Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Attractors for Degenerate Parabolic Type Equations

About this Title

Messoud Efendiev, Hemholtz Center Munich, Neuherberg, Germany

Publication: Mathematical Surveys and Monographs
Publication Year: 2013; Volume 192
ISBNs: 978-1-4704-0985-2 (print); 978-1-4704-1084-1 (online)
DOI: https://doi.org/10.1090/surv/192
MathSciNet review: 3114305
MSC: Primary 35-02; Secondary 35B40, 35B41, 35K65, 35K92, 35R70, 37L30

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References

\markboth{BIBLIOGRAPHY}BIBLIOGRAPHY

  • G. Akagi and M. Otani, Evolution inclusions governed by subdifferentials in reflexive Banach spaces, Journal of Evolution Equations 4 (2004), 519–541.
  • R. A. Adams, Sobolev spaces, Academic Press, New York (1975).
  • M. Aida, M. A. Efendiev, and A. Yagi, Quasilinear abstract parabolic evolution equations and exponential attractor, Osaka Journal of Mathematics 42 (2005), 101–132.
  • M. Aida, T. Tsujikawa, M. A. Efendiev, A. Yagi, and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, Journal London Mathematical Society 74 (2006), 453–474.
  • S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Communications on Pure and Applied Mathematics 20 (1967), 207–229.
  • H. Amann and J. Escher, Analysis II, Grundstudium Mathematik, Birkhäuser, (1999).
  • F. Andreu, J. Mazon, F. Simondon, and J. Toledo, Attractor for a degenerate nonlinear diffusion problem with nonlinear boundary condition, Journal of Dynamics and Differential Equations 10 (1998), no. 3, 347–377.
  • G. Andrews and J. M. Ball, Asymptotic behavior and changes of phase in one-dimensional nonlinear viscoelasticity, Journal of Differential Equations 44 (1982), 306–341.
  • A. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Nauka, Moscow, 1989; English translation in Studies in Applied Mathematics 25, North-Holland, Amsterdam (1992).
  • V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbb R^3$, Discrete and Continuous Dynamical Systems 7 (2001), no. 4, 719–735.
  • A. Biryuk, Spectral properties of solutions of Burgers equation with small dissipation, Functional Analysis and Its Applications 35 (2001), 1–12.
  • H. Brezis, Operateurs Maximaux Monotone et Semi-Groupes de Contractions dans les Espaces Hilbert, North-Holland Mathematics Studies 5 (1973).
  • H. Brezis and M. Crandall, Uniqueness of solutions of the initial-value problem for $u_ {t}-\Delta \varphi (u)=0$, Journal de Mathématiques Pures et Appliquées 58(9) (1979), 2, 153–163.
  • T. Caraballo, P. Kloeden, and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stochastics and Dynamics 4 (2004), 405–423.
  • A. N. Carvalho, J. A. Langa, J. C. Robinson, and A. Surez, Characterization of nonautonomous attractors of a perturbed infinite-dimensional gradient system, Journal of Differential Equations 236 (2007), 570–603.
  • D. Cheban, P. Kloeden, and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dynamics and Systems Theory 2 (2002), 9–28.
  • Y. Chen, Hölder estimates for solutions of uniformly degenerate quasilinear parabolic equations, Chinese Annals of Mathematics B 5 (4) (1984), 661–678.
  • V. V. Chepyzhov and M. A. Efendiev, Hausdorff dimension estimation for attractors of nonautonomous dynamical systems in unbounded domains: An example, Communications on Pure and Applied Mathematics 53 (2000), 647–665.
  • V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island (2002).
  • V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, Journal de Mathématiques Pures et Appliquées 73 (1994), 279–333.
  • V. V. Chepyzhov and M. I. Vishik, Kolmogorov’s $\varepsilon$-entropy for the attractor of reaction-diffusion equations, Sbornik: Mathematics 189 (2) (1998), 81–110.
  • L. H. Chuan, T. Tsujikawa, and A. Yagi, Asymptotic behavior of solutions for forest kinematic model, Funkcialaj Ekvacioj 49 (3) (2006), 427–449.
  • L. H. Chuan and A. Yagi, Dynamical system for forest kinematic model, Advances in Mathematical Sciences and Applications 16 (2006), 343–409.
  • P. Colli, On some doubly nonlinear evolution equations in Banach spaces, Japan Journal of Industrial and Applied Mathematics 9 (2) (1992), 181–203.
  • P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Communications in Partial Differential Equations 15 (1990), no. 5, 737–756.
  • J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, Microbial Biofilms, Annual Review Microbiology 49 (1995), 711–745.
  • E. DiBenedetto, Degenerate Parabolic Equations (Universitext), Springer-Verlag, New York (1993).
  • L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, Journal of Dynamics and Differential Equations 13 (2001), 791–806.
