Nonlinear Elliptic Equations and Nonassociative Algebras

Nikolai Nadirashvili
Vladimir Tkachev
Serge Vlăduţ

American Mathematical Society
Providence, Rhode Island
Library of Congress Cataloging-in-Publication Data
Nonlinear elliptic equations and nonassociative algebras / Nikolai Nadirashvili, Vladimir Tkachev, Sergei Vladut.
   pages cm. — (Mathematical surveys and monographs ; volume 200)
   Includes bibliographical references and index.
QA252.5.N33 2014
512’.48—dc23 2014028806

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink® service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.

© 2014 by the American Mathematical Society. All rights reserved.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 19 18 17 16 15 14
## Contents

Preface .......................................................... 5

Chapter 1. Nonlinear Elliptic Equations .......................................................... 1
1.1. Elliptic equations .................................................. 1
1.2. Viscosity solutions ............................................. 8
1.3. Linear elliptic operators of nondivergence form .................. 11
1.4. Nonlinear equations with smooth solutions .................... 16
1.5. Degenerate elliptic equations ................................... 22
1.6. Homogeneous solutions ....................................... 27
1.7. Liouville type theorems. Removable singularities .......... 38

Chapter 2. Division Algebras, Exceptional Lie Groups, and Calibrations ............ 45
2.1. The Cayley-Dickson construction. Octonions ................ 46
2.2. Clifford algebras and spinor groups .......................... 48
2.3. The group $G_2$. Trialities ................................... 51
2.4. Cross products, associative and coassociative calibrations .... 53
2.5. Cross products, normed algebras, and Cayley calibrations ..... 58

Chapter 3. Jordan Algebras and the Cartan Isoparametric Cubics ........................ 63
3.1. Isoparametric cubics and the eiconal equation ............... 63
3.2. Jordan algebras ............................................. 67
3.3. The eiconal equation and cubic Jordan algebras ............ 77

Chapter 4. Solutions from Trialities .......................................................... 85
4.1. The simplest nonclassical construction ....................... 85
4.2. The octonionic construction .................................. 96
4.3. Hessian equations in twelve dimensions ..................... 104
4.4. Isaacs equations ........................................... 114

Chapter 5. Solutions from Isoparametric Forms ............................................ 117
5.1. The spectrum ............................................... 117
5.2. Nonclassical and singular solutions .......................... 125
5.3. Singular solutions in five dimensions ....................... 132
5.4. Other isoparametric forms ................................... 143
5.5. Two more applications ...................................... 150

Chapter 6. Cubic Minimal Cones .............................................................. 155
6.1. Brief overview of the main results ............................ 155
6.2. Algebraic minimal hypercones in $\mathbb{R}^n$ and radial eigencubics .... 159
6.3. Metrized and Freudenthal-Springer algebras ................ 161
6.4. Radial eigencubic algebras ................................... 163
| 6.5. Polar and Clifford REC algebras | 169 |
| 6.6. The harmonicity of radial eigencubics | 176 |
| 6.7. The Peirce decomposition of a REC algebra | 180 |
| 6.8. TRIality systems and a hidden Clifford algebra structure | 185 |
| 6.9. Jordan algebra \( V_c \) | 189 |
| 6.10. Reducible REC algebras | 194 |
| 6.11. Exceptional REC algebras | 198 |

Chapter 7. Singular Solutions in Calibrated Geometries | 205 |
| 7.1. Calibrated geometries | 205 |
| 7.2. Singular coassociative 4-folds | 209 |
| 7.3. Singular solutions of special Lagrangian equations | 211 |
| 7.4. More singular solutions and a failure of the maximum principle | 218 |

Bibliography | 223 |
Notation | 235 |
Index | 239 |
Preface

The present volume contains some applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. Here the solutions are to be understood in a weak (viscosity) sense. Using such algebras to construct exotic or specific analytic and geometric structures is not new. One can mention here, for instance, the constructions of exotic spheres by Milnor [163], of singular solutions to the minimal surface system by Lawson and Osserman [144], the ADHM and construction of instantons by Atiyah, Drinfel’d, Hitchin, and Manin [17], and the construction of singular coassociative manifolds by Harvey and Lawson [103], all four using quaternions, as well as the recent constructions of unusual solutions of the Ginzburg-Landau system by Farina and Ge-Xie [86], [93], using isoparametric polynomials and thus, implicitly, Jordan or Clifford algebras.

