Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Stochastic Resonance: A Mathematical Approach in the Small Noise Limit

About this Title

Samuel Herrmann, Université de Bourgogne, Dijon, France, Peter Imkeller, Humboldt-Universität zu Berlin, Berlin, Germany, Ilya Pavlyukevich, Friedrich-Schiller-Universität Jena, Jena, Germany and Dierk Peithmann, Essen, Germany

Publication: Mathematical Surveys and Monographs
Publication Year: 2014; Volume 194
ISBNs: 978-1-4704-1049-0 (print); 978-1-4704-1473-3 (online)
DOI: https://doi.org/10.1090/surv/194
MathSciNet review: 3155413
MSC: Primary 60H10; Secondary 34F15, 37H10, 60F10, 60J60, 60J70, 65C50

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Schimansky-Geier, Stochastic resonance: noise-enhanced order, Physics–Uspekhi 42 (1999), no. 1, 7–36.
  • R. Azencott, Grandes déviations et applications., Ecole d’ete de probabilites de Saint-Flour VIII-1978, Lect. Notes Math. 774, 1-176, Springer, 1980 (French).
  • P. Baldi and M. Chaleyat-Maurel, An extension of Ventsel-Freidlin estimates., Stochastic analysis and related topics, Proc. Workshop, Silivri/Turk., Lect. Notes Math. 1316, 305-327, Springer, 1988 (English).
  • P. Baldi and B. Roynette, Some exact equivalents for the Brownian motion in Hölder norm, Probab. Theory Related Fields 93 (1992), no. 4, 457–484. MR 1183887 (94a:60117)
  • R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, A theory of stochastic resonance in climatic change., SIAM J. Appl. Math. 43 (1983), 563–578.
  • R. Benzi, A. Sutera, and A. Vulpiani, The Mechanism of Stochastic Resonance, J. Phy. A 14 (1981), L453–L457.
  • F. A. Berezin and M. A. Shubin, The Schrödinger equation, Mathematics and Its Applications. Soviet Series., vol. 66, Kluwer Academic Publishers, Dordrecht etc., 1991.
  • N. Berglund and B. Gentz, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. 12 (2002), 1419–1470.
  • —, Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations, Stoch. Dyn. 2 (2002), 327–356.
  • —, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191 (2003), no. 1, 1–54.
  • —, On the noise-induced passage through an unstable periodic orbit I: Two-level model, J. Statist. Phys. 114 (2004), no. 5/6, 1577–1618.
  • —, Universality of first-passage- and residence-time distributions in non-adiabatic stochastic resonance, Europhys. Letters 70 (2005), no. 1, 1–7.
  • —, Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach., Probability and its Applications. London: Springer. xiv, 276 p. , 2006 (English).
  • Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein, Metastability and low lying spectra in reversible Markov chains, Comm. Math. Phys. 228 (2002), no. 2, 219–255. MR 1911735, DOI 10.1007/s002200200609
  • —, Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times, Journal of the European Mathematical Society 6 (2004), no. 4, 399–424.
  • A. Bovier, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes II: Precise asymptotics for small eigenvalues, Journal of the European Mathematical Society 7 (2005), no. 1, 69–99.
  • A. Bulsara, E. W. Jacobs, T. Zhou, F. Moss, and L. Kiss, Stochastic resonance in a single neuron model: Theory and analog simulation, Journal of Theoretical Biology 152 (1991), 531–555.
  • V. A. Buslov and K. A. Makarov, Hierarchy of time scales in the case of weak diffusion., Theor. Math. Phys. 76 (1988), no. 2, 818–826.
  • —, Life times and lower eigenvalues of an operator of small diffusion., Mat. Zametki 51 (1992), no. 1, 20–31.
  • Z. Ciesielski, On Haar functions and on the Schauder basis of the space $C_ {\langle 0,\,1\rangle }$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 227–232. MR 0131751 (24 \#A1599)
  • J. J. Collins, T. T. Imhoff, and P. Grigg, Noise-mediated enhancements and decrements in human tactile sensation, Phys. Rev. E 56 (1997), 923–926 (English).
  • M. V. Day, On the exponential exit law in the small parameter exit problem., Stochastics 8 (1983), 297–323.
  • —, Recent progress on the small parameter exit problem., Stochastics 20 (1987), 121–150.
  • —, Mathematical approaches to the problem of noise-induced exit., Stochastic analysis, control, optimization and applications. A volume in honor of W. H. Fleming, on the occasion of his 70th birthday (McEneaney, W. M. et al., eds.), Birkhäuser, Boston, 1999, pp. 269–287.
  • Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
  • R. E. Lee Deville and E. Vanden-Eijnden, Self-induced stochastic resonance for Brownian ratchets under load, Communications in Mathematical Sciences 5 (2007), no. 2, 431–446.
  • C. R. Doering, Stochastic ratchets, Physica A 254 (1998), 1–6.
  • C. R. Doering and T. C. Elston, Random walks, resonance, and ratchets, Nonequilibrium Statistical Mechanics in One Dimension (V. Privman, ed.), Cambridge University Press, 1997.
  • J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature 365 (1993), 337–340.
  • M. I. Dykman, A. L. Velikovich, G. P. Golubev, D. G. Luchinskii, and S. V. Tsuprikov, Stochastic resonance in an all-optical passive bistable system, Journal of Experimental and Theoretical Physics Letters 53 (1991), 193–197.
  • Weinan E, W. Ren, and E. Vanden-Eijnden, Minimum action method for the study of rare events, Communications on Pure and Applied Mathematics 57 (2004), no. 5, 637–656.
  • J.-P. Eckmann and L. E. Thomas, Remarks on stochastic resonance., J. Phys. A 15 (1982), 261–266.
  • D. E. Edmunds and W. D. Evans, Spectral theory and differential operators., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1989.
  • Yu. V. Egorov and M. A. Shubin, Foundations of the classical theory of partial differential equations., Springer, Berlin, 1998.
  • T. C. Elston and C. S. Peskin, Protein flexibility and the correlation ratchet, SIAM Journal on Applied Mathematics 61 (2000), no. 3, 776–791.
  • A. Erdélyi, Asymptotic expansions., Dover Publications, Inc., New York, 1956 (English).
  • H. Eyring, The activated complex in chemical reactions., The Journal of Chemical PHysics 3 (1935), 107–115.
  • S. Fauve and F. Heslot, Stochastic resonance in a bistable system, Physics Letters A 97 (1983), 5–7.
  • M. Freidlin, Quasi-deterministic approximation, metastability and stochastic resonance, Physica D 137 (2000), 333–352.
  • M. Freidlin and A. Wentzell, Random perturbations of dynamical systems, second ed., Springer-Verlag, New York, 1998.
  • J. A. Freund, J. Kienert, L. Schimansky-Geier, B. Beisner, A. Neiman, D. F. Russell, T. Yakusheva, and F. Moss, Behavioral stochastic resonance: How a noisy army betrays its outpost, Physical Review E 63 (2001), 031910+.
  • J. A. Freund, L. Schimansky-Geier, B. Beisner, A. Neiman, D. F. Russell, T. Yakusheva, and F. Moss, Behavioral stochastic resonance: How the noise from a Daphnia swarm enhances individual prey capture by juvenile paddlefish, Journal of Theoretical Biology 214 (2002), no. 1, 71–83.
  • L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Reviews of Modern Physics 70 (1998), 223–287.
  • L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance: a remarkable idea that changed our perception of noise., Eur. Phys. J. B 69 (2009), 1–3 (English).
  • A. Ganopolski and S. Rahmstorf, Abrupt glacial climate changes due to stochastic resonance., Physical Review Letters 88 (2001), no. 3, 038501.
  • C. W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural sciences., Springer Series in Synergetics, vol. 13 (3rd ed.). Springer, Berlin, 2004 (English).
  • P. E. Greenwood, L. M. Ward, D. F. Russel, A. Neiman, and F. Moss, Stochastic Resonance Enhances the Electrosensory Information Available to Paddlefish for Prey Capture, Phys. Rev. Letters 84 (2000), 4773–4776 (English).
  • R. Z. Has$’$minskiĭ, Stochastic stability of differential equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, vol. 7, Sijthoff & Noordhoff, 1980.
  • Katharine E. O’Brien, Some problems in interpolation by characteristic functions of linear differential systems of the fourth order, Bull. Amer. Math. Soc. 46 (1940), 281–290. MR 2004, DOI 10.1090/S0002-9904-1940-07197-6
  • —, The exit problem for diffusions with time-periodic drift and stochastic resonance., The Annals of Applied Probability 15 (2005), no. 1A, 39–68 (English).
  • S. Herrmann, P. Imkeller, and D. Peithmann, Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: a large deviations approach, The Annals of Applied Probability 16 (2006), no. 4, 1851–1892.
  • S. Herrmann and B. Roynette, Boundedness and convergence of some self-attracting diffusions, Mathematische Annalen 325 (2003), no. 1, 81–96.
