Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems

Gershon Kresin
Vladimir Maz'ya

American Mathematical Society
Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems
Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems

Gershon Kresin
Vladimir Maz'ya

Contents

Introduction

<table>
<thead>
<tr>
<th>Chapter 1. Prerequisites on Operators Acting into Finite Dimensional Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Introduction</td>
</tr>
<tr>
<td>1.2. Linear bounded operators defined on spaces of continuous vector-valued functions and acting into \mathbb{R}^m or \mathbb{C}^m</td>
</tr>
<tr>
<td>1.3. Linear bounded operators defined on Lebesgue spaces of vector-valued functions and acting into \mathbb{R}^m or \mathbb{C}^m</td>
</tr>
<tr>
<td>1.4. Comments to Chapter 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Introduction</td>
</tr>
<tr>
<td>2.2. Systems with constant coefficients without lower order terms</td>
</tr>
<tr>
<td>2.3. General second order strongly elliptic systems</td>
</tr>
<tr>
<td>2.4. Comments to Chapter 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. Sharp Constants in the Miranda-Agmon Inequalities for Solutions of Certain Systems of Mathematical Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction</td>
</tr>
<tr>
<td>3.2. Best constants in the Miranda-Agmon inequalities for solutions of strongly elliptic systems in a half-space</td>
</tr>
<tr>
<td>3.3. The Lamé and Stokes systems in a half-space</td>
</tr>
<tr>
<td>3.4. Planar deformed state</td>
</tr>
<tr>
<td>3.5. The system of quasistatic viscoelasticity</td>
</tr>
<tr>
<td>3.6. Comments to Chapter 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. Sharp Pointwise Estimates for Solutions of Elliptic Systems with Boundary Data from L^p</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
</tr>
<tr>
<td>4.2. Best constants in pointwise estimates for solutions of strongly elliptic systems with boundary data from L^p</td>
</tr>
<tr>
<td>4.3. The Stokes system in a half-space</td>
</tr>
<tr>
<td>4.4. The Stokes system in a ball</td>
</tr>
<tr>
<td>4.5. The Lamé system in a half-space</td>
</tr>
<tr>
<td>4.6. The Lamé system in a ball</td>
</tr>
<tr>
<td>4.7. Comments to Chapter 4</td>
</tr>
</tbody>
</table>
Chapter 5. Sharp Constant in the Miranda-Agmon Type Inequality for Derivatives of Solutions to Higher Order Elliptic Equations

5.1. Introduction
5.2. Weak form of the Miranda-Agmon inequality with the sharp constant
5.3. Sharp constants for biharmonic functions
5.4. Comments to Chapter 5

Chapter 6. Sharp Pointwise Estimates for Directional Derivatives and Khavinson’s Type Extremal Problems for Harmonic Functions

6.1. Introduction
6.2. Khavinson’s type extremal problem for bounded or semibounded harmonic functions in a ball and a half-space
6.3. Sharp estimates for directional derivatives and Khavinson’s type extremal problem in a half-space with boundary data from L^p
6.4. Sharp estimates for directional derivatives and Khavinson’s type extremal problem in a ball with boundary data from L^p
6.5. Sharp estimates for the gradient of a solution of the Neumann problem in a half-space
6.6. Comments to Chapter 6

Chapter 7. The Norm and the Essential Norm for Double Layer Vector-Valued Potentials

7.1. Introduction
7.2. Definition and certain properties of a solid angle
7.3. Matrix-valued integral operators of the double layer potential type
7.4. Boundary integral operators of elasticity and hydrodynamics
7.5. Comments to Chapter 7

Part 2. Parabolic Systems

Chapter 8. Maximum Modulus Principle for Parabolic Systems

8.1. Introduction
8.2. The Cauchy problem for systems of order 2ℓ
8.3. Second order systems
8.4. The parabolic Lamé system
8.5. Comments to Chapter 8

Chapter 9. Maximum Modulus Principle for Parabolic Systems with Zero Boundary Data

9.1. Introduction
9.2. The case of real coefficients
9.3. The case of complex coefficients
9.4. Comments to Chapter 9

Chapter 10. Maximum Norm Principle for Parabolic Systems without Lower Order Terms

10.1. Introduction
10.2. Some notation
CONTENTS

10.3. Representation of the constant \(K(\mathbb{R}^n, T) \) 256

10.4. Necessary condition for validity of the maximum norm principle for the system \(\partial u/\partial t - A_0(x, t, D_x)u = 0 \) 259

10.5. Sufficient condition for validity of the maximum norm principle for the system \(\partial u/\partial t - A_0(x, t, D_x)u = 0 \) 262

10.6. Necessary and sufficient condition for validity of the maximum norm principle for the system \(\partial u/\partial t - A_0(x, D_x)u = 0 \) 264

10.7. Certain particular cases and examples 269

10.8. Comments to Chapter 10 275

Chapter 11. **Maximum Norm Principle with Respect to Smooth Norms for Parabolic Systems** 277

11.1. Introduction 277

11.2. Representation for the constant \(K(\mathbb{R}^n, T) \) 280

11.3. Necessary condition for validity of the maximum norm principle for the system \(\partial u/\partial t - A(x, t, D_x)u = 0 \) 284

11.4. Sufficient condition for validity of the maximum norm principle for the system \(\partial u/\partial t - A(x, t, D_x)u = 0 \) with scalar principal part 288

11.5. Criteria for validity of the maximum norm principle for the system \(\partial u/\partial t - A(x, D_x)u = 0 \). Certain particular cases 291

11.6. Example: criterion for validity of the maximum \(p \)-norm principle, \(2 < p < \infty \) 294

11.7. Comments to Chapter 11 296

Bibliography 297

List of Symbols 307

Index 313
Bibliography

List of Symbols

Point Sets

\(\Omega \) domain in \(\mathbb{R}^n \) with closure \(\overline{\Omega} \) and boundary \(\partial \Omega \) 1

\(Q_T \) cylinder \(\Omega \times (0, T] \) in the space \(\mathbb{R}^{n+1} \) 1

\(\Gamma_T \) parabolic boundary of the cylinder \(Q_T \), where

\[\Gamma_T = \{(x, t) \in \partial Q_T : 0 \leq t < T \} \]

\(\mathbb{R}_+ \) upper half-space \(\{x = (x_1, \ldots, x_n) : x_n > 0 \} \) in \(\mathbb{R}^n \)