However, our applications of quaternions, octonions, and Jordan algebras to elliptic partial differential equations of second order are new; they allow us to solve a longstanding problem of the existence of truly weak viscosity solutions, which are not smooth (= classical) ones. Moreover, in some sense, they give (albeit along with some other arguments) an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. In fact, a major part of the book is devoted to the simplest class of fully nonlinear uniformly elliptic equations, namely those of the form

\[ F(D^2 u) = 0, \]

\( F \) being a nonlinear sufficiently smooth functional on symmetric matrices and \( D^2 u \) being the Hessian of a putative solution \( u \). Those are “constant coefficient” fully nonlinear elliptic equations. Moreover, often we impose a rather drastic condition that \( F \) depends only on the eigenvalues of the Hessian (so-called “Hessian equations”). In that case \( F \) is a function of only \( n \) values of symmetric functions of \( D^2 u \) rather than of \( n(n + 1)/2 \) partial derivatives, \( n \) being the dimension of the ambient space. Our methods show that even in that very restricted setting in five and more dimensions (some of) those equations admit homogeneous \( \delta \)-order solutions with any \( \delta \in ]1, 2] \), that is, of all orders compatible with known regularity results by Caffarelli and Trudinger [37], [255] for viscosity solutions of fully nonlinear uniformly elliptic equations, proving the optimality of these regularity results. To the contrary, the situation in four and fewer dimensions is completely different. First of all, in two dimensions the classical result by L. Nirenberg [186] guarantees the regularity of all viscosity solutions, homogeneous or not. In Section 1.6 we prove that in four (and thus three) dimensions there are no homogeneous order 2 solutions to fully nonlinear uniformly elliptic equations, at least in the analytic setting, which suggests strongly that there are no nonclassical homogeneous solutions at
all in four and three dimensions. If so, we get a complete list of dimensions where nonclassical homogeneous solutions to fully nonlinear uniformly elliptic equations do exist. One can compare this with the situation of, say, ten years ago, when the very existence of nonclassical viscosity solutions was not known.

We should repeat once more that this result of fundamental importance for the theory of partial differential equations is obtained by applications of relatively elementary algebraic (and differential geometric) means, thus stressing once more that studying relations between apparently disconnected mathematical areas can often be very fruitful.

Furthermore, there are some cases where (singular) solutions of some classes of nonlinear elliptic equations and some nonassociative algebras are interrelated even more strongly, leading in certain circumstances to the equivalence of those objects. A study of these relations and their applications to classifying both classes of objects is the second theme of the book, intimately related to the previous one.

Our exposition is as follows. Since we hope that our work can be of use to a rather diversified mathematical audience, we devote the first three chapters to the basics of nonlinear elliptic equations and of noncommutative and nonassociative algebraic structures used in our constructions.

In Chapter 1 we recall basic facts about nonlinear elliptic equations and their viscosity solutions. The material in the first five sections is quite traditional in many papers devoted to viscosity solutions. However, in Section 1.2 we also formulate two recent results on partial regularity of solutions, in Section 1.3 we expose a recent result concerning the difference of viscosity solutions, and in Section 1.4 we give a recent result on the regularity of solutions to axially symmetric Dirichlet problems for Hessian equations. Section 1.6 is devoted to recent results and conjectures for homogeneous solutions to fully nonlinear uniformly elliptic equations. Section 1.7 gives some Liouville type results and various results on removable singularities for solutions of fully nonlinear elliptic equations, including a recent result describing viscosity solutions of a uniformly elliptic Hessian equation in a punctured ball.

Chapter 2 is devoted to the construction and elementary properties of the real division algebras $H, O$, Clifford algebras, spinor groups, and some exceptional Lee groups, especially $G_2$. We also discuss cross products in the algebra $O$ and the resulting calibrations (in their algebraic form).

In Chapter 3 we give an overview of Jordan algebras in their relation to special cubics and some partial differential equations (of first order). Most of its material is classical, but some new facts concerning relations between cubic Jordan algebras and the so-called eiconal differential equation, $|\nabla f(x)|^2 = c|x|^4$, are proven.

