91, 92, 134–137, 215, 216, 263, 272, 291, 301, 302, 305
\(A_p(G)\), poset of nontrivial p-subgroups, 118
approximation
homology —, 236
homotopy —, 245
Aschbacher, M., xi, xii, 5, 88, 150, 276, 286, 288, 295
finite group theory textbook [Asc00], 12, 41, 59, 191, 192, 263–265, 285, 286
-Kleidman, on Quillen’s conjecture [AK90], 273, 276
overgroups of Sylow groups [Asc86, p.23], 224
-Segev, extending morphisms [AS92b], 290
-Segev, locally connected simplicial maps [AS92a], 149, 295
-Shareshian, subgroup lattices of symmetric group [AS09], 189
simple connectivity of p-group complexes [Asc93], 163, 287–290
-Smith, on Quillen’s conjecture [AS93], 188, 259, 260, 262, 265, 267, 268, 270–277, 277, 278, 279
-Smith, quasithin classification [AS04b], 40
-Smith, quasithin preliminaries [AS04a], 99, 291
-Smith, Tits geometries from groups over \(GF(3)\) [AS83], 293
sporadic groups book [Asc94], 163, 295
Assadi, A.
permutation complexes [Ass91], 212
Atiyah, M., 331
Atkinson, C., xii
Atlas [CCN+85], 41, 42, 57, 93, 94, 97, 203, 211, 215–218, 222–224, 249, 314, 315
augmented chain complex, 171

B, see also Baby Monster sporadic group
\(B_i(K; R)\), boundary group, 172
\(B_n\), n-ball in \(\mathbb{R}^n\), 261
Baby Monster sporadic group \(B\)
2-local geometry, 86, 254, 295, 325
Baclawski, K., 4
Baddeley, R.
-Luchini, intervals in subgroup lattice [BL97], 189
bar
construction (for group cohomology), 226
convention (for quotients), 99
Bardoe, M., xi, xii, 253
embedding involution geometry for \(Co1\) [Bar99], 325
embedding involution geometry for \(Suz\) [Bar96a], 325
embedding involution geometry for \(U_4(3)\) [Bar95], 325
embedding near-hexagon for \(U_4(3)\) [Bar95], 325
Barker, L.
Möbius inversion and Lefschetz module [Bar96c], 213
barycentric subdivision, 32
Bender, H., 286
Benson, D., xi, xii, 5, 250, 256
-Carlson, diagrams for representations and cohomology [BC87], 234
\(C_{aq}\) and Dickson invariants [Ben94], 249
modular representations (new trends) [Ben84], 211, 217, 219
representations and cohomology I [Ben98], 193, 209, 226, 227, 229, 316
representations and cohomology II [Ben91], 17, 41, 59, 103, 127, 138, 141, 151, 153, 181, 209, 212, 216, 226,
INDEX

-Wilkerson, simple groups and Dickson invariants [BW95], 223, 229, 236, 256

Benson poset $Z_p(G)$, 153, 153, 165
BG, classifying space of G, 226
BiMonster group, 295
binary Golay code (extended —), 97, see also Golay code
Birkhoff, G.
lattice theory book [Bir40], 11
Björner, A., xi, xii, 4, 146, 305
combinatorics of buildings [Bjö84], 305
-Garsia-Stanley, Cohen-Macaulay posets [BGS82], 297
shellable and Cohen-Macaulay posets [Bjö80], 304, 306
topological methods (in combinatorics) [Bjö95], 17, 20, 21, 25, 116, 129, 142, 161, 164, 177, 260, 284, 304, 305
-Wachs, lexicographic shellability [BW83a], 305
-Wachs, nonpure shelling [BW96] [BW97], 305
-Walker, complementation formula for posets [BW96b], 189, 301
block
blocks in p-modular representation theory, 198, 203, 212, 213, 223, 236, 308, 330, 331
of defect 0, 203, 214, 218, 329, 330
BN
-pair, 62, 72
-split —, 81
-rank, 62, 301
Borel construction (for equivariant cohomology), 138, 165, 194, 228, 236, 237, 237, 240, 241, 246, 247, 254, 327
subgroup (of Lie type group), 63
Bornand, D.
counterexamples to a fiber theorem [Bor09], 300
Bouc, S., 4, 119, 121, 141, 150–153, 212, 251
homology of 2-group posets in S_n [Bou92], 261
homology of posets [Bou84a], 141, 151–153
Möbius modules [Bou84b], 185, 212, 216
p-permutation complexes (unpublished) [Bou], 205
projects in representation rings [Bou91], 212, 233, 243
-Thévenaz, rank ≥ 2 elementary poset [BT08], 300
Bouc poset (p-radical subgroups), 121
boundary
$\partial \sigma$ of a simplex σ, 19
group $B_i(K; R)$, 172
map ∂, 171
bouquet of spheres, 134, 189, 192, 281, 283, 287, 291, 297, 298, 300–302
Bousfield, A. K., 130
-Kan p-completion, 246, see also p-completion
-Kan homotopy colimit, 247, see also homotopy colimit $B_p(G)$, poset of p-radical subgroups, 121
Brauer, R., 198, 203, 330
Brauer character, 203
Bredon, G.
equivariant cohomology theories [Bre67], 138, 139
Bredon cohomology, 244, see also cohomology, Bredon
Broto, C., 5
-Levi-Oliver, fusion systems [BLO03], 228
Brouwer, A., 322
Brown, K., 3–5, 15, 104, 155, 178, 181, 184, 186, 193–195, 197, 229, 238, 244, 331
Abramenko —, buildings book (expanded) [AB08], 43, 59, 292
buildings book [Bro98], 43, 72
Euler characteristics of discrete groups [Bro74], 160, 193, 225
Euler characteristics of groups, p-part [Bro75], 3, 3, 4, 15, 116, 123, 160, 169, 179, 186, 193, 194, 197, 201, 225
group cohomology book [Bro94], 193, 194, 201, 225, 227, 228, 238, 239, 307
-Thévenaz, generalizing third Sylow theorem [BT88], 184, 186, 187
Brown poset (nontrivial p-subgroups), 15
Brown-Quillen Projectivity Theorem, 202
Brown’s Ampleness Theorem, 239
Brown’s Homological Sylow Theorem, 3
Bruhat, F., 43, 292
Bruhat-Tits construction of affine building, 92, 292
Buekenhout, F., xi, 43, 84
diagram geometries for sporadics [Bue79], 43, 84, 218, 294
Buekenhout geometry, 84, see also geometry, Buekenhout —
building, 66
affine —, 292, see also affine building spherical —, 81
twin —, 82
Building Principle, 44
Burnside
 algebra, 182, 185, 186, 208
 ring, 174, 174, 181, 182, 185, 188, 207,
 208, 212, 213, 219
generalized —, 224
Bux, K.
 new proof of Webb conjecture [Bux99], 115