  • A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Application Mathematics 37, John Wiley & Sons, New York (1994).
  • A. Eden and J. Rakotoson, Exponential attractors for a doubly nonlinear equation, Journal of Mathematical Analysis and Applications 185 (2) (1994), 321–339.
  • M. A. Efendiev, Evolution Equations Arising in the Modeling of Life Sciences, International Series of Numerical Mathematics, Vol. 163, Birkhäuser/Springer, 217 pages.
  • M. A. Efendiev, Finite and Infinite Dimensional Attractors for Evolution Equations of Mathematical Physics, Gakkotoscho, Tokyo, 2010, 239 pages.
  • M. A. Efendiev and L. Demaret, On the structure of attractors for a class of degenerate reaction-diffusion systems, Advances and Applications in Mathematical Sciences 18 (1) (2008), 105–118.
  • M. A. Efendiev, R. Lasser, and S. Sonner, Necessary and sufficient conditions for an infinite system of parabolic equations preserving the positive cone, International Journal of Biomathematics and Biostatistics 1 (2010), 47–52.
  • M. A. Efendiev, A. Miranville, and S. V. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proceedings of the Royal Society of Edinburgh, Section A 135 (2005), 703–730.
  • M. A. Efendiev, A. Miranville, and S. V. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb {R}^3$, Comptes Rendus de l’Académie des Sciences, Series I, 330 (2000), 713–718.
  • M. A. Efendiev, A. Miranville, and S. V. Zelik, Infinite dimensional attractors for a nonautonomous reaction-diffusion system, Mathematische Nachrichten 248–249 (2003), no. 1, 72–96.
  • M. A. Efendiev and M. Otani, Attractors of some class degenerate-doubly nonlinear parabolic equations, Preprint IBB 41 (2007).
  • M. A. Efendiev and M. Otani, Infinite dimensional attractors for parabolic equations with p-Laplacian in heterogeneous medium, Annales de l’Institut Henri Poincaré AN 28 (2011), 565–582.
  • M. A. Efendiev and S. V. Zelik, Finite and infinite dimensional attractors for porous media equations, Proceedings London Mathematical Society 96 (2008), 51–77.
  • M. A. Efendiev and S. Zelik, Finite dimensional attractors and exponential attractors for degenerate doubly nonlinear equations, Mathematical Methods in the Applied Sciences 32 (13) (2009), 1638–1668.
  • M. A. Efendiev and S. V. Zelik, The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging, Advances in Differential Equations 8 (6) (2003), 673–732.
  • M. A. Efendiev, S. V. Zelik, and H. J. Eberl, Existence and longtime behavior of a biofilm model, Communications on Pure and Applied Analysis 8 (2) (2009), 509–531.
  • M. A. Efendiev and S. V. Zelik, Global attractor and stabilization for a coupled PDE-ODE system, Preprint IBB (2011).
  • M. A. Efendiev and A. Yagi, Continuous dependence of exponential attractors for a parameter, Journal of the Mathematical Society of Japan 57 (2005), 167–181.
  • P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations, Discrete and Continuous Dynamical Systems 4 (1998), 225–240.
  • E. Feireisl, Ph. Laurencot, and F. Simondon, Global attractors for degenerate parabolic equations on unbounded domains, Journal of Differential Equations 129 (1996), no. 2, 239–261.
  • R. M. Ford and R. W. Harvey, Role of chemotaxis in the transport of bacteria through saturated porous media, Advances in Water Resources 30 (2007), 1608–1617.
  • H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).
  • A. Y. Goritsky and M. I. Vishik, Integral manifolds for nonautonomous equations, Rendiconti Academia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni. 115 (21) (1997), 109–146.
  • M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D 92 (1996), 178–192.
  • R. Hagen, S. Roch, and B. Silbermann, C*-algebras and Numerical Analysis, CRC Press (2001).
  • J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, Rhode Island (1988).
  • A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Elsevier Masson (1991).
  • D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin-New York (1981).
  • D. Horstmann, From 1970 until Present: The Keller-Segel Model in chemotaxis and Its Consequences, Part I, Jahresbericht der Deutschen Mathematiker-Vereinigung 105(3) (2003), 103-165.
  • A. V. Ivanov, Gradient estimates for doubly nonlinear parabolic equations, Journal of Mathematical Sciences 93 (5) (1999), 661-688.
  • A. V. Ivanov, Second order quasilinear degenerate and nonuniformly elliptic and parabolic equations, Trudy Matematicheskogo Instituta imeni V. A. Steklova 160 (1982).
  • S. Kamin and L. A. Peletier, Large time behavior of solutions of the porous media equation with absorption, Israel Journal of Mathematics 55 (2) (1986), 129-146.
  • P. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stochastics and Dynamics 3 (2003), 101–112.