In Chapters 4 and 5 we give our main constructions of nonclassical and singular solutions to fully nonlinear, uniformly elliptic equations, often of Hessian or of Isaacs type. In fact, all our nonclassical solutions are of the form $P(x)/|x|^{\alpha}$ with a homogeneous polynomial $P(x), x \in \mathbb{R}^n$, of degree 3, 4, or 6 and a suitable $\alpha$. Chapter 4 contains the constructions based on trialties, which use real division algebras: quaternions and octonions; there $n = 12$ or 24, $\deg P = 3$, $\alpha \in [1, 2]$. Chapter 5 gives constructions based on isoparametric polynomials $P(x), x \in \mathbb{R}^n$, $n \geq 5$, of degrees 3, 4, or 6 coming from Jordan and Clifford algebras. The constructions of Chapter 4 are more elementary in that they use less of algebraic theory but need more calculations than those of Chapter 5. The arguments in these chapters are based on several closely related criteria for solutions of fully nonlinear uniformly
elliptic equations in terms of appropriate combinations of the spectrum for their Hessians. Those conditions are extremely restrictive and one needs rather elaborated arguments and/or calculations to verify them, which is obtained partially by using MAPLE calculations. One notes, however, that the calculations in Chapters 4 and 5 (and in Chapter 7) which use MAPLE extensively are completely rigorous since there MAPLE is used to verify algebraic identities, albeit rather cumbersome ones.

Chapter 6 is devoted to a classification of cubic minimal cones, that is, the simplest nontrivial solutions to the minimal surface system which is (almost) complete under a natural additional condition (the case of radial eigencubics). The main method there is to construct a certain nonassociative algebra from a given minimal cubic cone in such a way that the differential-analytical structure of the cones becomes transparent from the algebraic side, and vice versa. The main tool for this is the so-called Freudenthal multiplication. It associates to any fixed cubic form \( u \) on a vector space \( V \) carrying a symmetric nondegenerate bilinear form \( Q \) the multiplication \( (x, y) \to xy \) by setting \( \partial_x \partial_y u|_z = Q(xy; z) \). The algebra \( V(u) \) defined in this way is called the Freudenthal-Springer algebra of the cubic form \( u \). In the basic case of a radial eigencubic the corresponding Freudenthal-Springer algebra leads to a so-called radial eigencubic algebra, or just a \( \text{REC algebra} \). Thus, the classification of radial eigencubics becomes equivalent to that of REC algebras. There exist two principal classes of REC algebras, namely those coming from Clifford and Jordan structures, respectively. Applying standard methods of nonassociative algebra such as Pierce decomposition and a thorough study of certain defining relations in REC algebras, one eventually gets their complete classification. Note, however, that the algebraic techniques of this chapter are elaborated more than in the other chapters and assume more advanced knowledge of the nonassociative algebraic systems.

In Chapter 7 we treat elliptic equations arising in calibrated geometry \[103\], namely, the special Lagrangian, associative, coassociative, and Cayley equations; they are not uniformly, but only strictly, elliptic, and we recall briefly their constructions in Section 7.1. One notes, however, that the construction of singular coassociative 4-folds given by Harvey and Lawson in \[103\] and recalled in Section 7.2 resembles strongly the constructions in Chapter 4. It would be very interesting to understand a possible common ground of constructions in Chapters 4 and 7 (and, presumably, in Chapters 5 and 6) and eventually find some other situations where it works. Sections 7.3 and 7.4 are devoted to constructions of some singular solutions to the special Lagrangian equations (SLE) in the nonconvex case, in three dimensions. Note that in the convex (or concave) case those solutions are smooth in any dimension by \[48\] and that in two dimensions these equations cannot be nonconvex. These constructions also lead to examples of a failure of the maximum principle for the Hessian of solutions to a uniformly elliptic equation in three and more dimensions as well as to examples of solutions to the minimal surface system with a notably low regularity.

Acknowledgements. We would like to thank Luis Caffarelli, Charles Smart, and Yu Yuan for their interest in and very fruitful discussions of the subject of this book. We also thank the anonymous reviewers for their pertinent remarks allowing us to improve the exposition. We would also like to thank A. Rüland for her thorough reading of the manuscript, leading to many improvements of the text.
Bibliography


Notation

Below is a list of some notation used in different chapters.