C2 geometry for U4(3), 95, see also U4(3)
C3-geometry for A7, 90, see also A7
Ci(K; R), chain group, 171
Cameron, P.
 -Solomon-Turull, subgroup chains in symmetric groups [CST89], 22
Carlson, J.
 Benson—, diagrams for representations and cohomology [BC87], 234
carried, map — by a carrier, 144
carrier, 143
 acyclic —, 144
 contractible —, 143
Carrier Theorem
 Acyclic —, 144
 Contractible —, 144
Cartan, E., 61
Cartan
 subalgebra, 63
 subgroup, 63
Carter, R.
 simple groups of Lie type book [Car89], 41, 45, 52, 53, 59, 62, 63, 65, 72, 77,
 93, 94, 302, 316
Cartesian product of posets, 107
Cashen, C., xii, 104
category
 notation, 28
 of all posets (or complexes), 23
orbit —, 250
 single poset or complex as a —, 22
Cayley algebra (for group of type G2), 60
cell complex, 23
center Z(—) of a group, 14
central product H * J (of groups), 260
centralizer decomposition, 248
centric subgroups, 166, 224, 250
CFSG, 270, see also Classification of Finite Simple Groups
chain
 complex, 171
 augmented —, 171
 relative —, 180
group Ci(K; R), 171
 inclusion — in a poset, 20
 -pairing method, 166, 212
chamber (maximal simplex in a building), 72
character
 (ordinary) — of a module, 173
 Brauer —, 203
generalized —, 181
 (reduced) Lefschetz — Λ(K), 174
 modular —, 203
 regular —, 181
characteristic prime p
 abstract — for a general group, 85
 for a Lie type group, 41
 for a subgroup complex, 84
 subgroup (invariant under automorphisms), 66
Chevalley, C., 41, 43
Chevalley construction, 62, 63
Chevalley group, 62
 chief series, 188
circle geometry, 84, see also geometry,
 Buekenhout —
class multiplication coefficient, 249
classical
 Lie type, 61
 matrix group, 45
Classification of Finite Simple Groups, 40, 187, 208, 269, 270, 271, 273, 276–278,
 281, 285, 286, 289–291, 332
classifying space BG, 226
closed
 cover, 161
 star St(σ) of a simplex, 35
subset of a poset, 153
 equivalence via — in product, 154
Co1, 324
 Buekenhout geometry, 294
 involution geometry, 325
 2-local geometry, 97, 224, 254, 295, 296,
 325
Co2
 Buekenhout geometry, 294
 2-local geometry, 86, 253, 295, 325
Co3
 Buekenhout geometry, 294
 2-local geometry, 224, 249, 252, 254, 256
 coboundary map, 226
 cochain complex, 226
code module for M24 (irreducible), 97
coefficient
 homology, 308
system (local —), 307
Cohen, M.
 simple homotopy theory book [Coh73], 105, 110, 129–132
Cohen, S.
 sheaf for λ2 of Cn and Dn [Coh94], 320
Smith, sheaf for 26-dimensional F_4 module $[CS90]$, 320
Cohen-Macaulay
 complex, 284
 ring, 284
cohomological dimension (finite virtual —), 193
cohomology
 Bredon —, 244, 245, 254, 255, 308, 331
decomposition, 229
equivariant —, 2, 138, 165, 194, 235, 237, 238, 240–242, 244, 247, 308, 331
group —, 226
 module —, 227
 relative —, 235
Tate —, 230, 232, 232, 238, 239, 242–244
colimit, 246
 homotopy —, 247, see also homotopy colimit
collapse
 elementary —, 129
 elementary anti- —, 131
collapsible, 131
colored simplicial complex, 83
commuting complex, 163
complementation methods, 188, 189, 300, 301
completion, 246, see also p-completion
cell —, 23
chain —, 171
cochain —, 226
 Cohen-Macaulay —, 284
coset —, 81
CW- —, 23
intersection —, 82
simplicial —, 17
subgroup —, 21
Sylow intersection —, 162
component (quasisimple subnormal subgroup), 264
Conder, M., 121
cone, 112
 fiber, 147, see also fiber, cone —
 point, 112
conical contractibility, 116
conjugation, 13
 category, 248
 family, 286
 (Lefschetz) — module, 212, 213, 331
conjunctive element, 116
Conlon, S.
 decompositions induced from Burnside algebra $[Con68]$, 208
Conlon's Induction Theorem, 127, 206, 208
 connected, 282
 n— (higher connectivity), 282
 path- (0-) —, 282
 simply (1-) —, 282
connecting maps (of a local system), 307
constant coefficient system, 309
contractible, 284
 carrier, 143
 conically —, 116
 cover, 161
Contractible Carrier Theorem, 144
convex hull (of points in Euclidean space), 24
Conway, J., 295
 Atlas, see also Atlas
 lectures on exceptional groups $[Con71]$, 97, 98
Conway sporadic groups, 224
 individually, see also Co_1, Co_2, Co_3
Cooperstein, B., xi, 293
coprime action, 191, see also action, coprime
coset complex, 81
counting two ways, 51
cover
 closed —, 161
 contractible —, 161
 of a geometry, 87
 of a poset, 161
 of a space, 92
 universal —, 92
 projective — $P(I)$ of an irreducible I, 198
Coxeter diagram, 62
Crapo, H., 188
critical subgroup, 263
crosscut (in a poset), 164
Curtis, C., 215, 296
 -Lehrer, homology representations of Lie type groups $[CL81]$, 31, 307, 315, 316
 modular representations for split BN-pair $[Cur70]$, 214, 309
 Oxford lectures on Chevalley groups $[Cur71]$, 214, 309
 -Reiner, representation theory book (1962) $[CR06]$, 198, 200, 203, 211, 221
Curtis, R.
 Atlas, see also Atlas
cuspidal representations, 313
CW-complex, 23
cycle group $Z_i(K; R)$, 172
Dade Conjecture, 5, 332
Danaraj, G.
 -Klee, shelling algorithm $[DK78]$, 305
Das, K. M.
 Quillen complex for symplectic type $[\text{Das00}]$, 292
 Quillen complex of Sp_{2n} $[\text{Das98}]$, 292, 303
 Quillen complex of GL_n $[\text{Das95}]$, 292

Davis, J.
 - Kirk, algebraic topology book $[\text{DK01}]$, 129

decomposition
 centralizer —, 248
 cohomology — (of $H^*(G)$), 229
 homotopy — (of BG), 245
 matrix, 211
 normalizer —, 247
 subgroup —, 250
 theory, 5, 225, 245, 247, 250

Dedekind modular law, 191

defect
 (group) of a block, 203
 zero, 214

definition retraction, strong —, 110
 $\partial(-)$, boundary map on a complex, 19

Delgado, A.
 - Gramlich-Mühlherr, sphericity for
 geometry of nondegenerate subspaces $[\text{DGM09}]$, 212

$D(4)$, exotic Dwyer-Wilkerson space, 256

diagram
 Coxeter —, 62
 Dynkin —, 62
 geometry, 84, see also geometry, diagram
 of a poset, 10

Dickson invariants, 256

digon, 74

direct limit, 309

discrete
 series representations, 313
 valuation, 292

distinguished p-subgroups, 224

dominance (relation \geq between poset
 maps), 107

doouble
 cosets (algebra of \cdots), 256, 316
 cover, 87
 mapping cylinder, 247

downward-closed subset of a poset, 153

Dress, A.
 characterization of solvability $[\text{Dre69}]$, 182
 - Scharlau, gate property e.g. of buildings
 $[\text{DS87}]$, 135

d-spherical ($(d-1)$-connected), 283
dual
 parapolar space, 324
 polar space, 321
 poset, 67
 representation contragredient, 311
 with respect to ρ, 315

Dummit, D.
 - Foote, algebra textbook $[\text{DF99}]$, 10,
 12–16, 40, 81, 108, 120, 122, 270

Dwyer, W., xi, 5, 238, 241, 246, 248, 250, 251

classifying spaces and homology decompositions $[\text{Dwy01}]$, 5, 23, 237,
 242–244, 246

homology approximations $[\text{Dwy97}]$, 250

sharp homology approximations $[\text{Dwy98}]$, 250

Dwyer-Wilkerson exotic space $D(4)$, 256

Dynkin diagram, 62
 affine (or extended) \cdots, 81, see also affine
 Dynkin diagram

Eckmann-Shapiro Lemma, 229, 241, 327

EG, free contractible space with
 $EG/G = BG$, 226

$E(G)$, product of components of G, 264

Eilenberg-Zilber, product homology, 278

elementary
 abelian p-group, 94
 collapse, 129
 — anti-collapse, 131
 expansion, 131

embeddability (existence of embedding), 324

embedding (of a point-line geometry), 320

universal \cdots, 321

E_p (elementary abelian p-group), 94

equivalence
 homology \cdots, 176
 homotopy \cdots, 109

G-homotopy \cdots, 138

weak (homotopy) \cdots, 176, 282

equivariant
 cohomology, 237, see also cohomology, equivariant

Euler characteristic, 193, 194, 194, 195, 331

K-theory, 331

mapping, 31

Euclidean simplex, 24

Euler characteristic, 170

equivariant \cdots, 194, see also equivariant

Euler characteristic reduced \cdots, 170

exact sequence, 174

short \cdots, 174
INDEX 351

determines long — in homology, 180
split —, 174
exceptional Lie types, 61
expansion (elementary —), 131
Ext functors, 227
extended
binary Golay code, 97, see also Golay code
Dynkin diagram, 81, see also affine Dynkin diagram
Steinberg module, 224
external-complex viewpoint on a geometry, 82

\[F(-), \text{ Fitting subgroup}, 264 \]
\[F^*(-), \text{ generalized —}, 264 \]
\[F^*_V, \text{ fixed-point presheaf from } V, 309 \]
\[F_{22} \]
Buekenhout geometry, 294
2-local geometry, 86, 254
\[F_{23} \]
Buekenhout geometry, 294
2-local geometry, 254
\[F'_{24} \]
Buekenhout geometry, 294
2-local geometry, 92, 97, 254
face, 19
poset \(P(-) \) of a complex, 33
faithful action, 265
Fano plane, 50, see also \(P^2(2) \)
Feit, W., 215
- extending Steinberg characters [Fei93], 224
- Higman, nonexistence of some generalized polygons [FH64], 74, 76
representation theory book [Fei82], 162, 198–200, 219
fiber, 120
cone —, 147, 154, 157, 164, 166
Fiber Theorem
Quillen’s —, 148
results of — type, 149, 288, 299, 303, 308
Fields, J., xii
finite
(virtual) cohomological dimension, 193
homological type, 194
Fischer sporadic groups
individually, see also \(F_{22}, F_{23}, F'_{24} \)
Fisher, A., xi
Fisher, T.
weight operators and group geometries [Fis93], 304

Fitting
lemma, 266
subgroup \(F(G), 264 \)
generalized — \(F^*(G), 264 \)
fixed-point presheaf \(F^*_V, 309 \)
flag, 46
-transitive action, 46, see also action, flag-transitive
Folkman, J.
- homology groups of lattice [Fol66], 20
Fong, P., 291
- Seitz, \(BN \)-pairs of rank 2 [FS73], 81
Foote, R.
- Dummit—, algebra textbook [DF99], 10, 12–16, 40, 81, 108, 120, 122, 270
\(\mathbb{F}_p \)-good space, 246
\(\mathbb{F}_q \), finite field of order \(q \), 45
Frattini subgroup \(\Phi(G) \) of \(G \), 119
free
action, 180
construction of buildings, 293
contractible space \(EG \), 226
module, 199
simplex — over face (for collapse), 129
Frobenius, G., 187
Frobenius
- group, 285
reciprocity, 213, 229, 316, 327
Frohardt, D.
- Smith, embeddings for \(3D_4(2) \) and \(J_2 \) [FS92], 320, 325
functor
derived —, 227
Mackey —, 243
fundamental
- group \(\pi_1(K) \), 282
- system II of roots (for Lie type group), 65
weight, 315
fusion system, 5, 115, 166, 228

