Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Geometry and Dynamics in Gromov Hyperbolic Metric Spaces: With an Emphasis on Non-Proper Settings

About this Title

Tushar Das, University of Wisconsin, La Crosse, La Crosse, WI, David Simmons, University of York, York, United Kingdom and Mariusz Urbański, University of North Texas, Denton, TX

Publication: Mathematical Surveys and Monographs
Publication Year: 2017; Volume 218
ISBNs: 978-1-4704-3465-6 (print); 978-1-4704-4048-0 (online)
DOI: https://doi.org/10.1090/surv/218
MathSciNet review: MR3558533
MSC: Primary 20F67; Secondary 20E08, 28A78, 37-02, 37A45, 37F35

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Preliminaries

The Bishop–Jones theorem

Examples

Patterson–Sullivan theory

References [Enhancements On Off] (What's this?)

References
  • I. Adeboye and G. Wei, On volumes of hyperbolic orbifolds, Algebr. Geom. Topol. 12 (2012), no. 1, 215–233.
  • Clemens Adelmann and Eberhard H.-A. Gerbracht, Letters from William Burnside to Robert Fricke: automorphic functions, and the emergence of the Burnside problem, Arch. Hist. Exact Sci. 63 (2009), no. 1, 33–50. MR 2470902, DOI 10.1007/s00407-008-0021-2
  • I. Agol, Tameness of hyperbolic 3-manifolds, http://arxiv.org/abs/math/0405568, preprint 2004.
  • L. V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.
  • T. Akaza, Poincaré theta series and singular sets of Schottky groups, Nagoya Math. J. 24 (1964), 43–65.
  • A. D. Aleksandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov., v 38, Trudy Mat. Inst. Steklov., v 38, Izdat. Akad. Nauk SSSR, Moscow, 1951, pp. 5–23.
  • D. Allcock, Reflection groups on the octave hyperbolic plane, J. Algebra 213 (1999), no. 2, 467–498.
  • Roger C. Alperin, An elementary account of Selberg’s lemma, Enseign. Math. (2) 33 (1987), no. 3-4, 269–273. MR 925989
  • A. Ancona, Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature, Rev. Mat. Iberoamericana 10 (1994), no. 1, 189–220.
  • J. W. Anderson, K. Falk, and P. Tukia, Conformal measures associated to ends of hyperbolic $n$-manifolds, Q. J. Math. 58 (2007), no. 1, 1–15.
  • M. T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), no. 4, 701–721.
  • B. N. Apanasov, Discrete groups in space and uniformization problems. Translated and revised from the 1983 Russian original, Mathematics and its Applications (Soviet Series), 40, Kluwer Academic Publishers Group, Dordrecht, 1991.
  • C. J. Atkin, The Hopf-Rinow theorem is false in infinite dimensions, Bull. Lond. Math. Soc. 7 (1975), no. 3, 261–266.
  • J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205.
  • W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser Boston, Inc., Boston, MA, 1985.
  • H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3) 25 (1972), 603–614.
  • A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722–736.
  • —, The exponent of convergence of Poincaré series, Proc. London Math. Soc. (3) 18 (1968), 461–483.
  • —, Inequalities for certain Fuchsian groups, Acta Math. (1971), 221–258.
  • —, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983.
  • A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12.
  • M. E. B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008.
  • M. V. Belolipetsky, Hyberbolic orbifolds of small volume, http://arxiv.org/abs/1402.5394, preprint 2014.
  • V. I. Bernik and M. M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, vol. 137, Cambridge University Press, Cambridge, 1999.
  • L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600.
  • M. Bestvina, The topology of $\mathrm {Out}(F_n)$, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 373–384.
  • M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104–155.
  • C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), no. 1, 1–39.
  • S. Blachère, P. Haïssinsky, and P. Mathieu, Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 4, 683–721.
  • J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, http://arxiv.org/abs/1307.0361, preprint 2013.
  • M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306.
  • A. Borbély, The nonsolvability of the Dirichlet problem on negatively curved manifolds, Differential Geom. Appl. 8 (1998), no. 3, 217–237.
  • M. Bourdon, Structure conforme au bord et flot géodésique d’un CAT(-1)-espace (Conformal structure at the boundary and geodesic flow of a CAT(-1)-space), Enseign. Math. (2) 41 (1995), no. 1–2, 63–102 (French).
  • B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245–317.