Chapter 1.

- $D^2 u$: the Hessian of $u$
- $\nabla u$: the gradient of $u$
- $M^t$: the transpose of a matrix $M$
- $M^*$: the conjugate transpose of a matrix $M$, $M^* = M^t$
- $\text{Sym}_n(\mathbb{R})$: the space of real symmetric $n \times n$ matrices, $M^t = M$
- $F(D^2 w) = 0$: a simplest fully nonlinear uniformly elliptic equation
- $\Delta_p$: the $p$-Laplacian operator
- $\Delta_\infty$: the $\infty$-Laplacian operator
- $\sum a_{ij} \frac{\partial^2}{\partial x_i \partial x_j}$: a linear elliptic operator
- $\mathcal{M}^+, \mathcal{M}^+$: Pucci’s extremal operators
- $\sigma_k(\lambda)$: symmetric functions of eigenvalues of a matrix
- $\kappa_1, \ldots, \kappa_n$: the principal curvatures of a graph
- $A^u$: the conformal Hessian
- $\Omega$: a domain in $\mathbb{R}^n$
- $U^+, U^-$: the set of $C^2$-supersolutions, $C^2$-subsolutions
- $W^{p,q}$: Sobolev spaces
- $\text{meas}(E)$: the Lebesgue measure of $E \subset \mathbb{R}^n$
- $\mathcal{P}$: the subset of nonnegative matrices
- $\Sigma_n$: the permutation group on $n$ symbols
- $B$: the unit ball in $\mathbb{R}^n$ centered at the origin
- $B_r$: a ball in $\mathbb{R}^n$ of radius $r$
- $S^{n-1}$: the unit sphere in $\mathbb{R}^n$
- $S^{n-1}_r$: the sphere in $\mathbb{R}^n$ of radius $r$
- $u_v$: for a function $u$ and a vector $v$ the derivative of $u$ in the direction $v$, $u_v = \langle \nabla u, v \rangle$
- $\lambda(A)$: the (ordered) spectrum $\text{Spec}(A)$ of the linear operator $A$

Chapter 2.

- $\mathbb{H}$: the algebra of quaternions
- $\mathbb{O}$: the algebra of octonions
- $(e_0, \ldots, e_7)$: the canonical basis of $\mathbb{O}$
- $SO(n)$: the special orthogonal group in $\mathbb{R}^n$
- $\text{Spin}(n)$: the spinor group, the universal covering of $SO(n)$
the real Clifford algebra on \( n \) generators

\( A[n] \) the \( n \times n \) matrix algebra \( M_n(A) \) over an associative algebra \( A \)

\( U(n) \) the unitary group in \( \mathbb{C}^n \)

\( SU(n) \) the special unitary group in \( \mathbb{C}^n \)

\( Sp(n) \) the simplectic group in \( \mathbb{R}^{2n} \)

\( P^+_n, P^-_n \) the space of positive or negative pinors

\( S_n \) the spinor representation of \( \text{Spin}(n) \)

\( S^+_n, S^-_n \) for \( n = 4 \) or \( 8 \), the positive and negative spinor representations of \( \text{Spin}(n) \)

\( G_2 \) the simple exceptional group, isomorphic to \( \text{Aut}_{\mathbb{R} - \text{alg}}(\mathbb{O}) \)

\( t_d \) for \( d = 2, 4 \), or \( 8 \), the normed triality on \( \mathbb{C}, \mathbb{H} \), or \( \mathbb{O} \)

\( P_s \) for \( s = 6, 12 \), or \( 24 \), the harmonic triality polynomials in \( s \) variables

\( \text{Aut}(t_d) \) for \( d = 2, 4 \), or \( 8 \), the automorphism group of a normed triality

\( \langle , \rangle \) the inner product in \( \mathbb{R}^k \)

\( u \times v \) a cross product on a space of dimension \( 3 \) or \( 7 \)

\( \varphi \) an associative calibration on a space of dimension \( 3 \) or \( 7 \)

\( [u, v, w] \) the associator bracket of the vectors \( u, v, w \)