\(\mathbb{R}_+^{n+1} \) layer \(\mathbb{R}^n \times (0, T] \) in \(\mathbb{R}^{n+1} \)

\(S^{n-1} \) unit sphere in \(\mathbb{C}^n \) centered at 0 16

\(S_{n-1}^- \) lower hemisphere \(\{x \in \mathbb{R}^n : |x| = 1, x_n < 0 \} \) 24

\(\mathbb{B}_r \) ball in \(\mathbb{R}^n \) with radius \(r \) centered at 0 27

\(\mathbb{R}^n_+(\nu) \) half-space \(\{x \in \mathbb{R}^n : (x, \nu) > 0 \} \), where

\(\nu \) is a unit \(n \)-dimensional vector 27

\(S^{n-1} \) unit sphere in \(\mathbb{R}^n \) centered at 0 27

\(\mathbb{B} \) unit ball in \(\mathbb{R}^n \) centered at 0 34

\(\mathbb{B}_r(y) \) ball in \(\mathbb{R}^n \) with radius \(r \) centered at \(y \) 44

\(\mathbb{R}^n_+(O) \) tangent space to \(\partial \Omega \) at a point \(O \in \partial \Omega \) 77

\(\mathbb{D} \) disk \(|z| < 1 \) in the complex plane \(\mathbb{C} \) 148

\(\mathbb{C}_+ \) upper half-plane of the complex plane \(\mathbb{C} \) 149

\(\mathcal{B} \) Borel set in \(\mathbb{R}^n \) with interior \(\text{int} \mathcal{B} \), closure \(\overline{\mathcal{B}} \), boundary \(\partial \mathcal{B} \) and complement \(\mathcal{C} \mathcal{B} = \mathbb{R}^n \backslash \mathcal{B} \) 154

\(\partial^*E \) reduced boundary of a set \(E \subset \mathbb{R}^n \) 157

\(\Pi_T \) set \(\mathcal{D} \times (0, T] \), where \(\mathcal{D} \) is either a

bounded domain in \(\mathbb{R}^n \) or \(\mathcal{D} = \mathbb{R}^n \) 205

\(S_T \) cylindrical surface, where \(S_T = \partial \Omega \times (0, T] \) 237

\(\mathcal{B} \) unit ball of a generalized norm 252

\(S^{m-1} \) unit sphere of the generalized norm 253

Vectors

\(e_\sigma \) \(n \)-dimensional unit vector joining the origin to \(\sigma \in \mathbb{S}^{n-1} \) 56

\(e_{xy} \) \(n \)-dimensional unit vector joining the point \(x \) to point \(y \) 56

\(e_i \) unit vector of the \(i \)-th coordinate axis 60

\(r_{xy} \) \(n \)-dimensional vector joining the point \(x \) to point \(y \)

with the length \(r_{xy} \) 154

Conv \(S \) convex hull of a vector set \(S \) 255

Span \(S \) linear span of a vector set \(S \) 256

Set Functions

\(\omega(x, \mathcal{B}) \) solid angle at which a set \(\mathcal{B} \subset \partial \mathbb{R}_+^n \) is seen from \(x \in \mathbb{R}^n_+ \) 24

\(H_k \) \(k \)-dimensional Hausdorff measure in \(\mathbb{R}^n \) 154

\(\text{mes}_n \) Lebesque measure in \(\mathbb{R}^n \) 154

\(P(\mathcal{B}) \) perimeter of the set \(\mathcal{B} \) in the sense of Caccioppoli and De Giorgi 155

\(\omega_D(p, \mathcal{B}) \) solid angle at which the set \(\mathcal{B} \cap \partial \mathcal{D} \) is seen from \(p \in \mathbb{R}^n \) 156

\(\Psi_D(p, \mathcal{B}) \) matrix-valued set function 161
Functions

\begin{align*}
\Gamma(\alpha) & \quad \text{Gamma-function} \\
E(k) & \quad \text{complete elliptic integral of the second kind} \\
B(\alpha, \beta) & \quad \text{Beta-function} \\
J_\nu(x) & \quad \text{Bessel function of the first kind} \\
F(\alpha, \beta; \gamma, x) & \quad \text{hypergeometric Gauss function} \\
K(k) & \quad \text{complete elliptic integral of the first kind} \\
D(k) & \quad \text{complete elliptic integral} \\
W(q) & \quad \text{vector-valued double layer potential} \\
W_\nu^{(n)}(q) & \quad \text{vector-valued elastic/hydrodynamic double layer potential} \\
E(\varphi, k) & \quad \text{elliptic integral of the second kind} \\
\chi_B & \quad \text{characteristic function of a Borel set } B
\end{align*}