  • —, Some results on the geometry of convex hulls in manifolds of pinched negative curvature, Comment. Math. Helv. 69 (1994), no. 1, 49–81.
  • —, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229–274.
  • —, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 66 pp.
  • E. Breuillard, B. Green, and T. C. Tao, Approximate subgroups of linear groups, Geom. Funct. Anal. 21 (2011), no. 4, 774–819.
  • M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999.
  • M. Burger, A. Iozzi, and N. Monod, Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. (2005), no. 22, 1331–1369.
  • M. Burger and S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc. 9 (1996), no. 1, 57–93.
  • S. Buyalo, Geodesics in Hadamard spaces, Algebra i Analiz 10 (1998), no. 2, 93–123 (Russian), translation in St. Petersburg Math. J. 10 (1999), no. 2, 293–313.
  • D. Calegari and D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifold, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446.
  • J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), no. 2, 123–148.
  • J. W. Cannon, W. J. Floyd, R. W. Kenyon, and W. R. Parry, Hyperbolic geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 59–115.
  • S. Cantat, The Cremona group in two variables, Proceedings of the sixth European Congress of Math., pp. 211-225 (Europ. Math. Soc., 2013), 2013, available at http://perso.univ-rennes1.fr/serge.cantat/Articles/ecm.pdf.
  • S. Cantat and S. Lamy, Normal subgroups in the Cremona group, with an appendix by Yves de Cornulier, Acta Math. 210 (2013), no. 1, 31–94.
  • P.-E. Caprace, Y. de Cornulier, N. Monod, and R. Tessera, Amenable hyperbolic groups, http://arxiv.org/abs/1202.3585v1, preprint 2012.
  • C. Champetier, Propriétés statistiques des groupes de présentation finie (statistical properties of finitely presented groups), Adv. Math. 116 (1995), no. 2, 197–262 (French).
  • P.-A. Cherix, M. G. Cowling, P. Jolissaint, P. Julg, and A. Valette, Groups with the Haagerup property: Gromov’s a-T-menability, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001.
  • I. M. Chiswell, Introduction to $\Lambda$-trees, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
  • F. Choucroun, Arbres, espaces ultramétriques et bases de structure uniforme (Trees, ultrametric spaces and bases with uniform structure), Geom. Dedicata 53 (1994), no. 1, 69–74 (French).
  • M. Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov (Patterson-Sullivan measures on the boundary of a hyperbolic space in the sense of Gromov), Pacific J. Math. 159 (1993), no. 2, 241–270 (French).
  • K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1507–1530.
  • F. Dal’bo, J.-P. Otal, and M. Peigné, Séries de Poincaré des groupes géométriquement finis. (Poincaré series of geometrically finite groups), Israel J. Math. 118 (2000), 109–124 (French).
  • F. Dal’bo, M. Peigné, J.-C. Picaud, and A. Sambusetti, On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 835–851.
  • Tushar Das, David Simmons, and Mariusz Urbański, Geometry and dynamics in Gromov hyperbolic metric spaces II: Thermodynamic formalism, in preparation.
  • Tushar Das, Bernd O. Stratmann, and Mariusz Urbański, The Bishop–Jones relation and the Hausdorff geometry of convex-cobounded limit sets in infinite-dimensional hyperbolic space, http://www.urbanskimath.com/wp-content/uploads/2014/07/DaStUrBishopJones_2014_07_23C.pdf, preprint 2014, to appear in Stoch. Dyn.
  • Y. de Cornulier, R. Tessera, and A. Valette, Isometric group actions on Hilbert spaces: growth of cocycles, Geom. Funct. Anal. 17 (2007), no. 3, 770–792.
  • P. de la Harpe, Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, Vol. 285, Springer-Verlag, Berlin-New York, 1972.
  • —, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.
  • P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) (Kazhdan’s property (T) for locally compact groups (with an appendix by Marc Burger)), Astérisque 175 (1989), 158 (French).
  • H. P. de Saint-Gervais, Uniformisation des surfaces de Riemann. Retour sur un théorème centenaire (Uniformization of Riemann surfaces. A look back at a 100-year-old theorem), ENS Éditions, Lyon, 2010 (French), The name of Henri Paul de Saint-Gervais covers a group composed of fifteen mathematicians : A. Alvarez, C. Bavard, F. Béguin, N. Bergeron, M. Bourrigan, B. Deroin, S. Dumitrescu, C. Frances, É. Ghys, A. Guilloux, F. Loray, P. Popescu-Pampu, P. Py, B. Sévennec, and J.-C. Sikorav.
  • M. Dehn, Über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1911), no. 1, 116–144 (German).