\( \text{Gram}(u, v, w) \) the Gram matrix of the vectors \( u, v, w \)

\( \psi \) a coassociative calibration on a space of dimension \( 7 \)

\( [u, v, w, x] \) the coassociator bracket of the vectors \( u, v, w, x \)

\( G(V, \varphi) \) the automorphism group of an associative calibration on \( V \)

\( W \) an 8-dimensional normed division algebra

\( u \times v \times w \) the triple cross product of \( W \)

\( \Phi \) a Cayley calibration on \( W \)

\( G(W, \Phi) \) the automorphism group of \( \Phi \) on \( W \)

\( \mathbb{F}_d \) the classical division algebra of real dimension \( d = 1, 2, 4, 8 \), \( \mathbb{F}_4 = \mathbb{H} \), \( \mathbb{F}_8 = \mathbb{O} \)

\( \mathbb{F} \) the field \( \mathbb{F}_1 = \mathbb{R} \) or \( \mathbb{F}_2 = \mathbb{C} \)

\( C_d \) for \( d = 1, 2, 4, 8 \), the Cartan isoparametric cubic in \( 3d + 2 \) variables

\( (W, Q) \) a quadratic subspace

\( x \bullet y \) the Jordan product

\( V \) a Jordan algebra

\( \text{Herm}_n(\mathbb{F}_d) \) the set of the Hermitian matrices over \( \mathbb{F}_d \), \( d = 1, 2, 4 \), \( n \geq 3 \), \( \text{Herm}_n(\mathbb{R}) = \text{Sym}_n(\mathbb{R}) \)

\( \text{Herm}_3(\mathbb{O}) \) the Albert algebra of Hermitian \( 3 \times 3 \) matrices over octonions

\( e^\perp \) the trace free subspace of \( V \)

\( m_x(\lambda) \) the minimum polynomial of the regular element \( x \)

\( N \) the generic norm in \( V \)

\( T \) the bilinear trace form in \( V \)

\( \text{tr} \) the generic trace in \( V \)

\( x \rightarrow x# \) the quadratic sharp map

\( M_n(A) \) the \( n \times n \) matrix algebra over an associative algebra \( A \)
\(S(V, Q, c)\) a spin factor
\(J(V, N, c)\) a Springer Jordan algebra
\text{hess } u(x, y) \quad \text{the mixed Hessian}

**Chapter 4**

\(Q(\mathbb{R}^n)\) the vector space of quadratic forms over \(\mathbb{R}\)
\(H\) the Hessian map \(S^{n-1} \to Q(\mathbb{R}^n), a \mapsto D^2w(a)\)
\(Q_d\) for \(d \in \mathbb{R}^{12}\), the quadratic form \((P_{12})_d\)
\(\chi_d\) the characteristic polynomial of the form \(2Q_d\)
\(\text{Spec}(A)\) the spectrum of a matrix (quadratic form) \(A\)
\(w_{j,\delta}(x)\) for \(j = 3, 6, 12, 24, \delta \in [1, 2]\), the basic function \(P_j(x)/|x|^{\delta}\)
\(w_{12}(x)\) the basic function \(P_{12}(x)/|x|\)
\(\Lambda\) the eigenvalue map defined by \(D^2w\)
\(G(\lambda)\) the characteristic polynomial of the form \(D^2P_{24}\)
\(K_\lambda\) the convex \(\lambda\)-cone
\(\text{Res}(F_1, F_2)\) the resultant of the polynomials \(F_1, F_2\)
\(H(a)\) the Hessian \(D^2w_{12}(a)\) for \(a \in \mathbb{R} \setminus \{0\}\)
\(P_A(\xi)\) the characteristic polynomial of \(A := H(a)\)
\(P_{A,\delta}(\xi)\) the characteristic polynomial of \(H_\delta(a) := D^2w_{12,\delta}(a)\)