Spaces

\begin{align*}
X & \quad \text{locally compact Hausdorff space} \\
[C_v(X)]^n & \quad \text{space of continuous } n\text{-component real vector-valued functions on } X \text{ which vanish at infinity} \\
[C_v(X)]^n & \quad \text{space of continuous } n\text{-component complex vector-valued functions on } X \text{ which vanish at infinity} \\
(\mathcal{X}, \mathcal{A}, \mu) & \quad \text{space with a measure} \\
[L^p(\mathcal{X}, \mathcal{A}, \mu)]^n & \quad \text{Lebesgue space of } n\text{-component functions on } (\mathcal{X}, \mathcal{A}, \mu) \\
[L^p(\mathcal{X}, \mathcal{A}, \mu)]^n & \quad \text{Lebesgue space of complex } n\text{-component functions on } (\mathcal{X}, \mathcal{A}, \mu) \\
\mathbb{R}^n & \quad n\text{-dimensional Euclidean space} \\
\mathbb{C}^n & \quad n\text{-dimensional unitary space} \\
[B_b(X)]^n & \quad \text{space of real vector-valued functions with } n \text{ components which are Borel and bounded on } X \\
[B_b(X)]^n & \quad \text{space of complex vector-valued functions with } n \text{ components which are Borel and bounded on } X \\
[C_b(X)]^n & \quad \text{space of real vector-valued functions with } n \text{ components which are continuous and bounded on } X \\
[C_b(X)]^n & \quad \text{space of complex vector-valued functions with } n \text{ components which are continuous and bounded on } X \\
\mathcal{M}_{\mathbb{R}}(\mathcal{B}_X) & \quad \text{space of all finite signed regular Borel measures on } \sigma\text{-algebra } \mathcal{B}_X \text{ of Borel subsets of } X \\
\mathcal{M}_{\mathbb{C}}(\mathcal{B}_X) & \quad \text{space of all finite complex regular Borel measures on } \sigma\text{-algebra } \mathcal{B}_X \text{ of Borel subsets of } X \\
[C(K)]^m & \quad \text{space of real continuous vector-valued functions with } m \text{ components on a compact } K \text{ in } \mathbb{R}^k \\
[C(K)]^m & \quad \text{space of complex continuous vector-valued functions with } m \text{ components on a compact } K \text{ in } \mathbb{R}^k \\
[C^k(\Omega)]^m & \quad \text{space of real } m\text{-component vector-valued functions with continuous derivatives up to order } k \text{ in } \Omega
\end{align*}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[C^k(\Omega)]^m$</td>
<td>space of complex m-component vector-valued functions with continuous derivatives up to order k in Ω</td>
</tr>
<tr>
<td>$[\mathcal{C}^k(\Omega)]^m$</td>
<td>space of complex m-component vector-valued functions with continuous derivatives up to order k in Ω</td>
</tr>
<tr>
<td>$[\mathcal{C}^{k,\alpha}(\overline{\Omega})]^{m \times m}$</td>
<td>space of real $(m \times m)$-matrix-valued functions whose elements have continuous derivatives up to order k and satisfy the Hölder condition with exponent α on $\overline{\Omega}$</td>
</tr>
<tr>
<td>$[C^{k,\alpha}(\overline{\Omega})]^{m \times m}$</td>
<td>space of complex $(m \times m)$-matrix-valued functions whose elements have continuous derivatives up to order k and satisfy the Hölder condition with exponent α on $\overline{\Omega}$</td>
</tr>
<tr>
<td>$C^k_0(G)$</td>
<td>space of real functions with continuous derivatives up to order k with compact support in G</td>
</tr>
<tr>
<td>$C_0(G)$</td>
<td>space of real continuous functions with compact support in G</td>
</tr>
<tr>
<td>$[W^1_p(\Omega)]^m$</td>
<td>Sobolev space of m-component vector-valued functions on Ω with each component in $W^1_p(\Omega)$</td>
</tr>
<tr>
<td>$[W^l_p(\Omega)]^m$</td>
<td>Sobolev space of m-component vector-valued functions on Ω with each component in $W^l_p(\Omega)$</td>
</tr>
<tr>
<td>$[L^p(G)]^m$</td>
<td>space of real vector-valued functions $u = (u_1, \ldots, u_m)$ for which $</td>
</tr>
<tr>
<td>$h^p(\mathbb{R}^n_+)$</td>
<td>Hardy space of harmonic functions on \mathbb{R}^n_+ which can be represented as the Poisson integral</td>
</tr>
<tr>
<td>$h^p(\mathbb{B})$</td>
<td>Hardy space of harmonic functions on \mathbb{B} which can be represented as the Poisson integral</td>
</tr>
<tr>
<td>$BV(\mathbb{R}^n)$</td>
<td>space of locally integrable functions on \mathbb{R}^n whose gradients (in the distributional sense) are finite vector-valued charges on \mathbb{R}^n</td>
</tr>
<tr>
<td>$[C^{(k,1)}(\Pi_T)]^m$</td>
<td>space of real m-component vector-valued functions on Π_T whose derivatives with respect to x up to order k and first derivative with respect to t are continuous</td>
</tr>
<tr>
<td>$[C^k_b(\mathbb{R}^n)]^m$</td>
<td>space of real m-component vector-valued functions on \mathbb{R}^n with continuous and bounded derivatives up to order k which satisfy the uniform Hölder condition with exponent α</td>
</tr>
<tr>
<td>$[C^k_b,\alpha/2\ell(\mathbb{R}^{n+1}_T)]^m$</td>
<td>space of real m-component vector-valued functions with derivatives up to order k with respect to x which are bounded in \mathbb{R}^{n+1}_T and satisfy the uniform Hölder condition with exponent α with respect to the parabolic distance</td>
</tr>
</tbody>
</table>
\([\mathcal{C}(\mathcal{Q}_T)]^m \) \space of \(m \)-component vector-valued functions from
\([\mathcal{C}(\mathcal{Q}_T)]^m \) \space vanishing on \(\mathcal{S}_T \)

Operators

\[
\begin{align*}
D_x & \quad (\partial/\partial x_1, \ldots, \partial/\partial x_n) \\
\mathfrak{A}_0(D_x) & \quad \text{principal homogeneous part of the operator } \mathfrak{A}(D_x) \\
F[\cdot] & \quad \text{Fourier transform} \\
\Delta & \quad \text{Laplace operator} \\
\text{grad} & \quad \text{gradient} \\
\text{div} & \quad \text{divergence} \\
\mathfrak{C}_0(D_x) & \quad \text{principal homogeneous part of the operator } \mathfrak{C}(D_x) \\
\mathfrak{A}(x, D_x) & \quad \text{linear differential operator of the second order} \\
& \quad \text{with real } (m \times m)\text{-matrix-valued coefficients} \\
& \quad \text{defined on } \overline{\Omega} \\
\mathfrak{A}_0(x, D_x) & \quad \text{principal homogeneous part of the operator } \mathfrak{A}(x, D_x) \\
\mathfrak{A}(D_x) & \quad \text{linear differential operator of the second order} \\
& \quad \text{whose coefficients are real constant} \\
& \quad (m \times m)\text{-matrices} \\
[A, B] & \quad \text{commutator of operators } A \text{ and } B \\
\mathfrak{C}(x, D_x) & \quad \text{linear differential operator of the second order} \\
& \quad \text{with complex } (m \times m)\text{-matrix-valued coefficients} \\
& \quad \text{defined on } \overline{\Omega} \\
\mathfrak{C}(D_x) & \quad \text{linear differential operator of the second order} \\
& \quad \text{whose coefficients are complex constant} \\
& \quad (m \times m)\text{-matrices} \\
D_x^\beta & \quad \partial^{(\beta_1)}/\partial x_1^{\beta_1} \ldots \partial x_n^{\beta_n}, \text{ where } \beta = (\beta_1, \ldots, \beta_n) \\
P(D_x) & \quad \text{elliptic operator of order } 2\ell \\
& \quad \text{with constant complex coefficients} \\
P_0(D_x) & \quad \text{principal homogeneous part of } P(D_x) \\
\Delta^2 & \quad \text{biharmonic operator} \\
F^{-1}[\cdot] & \quad \text{inverse Fourier transform} \\
T_n^{(n)} & \quad \text{matrix-valued integral operator generated} \\
& \quad \text{by the vector-valued elastic/hydrodynamic} \\
& \quad \text{double layer potential } W^{(n)}(q) \\
\mathfrak{P}(x, t, D_x) & \quad \text{linear differential operator of order } 2\ell \\
& \quad \text{with real } (m \times m)\text{-matrix-valued coefficients} \\
& \quad \text{defined on } \Pi_T \\
\mathfrak{P}_0(x, t, D_x) & \quad \text{principal homogeneous part of the operator} \\
\mathfrak{P}(x, t, D_x) & \quad \text{defined on } \Pi_T \\
\mathfrak{S}(x, t, D_x) & \quad \text{linear differential operator of order } 2\ell \\
& \quad \text{with complex } (m \times m)\text{-matrix-valued coefficients} \\
& \quad \text{defined on } \Pi_T
\end{align*}
\]
LIST OF SYMBOLS

