A Study in Derived Algebraic Geometry
Volume II: Deformations, Lie Theory and Formal Geometry

Dennis Gaitsgory
Nick Rozenblyum

American Mathematical Society
A Study in Derived Algebraic Geometry
Volume II: Deformations, Lie Theory and Formal Geometry
A Study in Derived Algebraic Geometry
Volume II: Deformations, Lie Theory and Formal Geometry

Dennis Gaitsgory
Nick Rozenblyum

American Mathematical Society
Providence, Rhode Island
Contents

Preface ix

Acknowledgements xxvii

Introduction xxix

Part I. Inf-schemes 1

Introduction 3

1. Why inf-schemes? 3
2. Deformation theory 4
3. Inf-schemes 5
4. Ind-coherent sheaves on inf-schemes 7
5. Crystals and D-modules 8

Chapter 1. Deformation theory 11

Introduction 11

1. Push-outs of schemes 18
2. (pro)-cotangent and tangent spaces 23
3. Properties of (pro)-cotangent spaces 30
4. The (pro)-cotangent complex 36
5. Digression: square-zero extensions 43
6. Infinitesimal cohesiveness 51
7. Deformation theory 54
8. Consequences of admitting deformation theory 60
9. A criterion for being locally almost of finite type 64
10. Square-zero extensions of prestacks 70

Chapter 2. Ind-schemes and inf-schemes 77

Introduction 77

1. Ind-schemes 81
2. Proofs of results concerning ind-schemes 91
3. (Ind)-inf-schemes 103
4. (Ind)-inf-schemes and nil-closed embeddings 106

Chapter 3. Ind-coherent sheaves on ind-inf-schemes 117

Introduction 117

1. Ind-coherent sheaves on ind-schemes 122
2. Proper base change for ind-schemes 129
3. IndCoh on (ind)-inf-schemes 133
4. The direct image functor for ind-inf-schemes 139
5. Extending the formalism of correspondences to inf-schemes \(146\)
6. Self-duality and multiplicative structure of IndCoh on ind-inf-schemes \(154\)

Chapter 4. An application: crystals \(159\)
 Introduction \(159\)
 1. Crystals on prestacks and inf-schemes \(164\)
 2. Crystals as a functor out of the category of correspondences \(170\)
 3. Inducing crystals \(174\)
 4. Comparison with the classical theory of D-modules \(178\)

Part II. Formal geometry \(191\)

Introduction \(193\)
 1. What is formal geometry? \(193\)
 2. Lie algebras \(195\)
 3. Formal groups vs. Lie algebras \(196\)
 4. Lie algebroids \(198\)
 5. Infinitesimal differential geometry \(199\)
 6. A simplifying remark \(201\)

Chapter 5. Formal moduli \(203\)
 Introduction \(203\)
 1. Formal moduli problems \(206\)
 2. Groupoids \(213\)

Chapter 6. Lie algebras and co-commutative co-algebras \(223\)
 Introduction \(223\)
 1. Algebras over operads \(226\)
 2. Koszul duality \(239\)
 3. Associative algebras \(240\)
 4. Lie algebras and co-commutative co-algebras \(253\)
 5. The universal enveloping algebra \(260\)
 6. The universal envelope via loops \(264\)
 7. Modules \(267\)
 A. Proof of Theorem 2.9.4 \(276\)
 B. Proof of the PBW theorem \(280\)
 C. Commutative co-algebras and bialgebras \(282\)

Chapter 7. Formal groups and Lie algebras \(285\)
 Introduction \(285\)
 1. Formal moduli problems and co-algebras \(290\)
 2. Inf-affineness \(290\)
 3. From formal groups to Lie algebras \(303\)
 4. Proof of Theorem 3.1.4 \(314\)
 5. Modules over formal groups and Lie algebras \(318\)
 6. Actions of formal groups on prestacks \(322\)

Chapter 8. Lie algebroids \(327\)
 Introduction \(327\)
 1. The inertia group \(331\)
CONTENTS

2. Lie algebroids: definition and basic pieces of structure 334
3. Examples of Lie algebroids 338
4. Modules over Lie algebroids and the universal enveloping algebra 342
5. Square-zero extensions and Lie algebroids 345
6. IndCoh of a square-zero extension 354
7. Global sections of a Lie algebroid 360
8. Lie algebroids as modules over a monad 364
9. Relation to classical Lie algebroids 370
A. An application: ind-coherent sheaves on push-outs 376

Chapter 9. Infinitesimal differential geometry 381
Introduction 381
1. Filtrations and the monoid A^1 387
2. Deformation to the normal bundle 393
3. The canonical filtration on a Lie algebroid 400
4. The case of groups 404
5. Infinitesimal neighborhoods 407
6. Filtration on the universal enveloping algebra of a Lie algebroid 414
7. The case of a regular embedding 418
A. Weil restriction of scalars 425

Bibliography 429

Index of Notations 431

Index 435
Preface

Kто я? Не каменщик прямой,
Не кровельщик, не корабельщик, –
Двурушик я, с двойной душой,
Я ночи друг, я дни застрельщик.
O. Mandelstam. Грифельная ода.