  • T. Delzant and P. Py, Kähler groups, real hyperbolic spaces and the Cremona group, Compos. Math. 148 (2012), no. 1, 153–184.
  • G. Dimitrov, F. Haide, L. Katzarkov, and M. Kontsevich, Dynamical systems and categories, http://arxiv.org/abs/1307.8418, preprint 2013.
  • B. Duchesne, Infinite-dimensional nonpositively curved symmetric spaces of finite rank, Int. Math. Res. Not. IMRN (2013), no. 7, 1578–1627.
  • —, Infinite dimensional riemannian symmetric spaces with fixed-sign curvature operator, http://arxiv.org/abs/1109.0441, preprint 2012.
  • P. B. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109.
  • M. Edelstein, On non-expansive mappings of Banach spaces, Math. Proc. Cambridge Philos. Soc. 60 (1964), 439–447.
  • K. J. Falconer and D. T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika 39 (1992), no. 2, 223–233.
  • J. L. Fernández and M. V. Melián, Bounded geodesics of Riemann surfaces and hyperbolic manifolds, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3533–3549.
  • Lior Fishman, David Simmons, and Mariusz Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, http://arxiv.org/abs/1301.5630, preprint 2013, to appear Mem. Amer. Math. Soc.
  • G. B. Folland, Real analysis: Modern techniques and their applications, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984.
  • V. P. Fonf and J. Lindenstrauss, Some results on infinite-dimensional convexity, Israel J. Math. 108 (1998), 13–32.
  • M. I. Garrido Carballo, J. Á. Jaramillo, and Y. C. Rangel, Algebras of differentiable functions on Riemannian manifolds, Bull. Lond. Math. Soc. 41 (2009), no. 6, 993–1001.
  • É Ghys and P. de la Harpe, Espaces métriques hyperboliques (hyperbolic metric spaces), Sur les groupes hyperboliques d’aprés Mikhael Gromov (Bern, 1988), Progr. Math., 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27–45 (French).
  • W. M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999.
  • J. J. Gray, Linear differential equations and group theory from Riemann to Poincaré, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.
  • —, Henri Poincaré. A scientific biography, Princeton University Press, Princeton, NJ, 2013.
  • L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand. 10 (1962), 85–107.
  • G. Greschonig and K. Schmidt, Ergodic decomposition of quasi-invariant probability measures, Colloq. Math. 84/85 (2000), part 2, 493–514.
  • M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213.
  • —, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 385–392.
  • —, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263.
  • —, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295.
  • Y. Guivarc’h, Groupes de Lie à croissance polynomiale, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A237–A239 (French).
  • M. Hamann, Group actions on metric spaces: fixed points and free subgroups, http://arxiv.org/abs/1301.6513.
  • M. Handel and L. Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672.
  • G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), no. 3, 530–542.
  • J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
  • —, What is ... a quasiconformal mapping?, Notices Amer. Math. Soc. 53 (2006), no. 11, 1334–1335.
  • E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34.
  • S. Helgason, Differential geometry, Lie groups, and symmetric spaces., Pure and Applied Mathematics, 80, Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London, 1978.
  • S. W. Hensel, P. Przytycki, and R. C. H. Webb, Slim unicorns and uniform hyperbolicity for arc graphs and curve graphs, http://arxiv.org/abs/1301.5577, preprint 2013.
  • A. Hilion and C. Horbez, The hyperbolicity of the sphere complex via surgery paths, http://arxiv.org/abs/1210.6183, preprint 2012.
  • S. Hong, Patterson-Sullivan measure and groups of divergence type, Bull. Korean Math. Soc. 30 (1993), no. 2, 223–228.
  • —, Conical limit points and groups of divergence type, Trans. Amer. Math. Soc. 346 (1994), no. 1, 341–357.
  • E. Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), no. 2, 299–314.
  • —, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261–304 (German).
  • P. Jolissaint, Borel cocycles, approximation properties and relative property T., Ergodic Theory Dynam. Systems 20 (2000), no. 2, 483–499.
  • T. Jørgensen, Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106 (1977), no. 1, 61–72.
  • V. A. Kaimanovich, Bowen-Margulis and Patterson measures on negatively curved compact manifolds, Dynamical systems and related topics (Nagoya, 1990), Adv. Ser. Dynam. Systems, 9, World Sci. Publ., River Edge, NJ, 1991, pp. 223–232.