- $\mathcal{L}_0(x,t,D_x)$ principal homogeneous part of the operator $\mathcal{L}(x,t,D_x)$ 215
- $\mathfrak{A}_0(x,t,D_x)$ principal homogeneous part of the operator $\mathfrak{A}(x,t,D_x)$ 256
- $\mathfrak{A}(x,t,D_x)$ linear differential operator of the second order with real $(m \times m)$-matrix-valued coefficients defined on Π_T 280

Other Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nabla_k u$</td>
<td>gradient of order k of a function u</td>
<td>1, 93</td>
</tr>
<tr>
<td>∇u</td>
<td>gradient of u</td>
<td>3</td>
</tr>
<tr>
<td>ω_n</td>
<td>area of the unit sphere in \mathbb{R}^n</td>
<td>3</td>
</tr>
<tr>
<td>\mathcal{B}_X</td>
<td>σ-algebra of Borel subsets of X</td>
<td>9</td>
</tr>
<tr>
<td>$</td>
<td>\cdot</td>
<td>$</td>
</tr>
<tr>
<td>(\cdot,\cdot)</td>
<td>inner product of vectors in Euclidean or unitary space</td>
<td>10</td>
</tr>
<tr>
<td>$</td>
<td>\cdot</td>
<td>$</td>
</tr>
<tr>
<td>\Re</td>
<td>real part</td>
<td>16, 148</td>
</tr>
<tr>
<td>\Im</td>
<td>imaginary part</td>
<td>16, 149</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>Kronecker delta</td>
<td>64</td>
</tr>
<tr>
<td>$|\cdot|_p$</td>
<td>the norm in L^p-space</td>
<td>79, 131</td>
</tr>
<tr>
<td>$\partial u/\partial \ell$</td>
<td>derivative of u in the direction of a unit vector ℓ</td>
<td>105</td>
</tr>
<tr>
<td>$\Lambda_p(u)$</td>
<td>best approximation of a function u on \mathbb{S}^{n-1} by a constant in the norm of $L_p(\mathbb{S}^{n-1})$</td>
<td>108</td>
</tr>
<tr>
<td>d_x</td>
<td>distance from the point x to the boundary of domain</td>
<td>116</td>
</tr>
<tr>
<td>$\mathcal{Q}_D(u;x)$</td>
<td>characteristics of bounded or semibounded functions in a domain $D \subset \mathbb{R}^n$</td>
<td>116</td>
</tr>
<tr>
<td>$\text{osc}_D(u)$</td>
<td>oscillation of a function u on a domain $D \subset \mathbb{R}^n$</td>
<td>148</td>
</tr>
<tr>
<td>$\text{ess}|L|$</td>
<td>essential norm of a linear bounded operator L acting on a Banach space \mathfrak{B}</td>
<td>151</td>
</tr>
<tr>
<td>v_n</td>
<td>volume of the unit ball in \mathbb{R}^n</td>
<td>154</td>
</tr>
<tr>
<td>$\text{dist}(p,\mathcal{B})$</td>
<td>distance from a point p to a set \mathcal{B}</td>
<td>154</td>
</tr>
<tr>
<td>$R(L)$</td>
<td>Fredholm radius of a linear bounded operator L acting on a Banach space \mathfrak{B}</td>
<td>197</td>
</tr>
<tr>
<td>C_L</td>
<td>continuity degree of a linear bounded operator L acting on a Banach space \mathfrak{B}</td>
<td>198</td>
</tr>
<tr>
<td>$d[(x,t),(x',t')]$</td>
<td>parabolic distance between the points (x,t) and (x',t') in \mathbb{R}^{n+1}</td>
<td>203</td>
</tr>
<tr>
<td>$</td>
<td>\cdot</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\cdot</td>
<td>_s$</td>
</tr>
<tr>
<td>$[[\mathbf{v}_1,\ldots,\mathbf{v}_m]]$</td>
<td>$(m \times m)$-matrix whose columns are m-component vectors $\mathbf{v}_1,\ldots,\mathbf{v}_m$</td>
<td>256</td>
</tr>
<tr>
<td>\emptyset</td>
<td>empty set</td>
<td>292</td>
</tr>
</tbody>
</table>
Index

m-bipyramid, 5, 255, 272, 275
m-crosspolytope, 255, 275
m-parallelepiped, 5, 269, 274
m-polytope, 255, 264, 265, 272
m-pyramid, 5, 255, 272

Agmon, S., 24, 37, 75, 90, 95, 100, 104, 297
Aizenberg, L., 149, 297
Akhmerov, R.R., 198, 305
Akilov, G.P., 20, 300
Albinus, G., 75, 76, 297
Alexandrov, A.D., 53, 297
Alexandrov-Bakelman maximum principle, 53
Alikakos, N., 276, 297
Aliprantis, C.D., 20, 297
Amann, H., 275, 297
Angell, T.S., 200, 297
Asymptotic behaviour of solutions to elliptic systems, 77
Atkinson, F.V., 198, 297
Au
er, P., 249, 297
Auxiliary algebraic inequality, 124
Aytona, A., 149, 297
Bénilan, Ph., 249, 297
Bakelman, I.I., 53, 297
Banach, S., 20
Banach space, 10, 151, 197, 198
Barthélémy, L., 249, 297
Basheleishvili, M.O., 64, 91, 173, 174, 177, 183, 301
Bates, P.W., 276, 297
Bazali, B.V., 200, 297
Bebernes, J.W., 276, 298
Beckenbach, E.F., 252, 298
Bellman, R., 252, 298
Bessel function of the first kind, 100, 232
Beta-function, 85, 139
Betti identity, 178, 179, 180
Biharmonic equation, 94, 99, 102, 104
function, 3, 94, 98, 99, 101

