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Preface

This book is the first to be devoted entirely to the potential theory of the heat
(or diffusion) equation

n∑
i=1

∂2u

∂x2
i

=
∂u

∂t

in Euclidean space Rn+1 = Rn × R. It thus deals with time dependent potential
theory. Its purpose is to give a logical, coherent introduction to a subject that has
been approached in several conflicting ways.

The subject has had an unusual history. Some of the elementary results have
appeared only in the twenty-first century, but some other results were included in
an axiomatic theory in the nineteen sixties. I make no reference to the axiomatic
theory in the text, but the definition and treatment of subtemperatures in Chapter
3 is designed to reconcile the harmonic spaces definition with the one that I have
used in my researches. This approach is very recent, having first appeared in 2008.

Most results in the heat potential theory have been modelled on the classical
results for Laplace’s equation. However, after a great deal of thought, I decided
to make no mention of the classical theory in the text. I wanted to write a book
in which heat potential theory stands as a subject in its own right, free from the
clutter of perpetual references to the classical case. Many of the proofs in heat
potential theory are similar to those in classical potential theory, so if the classical
case is covered first, then either the classical proofs have to be duplicated, or the
proofs for the case of the heat equation have to be replaced by a claim that the
proofs are similar to the classical case. Many times I have seen such claims in print,
but in a substantial number of cases the claim has proved to be false. There is no
substitute for writing out all the details of a proof. One could, of course, deduce
the results of classical potential theory from those of heat potential theory, as the
former is the special case of the latter in which nothing depends on time. But I
don’t think that would be of much interest. Such an approach to the classical case
would be unnecessarily tortuous, and there are already some excellent texts that
deal solely with classical potential theory.

The reader already familiar with the heat equation, may be surprised to find
that the explicit Poisson integral representation of solutions of the heat equation
on a rectangular domain, is not mentioned in the text. I have found it unnecessary,
and so have been delighted to omit it because of its complication, which may even
have deterred some mathematicians from researching on the heat equation. Its
place has been taken by a caloric measure interpretation of the representation of
solutions on a circular cylinder.

I have reworked the entire content of this book, including not only most of the
individual proofs but also the overall approach. Despite this, the only essentially

vii



viii PREFACE

new material here is that on caloric measure in Chapter 8, a few minor theorems,
and a few examples. Otherwise, there is just a great deal of fine-tuning, including a
different approach to the Riesz decomposition theorem in Chapter 6. As befits an
introduction, I have treated the subject in as elementary a way as I could. I have
not attempted a complete coverage, and in particular have made no mention of
the probabilistic approach. The prerequisites for understanding all the proofs are
a good background in the calculus of functions of several variables, in the limiting
processes and inequalities of analysis, in measure theory, and in general topology
for Chapter 9. Some general analytic results that are not easy to find elsewhere,
or are not necessarily presented in the most suitable form elsewhere, have been
included where they are needed.

The material is presented in logical order, which differs from the chronological
order in which the results were first discovered. Chapter 1 deals with elementary
issues, although the results are more recent than might be expected, and those in
Section 1.6 first appeared in 2002. Chapter 2 presents the classical existence theory
for temperatures on a circular cylinder, which is much older than the results in
Chapter 1. Subtemperatures are introduced in Chapter 3, using a definition based
on the representation theorem in Chapter 2. However, heat balls and modified
heat balls are essential to our treatment, and Chapter 3 contains some necessary
existence theory for temperatures on such, and other, domains. This introduces
the PWB approach to the Dirichlet problem without the added complications of
arbitrary open sets and arbitrary boundary functions. Chapters 4 and 5 deal with
temperatures and subtemperatures, respectively, on domains of the form Rn× ]0, a[,
where 0 < a ≤ +∞. Although potentials are used as early as Chapter 2, the general
theory of heat potentials begins in earnest in Chapter 6, where Green functions and
heat potentials are introduced, and a distributional approach to the Riesz decom-
position theorem is taken. Chapter 7 deals with polar sets, reductions, and thermal
capacity. In Chapter 8 we consider the generalized Dirichlet problem, where the
open sets and boundary functions are arbitrary. This chapter includes a new treat-
ment of caloric measure for such sets. Finally, in Chapter 9 we discuss the thermal
fine topology, which gives us an insight into the continuity properties of subten-
peratures, and thus enables us to improve upon some earlier results. Each chapter
concludes with bibliographical notes and comments, which include mention of mat-
ters not covered in the text, and of open questions even in Chapter 1. They do
not provide a detailed historical account of the theory, except for the more recent
results. They contain very few references to the axiomatic approach, and none to
the probabilistic approach, mainly because those approaches have very different
starting points and linking them with the main text would take too much space.