  • I. Kapovich and K. Rafi, On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014), no. 2, 391–414.
  • M. Kapovich, On the absence of Sullivan’s cusp finiteness theorem in higher dimensions, Algebra and analysis (Irkutsk, 1989), 77-89, Amer. Math. Soc. Transl. Ser. 2, 163, Amer. Math. Soc., Providence, RI, 1995.
  • —, Kleinian groups in higher dimensions, Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 487–564.
  • A. Karlsson, Nonexpanding maps and Busemann functions, Ergodic Theory Dynam. Systems 21 (2001), 1447–1457.
  • S. R. Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992.
  • A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
  • R. Kellerhalls, Volumes of cusped hyperbolic manifolds, Topology 37 (1998), no. 4, 719–734.
  • H. Kesten, Problems and solutions: Solutions of advanced problems: 5716, Amer. Math. Monthly 78 (1971), no. 3, 305–308.
  • I. Kim, Length spectrum in rank one symmetric space is not arithmetic, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3691–3696.
  • V. L. Klee, Dispersed Chebyshev sets and coverings by balls, Math. Ann. 257 (1981), no. 2, 251–260.
  • —, Do infinite-dimensional Banach spaces admit nice tilings?, Studia Sci. Math. Hungar. 21 (1986), no. 3–4, 415–427.
  • F. Klein, Neue beiträge zur riemann’schen funktionentheorie, Math. Ann. 21 (1883), 141–214 (German).
  • D. Y. Kleinbock and B. Weiss, Badly approximable vectors on fractals, Israel J. Math. 149 (2005), 137–170.
  • P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raumformen, Sitzungsberichte Akad. Berlin 1930 (1930), 304–364, 505–541 (German).
  • J. Kurzweil, A contribution to the metric theory of diophantine approximations, Czechoslovak Math. J. 1(76) (1951), 149–178.
  • S. Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999.
  • G. Levitt, Graphs of actions on $\mathbf R$-trees, Comment. Math. Helv. 69 (1994), no. 1, 28–38.
  • L. Li, K. Ohshika, and X. T. Wang, On Klein-Maskit combination theorem in space I, Osaka J. Math. 46 (2009), no. 4, 1097–1141.
  • T. Lundh, Geodesics on quotient manifolds and their corresponding limit points, Michigan Math. J. 51 (2003), no. 2, 279–304.
  • J. M. Mackay and J. T. Tyson, Conformal dimension: Theory and application, University Lecture Series, 54, American Mathematical Society, Providence, RI, 2010.
  • J. H. Maddocks, Restricted quadratic forms and their application to bifurcation and stability in constrained variational principles, SIAM J. Math. Anal. 16 (1985), no. 1, 47–68.
  • Y. I. Manin, Cubic forms: algebra, geometry, arithmetic. Translated from the Russian by M. Hazewinkel. North-Holland Mathematical library, vol. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974.
  • H. A. Masur and S. Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013), no. 1, 1–62.
  • R. D. Mauldin, T. Szarek, and Mariusz Urbański, Graph directed Markov systems on Hilbert spaces, Math. Proc. Cambridge Philos. Soc. 147 (2009), 455–488.
  • R. D. Mauldin and Mariusz Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105–154.
  • —, Graph directed Markov systems: Geometry and dynamics of limit sets, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003.
  • A. D. Michal, General differential geometries and related topics, Bull. Amer. Math. Soc. 45 (1939), 529–563.
  • —, Infinite dimensional differential metrics with constant curvature, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 17–21.
  • N. Monod and P. Py, An exotic deformation of the hyperbolic space, Amer. J. Math. 136 (2014), no.5, 1249–1299.
  • G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973.
  • S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939), no. 2, 400–416.
  • P. J. Myrberg, Die Kapazität der singulären Menge der linearen Gruppen, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1941 (1941), no. 10, 19 pp. (German).
  • S. A. Naimpally and B. D. Warrack, Proximity spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 59, Cambridge University Press, London-New York, 1970.
  • F. Newberger, On the Patterson-Sullivan measure for geometrically finite groups acting on complex or quaternionic hyperbolic space (Special volume dedicated to the memory of Hanna Miriam Sandler (1960-1999)), Geom. Dedicata 97 (2003), 215–249.
  • P. J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989.
  • A. Y. Ol’shanskiĭ, Almost every group is hyperbolic, Internat. J. Algebra Comput. 2 (1992), no. 1, 1–17.