operator, 176
Bitsadze, A.V., 29, 52, 298
Border, K.C., 20, 297
Borel, E., 114, 148, 298
Borel σ-algebra, 10
finite regular measure, 10, 12, 14, 15, 16, 24, 56
function, 10, 12, 15, 16
set, 9, 24, 56, 65, 151, 152, 154–156, 158, 161–163, 170, 233
Borel-Carathéodory inequality, 148
Boundary integral equations, 4, 64, 151, 183, 200, 299, 305
integral operators, 4, 151, 153, 198, 200, 300
Boussinesq matrix, 174
Brychkov, Yu.A., 109, 121, 138, 144, 304
Burago, Yu.D., 151, 152, 199, 200, 298
Burchuladze, T.V., 64, 91, 173, 174, 177, 183, 301
Burckel, R.B., 149, 298
Burgeth, B., 148, 298
Busemann, H., 260, 298
Caccioppoli, R., 151, 155
Cannarsa, P., 53, 297
Carathéodory, C., 114, 148, 304
Carleman, T., 199, 298
Carleman’s estimate of essential norm, 199
Cartwright, M.L., 148, 298
Cauchy inequality, 37, 66, 130
problem for parabolic system of higher order, vi, 203, 205, 206, 210, 212, 216, 235
problem for parabolic system of the second order, 40, 218, 219, 220, 228, 230, 233, 239, 240, 256, 257, 261, 280, 283, 286
Chichinadze, R., 85, 91, 298
Chueh, K.N., 276, 298
INDEX

Cialdea, A., 249, 298
Classical maximum modulus principle for
elliptic systems, 2, 21, 22, 36, 43, 44, 46,
47, 50, 51, 53, 55
parabolic systems, 203, 204, 205, 209,
214, 217, 219, 222, 224, 225, 227, 228,
229, 235, 243, 301
the gradient of biharmonic functions in a
half-plane, 94, 98
the Lamé system in a half-space, 3, 55,
57, 66
the Stokes system in a half-space, 3, 55,
57, 66
the stress tensor of the planar deformed
state in a half-plane, 55, 58, 69
Cohn, D.L., 10, 12–14, 17, 20, 298
Commutator, 34
Complete elliptic
integral of the first kind, 109, 143
integral of the second kind, 57, 68, 75,
90, 153, 187
integral, 109, 143
Condition (L), 254, 267, 269–274
Conley, C.C., 276, 298
Continuity degree of an operator, 198
Contractivity of a semigroup, 4, 249, 302
Convex
body with compact closure, 5, 252, 255,
264, 265, 269, 271, 273, 274, 276, 277
domain, 152, 153, 166, 170, 171, 173,
187, 188, 199, 299
hull, 255
Conway, E., 276, 298
Cosner, C., 276, 298
Costabel, M., 200, 298
Curve with bounded rotation, 198
Cylindrical
body, 5
surface, 237, 269
de Figueiredo, D.G., 52, 299
De Giorgi, E., 151, 155, 157, 298
Diestel, J., 12, 298
Dirac function, 82, 174
Dirichlet problem for
biharmonic equation, 99, 100
elliptic system, 4, 24, 31, 35, 39, 55, 59,
61, 65, 77, 78, 80, 81, 82
high order elliptic equation, 95, 96, 297
the Lamé system, 87, 88, 91, 173, 183
the Stokes system, 83, 84, 92, 174, 183
Djakov, P., 149, 297
Domain with
angular point, 4, 185, 190, 191
conic point, 4, 151, 153, 154, 193, 303
edge, 4, 151, 153, 154, 186, 195, 199, 297
piecewise smooth boundary, 178, 200,
299, 302
Donath, G., 286, 299
Double layer
elastic potential, 153, 183, 184, 199, 301
harmonic potential, 167, 200, 297, 299,
304
harmonic vector-valued potential, 183
hydrodynamic potential, 153, 183, 184,
188, 301
logarithmic potential, 198
vector-valued potential, 4, 56, 151, 152,
165
Dougis, A., 24, 37, 75, 80, 90, 95, 97, 100,
104, 297, 298, 305
Dunford, N., 12, 14, 15, 20, 298
Earnshaw, S., 298
Edwards, R.E., 20, 298
Eidel’man, S.D., 206, 208, 209, 211, 218,
221, 230, 235, 239–242, 256, 280, 282,
283, 287, 298, 299
Elliptic
equation of higher order, vi, 2, 75, 93,
297
equation with complex coefficients, 51, 52
integral of the second kind, 154, 190
system with a scalar principal part, 43,
47, 52, 226
Elschner, J., 200, 299
Elster, K.-H., 286, 299
Essential norm of
boundary integral operators of elasticity
theory and hydrodynamics, 4, 153,
154, 190, 193, 195, 301
bounded operator, 4, 151, 198
matrix-valued integral operator of double
layer potential type, 2, 4, 151, 152,
153, 166, 167
the double layer potential, 200, 299
Extremal directions for harmonic fields, 3
Fabes, E.B., 200, 299
Federer, H., 151, 157, 161, 163, 166, 184,
299
Fichera, G., 75, 90, 299, 304
Fichera’s maximum principle, 75
Fourier transform, 26, 99, 100, 175–177,
211, 230, 261
Fraenkel, L. E., 2, 299
Fredholm, I., 183, 197, 199, 200, 300
Fredholm
mapping, 35
radius, 4, 192, 193, 197–200, 299, 303
Friedman, A., 275, 299
Fulks, W., 276, 298
Fundamental
matrix of solutions of the Cauchy
problem, 206, 216, 230, 235, 239, 257,
281, 286, 298
solution of the biharmonic operator, 176
INDEX 315