\(G_2(2) \) generalized hexagon, 60, 74, 216
\(G_2(3) \), 293
gallery (path between chambers in a building), 72
Galois connection, 148
Ganesan, V., xii
GAP (computer language for group theory), 203, 210, 249
Garsia, A., 4
- Björner—, Stanley, Cohen-Macaulay posets [BGS82], 297
- combinatorics and Cohen-Macaulay rings [Gar80], 304
Garst, P.
- Cohen-Macaulayness and group actions [Gar79], 304
gate property (of building), 135, 135, 136, 137
\(G \)-complex, 28
\(G \)-contractible, 138
general linear group \(GL_n(q) \), 45
generalized
- Burnside ring, 224
character, 181
digon (complete bipartite graph), 74, 76, 78, 100
Fitting subgroup $F^*(G)$, 264
hexagon, 60, 74, 76, 97, 216
m-gon, 72, see also — polygon
octagon, 74
polygon, 71, 72, 73–76, 79, 80, 84–86, 88, 92, 97, 99
Moufang —, 81
quadrangle, 73, 76, 93, 95, 99
Steinberg module, 216, 217, 233
triangle (projective plane), 72, 76, 78
geometric
presentation (of a module), 320
realization (of a complex), 25
generalization Buekenhout —, 84, 84, 85, 218, 294, 295
circle —, see also Buekenhout —
diagram —, 40, 43, 75, 78, 80, 82, 84, 84, 85, 86, 88, 97, 126, 132, 291, 322
involution —, 94, 222, 324, 325
minimal parabolic —, 86
of type M, 79, 80, 88, 291
Petersen —, 86, 295
p-local —, 5, 43, 85, 166, 201, 206, 219, 223, 307
2-local —, 82, 85, 235, 253
sporadic —, 84
tilde —, 86, 86, 295, 324
Tits —, 79, see also — of type M
G-equivariant, see also equivariant
$GF(q)$, finite field of order q, 45
G-homotopy, 138
equivalence, 138
$GL_n(q)$, general linear group, 45, see also $L_n(q)$
$GL(V)$, group of space V, 45
building, 46, see also $\mathbb{P}^{n-1}(q)$ (projective space)
parabolic subgroups, 67
Glauberman, G.
Alperin—, coverings of complexes
[AG94] , 295
GLS
Gorenstein-Lyons-Solomon project, 40
no. 1: overview, outline [GLS94], 40, 270, 286
no. 2: general group theory [GLS96], 163
no. 3: properties of simple groups
[GLS98], 40, 41, 42, 45, 53, 63, 69, 81, 92, 214, 270, 309, 315
Gluck, D.
idempotents in Burnside algebra [Glu81] , 184
Golay code (extended binary —), 97, 97, 99, 323
Goldschmidt, D. conjugation family [Gol70] , 286
good space, 246
Gorenstein, D.
finite groups textbook [Gor80] , 12, 266, 267, 270, 285, 317
-Lyons, trichotomy for $\epsilon(G) \geq 4$ [GL83, Sec 7] , 286
-Lyons-Solomon, second effort CFSG, see also GLS
G-poset, 28
Gramlich, R., 213
Devillers- — -Mühlherr, sphericity for geometry of nondegenerate subspaces
[DGMM99] , 212
Phan type presentations survey [Gra04], 296
Green, D., 160
Green, J. A., 162, 221
Green ring, 174
Grizzard, P., xii
components of sporadic Lefschetz characters [Gr09] , 224
Grodal, J., xi, xii, 5, 225
-Smith, propagation of sharpness
[GS06], 165, 166, 249, 251–254
Grothendieck group, 174
group
cohomology, 226
of Lie type, 41, see also Lie type group
Gruenberg, K., 184
G-space, 28
$H_i(K; R)$, homology group, 172
$H_i(K; R)$, reduced —, 172
Hall, J., xi, xii
Hall, M.
group theory textbook [Hal59] , 12, 15, 47, 179, 190
Hall, P.
Möbius function on subgroups [Hal36], 183
Hall-Higman lemma for p-solvable groups, 190
Harada-Norton sporadic group, see also HN
Hasse diagram of a poset, 10
Hatcher, A.
algebraic topology text [Hat02] , 24
Hawkes, T., 184, 193
-Isaacs, subgroups poset for p-solvable
[HI88], 190, 190, 276
-Isaacs-Ozaydin, Möbius function of finite group [HIÖ89] , 15, 116, 177, 183, 184, 186, 186, 187, 328
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>Buekenhout geometry, 295</td>
</tr>
<tr>
<td>2-loc</td>
<td>2-local geometry, 254, 295, 296</td>
</tr>
<tr>
<td>He</td>
<td>Held sporadic group, see also He</td>
</tr>
<tr>
<td>Hen</td>
<td>Henn, H.-W., 245</td>
</tr>
<tr>
<td>elementary abelian decompositions</td>
<td>[Hen97], 238, 244, 245</td>
</tr>
<tr>
<td>Hi</td>
<td>Herstein, I. topics in algebra textbook [Her75], 12, 13</td>
</tr>
<tr>
<td>Hen97</td>
<td>elementary abelian decompositions</td>
</tr>
<tr>
<td>Hig</td>
<td>Higman, D., xi</td>
</tr>
<tr>
<td>-Sims</td>
<td>-Sims sporadic group, see also HS</td>
</tr>
<tr>
<td>Hilton</td>
<td>Hilton, P. Wylie, homology text [HW60], 24</td>
</tr>
<tr>
<td>HN</td>
<td>2-local geometry, 254</td>
</tr>
<tr>
<td>Hocolim</td>
<td>Hocolim, 249, see also homotopy colimit</td>
</tr>
<tr>
<td>homeomorphism (continuous isomorphism)</td>
<td>26</td>
</tr>
<tr>
<td>Homological Sylow Theorem (Brown)</td>
<td>Homological Sylow Theorem (Brown), 3</td>
</tr>
<tr>
<td>homological type (finite —)</td>
<td>homological type (finite —), 194</td>
</tr>
<tr>
<td>homology</td>
<td>homology, 172</td>
</tr>
<tr>
<td>approximation</td>
<td>approximation, 236</td>
</tr>
<tr>
<td>coefficient —</td>
<td>coefficient —, 308</td>
</tr>
<tr>
<td>decomposition</td>
<td>decomposition, 229</td>
</tr>
<tr>
<td>equivalence</td>
<td>equivalence, 176, see also equivalence, homology</td>
</tr>
<tr>
<td>group $H_i(K; R)$, 172</td>
<td>group $H_i(K; R)$, 172</td>
</tr>
<tr>
<td>reduced</td>
<td>reduced — $H_i(K; R)$, 173</td>
</tr>
<tr>
<td>product</td>
<td>product —, 278</td>
</tr>
<tr>
<td>homotopy</td>
<td>homotopy, 105</td>
</tr>
<tr>
<td>approximation</td>
<td>approximation, 245</td>
</tr>
<tr>
<td>decomposition</td>
<td>decomposition, 245</td>
</tr>
<tr>
<td>equivalence</td>
<td>equivalence, 109</td>
</tr>
<tr>
<td>weak</td>
<td>weak —, 176, see also equivalence, weak</td>
</tr>
<tr>
<td>group $\pi_s(K)$, 282</td>
<td>group $\pi_s(K)$, 282</td>
</tr>
<tr>
<td>pushout</td>
<td>pushout, 247</td>
</tr>
<tr>
<td>type (class under homotopy equivalence)</td>
<td>type (class under homotopy equivalence), 109</td>
</tr>
<tr>
<td>Hopf Trace Formula</td>
<td>Hopf Trace Formula, 176</td>
</tr>
<tr>
<td>HS</td>
<td>HS, 235</td>
</tr>
<tr>
<td>Buekenhout geometry</td>
<td>Buekenhout geometry, 294</td>
</tr>
<tr>
<td>2-loc</td>
<td>2-local geometry, 254</td>
</tr>
<tr>
<td>Humphreys, J.</td>
<td>Humphreys, J.</td>
</tr>
<tr>
<td>Lie algebras and representations book</td>
<td>Lie algebras and representations book [Hum72], 60, 68</td>
</tr>
<tr>
<td>Hungerford, T.</td>
<td>Hungerford, T. algebra textbook [Hun80], 10, 14</td>
</tr>
<tr>
<td>Huppert, B.</td>
<td>Huppert, B. group theory textbook I [Hup67], 12, 226</td>
</tr>
<tr>
<td>hyperbolic</td>
<td>hyperbolic</td>
</tr>
<tr>
<td>2-space (under a form), 54</td>
<td>2-space (under a form), 54</td>
</tr>
<tr>
<td>pair (generating a hyperbolic 2-space), 54</td>
<td>pair (generating a hyperbolic 2-space), 54</td>
</tr>
<tr>
<td>hyperelementary subgroup, 188, 188, 273, 274, 279</td>
<td>hyperelementary subgroup, 188, 188, 273, 274, 279</td>
</tr>
<tr>
<td>$I_2(8)$, Coxeter diagram of D_{16}, 76</td>
<td>$I_2(8)$, Coxeter diagram of D_{16}, 76</td>
</tr>
<tr>
<td>idempotents</td>
<td>idempotents</td>
</tr>
<tr>
<td>in Burnside ring, 182, 182, 185, 186, 208</td>
<td>in Burnside ring, 182, 182, 185, 186, 208</td>
</tr>
<tr>
<td>in group algebra, 203</td>
<td>in group algebra, 203</td>
</tr>
<tr>
<td>Iyori, N.</td>
<td>Iyori, N.</td>
</tr>
<tr>
<td>-Yamaki, Frobenius conjecture [IY91], 187</td>
<td>-Yamaki, Frobenius conjecture [IY91], 187</td>
</tr>
<tr>
<td>incidence relation in a geometry, 19</td>
<td>incidence relation in a geometry, 19</td>
</tr>
<tr>
<td>indecomposable module, 174</td>
<td>indecomposable module, 174</td>
</tr>
<tr>
<td>principal —, 198</td>
<td>principal —, 198</td>
</tr>
<tr>
<td>projective —, 198</td>
<td>projective —, 198</td>
</tr>
<tr>
<td>induced module, 173</td>
<td>induced module, 173</td>
</tr>
<tr>
<td>internal view of a geometry, 82</td>
<td>internal view of a geometry, 82, see also</td>
</tr>
<tr>
<td>intersection complex</td>
<td>intersection complex, 82</td>
</tr>
<tr>
<td>intervals in a subgroup poset, 183, 298</td>
<td>intervals in a subgroup poset, 183, 298</td>
</tr>
<tr>
<td>results restricting —, 189</td>
<td>results restricting —, 189</td>
</tr>
<tr>
<td>invariant</td>
<td>invariant</td>
</tr>
<tr>
<td>Dickson —s in group cohomology, 256</td>
<td>Dickson —s in group cohomology, 256</td>
</tr>
<tr>
<td>Lefschetz — (in Burnside ring), 174</td>
<td>Lefschetz — (in Burnside ring), 174</td>
</tr>
<tr>
<td>module —s under group action, 227</td>
<td>module —s under group action, 227</td>
</tr>
<tr>
<td>properties under equivalences, 172</td>
<td>properties under equivalences, 172</td>
</tr>
<tr>
<td>involution, 14</td>
<td>involution, 14</td>
</tr>
<tr>
<td>geometry, 325, see also geometry, involution</td>
<td>geometry, 325, see also geometry, involution</td>
</tr>
<tr>
<td>$I_p(G)$, complex of Sylow intersections, 162</td>
<td>$I_p(G)$, complex of Sylow intersections, 162</td>
</tr>
<tr>
<td>irreducible</td>
<td>irreducible</td>
</tr>
<tr>
<td>building, 291</td>
<td>building, 291</td>
</tr>
<tr>
<td>module which is projective, 203, see also</td>
<td>module which is projective, 203, see also</td>
</tr>
<tr>
<td>block of defect 0</td>
<td>block of defect 0</td>
</tr>
<tr>
<td>presheaf, 311</td>
<td>presheaf, 311</td>
</tr>
<tr>
<td>Isaacs, I. M., 190, 193</td>
<td>Isaacs, I. M., 190, 193</td>
</tr>
<tr>
<td>character theory book [Isa06], 181</td>
<td>character theory book [Isa06], 181</td>
</tr>
<tr>
<td>Hawkes- —, subgroups poset for</td>
<td>Hawkes- —, subgroups poset for</td>
</tr>
<tr>
<td>p-solvable [HI88], 190, 190, 276</td>
<td>p-solvable [HI88], 190, 190, 276</td>
</tr>
<tr>
<td>Hawkes- —, Ozaydin, Möbius function of</td>
<td>Hawkes- —, Ozaydin, Möbius function of</td>
</tr>
<tr>
<td>finite group [HIÖ90], 15, 116, 177, 183, 184, 186, 186, 187, 328</td>
<td>finite group [HIÖ90], 15, 116, 177, 183, 184, 186, 186, 187, 328</td>
</tr>
<tr>
<td>isotropic</td>
<td>isotropic</td>
</tr>
<tr>
<td>(totally) — subspace, 53</td>
<td>(totally) — subspace, 53</td>
</tr>
<tr>
<td>vector, 52</td>
<td>vector, 52</td>
</tr>
<tr>
<td>isotropy spectral sequence, 241, see also</td>
<td>isotropy spectral sequence, 241, see also</td>
</tr>
<tr>
<td>spectral sequence, isotropy</td>
<td>spectral sequence, isotropy</td>
</tr>
<tr>
<td>Ivanov, A., 295</td>
<td>Ivanov, A., 295</td>
</tr>
<tr>
<td>presentation of BiMonster [Iva91], 295</td>
<td>presentation of BiMonster [Iva91], 295</td>
</tr>
</tbody>
</table>
-Shpectorov, tilde and Petersen geometries [IS94a], 86, 100, 295, 325
-Shpectorov, universal embeddings of Petersen geometries [IS94b], 324, 325
sporadic geometries book [Iva99], 86, 100