  • D. V. Osin, Acylindrically hyperbolic groups, http://arxiv.org/abs/1304.1246, preprint 2013.
  • P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un (Carnot-Carathéodory metrics and quasi-isometries of rank one symmetric spaces), Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French).
  • S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3–4, 241–273.
  • —, Further remarks on the exponent of convergence of Poincaré series, Tohoku Math. J. (2) 35 (1983), no. 3, 357–373.
  • F. Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997), no. 3, 231–236.
  • S. D. Pauls, The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom. 9 (2001), no. 5, 951–982.
  • D. Preiss, Tilings of Hilbert spaces, Mathematika 56 (2010), no. 2, 217–230.
  • J.-F. Quint, An overview of Patterson–Sullivan theory, www.math.u-bordeaux1.fr/~jquint/publications/courszurich.pdf.
  • J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006.
  • A. Raugi, Dépassement des sommes partielles de v.a.r. indépendantes équidistribuées sans moment d’ordre 1 (Exceedance of partial sums of independent uniformly distributed real random variables with undefined mean), Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, 723–734 (French).
  • R. H. Riedi and B. B. Mandelbrot, Multifractal formalism for infinite multinomial measures, Adv. in Appl. Math. 16 (1995), no. 2, 132–150.
  • T. Roblin, Ergodicité et équidistribution en courbure négative (Ergodicity and uniform distribution in negative curvature), Mém. Soc. Math. Fr. (N. S.) 95 (2003), vi+96 pp. (French).
  • —, Un théoréme de Fatou pour les densités conformes avec applications aux revetements galoisiens en courbure négative (A Fatou theorem for conformal densities with applications to Galois coverings in negative curvature), Israel J. Math. 147 (2005), 333–357 (French).
  • B. Schapira, Lemme de l’ombre et non divergence des horosphéres d’une variété géométriquement finie. (The shadow lemma and nondivergence of the horospheres of a geometrically finite manifold), Ann. Inst. Fourier (Grenoble) 54 (2004), no. 4, 939–987 (French).
  • V. Schroeder, Quasi-metric and metric spaces, Conform. Geom. Dyn. 10 (2006), 355–360.
  • Y. Shalom and T. C. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom. Funct. Anal. 20 (2010), no. 6, 1502–1547.
  • T. A. Springer and F. D. Veldkamp, Elliptic and hyperbolic octave planes. I, II, III., Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math. 25 (1963), 413–451.
  • A. N. Starkov, Fuchsian groups from the dynamical viewpoint, J. Dynam. Control Systems 1 (1995), no. 3, 427–445.
  • B. O. Stratmann, The Hausdorff dimension of bounded geodesics on geometrically finite manifolds, Ergodic Theory Dynam. Systems 17 (1997), no. 1, 227–246.
  • B. O. Stratmann and Mariusz Urbański, Pseudo-Markov systems and infinitely generated Schottky groups, Amer. J. Math. 129 (2007), 1019–1062.
  • B. O. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3) 71 (1995), no. 1, 197–220.
  • D. P. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202.
  • —, A finiteness theorem for cusps, Acta Math. 147 (1981), no. 3–4, 289–299.
  • —, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496.
  • —, Seminar on conformal and hyperbolic geometry, 1982, Notes by M. Baker and J. Seade, IHES.
  • —, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3–4, 259–277.
  • S. J. Taylor, On the connexion between Hausdorff measures and generalized capacity, Proc. Cambridge Philos. Soc. 57 (1961), 524–531.
  • J. Tits, A “theorem of Lie–Kolchin” for trees, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 377–388.
  • D. A. Trotsenko and J. Väisälä, Upper sets and quasisymmetric maps, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 465–488.
  • M. Tsuji, Theory of conformal mapping of a multiply connected domain. III, Jap. J. Math. 19 (1944), 155–188.
  • P. Tukia, On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 171–214.
  • —, The Poincaré series and the conformal measure of conical and Myrberg limit points, J. Anal. Math. 62 (1994), 241–259.
  • J. Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187–231.
  • —, Hyperbolic and uniform domains in Banach spaces, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 261–302.
  • A. Valette, Affine isometric actions on Hilbert spaces and amenability, http://www2.unine.ch/files/content/sites/math/files/shared/documents/articles/ESIValette.pdf, preprint.
  • C. B. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4965–5005.
  • Z. Yûjôbô, A theorem on Fuchsian groups, Math. Japonicae 1 (1949), 168–169.