  • M. Heymann and E. Vanden-Eijnden, The geometric minimum action method: A least action principle on the space of curves, Communications on Pure and Applied Mathematics 61 (2008), no. 8, 1052–1117.
  • I. Hidaka, D. Nozaki, and Y. Yamamoto, Functional Stochastic Resonance in the Human Brain: Noise Induced Sensitization of Baroreflex System, Phys. Rev. Lett. 85 (2000), 3740–3743.
  • P. D. Hislop and I. M. Sigal, Introduction to spectral theory. With applications to Schrödinger operators, Applied Mathematical Sciences., vol. 113, Springer-Verlag, New York, NY, 1996.
  • R. A. Holley, S. Kusuoka, and D. W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated annealing., J. Funct. Anal. 83 (1989), no. 2, 333–347.
  • C.-R. Hwang and S.-J. Sheu, Large-time behavior of perturbed diffusion Markov processes with applications to the second eigenvalue problem for Fokker-Planck operators and simulated annealing., Acta Appl. Math. 19 (1990), no. 3, 253–295.
  • P. Imkeller and I. Pavlyukevich, Stochastic resonance in two-state Markov chains, Archiv der Mathematik 77 (2001), no. 1, 107–115.
  • —, Model reduction and stochastic resonance, Stochastics and Dynamics 02 (2002), no. 04, 463–506.
  • C. Ivey, A. V. Apkarian, and D. R. Chialvo, Noise-induced tuning curve changes in mechanoreceptors, J. Neurophysiol. 79 (1998), 1879–1890.
  • S. Jacquot, Comportement asymptotique de la seconde valeur propre des processus de Kolmogorov., J. Multivariate Anal. 40 (1992), no. 2, 335–347.
  • P. Jung, Periodically driven stochastic systems., Physics Reports 234 (1993), 175–295 (English).
  • T. Kanamaru, T. Horita, and Y. Okabe, Theoretical analysis of array-enhanced stochastic resonance in the diffusively couple FitzHugh-Nagumo equation., Physical Review E 64 (2001), 031908 (English).
  • V. N. Kolokoltsov, Semiclassical analysis for diffusions and stochastic processes, Lecture Notes in Mathematics, vol. 1724, Springer, Berlin, 2000.
  • H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions., Physica 7 (1940), 284–304.
  • Laplace, le Marquis de, Théorie analytique des probabilités, third ed., Courcier, Paris, 1820, Reprinted in Complete works, Vol. 7. Gautier-Villars, Paris, 1886.
  • D. S. Leonard and L. E. Reichl, Stochastic resonance in a chemical reaction, Physical Review E 49 (1994), 1734–1737.
  • B. M. Levitan and I. S. Sargsjan, Introduction to spectral theory: Selfadjoint ordinary differential operators, Translations of Mathematical Monographs., vol. 39, American Mathematical Society., Providence, R.I., 1975.
  • F. Marchesoni, F. Apostolico, L. Gammaitoni, and S. Santucci, Color effects in a near-threshold Schmitt trigger., Physical Review E 58 (1998), no. 6, 7079–7084.
  • F. Marchesoni, F. Apostolico, and S. Santucci, Stochastic resonance in an asymmetric Schmitt trigger., Physical Review E 59 (1999), no. 4, 3958–3963.
  • B. J. Matkowsky and Z. Schuss, Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields., SIAM J. Appl. Math. 40 (1981), 242–254.
  • R. M. Mazo, Brownian motion: fluctuations, dynamics, and applications., International Series of Monography on Physics, vol. 112. Oxford University Press, New York, 2002 (English).
  • M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Stochastic resonance, Cambridge University Press, 2008.
  • B. McNamara and K. Wiesenfeld, Theory of stochastic resonance, Physical Review A (General Physics) 39 (1989), 4854–4869.
  • B. McNamara, K. Wiesenfeld, and R. Roy, Observation of stochastic resonance in a ring laser, Physical Review Letters 60 (1988), 2626–2629.
  • V. I. Melnikov, Schmitt trigger: A solvable model of stochastic resonance, Physical Review E 48 (1993), no. 4, 2481–2489.
  • G. N. Milstein and M. V. Tretyakov, Numerical analysis of noise-induced regular oscillations, Physica D 140 (2000), no. 3-4, 244–256 (English).
  • T. Mori and S. Kai, Noise-induced entrainment and stochastic resonance in human brain waves, Phys. Rev. Lett. 88 (2002), 218101 (English).
  • F. Moss, L. M. Ward, and Walter G. Sannita, Stochastic resonance and sensory information processing: a tutorial and review of application., Clinical Neurophysiology 115 (2004), 267–281 (English).