J
2-local geometry, 233, 252, 253, 256
J
2-local geometry, 254, 296, 325
J
2-local geometry, 253
J
2-local geometry, 97, 253, 295
Jackowski, S., 5
McClure, homotopy approximations [JM89], 165, 248
McClure, homotopy decomposition via abelian subgroups [JM92], 248, 249
McClure-Oliver, homotopy decomposition via radical subgroups [JMO92], 121, 165, 250
Jacobson, N.
basic algebra textbook [Jac80], 12, 22, 53
James, I., 139
Janko sporadic groups individually, see also J
1,J
2,J
3,J
4
Jansen, C.
Modular Atlas, see also Modular Atlas
Johnson, P., xi

join
-contractible, 116
of simplices, 35
of simplicial complexes, 35
K
(−), order complex of a poset, 21
K
m,n, complete bipartite graph, 52
Kac-Moody group, 81
Kan, D.
Bousfield- — p-completion, 246, see also p-completion
Bousfield- — homotopy colimit, 247, see also homotopy colimit
Kantor, W., xi, xii, 92, 293, 294
exceptional 2-adic buildings [Kan85], 92, 293
generalized polygons, SCABs, and GABs [Kan86], 294
geometries that are almost buildings [Kan81], 92, 293
-Liebler-Tits, affine buildings [KLT87], 294
-Meixner-Wester, 3-adic buildings [KMW84], 294
Kantor’s C2-geometry for U4(3), 95
Karcher, J., xii
Kessar, R., 5
Killing, W., 61
Kirk, P.
Davis- —, algebraic topology book [DK01], 129
Klee, V.
Danara˘j- —, shelling algorithm [DK78], 305
Kleidman, P.
Aschbacher- —, on Quillen’s conjecture [AK90], 273, 276
Klein bottle, 272
Knörr, R.

- Robinson, remarks on Alperin Conjecture [KR89], 166, 212, 213, 308, 330, 331
Köhler, P.
-Meixner-Wester, affine building of type A2 [KMW84], 293
Kratzer, C., 4
-Thévenaz, homotopy type of lattice and subgroup poset [KT85], 127, 141, 151, 152, 189, 192, 262, 300, 301
-Thévenaz, Möbius function and Burnside ring [KT84], 183, 188, 300
Ksontini, R.
Quillen complex of symmetric group [Kso04], 292
K-theory (equivariant —), 331
Kutin, S.
-Özaydin, shellability of S
p for solvable [KÖzaydin], 305

L
(−), lattice of all subgroups of a group, 13
L
n(q), linear group, 45
L
2(2)
building, 48, see also P1(2) (projective line)
parabolics, 68
L
2(4)
building, 48, see also P1(4) (projective line)
parabolics, 68
L
3(2)
building, 49, see also P2(2) (projective plane)
parabolics, 64
L
4(2)
building, 51, see also P3(2) (projective space)
parabolics, 69
L
5(2), 296
Lakser, H.
homology of lattice [Lak72], 144
Lang, S.
algebra text [Lan65], 174
lattice, 11
subgroup — $L(G)$ of a group G, 13
theory, 11
Leary, I., xii