It is a pleasure to acknowledge my debt to those who have written earlier books
on potential theory. In particular, L. L. Helms’ book Introduction to Potential The-
ory [33] first inspired me to take up the subject, with the eventual goal of writing a
book such as this one. J. L. Doob’s Classical Potential Theory and its Probabilistic
Counterpart [14] has been a source of ideas for clever proofs, and for most of the
material in Chapter 9, but is definitely not for the novice. D. H. Armitage & S. J.
Gardiner’s Classical Potential Theory [3] has provided many ideas for clever proofs,
which I have been able to adapt to the case of the heat equation. The material
in Chapter 2, on the existence of solutions to the Dirichlet problem on a circular
cylinder, is based on the treatment in E. M. Landis’ Second Order Equations of
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Elliptic and Parabolic Type [49].
The reader who wants to look at an axiomatic approach to potential theory

that includes heat potential theory, could consult H. Bauer’s Harmonische Räume
und ihre Potentialtheorie [5], C. Constantinescu & A. Cornea’s Potential Theory
on Harmonic Spaces [12], or J. Bliedtner & W. Hansen’s Potential Theory: An
Analytic and Probabilistic Approach to Balayage [7].





Notation and Terminology

We summarize here our basic notations and conventions. Most notation will
be explained as it is introduced during the course of the book, and is indexed.

We say that a number or function f is positive if f > 0, negative if f < 0,
nonnegative if f ≥ 0, and nonpositive if f ≤ 0. However, we say that a real
function f is increasing if f(a) ≤ f(b) whenever a ≤ b, and that it is decreasing if
f(a) ≥ f(b) whenever a ≤ b. Similarly, for sequences of numbers or functions, the
terms increasing and decreasing are used in the wide sense.

We use Rn to denote real Euclidean space of dimension n, with n ≥ 1, but
often omit the superscript if n = 1. We also denote the set of positive integers
by N, and the set of rational numbers by Q. A typical point of Rn is denoted by

x = (x1, ..., xn), and we write |x| for the Euclidean norm
(∑n

i=1 x
2
i

)1/2
of x. The

inner product
∑n

i=1 xiyi of two points x and y in Rn is written 〈x, y〉. Most of the

material is presented in the context of Rn+1 = Rn × R = {(x, t) : x ∈ Rn, t ∈ R},
where the variables x = (x1, ..., xn) are called the spatial variables and t is called
the temporal variable. Where there is no need to specify these variables separately,
we use p or q to denote a typical point of Rn+1, reserving x and y for points
of Rn. We denote the Euclidean norm of a point p in Rn+1 by |p|, leaving the
notation for a point to distinguish between |p| and |x|. Similarly, the open balls
of radius r in Rn and Rn+1 are denoted by B(x, r) and B(p, r), respectively; thus
B(x, r) = {y ∈ Rn : |x− y| < r} and B(p, r) = {q ∈ Rn+1 : |p− q| < r}. The points
x and p are called the centres of the respective balls. A unit ball is a ball of radius
1, and a unit sphere is its boundary. The origin of Euclidean space is denoted by
0, regardless of the dimension of the space.

All topological concepts are relative to the Euclidean topology of Rn+1, unless
otherwise stated. The symbol E denotes an open set in Rn+1, which is always
assumed to be nonempty. For any set S in Rn+1, we denote its boundary by ∂S
and its closure by S, although we denote the closure of a ball by B(p, r) rather

than B(p, r), and similarly for other sets that depend on listed parameters. The
boundary of a set is taken with respect to the one-point compactification of Rn+1,
so that the point at infinity is included if the set is unbounded. The interior of
S is denoted by S◦. The connected components of a set are referred to simply
as its components, and a nonempty connected open set is called a domain. By a
hyperplane, we mean a set of the form {p ∈ Rn+1 : 〈p, q〉 = a} for some q ∈ Rn+1

and a ∈ R. If A and B are two sets, we put A\B = {p ∈ A : p /∈ B}. A set is called
a Gδ set if it can be expressed as a countable intersection of open sets, and an Fσ

set if it can be expressed as a countable union of closed sets.
All of our functions are extended real-valued, that is, their values are in R or

are ±∞. This necessitates a limited arithmetic with ±∞ when we add or multiply

xi



xii NOTATION AND TERMINOLOGY

functions, so we adopt the following conventions, in which t ∈ R:

(±∞) + (±∞) = ±∞ = t+ (±∞) = (±∞) + t,

(±∞).(±∞) = +∞, (±∞).(∓∞) = −∞,

t.(±∞) = (±∞).t =

⎧⎪⎨⎪⎩
±∞ if t > 0,

0 if t = 0,

∓∞ if t < 0.

Other expressions, such as (±∞) + (∓∞), are left undefined. We put inf ∅ = +∞
and sup ∅ = −∞.