  • C. B. Muratov and E. Vanden-Eijnden, Self-induced stochastic resonance in excitable systems, Physica D 210 (2005), 227–240.
  • A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Dynamical entropies applied to stochastic resonance, Physical Review Letters 76 (1996), no. 23, 4299–4302.
  • E. Nelson, Dynamical theories of Brownian motion., Princeton University Press, Princeton, NJ, 1967 (English).
  • C. Nicolis, Stochastic aspects of climatic transitions — responses to periodic forcing., Tellus 34 (1982), 1–9.
  • F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics., Academic Press, a subsidiary of Harcourt Brace Jovanovich, Publishers, 1974.
  • A. Patel and B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise, IEEE Transactions on Neural Networks 19 (2008), no. 12, 1993–2008.
  • I. E. Pavlyukevich, Stochastic Resonance, Ph.D. thesis, Humboldt University Berlin, Berlin, 2002, Logos–Verlag.
  • C. Penland and P. D. Sardeshmukh, The optimal growth of tropical sea surface temperature anomalies., J. Climate 8 (1995), 1999–2024 (English).
  • P. Priouret, Remarques sur les petites perturbations de systèmes dynamiques., Seminaire de probabilites XVI, Univ. Strasbourg 1980/81, Lect. Notes Math. 920, 184-200, Springer, 1982 (French).
  • A. Priplata, J. Niemi, M. Salen, J. Harry, L. A. Lipsitz, and J. J. Collins, Noise-Enhanced Human Balance Control, Phys. Rev. Lett. 89 (2002), 238101.
  • O. Raimond, Self-attracting diffusions: case of the constant interaction, Probab. Theory Rel. Fields 107 (1997), no. 2, 177–196.
  • P. Reimann, Brownian motors: noisy transport far from equilibrium, Physics Reports 361 (2002), no. 2–4, 57–265.
  • M. Renardy and R. C. Rogers, An introduction to partial differential equations, Texts in Applied Mathematics., vol. 13, Springer-Verlag, New York, 1993.
  • P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
  • M. Riani and E. Simonotto, Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model, Physical Review Letters 72 (1994), 3120–3123.
  • D. F. Russel, L. A. Wilkens, and F. Moss, Use of behavioural stochastic resonance by paddle fish for feeding, Nature 402 (1999), 291 (English).
  • Z. Schuss, Theory and applications of stochastic differential equations., Wiley Series in Probability and Mathematical Statistics., John Wiley & Sons, New York etc., 1980.
  • F. Schweitzer, Brownian agents and active particles., Springer Series in Synergetics, Collective dynamics in the natural and social sciences. Springer, Berlin, 2003 (English).
  • D. B. Sears, Note on the uniqueness of the Greens functions associated with certain differential equations., Can. J. Math. 2 (1950), 314–325.
  • E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss, Visual perception of stochastic resonance, Physical Review Letters 78 (1997), 1186.
  • M. L. Spano, M. Wun-Fogle, and W. L. Ditto, Experimental observation of stochastic resonance in a magnetoelastic ribbon, Physical Review A 46 (1992), 5253–5256.
  • N. G. Stocks, Suprathreshold stochastic resonance in multilevel threshold systems, Physical Review Letters 84 (2000), no. 11, 2310–2313.
  • D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin, 1979. MR 532498 (81f:60108)
  • M. Usher and M. Feingold, Stochastic resonance in the speed of memory retrieval, Biological Cybernetcs 83 (2000), L011–L016 (English).
  • G. Vemuri and R. Roy, Stochastic resonance in a bistable ring laser., Phys. Review A 39 (1989), 4668–4674 (English).
  • Julian Bonder, Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen, Z. Angew. Math. Mech. 19 (1939), 251–252 (German). MR 42, DOI 10.1002/zamm.19390190409
  • B. Wang, A. Barcilon, and Z. Fang, Stochastic dynamics of El Nino-Southern Oscillation., J. Atmos. Sci. 56 (1999), 5–23 (English).
  • B. Wang and Z. Fang, Chaotic oscillations of tropical climate: A dynamic system theory for ENSO., J. Atmos. Sci. 53 (1996), 2786–2802 (English).
  • T. Wellens, V. Shatokhin, and A. Buchleitner, Stochastic resonance., Rep. Prog. Phys. 67 (2004), 45–105 (English).
  • K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and F. Moss, Stochastic resonance on a circle, Phys. Rev. Lett. 72 (1994), 2125–2129.
  • M. Williams, Asymptotic exit time distributions., SIAM J. Appl. Math. 42 (1982), 149–154.