Lefschetz
character (reduced —) $\Lambda(\mathcal{K})$, 174
conjugation module, 331, see also
conjugation module (Lefschetz —)
Fixed-Point Formula, 175
invariant (in Burnside ring), 174
module (reduced —) $\tilde{L}(K)$, 173
number, 175
Lehrer, G., 150
Curtis- —, homology representations of
Lie type groups $[\text{CL}81]$, 31, 307, 315,
316
-Rylands, split building of reductive
group $[\text{LR}93]$, 302
-Thévenaz, Alperin Conjecture for
reductive groups $[\text{LT}92]$, 331
Leonardi, D., xii
Leray, J., 161
Levi, R., 5
Broto- —-Oliver, fusion systems
$[\text{BLO}03]$, 228
Levi
complement (of parabolic subgroup), 65
decomposition (of parabolic subgroup),
65
Li, P.
universal embedding of dual polar space
of $Sp_{2n}(2)$ $[\text{Li}01]$, 322
Libman, A.
Minami-Webb splittings $[\text{Lib}07]$, 244
Lie
p-adic — group, 81, 292–294
rank, 61
type
Chevalley group, 62
classical —, 61
exceptional —, 61
group, 41
twisted —, 62
untwisted —, 62
Liebler, R.
Kantor- —-Tits, affine buildings
$[\text{KLT}87]$, 294
limit (direct —), 309
Linckelmann, M., 5
orbit fusion system contractible $[\text{Lin}09]$,
115, 166
line, projective — (linear 2-space), 46
linear group $GL_n(q)$, 45
link $Lk(\sigma)$ of a simplex, 36
$Lk(-)$, see also link
local
coefficient system, 307
field, 292
recognition (of a module), 320
subgroup, 5, 43
system, see also coefficient system
locally determined functions, 331
long exact sequence, 180
Lucchini, A.
-Lucchini, intervals in subgroup lattice
$[\text{BL}97]$, 189
Lucido, M.
connected components in subgroup
lattice $[\text{Luc}03]$, 286
poset of nilpotent subgroups $[\text{Luc}95]$,
279
Lunardon, G.
-Pasini, on C_3 geometries $[\text{LP}89]$, 91
Lusztig, G., 313
Deligne- —, representations of finite
reductive groups $[\text{DL}76]$, 313
discrete series for classical groups
$[\text{Lus}75]$, 313, 320
discrete series for finite GL_n $[\text{Lus}74]$,
307, 313, 314, 320
Lux, K.
Modular Atlas, see also Modular Atlas
L_y, 253
2-local geometry, 253, 256
5-local geometry, 293
Lyons, R., xii, 273
Gorenstein- —, trichotomy for $e(G) \geq 4$
$[\text{GL}83, \text{Sec} 7]$, 286
Gorenstein- — -Solomon, second effort
CFSG, see also GLS
Lyons sporadic group, see also L_y
M, see also Monster sporadic group
M_{11}
Buekenhout geometry, 294
2-local geometry, 233, 234, 252, 253
3-local geometry, 218
M_{12}, 304
Buekenhout geometry, 294
2-local geometry, 222, 252, 254, 256, 325
3-local geometry, 256
M_{22}
Buekenhout geometry, 294
2-local geometry, 86, 235, 252, 253, 295,
325
M_{23}
Buekenhout geometry, 294
2-local geometry, 85, 253, 295
M_{24}, 97
Buekenhout geometry, 294
2-local geometry, 86, 98, 158, 218, 253,
295, 296, 304, 322, 324, 325
Mackey, G.
foundations of quantum mechanics
$[\text{Mac}63]$, 11
Mackey functor, 243
Maginnis, J., xi
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adem- — Milgram, cohomology of M_{12}</td>
<td>[AMM91], 235, 236, 256, 304</td>
</tr>
<tr>
<td>Adem- —, local control of cohomology</td>
<td>[Mag95], 236</td>
</tr>
<tr>
<td>Adem- —, distinguished in parabolic characteristic</td>
<td>[MO10], 166</td>
</tr>
<tr>
<td>Adem- —, fixed points and Lefschetz modules for sporadics</td>
<td>[MO09], 224</td>
</tr>
<tr>
<td>Adem- —, new p-subgroup collections</td>
<td>[MO08], 166, 252</td>
</tr>
<tr>
<td>Adem- —, cohomology of M_{11}</td>
<td>[AMM91], 235, 236, 256, 304</td>
</tr>
<tr>
<td>Adem- —, cohomology of M_{22}</td>
<td>[AM95a], 204, 235</td>
</tr>
<tr>
<td>Adem- —, group cohomology book</td>
<td>[AM04], 103, 155, 159, 205, 225, 228, 234, 235, 239, 243</td>
</tr>
<tr>
<td>Adem- —, rank 3 groups have</td>
<td>Cohen-Macaulay cohomology</td>
</tr>
<tr>
<td>Adem- —, F_3-cohomology of M_{12}</td>
<td>[MT95], 256</td>
</tr>
<tr>
<td>Adem- —, parabolic</td>
<td>abstract subgroup, 286</td>
</tr>
<tr>
<td>Adem- —, geometry, 86</td>
<td></td>
</tr>
<tr>
<td>Adem- —, subgroup, 65</td>
<td></td>
</tr>
<tr>
<td>Adem- —, weight, 320</td>
<td></td>
</tr>
<tr>
<td>Adem- —, minus-type (quadratic form), 52</td>
<td></td>
</tr>
<tr>
<td>Adem- —, minuscule weight, 320</td>
<td></td>
</tr>
<tr>
<td>Mathieu sporadic groups, 42, 85, 328</td>
<td></td>
</tr>
<tr>
<td>individually, see also $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}$</td>
<td></td>
</tr>
<tr>
<td>Matucci, F.</td>
<td>solvable Cohen-Macaulayness</td>
</tr>
<tr>
<td>Mathas, A.</td>
<td>q-analogue of Coxeter complex</td>
</tr>
<tr>
<td>Mathieu, E.</td>
<td>42</td>
</tr>
<tr>
<td>Mathieu sporadic groups, 42, 85, 328</td>
<td></td>
</tr>
<tr>
<td>individually, see also $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}$</td>
<td></td>
</tr>
<tr>
<td>Matucci, F.</td>
<td>300</td>
</tr>
<tr>
<td>maximal</td>
<td>parabolic subgroup, 65</td>
</tr>
<tr>
<td>Witt index (in bilinear form), 53</td>
<td></td>
</tr>
<tr>
<td>McBride, P.</td>
<td>286</td>
</tr>
<tr>
<td>McClure, J.</td>
<td>5</td>
</tr>
<tr>
<td>Jackowski- —, homotopy approximations</td>
<td>[JM89], 165, 248</td>
</tr>
<tr>
<td>Jackowski- —, homotopy decomposition via abelian subgroups</td>
<td>[JM92], 248, 249</td>
</tr>
<tr>
<td>Jackowski- —, -Oliver, homotopy decomposition via radical subgroups</td>
<td>[JMO92], 121, 165, 250</td>
</tr>
<tr>
<td>M_cL</td>
<td>Buekenhout geometry, 294</td>
</tr>
<tr>
<td>2-local geometry, 88, 235, 252, 253</td>
<td></td>
</tr>
<tr>
<td>McLaughlin sporadic group, see also M_cL meet</td>
<td></td>
</tr>
<tr>
<td>-contractible, 116</td>
<td></td>
</tr>
<tr>
<td>-semilattice, 116</td>
<td></td>
</tr>
<tr>
<td>Meixner, T.</td>
<td></td>
</tr>
<tr>
<td>Kantor- —, -Wester, 3-adic buildings</td>
<td>[KM9W09], 294</td>
</tr>
<tr>
<td>Köhler- —, -Wester, affine building of type A_2</td>
<td>[KM9W84], 293</td>
</tr>
<tr>
<td>Milgram, R. J.</td>
<td>xi, 5, 234, 235</td>
</tr>
<tr>
<td>Adem-Maginnis- —, cohomology of M_{12}</td>
<td>[AMM91], 235, 236, 256, 304</td>
</tr>
<tr>
<td>Adem- —, cohomology of M_{22}</td>
<td>[AM95a], 204, 235</td>
</tr>
<tr>
<td>Adem- —, cohomology of M_{cL}</td>
<td>[AM97], 235</td>
</tr>
<tr>
<td>Milnor, J.</td>
<td>on universal bundles II</td>
</tr>
<tr>
<td>M"obius function, 160, 177, 183, 184, 186, 188–190, 212, 330</td>
<td></td>
</tr>
<tr>
<td>inversion, 213, 317, 330</td>
<td></td>
</tr>
<tr>
<td>Monster sporadic group M, 271</td>
<td></td>
</tr>
<tr>
<td>BiMonster group, 295</td>
<td></td>
</tr>
<tr>
<td>involution geometry, 324</td>
<td></td>
</tr>
<tr>
<td>2-local geometry, 86, 97, 254, 295, 325</td>
<td></td>
</tr>
<tr>
<td>Moufang (generalized) polygon, 81</td>
<td></td>
</tr>
<tr>
<td>$m_p(-)$, p-rank, 118</td>
<td></td>
</tr>
<tr>
<td>Mühlherr, B.</td>
<td></td>
</tr>
<tr>
<td>Devillers-Gramlich- —, sphericity for geometry of nondegenerate subspaces</td>
<td></td>
</tr>
<tr>
<td>[DGM09], 212</td>
<td></td>
</tr>
<tr>
<td>-Schmid, extended Steinberg character</td>
<td>[MS95], 224</td>
</tr>
<tr>
<td>Munkres, J.</td>
<td>algebraic topology text</td>
</tr>
<tr>
<td>Neuaufer, A.</td>
<td></td>
</tr>
<tr>
<td>near-hexagon, 97</td>
<td></td>
</tr>
<tr>
<td>nerve of a covering, 161</td>
<td></td>
</tr>
<tr>
<td>Nerve Theorem, 162</td>
<td></td>
</tr>
<tr>
<td>Nesbitt, C., 203</td>
<td></td>
</tr>
<tr>
<td>Neumaier, A.</td>
<td></td>
</tr>
</tbody>
</table>
INDEX 357

C₃ geometry for A₇ [Neu84], 88
Neumaier’s C₃-geometry for A₇, see also A₇
normal chains (complex of p-subgroups), 166
normalizer decomposition, 247
normalizer-sharp super-type, 165, 166, 252, 253, 255
Norton, S., 295
Atlas, see also Atlas
Harada-— sporadic group, see also HN