  • A. N. Kolmogorov and V. M. Tikhomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional space, American Mathematical Society Translations 2, 17 (1961), 277–364.
  • M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMilian, New York (1964).
  • P. Krejčí and S. Zheng, Pointwise asymptotic convergence of solutions for a phase separation model, Discrete and Continuous Dynamical Systems 16 (1) (2006), 1–18.
  • N. Krylov, Nonlinear second order elliptic and parabolic equations, Moscow: Nauka (1985).
  • Yu. Kuznetsov, M. Antonovsky, V. Biktashev, and A. Aponina, A cross-diffusion model of forest boundary dynamics, Journal of Mathematical Biology 32 (1994), 219–232.
  • O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Lincei Lectures, Cambridge University Press (1991).
  • O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk 42 (1987), 25–60.
  • O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka (1967).
  • J. L. Lions, Quelques methodes de resolution des problemes aux limites non linearies, Dunod, Paris (1969).
  • J. Malek and D. Prazak, Large time behavior by the method of $l$-trajectories, Journal of Differential Equations 181 (2002), 243–279.
  • A. Mielke, Chapter 6: Evolution of Rate-independent Systems, C. Dafermos and E. Feireisl, eds., Handbook of Differential Equations, Evolutionary Equations, 2, 461–559.
  • A. J. Milani and N. J. Koksch, An Introduction to Semiflows, Chapman & Hall/CRC, Boca Raton (2005).
  • M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Journal Physica A 230 (1996), 499–543.
  • T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Advances in Mathematical Sciences and Applications 5 (1995), 581–601.
  • T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemotaxis, Nonlinear Analysis 30 (1997), 3837–3842.
  • T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Advances in Mathematical Sciences and Applications 8 (1998), 145–156.
  • H. Nakata, Numerical simulations for forest boundary dynamics model, Master Thesis, Osaka University (2004).
  • S. M. Nikolskii, Approximation of Functions of Several Variables and Embedding Theorems (Russian), Nauka (1969).
  • L. Nirenberg, Topic in Nonlinear Functional Analysis, Courant Institute Lecture Notes, New York University (1975).
  • M. Otani, $L^\infty$-energy method and its applications, Nonlinear Partial Differential Equations and Their Applications 505-516, GAKUTO International Series, Mathematical Sciences and Applications, Gakkotosho, Tokyo 20 (2004).
  • M. Otani, $L^\infty$-Energy Method, Basic tools and usage, Differential Equations, Chaos and Variational Problems: Progress in Nonlinear Differential Equations and Their Applications 75, Vasile Staicu (ed.), Birkhauser (2007), 357–376.
  • M. Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, Journal of Differential Equations 46 (12) (1982), 268-299.
  • K. Osaki, T. Tsujikawa, A. Yagi, and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis 51 (2002), 119–144.
  • R. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and stability, Archive for Rational Mechanics and Analysis 97 (1987), 353–394.
  • G. Raugel, Global Attractors in Partial Differential Equations, Handbook of Dynamical Systems 2, North-Holland (2002), 885–982.
  • G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York (2002).
  • T. Senba, Blowup behavior of radial solutions to Jäger-Luckhaus system in high dimensional domains, Funkcialaj Ekvaciog (Fako de l’Funkcialaj Ekvacioj Japana Matematika Societo, Funkcialaj Ekvaciog, Serio Internacia) 48 (2) (2005), 247–271.
  • T. Senba, Type II Blowup of Solutions to a Simplified Keller-Segel System in Two Dimensional Domains, Nonlinear Analysis Series A: Theory, Methods and Applications 66 (2007), 1817–1839.
  • T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Advances in Differential Equations 6 (1) (2001), 21–50.
  • I. V. Skrypnik, Nonlinear Elliptic Boundary Value Problems, Teubner-Texte zur Mathematik 91, Leipzig (1986).
  • A. Stevens and D. Horstmann, A constructive approach to traveling waves in chemotaxis, Journal of Nonlinear Science 14 (1) (2004), 1–25.
  • Y. Sugiyama, Global existence in subcritical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel system, Differential and Integral Equations 20 (2006), 841–876.
  • R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York (1988).
  • H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New York (1978).
  • A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, Heidelberg (2010).
  • J. L Vazquez, The porous medium equations, Clarendon Press, Oxford (2007).
  • E. Zeidler, Nonlinear functional analysis and its applications, Springer-Verlag (1985).