Who am I? Not a straightforward mason,
Not a roofer, not a shipbuilder, –
I am a double agent, with a duplicitous soul,
I am a friend of the night, a skirmisher of the day.
O. Mandelstam. The Graphite Ode.

1. What is the object of study in this book?

The main unifying theme of the two volumes of this book is the notion of ind-coherent sheaf, or rather, categories of such on various geometric objects. In this section we will try to explain what ind-coherent sheaves are and why we need this notion.

1.1. Who are we? Let us start with a disclosure: this book is not really about algebraic geometry.

Or, rather, in writing this book, its authors do not act as real algebraic geometers. This is because the latter are ultimately interested in geometric objects that are constrained/enriched by the algebraicity requirement.

We, however, use algebraic geometry as a tool: this book is written with a view toward applications to representation theory.

It just so happens that algebraic geometry is a very (perhaps, even the most) convenient way to formulate representation-theoretic problems of categorical nature. This is not surprising, since, after all, algebraic groups are themselves objects of algebraic geometry.

The most basic example of how one embeds representation theory into algebraic geometry is this: take the category $\text{Rep}(G)$ of algebraic representations of a linear algebraic group G. Algebraic geometry allows us to define/interpret $\text{Rep}(G)$ as the category of quasi-coherent sheaves on the classifying stack BG.

The advantage of this point of view is that many natural constructions associated with the category of representations are already contained in the package of ‘quasi-coherent sheaves on stacks’. For example, the functors of restriction and
coinduction along a group homomorphism $G' \to G$ are interpreted as the functors of inverse and direct image along the map of stacks

$$BG' \to BG.$$

But what is the advantage of this point of view? Why not stick to the explicit constructions of all the required functors within representation theory?

The reason is that ‘explicit constructions’ involve ‘explicit formulas’, and once we move to the world of higher categories (which we inevitably will, in order to meet the needs of modern representation theory), we will find ourselves in trouble: constructions in higher category theory are intolerant of explicit formulas (for an example of a construction that uses formulas see point (III) in Sect. 1.5 below). Rather, when dealing with higher categories, there is a fairly limited package of constructions that we are allowed to perform (see Volume I, Chapter 1, Sects. 1 and 2 where some of these constructions are listed), and algebraic geometry seems to contain a large chunk (if not all) of this package.

1.2. A stab in the back. Jumping ahead slightly, suppose for example that we want to interpret algebro-geometrically the category g-mod of modules over a Lie algebra g.

The first question is: why would one want to do that? Namely, take the universal enveloping algebra $U(g)$ and interpret g-mod as modules over $U(g)$. Why should one mess with algebraic geometry if all we want is the category of modules over an associative algebra?

But let us say that we have already accepted the fact that we want to interpret $\text{Rep}(G)$ as $\text{QCoh}(BG)$. If we now want to consider restriction functor

$$(1.1) \quad \text{Rep}(G) \to g\text{-mod},$$

(where g is the Lie algebra of G), we will need to give an algebro-geometric interpretation of $g\text{-mod}$ as well.

If g is a usual (=classical) Lie algebra, one can consider the associated formal group, denoted in the book $\exp(g)$, and one can show (see Chapter 7, Sect. 5) that the category $g\text{-mod}$ is canonically equivalent to $\text{QCoh}(B(\exp(g)))$, the category of quasi-coherent sheaves on the classifying stack of $\exp(g)$. With this interpretation of $g\text{-mod}$, the functor (1.1) is simply the pullback functor along the map

$$B(\exp(g)) \to BG,$$

induced by the (obvious) map $\exp(g) \to G$.

Let us be given a homomorphism of Lie algebras $\alpha : g' \to g$. The functor of restriction $g\text{-mod} \to g'\text{-mod}$ still corresponds to the pullback functor along the corresponding morphism

$$(1.2) \quad B(\exp(g')) \xrightarrow{f_*} B(\exp(g)).$$

1. What we call ‘coinduction’ is the functor right adjoint to restriction, i.e., it is the usual representation-theoretic operation.