O₄⁺(2) polar space, 55, 57, 59, 74, 210, 216, 262
O₄⁻(2) polar space, 57, 87, 202, 203, 216
O'Brien, E.
An-—, strategy for Alperin-Dade conjectures [AO98], 332
octad (of Steiner system S(5, 8, 24)), 97
octagon (generalized —), 74, see also generalized octagon
Oda, F.
Sawabe-—, centric radicals and
generalized Burnside ring [OS09], 224
Oliver, B., xi, 5, 231, 238, 244, 245, 254
Broto-Levi-—, fusion systems [BLO03], 228
Conner Conjecture [Oli76], 245, 255
fixed points on acyclic complexes [Oli75], 245
Jackowski-McClure-—, homotopy
decomposition via radical subgroups [JMO92], 121, 165, 250
Ω₁(−), subgroup generated by order-p elements, 120
Ω₆⁻(3), see also U₄(3)
Ω₇(3), 293
Ω₈⁺(3), 293
Ω‘N
2-local geometry, 254
O’N sporadic group, see also O’N
Onofrei, S., xi, xii
Maginnis-—, distinguished in parabolic characteristic [MO10], 166
Maginnis-—, fixed points and Lefschetz modules for sporadics [MO09], 224
Maginnis-—, new p-subgroup collections [MO08], 166, 252
Oₙ(−), largest normal p-subgroup, 108
Oₙ'(−), largest normal p′-subgroup, 190
opposite chambers in a building, 72
poset, 67
Option B (buildings), 2
Option S (sporadic geometries), 2
Option G (G-equivariant homotopy and equivalences), 2
orbit category, 250
complex, 114
poset, 114
order complex (of a poset), 21
ideal, 153
ordinary (characteristic 0) representation theory, 198
oriented simplex, 171
oriflamme geometry, 58
orthogonal basis, 55
form (symmetric), 52
group, 52
Özaydin, M.
Hawkes-Isaacs-—, Möbius function of finite group [HIÖ89], 15, 116, 177, 183, 184, 186, 186, 187, 328
Kutin-—, shellability of Sᵩᵩ for solvable [KÖzaydin], 305

P(−), projective cover of an irreducible, 198
P(−), face poset of a complex, 33
P(-), projective space of a vector space, 46
Pⁿ⁻¹(q), projective space of GLₙ(q), 46, 46, 47, 53, 124, 216, 310–313, 320
P¹(2), projective line over F₂, 48, 48, 49, 51, 54, 58, 68, 77, 216
P¹(4), projective line over F₄, 48, 55, 57, 87
P²(2), projective plane over F₂, 49, 49,
50–52, 58, 64, 72, 73, 76, 77, 89, 90, 124, 135, 215, 310, 311
P²(4), projective plane over F₄, 50
P³(2), projective 3-space over F₂, 51, 54, 69, 74, 78, 216, 310, 312, 315, 319
p-adic Lie group, 81, see also Lie, p-adic — group
Pahlings, H.
character polynomials and Möbius function [Pah95], 183
Möbius function [Pah93], 183
pair hyperbolic —, 54
stabilizing —s (closed set), 155
Pakianathan, J.
-Yalcin, commuting and noncommuting complexes [PY01], 163
panel (maximal face of a chamber in a building), 72
parabolic subgroup, 63
maximal —, 65
minimal —, 65
parameters (numerical — for a geometry), 47
parapolar space, 324
dual —, 324
Parker, R.
Atlas, see also Atlas
Modular Atlas, see also Modular Atlas
partial barycentric subdivision, 59, see also
subdivision, partial
Pasini, A.
Lunardon—, on C₃ geometries [LP89], 91
path-connected, 282
p-block, 198, see also block
p-centric subgroups, 250, see also centric
subgroups
p-completion, 246, 247, 249, 251, 253
permutation module, 173
Petersen
geometry, 86, see also geometry, Petersen
—
graph, 86
Phan, K., 296
Φ, root system, 62
Φ⁺, positive subsystem, 63
Φ(−), Frattini subgroup, 119
Π, simple roots, 65
πₙ(K), see also homotopy group
π₁(K), fundamental group, 282
plane
Fano —, 50, see also P²(2)
projective — (linear 3-space), 46
p-local
finite group, 5, 228
geometry, 85, see also geometry, p-local
—
subgroup, 5, 43
plus-type (+-type quadratic form), 52
p-modular representation theory, 198
Poincaré
duality, 315
polynomial, 233
point, projective — (linear 1-space), 46
polar space, 53
dual —, 321
polygon (generalized —), 72, see also
generalized polygon
poset, 10
diagram of —, 10
dual —, 67
map, 27
opposite —, 67
orbit —, 114
simplex —, 12
subgroup —, 13
positive subsystem Φ⁺ of roots, 63
power set 2² of a set S, 11
p-radical subgroups, 121
p-rank mₚ(G) of G, 118
presheaf (coefficient system of modules), 308
fixed-point — Fᵥ, 309
irreducible —, 311
principal
block, 236
indecomposable module, 198
series representations, 313
Proctor, R., xi
product
central — H * J of groups, 260
homology, 278
of posets, 107
set— of subgroups of a group, 108
shuffle —, 278
smash —, 260
projective
cover P(I) of an irreducible I, 198
dimension, 46
indecomposable module, 198
line (linear 2-space), 46
module, 199
relative to a subgroup, 219
virtual —, 200
plane (linear 3-space), 46
point (linear 1-space), 46
space (of a vector space V), 46
PSLₙ(q), projective special linear group,
45, see also Lₙ(q)
p-solvable group, 189
p-stubborn subgroups, 250, see also radical
subgroups
Puig, L., 228, 286
Pulkus, J.
shellability of Sₚ for solvable
(Diplomarbeit), 305
—Welker, homotopy type of Sₚ for
solvable [PW00], 300
pushout
homotopy —, 247
QDₚ, 262, see also Quillen dimension
q-hyperelementary subgroup, 188, see also
hyperelementary subgroup
quad, term for quadrangle-structure as a
vertex, 93
quadrangle (generalized —), 73, see also
generalized quadrangle
quasidihedral group, 15, see also
semidihedral group
Quillen, D., 3–5, 15, 17, 178, 186, 191, 192,
197, 246, 301
homotopy of p-subgroup posets [Qui78],
3, 21, 34, 40, 44, 104, 107, 109,
116–118, 120, 122–124, 127, 134, 137,
141, 146–148, 150, 153, 154, 156, 159,
160, 162, 179–181, 201, 214, 225,
260–265, 268, 270, 274–276, 281, 283,
284, 286–288, 297–300, 302, 303, 308
spectrum of equivariant cohomology ring
[Qui71], 225
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quillen dimension (for Quillen Conjecture)</td>
<td>262</td>
</tr>
<tr>
<td>Quillen Fiber Theorem</td>
<td>148</td>
</tr>
<tr>
<td>Quillen poset $A_p(G)$ of elementary p-subgroups</td>
<td>118</td>
</tr>
<tr>
<td>Quillen-Venkov theorem</td>
<td>304</td>
</tr>
<tr>
<td>Radical</td>
<td>121</td>
</tr>
<tr>
<td>Unipotent — (of parabolic subgroup)</td>
<td>65</td>
</tr>
<tr>
<td>Quillen-Venkov theorem</td>
<td>304</td>
</tr>
<tr>
<td>Radical</td>
<td>121</td>
</tr>
<tr>
<td>Quillen poset $A_p(G)$ of elementary p-subgroups</td>
<td>118</td>
</tr>
<tr>
<td>Quillen-Venkov theorem</td>
<td>304</td>
</tr>
<tr>
<td>Radical</td>
<td>121</td>
</tr>
<tr>
<td>Quillen Fiber Theorem</td>
<td>148</td>
</tr>
<tr>
<td>Quillen poset $A_p(G)$ of elementary p-subgroups</td>
<td>118</td>
</tr>
<tr>
<td>Quillen-Venkov theorem</td>
<td>304</td>
</tr>
<tr>
<td>Radical</td>
<td>121</td>
</tr>
<tr>
<td>Quillen Fiber Theorem</td>
<td>148</td>
</tr>
<tr>
<td>Quillen poset $A_p(G)$ of elementary p-subgroups</td>
<td>118</td>
</tr>
<tr>
<td>Quillen-Venkov theorem</td>
<td>304</td>
</tr>
<tr>
<td>Radical</td>
<td>121</td>
</tr>
</tbody>
</table>