solution of the Laplace equation, 41

Gauss, C.F., 299
Gauss-Green theorem, 161, 179, 299
Gegelia, T.G., 64, 85, 91, 173, 174, 177, 183, 298, 301
Germain, P., 71, 299
Gilbarg, D., 53, 116, 299
Gohberg, I.Ts., 198, 200, 299
Gračhev, N.V., 200, 299
Gradshtein, I.S., 100, 142, 232, 299
Green’s function, 27, 95, 96, 300
Hölder’s condition, 33, 34
Hölder’s inequality, 19, 85, 89, 147, 252
Hörmander, L., 40, 174, 300
Hadamard, J., 299, 303
Hadamard’s real-part theorem, 3, 148, 149
Hadamard-Borel-Carathéodory inequality, 149
type inequality, 114
Hansen, J., 200, 299
Hardy space of harmonic functions, in a ball, 132
in a half-space, 117
Harnack inequality, 114
Hausdorff measure, 154
Hessian of the norm, 278, 286
Hille, G., 52, 150, 299
Hoff, D., 276, 298
Hong, C.W., 52, 299
Hopf, E., 300
Hudyaev, S.I., 200, 306
Hypergeometric Gauss function, 108, 137, 139, 143, 144
Ingham, A.E., 149, 300
Invariant sets for parabolic and elliptic systems, 269, 276, 296–298, 301, 304–306
Isometric isomorphism, 10, 17
Jensen, J.L.W.V., 149, 300
Jodeit, M., 200, 299
Kakutani, S., 20, 300
Kamenskiĭ, M.I., 198, 305
Kamynin, L.I., 53, 235, 300
Kantorovich, L.V., 20, 300
Kelvin-Somigliana matrix, 174
Khavinson, D., 105, 148, 300
Khavinson’s extremal problem for harmonic functions, 105, 300
hypothesis, 105, 106, 108
sharp inequality for the first derivative of analytic function, 149
type extremal problems for harmonic functions, vi, 3, 105–107, 110, 117, 131, 150
Khimchenko, B.N., 53, 235, 300
Kimura, M., 235, 300
Kinematic coefficient of viscosity, 56, 64, 78, 83
Kleinman, R.E., 200, 297
Kozlov, V.A., 200, 300
Král, J., 151, 199, 297, 300
Krasovskii, Ju.P., 82, 300
Kratz, W., 92, 300, 301
Krein, M.G., 198, 200, 299
Kresin, G., 5, 56, 69, 115, 150, 301, 302
Kuiper, H.J., 276, 301
Kupradze, V.D., 64, 91, 173, 174, 177, 183, 301
Ladyzhenskaya, O.A., 64, 175, 183, 241, 301
Lamé constants, 56, 64, 78, 87, 173
system in a ball, v, 29, 30, 77, 78, 79, 91
system in a half-space v, 3, 32, 55–57, 64, 75, 78, 87, 88
Landau, E., 301, 302
Landau type inequality, 115
Landau, L.D., 105, 302
Landkof, N.S., 200, 302
Langer, M., 249, 302
Lankaster, P., 293, 302
Lemmer, R., 276, 302
Lenhart, S., 52, 302
Levi, E.E., 302
Lewis, J.E., 200, 299
Lifshitz, E.M., 105, 302
Lindenlöf, E., 148, 302
Lindenlöf’s inequality in a disk, 114, 149, 150
in a half-plane, 149
Lipschitz boundary values of a harmonic function, 150, 299
domains, 76, 298, 299, 305, 306
Locally compact Hausdorff space, 2, 9, 10
Lopatinskiĭ, Ya.B., 24, 200, 302, 305
López-Gómez, J., 2, 52, 302
Makintyre, A.J., 149, 302
Marcus, A.S., 198, 299
Maremonti, P., 76, 302
Marichev, O.I., 109, 121, 138, 139, 144, 304
Markov, A.A., 20, 302
Matrix of fundamental solutions of the
INDEX

Lamé system, 174, 175
Stokes system, 174, 175
Matrix-valued
 integral operator, vi, 4, 151-153, 161, 183, 200
 measure, 10, 11, 14, 15, 16
 set function, 152, 161
Maxwell medium, 58, 71, 72
Maz’ya, V., 5, 20, 56, 69, 76, 115, 150-152, 182, 199, 200, 249, 298-303
McLean, W., 174, 303
McMullen, P., 255, 272, 303
Measure of non-compactness, 4, 198
Medium with purely elastic behaviour
 under volume compression, 58, 71, 72
Medková, D., 200, 300, 303
Mellin transform, 200
Mikhlin, S.G., 182, 302
Minkowski, H., 251, 252, 303
Minkowski functional of a compact convex body, 5, 252, 272
Miranda, C., 2, 47, 52, 75, 90, 94, 101, 104, 226, 303
Miranda inequality, 3, 94, 101
Miranda-Agmon
 inequality, v, 21, 55, 58, 93–95
 maximum principle, 1, 2, 3, 55, 75, 76, 92, 93, 302
 type maximum principle, vi, 3, 55, 93, 297, 301
 weak form inequality, vi, 93-95
Mitidieri, E., 52, 299, 303
Mitrea, I., 200, 303
Molina-Meyer, M., 52, 302
Moutard, T., 303
Muskheilishvili, N.I., 69, 303
Natroshvili, D.G., 91, 303
Navier-Stokes system, 76, 302, 303, 305, 306
Netuka, I., 199, 299, 303
Neumann problem in a half-space, vi, 109, 145, 146, 300
Nikodym, O.M., 20, 303
Nik'skii, S.M., 198, 303
Nirenberg, L., 24, 37, 53, 75, 80, 90, 95, 97, 100, 104, 297, 298, 304, 305
Non-weakly coupled systems, 52
Norm
 differentiable, 5,255, 271, 275, 284,
 dual, 188, 251-253
 generalized (in the Minkowski sense), 5, 252, 255, 257-259, 277, 281, 282
 of the integral operators of elasticity theory and hydrodynamics, 153, 187, 188
 twice continuously differentiable, 5, 277, 278, 285, 286, 295
Normal in the sense of Federer, 151, 157, 163, 166
Nyström, K., 235, 304
Optimization problem on the unit sphere, 3, 77, 90, 146
Otsuka, K., 235, 300, 304
Ouhabaz, E. M., 249, 297
Parabolic
 equation with complex coefficients, 205, 229, 238
 Lamé system, vi, 205, 230, 235, 304, 305
 Paraf, A., 304
 Parametric estimates for the gradient of harmonic functions, 110
Parton, V.Z., 64, 174, 177, 178, 304
Perimeter of a set in the sense of Caccioppoli and De Giorgi, 151, 155, 161
Perlin, P.I., 64, 174, 177, 178, 304
Phelps, R.R., 260, 304
Picone, M., 304
Pini, B., 52, 304
Plamenevskii, B.A., 76, 302
Poisson
 formula, 27, 65, 91, 111
 integral, 106, 107, 117, 132
 matrix, 81, 82
Polya, G., 30, 53, 75, 304
Potapov, A.S., 198, 305
Principal part of a system, vii, 2, 4, 5, 22, 23, 33, 38, 43, 52, 204, 222, 226, 227, 243, 276, 288
Protter, M.H., 2, 52, 105, 148, 235, 275, 276, 299, 304
Prudnikov, A.P., 109, 121, 138, 139, 144, 304
Pseudostress tensor, 177, 178
Pucci, P., 2, 304
Rabotnov, Yu.N., 71, 304
Radon, J., 4, 20, 151, 193, 197–199, 300, 304, 305
Rajagopal, C.T., 149, 304
Rathsfeild, A., 200, 304
Real-part theorems, 148, 150, 301
Redheffer, R., 276, 304
Reduced boundary, 151, 157
Reinhardt, R., 286, 299
Rempel, S., 200, 305
Representation for the gradient of a biharmonic function in a half-space, 99, 101
INDEX

