The Dynamical Mordell–Lang Conjecture
About this Title
Jason P. Bell, University of Waterloo, Waterloo, Ontario, Canada, Dragos Ghioca, University of British Columbia, Vancouver, BC, Canada and Thomas J. Tucker, University of Rochester, Rochester, NY
Publication: Mathematical Surveys and Monographs
Publication Year:
2016; Volume 210
ISBNs: 978-1-4704-2408-4 (print); 978-1-4704-2908-9 (online)
DOI: https://doi.org/10.1090/surv/210
MathSciNet review: MR3468757
MSC: Primary 37-02; Secondary 11G25, 14A10, 37Pxx
Table of Contents
Front/Back Matter
Chapters
- Chapter 1. Introduction
- Chapter 2. Background material
- Chapter 3. The dynamical Mordell-Lang problem
- Chapter 4. A geometric Skolem-Mahler-Lech theorem
- Chapter 5. Linear relations between points in polynomial orbits
- Chapter 6. Parametrization of orbits
- Chapter 7. The split case in the dynamical Mordell-Lang conjecture
- Chapter 8. Heuristics for avoiding ramification
- Chapter 9. Higher dimensional results
- Chapter 10. Additional results towards the dynamical Mordell-Lang conjecture
- Chapter 11. Sparse sets in the dynamical Mordell-Lang conjecture
- Chapter 12. Denis-Mordell-Lang conjecture
- Chapter 13. Dynamical Mordell-Lang conjecture in positive characteristic
- Chapter 14. Related problems in arithmetic dynamics
- Chapter 15. Future directions