Additional Terms

- Rainbolt, J., xii
- Ramras, D.
- Robinson, G., xi, xii, 259, 273, 276, 330
- Knörr- —, remarks on Alperin
- Knörr- —, remarks on Alperin
- Steinberg module, weight ρ, 315
- duality, 315
- Robinson subgroup (for Quillen Conjecture), 274
- Ronan, M., xi, 82, 134, 158, 217, 322
- coverings of geometries $[\text{Ron}81]$, 294, 295
- duality for presheaves $[\text{Ron}89\text{a}]$, 316, 317
- embeddings and hyperplanes $[\text{Ron}87]$, 321
- lectures on buildings $[\text{Ron}89\text{b}]$, 43, 59, 72, 74, 291, 292, 294
- Smith, 2-local geometries $[\text{RS}80]$, 5, 43, 82, 85-87, 92, 97, 100, 224, 293, 295
- Smith, computation of sheaves $[\text{RS}89]$, 319, 323, 325
- Smith, sheaves on buildings $[\text{RS}85]$, 80, 307-311, 313, 317, 319, 320, 322
- Smith, universal presheaves $[\text{RS}86]$, 321
- Stroth, minimal parabolic geometries $[\text{RS}84]$, 86, 88, 100, 222, 223, 286, 295
- Tits, building buildings $[\text{RT}87]$, 82, 293
- triangle geometries $[\text{Ron}84]$, 293
- root spaces, of a (module for a) Lie algebra, 63
- subgroup (of Lie type group), 63
- system Φ (of Lie type group), 62
- Rota, G.-C., 4, 17, 20, 21
- theory of Möbius functions $[\text{Rot}64]$, 20, 160, 183
- Ru
- Buekenhout geometry, 295
- 2-local geometry, 254
- Rudvalis sporadic group, see also Ru
- Ryba, A., xii
- Smith-Yoshiara, projectives from sporadic geometries $[\text{RSY}90]$, 44, 82, 126, 132, 133, 158, 165, 179, 204, 213, 217, 218, 221, 224, 234, 235, 250, 253
- Rylands, L., 150
- Lehrer- —, split building of reductive group $[\text{LR}93]$, 302
- $S(5, 8, 24)$, Steiner system for M_{24}, 97
- S_n, n-sphere, 261
- S_n, symmetric group, 13, 13, 39, 41, 42, 47, 189, 233, 261, 292
- S_3, 14, see also $L_2(2)$
- S_4, 14, 16, 117, 185
- S_5, 13, 158, 222
- isomorphisms, see also $L_2(4)$, $O^{-}(2)$
- triples geometry, 86, 87, 126, 158, 217, 295
- S_6, 57, 70, 91, 93, 216
- isomorphisms, see also $Sp_4(2)$
- $3S_6$, nonsplit triple cover of S_6, 324, 325
- S_7, 89, 211, 219
Sawabe, M., xii, 121
equivalences for centric radicals [Saw03], 166
Lefschetz module and centric radical subgroups [Saw05], 224
-Oda, centric radicals and generalized Burnside ring [OS09], 224
Scharlau, R.
Dress—, gate property e.g. of buildings [DS87], 135
Schmid, P.
extending Steinberg representation [Sch92], 224
Mühlherr—, extended Steinberg character [MS95], 224
Schur’s lemma, 266
Sd(−), (barycentric) subdivision, 32
Segal, G., 139, 331
Segev, Y., xii, 295
Aschbacher—, extending morphisms [AS92b], 290
Aschbacher—, locally connected simplicial maps [AS92a], 149, 295
simple connectivity for Lie rank [Seg94], 289
-Smith, sheaf for Cayley module of G2 [SS86], 320
-Webb, extensions of posets [SW94], 224
Seitz, G., 291
Fong—, BN-pairs of rank 2 [FS73], 81
sequence
exact—, 174, see also exact sequence
Serre, J.-P., 275
Serre spectral sequence, 240
set stabilizer, 87
sexet (of Steiner system S(5, 8, 24)), 98
Shapiro Lemma (Eckmann—), 229
Shareshian, J., xi, 306
Aschbacher—, subgroup lattices of symmetric group [AS09], 189
intervals in subgroup lattices [Sha03], 189
Quillen complex of symmetric groups [Sha04], 300
shellability of subgroup lattices [Sha01], 306
subgroup lattice of symmetric group [Sha97], 189
-Wachs, Quillen complex of symmetric group [SW09], 292
sharp, 231, 235, 241, 242–244, 246, 249, 251–255, 328
shellability, 305
lexicographic—, 305
short exact sequence, 174
Shpectorov, S., 295
Ivanov—, tilde and Petersen geometries [IS94a], 86, 100, 295, 325
Petersen geometries [IS94b], 324, 325
shuffle product, 278
Shult, E., xi
signalizer functors, 163
simple groups
classification of—, 270, see also Classification of Finite Simple Groups
types of—, 40
system II of roots (for Lie type group), 65
simplex, 17
abstract—, 18
Euclidean—, 24
oriented—, 171
poset, 12
simplicial complex, 17
abstract—, 18
colored—, 83
of a poset (order complex), 21
with type, 83
map, 26
sets, 23, 246
simply connected, 282
Sims, C.
Higman—, sporadic group, see also HS
simultaneous removal method, 151
(totally)—, subspace, 53
vector, 52
SLn(q), special linear group, 45, see also Ln(q)
smash product, 260
Smith Theorem (P. A. —), 205
Smith, S., 217, 276, 322
Aschbacher—, on Quillen’s conjecture [AS93], 188, 259, 260, 262, 265, 267, 268, 270–277, 277, 278, 279
Aschbacher—, quasithin classification [AS04b], 40
Aschbacher—, quasithin preliminaries [AS04a], 99, 291
Aschbacher—, Tits geometries from groups over GF(3) [AS83], 293
Cohen—, sheaf for 26-dimensional F4 module [CS90], 320
constructing representations from geometries \[\text{Smi88a} \], 325
decomposition from Cohen-Macaulay geometries \[\text{Smi90} \], 304
embedding dual-parapolar space of \(M \)
\[\text{Smi94a} \], 324
Frohardt-- embeddings for \(3D_4(2) \) and \(J_2 \)
\[\text{FS92} \], 320, 325
geometric methods (expository)
\[\text{Smi88b} \], 86
Grodal-- propagation of sharpness
\[\text{GS06} \], 165, 166, 249, 251–254
irreducible modules and parabolic subgroups \[\text{Smi82} \] , 310
Ronan-- 2-local geometries \[\text{RS80} \], 5, 43, 82, 85–87, 92, 97, 100, 224, 293, 295
Ronan-- computation of sheaves
\[\text{RS89} \], 319, 323, 325
Ronan-- sheaves on buildings \[\text{RS85} \], 80, 307–311, 313, 317, 319, 320, 322
Ronan-- universal presheaves \[\text{RS86} \], 321
Ryba-- Yoshiara, projectives from sporadic geometries \[\text{RSY90} \], 44, 82, 126, 132, 133, 158, 165, 179, 204, 213, 217, 218, 221, 224, 234, 235, 250, 253
Segev-- sheaf for Cayley module of \(G_2 \)
\[\text{SS86} \], 320
sheaves and complete reducibility
\[\text{Smi85} \], 322
-Umland, stability via suborbit diagrams
\[\text{SU96} \], 256
universalisity of 24-dimensional embedding of \(Co_1 \)
\[\text{Smi94b} \], 325
-Völklein, sheaf for adjoint of \(SL_3 \)
\[\text{SV99} \], 320
-Yoshiara, groups geometries and codes
\[\text{SY95} \], 272
-Yoshiara, homotopy equivalences
\[\text{SY97} \], 44, 158, 166, 206, 221, 235, 251, 254, 294
Solomon, L., 215
Burnside algebra \[\text{Sol67} \], 182
-Tits theorem \[\text{Sol69} \], 134, 136, 214, 301
Solomon-Tits argument, 134, 135, \textbf{136}, 189, 193, 214, 276, 283, 291, 298, 301, 305
Solomon-Tits Theorem, 134, 214, 301, \textbf{301}, 312
Solomon, R., xii
Cameron-- Turull, subgroup chains in symmetric groups \[\text{CST89} \], 22
Gorenstein-Lyons-- second effort
CFSG, see also GLS
solvable group, 188
\(Sp_2(2) \) (projective line for --), 54
\(Sp_4(2) \) parabolics, 69, 70, 79, 125
polar space (generalized quadrangle), \textbf{54}, 55–58, 69, 73, 74, 77, 86, 91, 93, 95, 96, 98, 99, 125, 136, 216, 318, 320, 321, 323, 324
\(Sp_6(2) \) dual polar space, 321
parabolics, \textbf{70}, 78, 79, 88
polar space, \textbf{58}, 60, 70, 78, 79, 83, 89, 93, 216, 319–322, 324
Spanier, E.
- algebraic topology text \[\text{Spa81} \], 24, 131, 142, 143, 161, 282, 283, 289, 296, 307, 308, 315
spectral sequence
- isotropy --, 241, 244, 246, 254, 308
Serre --, 240
\(Sp(G) \), poset of nontrivial \(p \)-subgroups, 15
sphere building, 81
complex, 283
split
- \(BN \)-pair, 81
torus, 63
sporadic
- geometry, 84
group, 41
Sporadic Principle (Vague --), 44
St\((\sigma) \), star of a simplex, 36
\(\overline{St}(\sigma) \), closed star, 35
stabilizer
- mapping \((x \mapsto G_x)\), 70
set --, 87
stabilizing pairs (closed set of --), 155
standard homotopy type (of \(Sp(G) \)), 165
Stanley, R., xi, 4, 17
Björner-Garsia-- Cohen-Macaulay posets \[\text{BGS82} \], 297
enumerative combinatorics I \[\text{Sta86} \], 4, 10, 11, 21, 153, 284, 317, 330
groups acting on posets \[\text{Sta82} \], 4, 31
Stanley-Reisner ring of a poset, 284
star
- closed -- \(\overline{St}(\sigma) \) of a simplex, 35
open -- \(St(\sigma) \) of a simplex, 36
Steinberg, R., 41, 214
Steinberg complex, 216
Steinberg module, 178, 197, 202, \textbf{214}
extended --, 224
generalized --, 216, see also generalized Steinberg module
Steiner system \(S(5,8,24) \) for \(M_{24} \), 97
strong deformation retraction, 110
strongly \(p \)-embedded subgroup, 286
almost --, 286
Stroth, G.
Ronan-- minimal parabolic geometries
\[\text{RS84} \], 86, 88, 100, 222, 223, 286, 295
stubborn subgroups, 250
subdivision $\Sigma_d(-)$ (barycentric —)
of a complex, 32
of a poset, 34
partial —, 59, 131
subgroup
complex, 21
decomposition, 250
lattice $L(-)$ of a group, 13
poset, 13
super-type (normalizer-sharp —), 252, see also normalizer-sharp super-type
Surowski, D., 181, 202
character proof of Brown's Theorem \[Sur85\], 181
suspension, 260
Suz, see also Suzuki sporadic group
Suzuki, M., 286

subgroup lattice book \[Suz56\], 15
Suzuki sporadic group Suz, 294
Buekenhout geometry, 294, 295
involution geometry, 325
2-local geometry, 254, 254, 293, 296
Suzuki twisted Lie type groups $2B_2(2^{odd})$, 270, 286