Riesz, F., 9, 20, 305
Rockafellar, R.T., 265, 305
Rodkina, A.E., 198, 305
Rogosinski, W.W., 149, 302
Rossmann, J., 76, 200, 300, 302, 303
Rus, I.A., 52, 305
Ruscheweyh, St., 305
Ruscheweyh’s inequality, 114, 149
Russo, R., 76, 302, 305, 306
Ryzhik, I.M., 100, 142, 232, 299

Sabitov, K.B., 52, 305
Sadowsky, B.N., 198, 305
Sand, M., 200, 299
Schäuble, M., 286, 299
Schaefer, C., 276, 305
Schaefer, P.W., 52, 276, 298, 302, 304, 306
Schmidt, G., 200, 305
Schmitt, K., 276, 298
Schulze, B.-W., 75, 305
Schwartz, J.T., 12, 14, 15, 20, 298
Seo, J.K., 200, 299
Serrin, J., 2, 304
Shaprio, Z.Ya., 24, 305
Shaposhnikova, T.O., 20, 303
Shelepov, V.Yu., 192, 200, 297, 305
Shen, Z., 235, 305
Sheppard, R.P., 2, 306
Spherical
biangle, 186, 196
mean of order p, 77, 78, 86
segment, 186, 194
Stanoyevitch, A., 150, 299
Steinbach, O., 200, 306
Steinhart, H., 20, 306
Stieltjes’ integral, 20
Stoer, J., 251, 252, 306
Stokes
function, 92
system in a ball, v, 85–87
system in a half-space, v, 3, 56–58, 64,
67, 68, 77, 78, 83, 84,
Stress tensor of the planar deformed state,
55, 58, 69
Strichartz, R.S., 92, 306
Strong maximum modulus principle, 1