If f is an extended real-valued function defined on a set S ⊆ Rn+1, q is a limit
point of S in some topology, and Nq is the collection of neighbourhoods of q in that
topology, then we define

lim inf
p→q, p∈S

f(p) = sup
N∈Nq

(
inf

p∈N∩S\{q}
f(p)

)
and

lim sup
p→q, p∈S

f(p) = inf
N∈Nq

(
sup

p∈N∩S\{q}
f(p)

)
.

We say that limp→q, p∈S f(p) exists if lim infp→q, p∈S f(p) = lim supp→q, p∈S f(p),
and if that common value is l we write limp→q, p∈S f(p) = l. Here l may be a real
number or ±∞. If S is the domain of definition of f , or if S ∈ Nq, then we may
omit the qualification “p ∈ S”. We say that f is continuous at q if f is defined at
q and limp→q f(p) = f(q), regardless of whether f(q) ∈ R.

If u and v are extended real-valued functions defined on the same set, we use
u ∨ v to denote max{u, v} and u ∧ v to denote min{u, v}. We also put u+ = u ∨ 0
and u− = −(u∧0), thus obtaining the identities u = u+−u− and |u| = u++u−. If
S is a subset of the domain of definition of u, and u(p) ≤ M for all p ∈ S and some
real number M , then we say that u is upper bounded on S. Similarly, if u(p) ≥ m
for all p ∈ S and some m ∈ R, then we say that u is lower bounded on S. If u is
both upper bounded on S and lower bounded on S, we say that u is bounded on
S. If u is bounded on K for each compact subset K of S, then we say that u is
locally bounded on S. We define locally upper bounded and locally lower bounded
analogously. If D is the domain of definition of u, we define the support of u to be
the set D\{p ∈ D : u = 0 on D ∩B(p, r) for some r > 0}.

A family F of functions defined on a set S is said to be uniformly bounded on S
if there is a real number M such that |u(p)| ≤ M for all u ∈ F and all p ∈ S. The
family F is said to be locally uniformly bounded on S if it is uniformly bounded onK
for each compact subset K of S. We define the phrases uniformly upper bounded,
uniformly lower bounded, locally uniformly upper bounded, and locally uniformly
lower bounded, analogously. A sequence {uj} is said to converge locally uniformly
on S if it converges uniformly on each compact subset of S.

Let X be a subset of the one-point compactification of Rn+1. The class B of
Borel subsets of X is the smallest σ-algebra to contain the open subsets of X. We
say that an extended real-valued function u on X is Borel measurable if the set
{p ∈ X : u(p) > a} belongs to B for every real number a. Continuous functions are
Borel measurable. A nonnegative (Borel) measure on X is a countably additive set
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function μ, defined on a σ-algebra that contains B, taking nonnegative extended-
real values, such that μ(∅) = 0 and μ(K) < +∞ for every compact subset K of X.
Such a measure is regular, in the sense that

μ(S) = inf{μ(E) : S ⊆ E, E is open} = sup{μ(K) : K ⊆ S, K is compact}.
The support of a nonnegative measure μ is the set of points p ∈ X such that
μ(N) > 0 for every open neighbourhood N of p. It is the smallest closed set F such
that μ(X\F ) = 0. If S belongs to the σ-algebra upon which μ is defined, we say
that S is μ-measurable, and define the restriction of μ to S by μS(T ) = μ(T ∩S) for
all μ-measurable sets T . If X ⊆ Y and X �= Y , we define the restriction of μ to S as
a nonnegative measure on Y by adding the condition μS(Y \X) = 0. We say that an
extended real-valued function u on X is μ-measurable if the set {p ∈ X : u(p) > a}
is μ-measurable for every a ∈ R. In the case where μ is Lebesgue measure, we omit
the prefix μ-. A μ-measurable function u on X is said to be μ-integrable on X if∫
X
|u| dμ < +∞, and locally μ-integrable on X if

∫
K
|u| dμ < +∞ for every compact

subset K of X. The prefix μ- is omitted if μ is Lebesgue measure. When writing
integrals with respect to Lebesgue measure, we usually use the traditional notation∫
X
u(p) dp. A relation which holds on a μ-measurable set Y such that μ(X\Y ) = 0,

is said to hold μ-almost everywhere on X, and again the prefix μ- is omitted if μ is
Lebesgue measure.

A signed measure on X is a countably additive set function ν, defined on a
σ-algebra that contains B, taking only real values, such that ν(∅) = 0. (Some
relaxation of the finiteness is described in Chapter 4.) In view of the Hahn-Jordan
decomposition theorem, there are disjoint ν-measurable sets P and N such that
P ∪N = X, and nonnegative finite measures ν+ and ν− on X, such that for all ν-
measurable subsets S of X we have ν+(S) = ν(S∩P ) and ν−(S) = ν(S∩N). Then
ν has the decomposition ν = ν+ − ν−, and the nonnegative measure |ν| = ν+ + ν−

is called the total variation of ν.
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