Swenson, D.
Steinberg complex \[Swe09\], 216

Sylow
p-subgroup, 15
intersections (poset or complex of), 162
Theorem, 15
Homological — (Brown), 3
$\text{Syl}_p(G)$, set of Sylow p-subgroups of G, 15

symmetric
group, 13, see also S_n

Symonds, P., 328
Bredon cohomology of subgroup complexes \[Sym05\], 244
orbit space $|\text{Syl}_p(G)|/G$ is contractible \[Sym98\], 115
relative Webb complex \[Sym08\], 216, 235

symplectic
basis, 54
decomposition, 54
form (skew-symmetric), 52
group, 52

$S_2(2^{odd})$, 286, see also Suzuki twisted Lie type groups

Tao, J., xii
Tate cohomology, 232, see also cohomology, Tate
tetrad (of Steiner system $S(5,8,24)$), 98

Tezuka, M.
Milgram—, \mathbb{F}_3-cohomology of M_{12} \[MT95\], 256

-Yagita, odd cohomology of sporadics \[TY96\], 256

Th
2-local geometry, 253, 256
Thévenaz, J., xi, xii, 4, 161, 163, 164, 179, 184, 185, 193, 221, 273, 300, 328
Bouc—, rank ≥ 2 elementary poset \[BT08\], 300
Brown—, generalizing third Sylow theorem \[BT88\], 184, 186, 187
Burnside ring idempotents \[Thé86\], 184, 187
equivariant K-theory and Alperin Conjecture \[Thé93\], 331
Kratzer—, homotopy type of lattice and subgroup poset \[KT85\], 127, 141, 151, 152, 189, 192, 262, 300, 301
Kratzer—, Möbius function and Burnside ring \[KT84\], 183, 188, 300
Lehrer—, Alperin Conjecture for reductive groups \[LT92\], 331
locally determined functions \[Thé92a\], 331
on conjecture of Webb \[Thé92b\], 115
permutation representations from complexes \[Thé87\], 127, 181, 182, 186, 187, 197, 207, 208, 219–221, 235
top homology for solvable \[Thé85\], 300, 301
-Webb, homotopy equivalences for group posets \[TW91\], 2, 138–141, 148, 150, 152–154, 156, 157, 166, 254
Thompson, J., 263, 265
defect groups are Sylow intersections \[Tho67\], 162
N-groups \[Tho68\], 263
Thompson sporadic group, see also Th
TI-set, 285
tilde geometries, 86, see also geometry, tilde—

Timmesfeld, F., xi
abstract root subgroups book \[Tim01\], 86
Tits geometries and parabolic systems \[Tim83\], 86
Tits, J., xi, 43, 59–61, 71, 72, 75, 79, 81, 82, 290–292, 296, 328
affine buildings \[Tit86\], 82, 88, 92, 292
buildings book \[Tit74\], 43, 58, 59, 70, 75, 77, 80, 81, 135, 291
Kantor-Liebler—, affine buildings \[KLT87\], 294
local approach to buildings \[Tit81\], 19, 43, 59, 75, 79, 82, 83, 88, 92, 291
Ronan—, building buildings \[RT87\], 82, 293
Solomon— theorem \[Sol69\], 134
twin buildings \[Tit92\], 82
-Weiss, Moufang polygons [TW02], 81
Tits building, 66, see also building
Tits geometries, 79, see also geometry of type M
tomDieck, T.
transformation groups and representation theory [tD79], 181, 182
torus
as quotient of affine apartment, 272
split — (Cartan subgroup), 63
tracks (options in reading this book), 2
triangulation (of a space by a complex), 25
trio (of Steiner system $S(5, 8, 24)$), 98
triple cover, 86, 324
triples geometry for S_5, 87, see also S_5
trivial intersection set, 285
truncation (of a diagram geometry), 86
Turull, A.
Cameron-Solomon- —, subgroup chains in symmetric groups [CST89], 22
twin buildings, 82
twisted group, 62, see also Lie type, twisted 2-local
type, 85, see also geometry, 2-local
2S, power set of S, 11
type—preserving action, see also action, type-preserving
in a simplicial complex, 83
Lie —, see also Lie type
M, geometry of —, 79, see also geometry of type M
of quadratic form (plus or minus), 52

$U_n(q)$, 52, see also unitary group
$U_4(3)$, 293
involution geometry, 325
2-local geometry, 88, 92, 95, 158, 218, 253, 272, 294, 296, 304, 325
$U_6(2)$, 93
$\tilde{C}2$-geometry for —, 293, 298, 325
polar space, 93
Umland, K., xi, xii, 256
Smith—, stability via suborbit diagrams [SU96], 256
underlying topological space of a complex, 24, see also geometric realization
unipotent
full — group, 63
radical (of parabolic subgroup), 65
representations, 313
uniqueness proofs via simple connectivity, 295
Uniqueness Case in CFSG, 286
unitary
form (conjugate-symmetric), 52
group, 52

as obstacle to Quillen Conjecture, 272
universal
cover of a space, 92
embedding (of a point-line geometry), 321
untwisted group, 62
upward-closed subset of a poset, 153

Völklein, H.
1-cohomology of adjoint [Völ89a], 322
geometry of adjoint modules [Völ89b], 320
Smith—, sheaf for adjoint of SL_3 [SV89], 320
Vague Sporadic Principle, 44
Venkov, B.
Quillen— theorem, 304
vertex-decomposable, 284
virtual
cohomological dimension (finite —), 193
module, 174
projective module, 200
Vogtmann, K., 150
Stiefel complex for orthogonal group [Vog82], 302

Wachs, M., xi, 306
Björner—, lexicographic shellability
[BW83a], 305
Björner—, nonpure shelling I [BW96]
[BW97], 305
Shareshian—, Quillen complex of symmetric group [SW09], 292
Waldecker, R., xii
Walker, J., xi, 4, 146
Björner—, complementation formula for posets [BW83b], 189, 301
homotopy type and Euler characteristic of posets [Wal81b], 17, 141, 142, 144, 160
thesis (MIT, 1981) [Wal81a], 146
weak (homotopy) equivalence, 176, see also equivalence, weak —
Webb, P., xi, xii, 3–5, 156, 165, 197, 202, 206, 244, 310
guide to Mackey functors [Web00], 255
local method in cohomology [Web87a], 115, 127, 197, 207, 212, 225, 229–234, 241, 242
Segev—, extensions of posets [SW94], 224
split exact sequence of Mackey functors [Web91], 115, 216, 225, 231–235, 242, 243
subgroup complexes (survey) [Web87b], 4, 16, 40, 44, 115, 210, 212, 213, 217, 219, 231, 233
index, maximal — (in bilinear form), 53
Witzel, S., 213
Woodroohe, R.
EL-labeling of subgroup lattice [Woo08], 306
Wylie, S.
Hilton—, homology text [HW60], 24
Yagita, N.
Tezuka—, odd cohomology of sporadics [TY96], 256
Yalcin, E.
Pakianathan—, commuting and noncommuting complexes [PY01], 163
Yamaki, H.
Iiyori—, Frobenius conjecture [IY91], 187
Yoshiara, S., xii, 100, 121
codes and embeddings of geometries [Yos90], 325
geometries for J_3 and $O'N$ [Yos89], 100
radical subgroups for sporadics [Yos05a], 121, 332
minor correction [Yos06], 332
radical subgroups (odd) for sporadics [Yos05b], 332
Ryba-Smith—, projectives from sporadic geometries [RSY90], 44, 82, 126, 132, 133, 158, 165, 179, 204, 213, 217, 218, 221, 224, 234, 235, 250, 253
Smith—, groups geometries and codes [SY95], 272
Smith—, homotopy equivalences [SY97], 44, 158, 166, 206, 221, 235, 251, 254, 294
Yoshida, T., 224
Burnside idempotents and Dress induction [Yos83], 184
Yuzvinsky, S.
Cohen-Macaulay rings of sections [Yuz87], 308
$Z(−)$, center of group, 14
$Z_i(K; R)$, cycle group, 172
Zemlin, R., 187
zigzag (of equivalences), 128
Zilber, J.
Eilenberg—, product homology, 278
$Z_p(−)$, 153, see also Benson poset
This book is intended as an overview of a research area that combines geometries for groups (such as Tits buildings and generalizations), topological aspects of simplicial complexes from p-subgroups of a group (in the spirit of Brown, Quillen, and Webb), and combinatorics of partially ordered sets. The material is intended to serve as an advanced graduate-level text and partly as a general reference on the research area. The treatment offers optional tracks for the reader interested in buildings, geometries for sporadic simple groups, and G-equivariant equivalences and homology for subgroup complexes.