Strongly
coupled system, 5, 235
elliptic operator, 58, 61, 79, 81
elliptic system, 2, 3, 21, 32, 33, 37, 55,
58, 77–79, 174, 237, 239, 301, 305, 306
parabolic system, 4, 5, 230, 237
Stys, T., 52, 235, 306
Sweers, G., 52, 303
System of quasistatic viscoelasticity, v, 3,
55, 58, 71
Szász, O., 149, 306
Szeptycki, P., 52, 306
Tartaglione, A., 76, 306
Taylor’s formula with the Lagrange
remainder term, 124
Three parametric model, 58, 71, 72, 75
Titchmarsh, E.G., 148, 306
Trudinger, N.S., 53, 116, 299
Tucker, W., 200, 303
Uhl, J.J., Jr., 12, 298
Uniformly
elliptic equation, 1, 51, 52
parabolic equation, 275, 296
parabolic system in the sense of
Petrovskii, 4, 5, 203, 215, 251, 256, 277
Uraltseva, N.N., 241, 301
Variation of a measure, 9, 10, 12, 14, 15
Vector-valued measure, 9, 10, 12, 15
Verchota, G.C., 200, 306
Viscoelastic medium, 71, 72, 75
Vogel, A.L., 200, 306
Volpert, A.I., 200, 306
Walter, W., 235, 276, 304, 306
Wasowski, J., 52, 306
Weak maximum modulus principle, 1
Weakly coupled
elliptic system, 52, 302, 303, 306
parabolic system, 235, 276, 297, 305, 306
system, 1, 52
Weinberger, H.F., 2, 52, 105, 148, 235, 275,
276, 304, 306
Wendland, W.L., 200, 300, 306
Wheeler, L.T., 76, 306
Wildenhain, G., 305
Witzgall, C., 251, 252, 306
Zaanen, A.C., 20, 306
Zalcman, L., 148, 306
Zhou, C., 75, 235, 306
<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Published Titles in This Series</td>
<td></td>
</tr>
<tr>
<td>183 Gershon Kresin and Vladimir Maz‘ya, Maximum Principles and Sharp</td>
<td>2012</td>
</tr>
<tr>
<td>Constants for Solutions of Elliptic and Parabolic Systems</td>
<td></td>
</tr>
<tr>
<td>180 Martin W. Liebeck and Gary M. Seitz, Unipotent and Nilpotent</td>
<td>2012</td>
</tr>
<tr>
<td>Classes in Simple Algebraic Groups and Lie Algebras</td>
<td></td>
</tr>
<tr>
<td>179 Stephen D Smith, Subgroup Complexes</td>
<td>2011</td>
</tr>
<tr>
<td>178 Helmut Brass and Knut Petras, Quadrature Theory</td>
<td>2011</td>
</tr>
<tr>
<td>177 Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov,</td>
<td>2011</td>
</tr>
<tr>
<td>Non-commutative Cryptography and Complexity of Group-theoretic</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>176 Peter E. Kloeden and Martin Rasmussen, Nonautonomous Dynamical</td>
<td>2011</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
</tr>
<tr>
<td>175 Warwick de Launey and Dane Flannery, Algebraic Design Theory</td>
<td>2011</td>
</tr>
<tr>
<td>174 Lawrence S. Levy and J. Chris Robson, Hereditary Noetherian Prime</td>
<td>2011</td>
</tr>
<tr>
<td>Rings and Idealizers</td>
<td></td>
</tr>
<tr>
<td>173 Sariel Har-Peled, Geometric Approximation Algorithms</td>
<td>2011</td>
</tr>
<tr>
<td>172 Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald</td>
<td>2011</td>
</tr>
<tr>
<td>Solomon, The Classification of Finite Simple Groups</td>
<td></td>
</tr>
<tr>
<td>171 Leonid Pastur and Mariya Shcherbina, Eigenvalue Distribution of</td>
<td>2011</td>
</tr>
<tr>
<td>Large Random Matrices</td>
<td></td>
</tr>
<tr>
<td>170 Kevin Costello, Renormalization and Effective Field Theory</td>
<td>2011</td>
</tr>
<tr>
<td>169 Robert R. Bruner and J. P. C. Greenlees, Connective Real K</td>
<td>2010</td>
</tr>
<tr>
<td>Theory of Finite Groups</td>
<td></td>
</tr>
<tr>
<td>168 Michiel Hazewinkel, Nadiya Gubareni, and V. V. Kirichenko,</td>
<td>2010</td>
</tr>
<tr>
<td>Algebras, Rings and Modules</td>
<td></td>
</tr>
<tr>
<td>167 Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster</td>
<td>2010</td>
</tr>
<tr>
<td>Algebras and Poisson Geometry</td>
<td></td>
</tr>
<tr>
<td>166 Kyung Bai Lee and Frank Raymond, Seifert Fiberings</td>
<td>2010</td>
</tr>
<tr>
<td>165 Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J.</td>
<td>2010</td>
</tr>
<tr>
<td>Julián Toledo-Melero, Nonlocal Diffusion Problems</td>
<td></td>
</tr>
<tr>
<td>164 Vladimir I. Bogachev, Differentiable Measures and the Malliavin</td>
<td>2010</td>
</tr>
<tr>
<td>Calculus</td>
<td></td>
</tr>
<tr>
<td>163 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine</td>
<td>2010</td>
</tr>
<tr>
<td>Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo,</td>
<td></td>
</tr>
<tr>
<td>Lei Ni, The Ricci Flow: Techniques and Applications</td>
<td></td>
</tr>
<tr>
<td>162 Vladimir Maz‘ya and Jürgen Rossmann, Elliptic Equations in</td>
<td>2010</td>
</tr>
<tr>
<td>Polyhedral Domains</td>
<td></td>
</tr>
<tr>
<td>161 Kanishka Perera, Ravi P. Agarwal, and Donal O‘Regan, Morse</td>
<td>2010</td>
</tr>
<tr>
<td>Theoretic Aspects of p-Laplacian Type Operators</td>
<td></td>
</tr>
<tr>
<td>160 Alexander S. Kechris, Global Aspects of Ergodic Group Actions</td>
<td>2010</td>
</tr>
<tr>
<td>159 Matthew Baker and Robert Rumely, Potential Theory and Dynamics</td>
<td>2010</td>
</tr>
<tr>
<td>on the Berkovich Projective Line</td>
<td></td>
</tr>
<tr>
<td>158 D. R. Yafaev, Mathematical Scattering Theory</td>
<td>2010</td>
</tr>
<tr>
<td>157 Xia Chen, Random Walk Intersections</td>
<td>2010</td>
</tr>
<tr>
<td>156 Jaime Angulo Pava, Nonlinear Dispersive Equations</td>
<td>2009</td>
</tr>
<tr>
<td>155 Yiannis N. Moschovakis, Descriptive Set Theory, Second Edition</td>
<td>2009</td>
</tr>
<tr>
<td>154 Andreas Čap and Jan Slovák, Parabolic Geometries I</td>
<td>2009</td>
</tr>
<tr>
<td>153 Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer Potential</td>
<td>2009</td>
</tr>
<tr>
<td>Techniques in Spectral Analysis</td>
<td></td>
</tr>
<tr>
<td>152 János Pach and Micha Sharir, Combinatorial Geometry and Its</td>
<td>2009</td>
</tr>
<tr>
<td>Algorithmic Applications</td>
<td></td>
</tr>
<tr>
<td>151 Ernst Binz and Sonja Pods, The Geometry of Heisenberg Groups</td>
<td>2008</td>
</tr>
<tr>
<td>150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite</td>
<td>2008</td>
</tr>
<tr>
<td>Dimensional Algebras and Quantum Groups</td>
<td></td>
</tr>
</tbody>
</table>
SELECTED PUBLISHED TITLES IN THIS SERIES

149 Gerald B. Folland, Quantum Field Theory, 2008
148 Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering Braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying Spaces of Sporadic Groups, 2008
146 Murray Marshall, Positive Polynomials and Sums of Squares, 2008
145 Tuna Altınel, Alexandre V. Borovik, and Gregory Cherlin, Simple Groups of Finite Morley Rank, 2008
143 Alexander Molev, Yangians and Classical Lie Algebras, 2007
142 Joseph A. Wolf, Harmonic Analysis on Commutative Spaces, 2007
141 Vladimir Maz′ya and Gunther Schmidt, Approximate Approximations, 2007
139 Michael Tsfasman, Serge Vlăduț, and Dmitry Nogin, Algebraic Geometric Codes: Basic Notions, 2007
137 Mikhail G. Katz, Systolic Geometry and Topology, 2007
136 Jean-Michel Coron, Control and Nonlinearity, 2007
134 Dana P. Williams, Crossed Products of C∗-Algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke Operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized Homotopy Theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large Deviations for Stochastic Processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic Billiards, 2006
126 Sen-Zhong Huang, Gradient Inequalities, 2006
124 Ido Efrat, Valuations, Orderings, and Milnor K-Theory, 2006
123 Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental Algebraic Geometry, 2005
122 Antonio Giambruno and Mikhail Zaicev, Polynomial Identities and Asymptotic Methods, 2005
121 Anton Zettl, Sturm-Liouville Theory, 2005
120 Barry Simon, Trace Ideals and Their Applications, Second Edition, 2005
119 Tian Ma and Shouhong Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, 2005
118 Alexandru Buium, Arithmetic Differential Equations, 2005
117 Volodymyr Nekrashevych, Self-Similar Groups, 2005

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The main goal of this book is to present results pertaining to various versions of the maximum principle for elliptic and parabolic systems of arbitrary order. In particular, the authors present necessary and sufficient conditions for validity of the classical maximum modulus principles for systems of second order and obtain sharp constants in inequalities of Miranda-Agmon type and in many other inequalities of a similar nature. Somewhat related to this topic are explicit formulas for the norms and the essential norms of boundary integral operators. The proofs are based on a unified approach using, on one hand, representations of the norms of matrix-valued integral operators whose target spaces are linear and finite dimensional, and, on the other hand, on solving certain finite dimensional optimization problems.

This book reflects results obtained by the authors, and can be useful to research mathematicians and graduate students interested in partial differential equations.