**Chapter 5**

\(u(x)\) the normalized Jordan norm on the space of trace free elements
\(w_\alpha(x)\) the homogeneous function \(u(x)/|x|^\alpha\)
\(\text{Hess}_x(u)\) the Hessian \(D^2u(x)\)
\(A_1, A_2, A_3\) the generators of the automorphism of the Cartan cubic \(C_1\)
\(w_{3d+2}(x)\) for \(d = 1, 2, 4, 8\), the function \(C_d(x)/|x|\)
\(g_{3d+2} = 0\) for \(d = 1, 2, 4, 8\), a locally uniformly elliptic polynomial equation for \(w_{3d+2}(x)\)
\(P_6(x, y)\) the OT-FKM type isoparametric quartic in six dimensions
\(w_6(x, y)\) a rational nonclassical solution \(P_6(x, y)/|(x, y)|^2\) to a uniformly elliptic equation

**Chapter 6**

\(Q(x, y)\) a nondegenerate bilinear form
\(Q(x) = Q(x, x)\) the corresponding quadratic form
\(V(u)\) the Freudenthal-Springer algebra of a cubic form \(u\)
\(c\) an idempotent in a REC algebra
\(L_x\) the multiplication operator by \(x \in V\)
\(V_x(a)\) the invariant subspace of \(L_x\) corresponding to the eigenvalue \(a\)
\(V_0 \oplus V_1\) a polar decomposition
\(\rho\) the Hurwitz-Radon function \(\{6.5.18\}\)
\(\{A, B\}\) the Jordan product of operators \(A\) and \(B\), \(\{A, B\} = AB + BA\)
\(\mathcal{N}(V)\) the set of normalized square zero elements
$V^\bullet_c$ the Jordan algebra on $V_c(1; -\frac{1}{2})$ associated to a REC algebra

$n_i(c), i = 1, 2, 3$ the characteristic dimensions of the idempotent $c$

Chapter 7

\(\varphi\) the associative calibration on $\text{Im} \mathcal{O}$

\(\psi\) the coassociative calibration on $\text{Im} \mathcal{O}$

\(\Phi\) the Cayley calibration on $\mathcal{O}$

\(M_c\) the coassociative $Sp(1)$-invariant singular 4-fold in $\text{Im} \mathcal{O}$

\(F_h(u)\) the special Lagrangian operator with the parameter $h = -\tan \theta$

\(u_c\) a special analytic solution to the equation $F_{-c}(u) = 0$ on a small ball

\(f \mapsto \tilde{f}\) the Legendre transform

\(\mathbb{R}\{\{x, y, z\}\}\) the ring of power series in $\mathbb{R}^3$ converging near zero

\(Q(\nabla u_c)\) the local ring of the Legendre transform of $u_c$

\(u_\theta\) the singular solution to the equation $F_\theta(u) = 0$ on a small ball

\(u_\theta^m\) even more singular solutions to the equation $F_\theta(u) = 0$ on a small ball

\(u_\varepsilon\) a family of smooth solutions violating the maximum principle for the Hessian

\(U^m\) weak solutions of the minimal surface system which are not $W^{1,1+\varepsilon}$ for $m \to \infty$
Index

4-fold cross product, 59
K-cone condition, 96
Δ1, 156
∞-Laplacian, 3
λ-cone condition, 87
N(V), 183
σk-equation, 1
p-Laplace equation, 2
a priori bound, 7
ABP maximum principle, 28
Alexandrov’s theorem, 28
alternative algebra, 16
anticommutator product, 67
associative bilinear form, 161
associative calibration, 54
associative subspace, 50
associator, 46
associator bracket, 55
Bernstein’s theorem, 27
Bott periodicity, 49
calibrated geometries, 205
calibrated submanifold, 205
calibration, 205
Cartan isoparametric cubic, 63
Cartan-Münzner system, 63
Cayley calibration, 69
Cayley form, 61
Cayley submanifold, 208
Cayley subspace, 61
Cayley-Dickson construction, 46
characteristic dimensions, 152
classical solution, 6
Clifford algebra, 28
coaassociative calibration, 50
coassociative subspace, 57
coaassociator bracket, 57
complex Monge-Ampère equation, 4
conformal Hessian equation, 0
congruent forms, 66
continuity method, 7
coordinate plane, 36
cross product, 54
cubic Jordan algebra, 74
curvature equation, 4
degenerate elliptic linear equation, 2
Dirichlet duality, 22
Dirichlet problem, 6
Dirichlet set, 22
division algebra, 46
Donaldson equation, 5
eiconal equation, 63
eigenfunction, 160
ellipticity criterion, 86
Euclidean Jordan algebra, 72
Evans-Krylov’s theorem, 13
exceptional Albert algebra, 71
exceptional isomorphisms, 49
failure of maximum principle, 218
formally real Jordan algebra, 88
Freudenthal multiplication, 162
Freudenthal-Springer algebra, 162
Gauss curvature equation, 6
generic norm, 89
generic trace, 89
geometrically equivalent Clifford systems, 173
Ginzburg-Landau system, 151
group G2, 81
Hamilton-Jacobi-Bellman equation, 3
harmonic curvature, 6
harmonic REC algebra, 165
Harnack inequality, 158
Hartman-Nirenberg’s theorem, 32
hérisson, 28
Hermitian Jordan algebra, 70
Hessian ellipticity criterion, 96
Hessian equation, 6
Hessian of the generic norm, 117
Hessian problem, 90
homogeneous isoparametric hypersurface, 143
homogeneous polynomial map, 118
homogeneous solution, 57
Hsiang problem, 159
idempotent, 73
irreducible representation, 56
irreducible symmetric Clifford system, 173
Isaacs equation, 3
isoparametric function, 63
isoparametric hypersurface, 63
Jordan algebra, 63
Jordan cubic form, 75
Jordan frame, 73
Jordan identity, 67
Jordan matrix algebra, 70
Jordan product, 67
Jörgen-Calabi-Pogorelov theorem, 69
Lagrangian geometry, 206
Laplace’s equation, 2
Lawson’s cubic minimal cone, 161, 172
Legendre transform, 215
level hypersurface, 65
Lewy rotation, 218
linear in symmetric functions $\sigma_k$, equations, 5
linear trace, 74
Liouville’s theorem, 85
martingale problem, 13
maximum principle, 7
mean curvature, 6
metrized algebra, 161
metrized subalgebra, 163
minimal hypercones, 159
minimal submanifold, 206
minimal surface system, 218
Minkowski spin factor, 71
Monge-Ampère equation, 4
nicely normed algebra, 47
Nirenberg’s theorem, 18
normed division algebra, 46
normed triality, 52
octonion construction, 49
octonions, 47
OT-FKM type isoparametric hypersurface, 143
Peirce decomposition, 73
Peirce decomposition of a REC algebra, 181
polar algebra, 164
polar decomposition, 169
primitive idempotent, 73
Pucci’s equation, 3
Pucci’s extremal operator, 3
quadratic representation, 77
quadratic sharp map, 76
quadratic spur, 74
quasilinear elliptic equations in divergence form, 2
quasilinear elliptic equations in nondivergence form, 6
quaternions, 47
radial eigencubic, 156
radial eigencubic algebra (REC algebra), 165
rank of a Jordan algebra, 89
reduced cubic factor, 76
reducible REC algebra, 194
regular eigenfunction, 160
regular element in a Jordan algebra, 59
removable singularity, 49
resultant, 104
saddle function, 27
scalar curvature, 6
second approximative differential, 13
sedenions, 47
semisimple Jordan algebra, 72
similar eigenfunctions, 160
similar metrized algebras, 162
similarity invariant, 162
simple Jordan algebra, 72
singular coassociative 4-fold, 206
special Cartan REC algebra, 160
special Jordan algebra, 70
special Lagrangian equations, 211
special Lagrangian submanifold, 206
spin factor of a quadratic form, 71
spin representation, 60
spin type representation, 60
spinor group, 49
Springer construction, 74
strictly elliptic equation, 2
strictly hyperbolic matrix, 115
structural constant, 165
subaffine function, 28
subsolution, 8
supersolution, 8
symmetric Clifford system, 171
trace form, 76
transnormal function, 85
transport Monge-Ampère equation, 4
triality, 51
triality system, 186
triple cross product, 60
uniformly elliptic equation, 2
uniformly hyperbolic matrix family, 101
vector representation, 60
viscosity solution, 8
Weingarten equation, 9
Whitney’s stratification theorem, 35
This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of “Hessian equations”, depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four.

Thus this book gives a complete list of dimensions where nonclassical homogeneous solutions to fully nonlinear uniformly elliptic equations do exist; this should be compared with the situation of, say, ten years ago when the very existence of nonclassical viscosity solutions was not known.