2. One can (reasonably) get somewhat uneasy from the suggestion to consider the category of quasi-coherent sheaves on the classifying stack of a formal group, but, in fact, this is a legitimate operation.
1. WHAT IS THE OBJECT OF STUDY IN THIS BOOK?

Note, however, that when we talk about representations of Lie algebras, the natural functor in the opposite direction is induction, i.e., the left adjoint to restriction. And being a left adjoint, it cannot correspond to the direct image along \(\text{induction} \) (whatever the functor of direct image is, it is the right adjoint of pullback).

This inconsistency leads to the appearance of ind-coherent sheaves.

1.3. The birth of IndCoh.

What happens is that, although we can interpret \(g \)-mod as \(\text{QCoh}(B(\exp(g))) \), a more natural interpretation is as \(\text{IndCoh}(B(\exp(g))) \). The symbol 'IndCoh' will of course be explained in the sequel. It just so happens that for a classical Lie algebra, the categories \(\text{QCoh}(B(\exp(g))) \) and \(\text{IndCoh}(B(\exp(g))) \) are equivalent (as \(\text{QCoh}(BG) \) is equivalent to \(\text{IndCoh}(BG) \)).

Now, the functor of restriction along the homomorphism \(\alpha \) will be given by the functor

\[
(f_\alpha)_!: \text{IndCoh}(B(\exp(g'))) \to \text{IndCoh}(B(\exp(g)));
\]

this is the !-pullback functor, which is the raison d'être for the theory of IndCoh.

However, the functor of induction \(g'\)-mod \(\to g\)-mod will be the functor of \(\text{IndCoh} \) direct image

\[
(f_\alpha)_*^{\text{IndCoh}} : \text{IndCoh}(B(\exp(g'))) \to \text{IndCoh}(B(\exp(g))),
\]

which is the left adjoint of \((f_\alpha)_! \). This adjunction is due to the fact that the morphism \(f_\alpha \) is, in an appropriate sense, proper.

Now, even though, as was mentioned above, for a usual Lie algebra \(g \), the categories

\[
\text{QCoh}(B(\exp(g))) \text{ and } \text{IndCoh}(B(\exp(g)))
\]

are equivalent, the functor \((f_\alpha)_*^{\text{IndCoh}} \) of (1.3) is as different as can be from the functor

\[
(f_\alpha)_* : \text{QCoh}(B(\exp(g'))) \to \text{QCoh}(B(\exp(g)))
\]

(the latter is quite ill-behaved).

For an analytically minded reader let us also offer the following (albeit somewhat loose) analogy: \(\text{QCoh}(-) \) behaves more like functions on a space, while \(\text{IndCoh}(-) \) behaves more like measures on the same space.

1.4. What can we do with ind-coherent sheaves? As we saw in the example of Lie algebras, the kind of geometric objects on which we will want to consider IndCoh (e.g., \(B(\exp(g)) \)) are quite a bit more general than the usual objects on which we consider quasi-coherent sheaves, the latter being schemes (or algebraic stacks).

A natural class of algebro-geometric objects for which IndCoh is defined is that of inf-schemes, introduced and studied in Volume II, Part I of the book. This class includes all schemes, but also formal schemes, as well as classifying spaces of formal groups, etc. In addition, if \(X \) is a scheme, its de Rham prestack\(^3\) \(X_{\text{dR}} \) is an inf-scheme, and ind-coherent sheaves on \(X_{\text{dR}} \) will be the same as crystals (a.k.a. D-modules) on \(X \).

\(^3\)The de Rham prestack of a given scheme \(X \) is obtained by ‘modding’ out \(X \) by the groupoid of its infinitesimal symmetries, see Chapter 4, Sect. 1.1.1 for a precise definition.
Thus, for any inf-scheme \mathcal{X} we have a well-defined category $\text{IndCoh}(\mathcal{X})$. For any map of inf-schemes $f : \mathcal{X}' \to \mathcal{X}$ we have functors
\[f_*^\text{IndCoh} : \text{IndCoh}(\mathcal{X}') \to \text{IndCoh}(\mathcal{X}) \]
and
\[f^! : \text{IndCoh}(\mathcal{X}) \to \text{IndCoh}(\mathcal{X}'). \]
Moreover, if f is proper, then the functors $(f_*^\text{IndCoh}, f^!)$ form an adjoint pair.

Why should we be happy to have this? The reason is that this is exactly the kind of operations one needs in geometric representation theory.

1.5. Some examples of what we can do.

(I) Take \mathcal{X}' to be a scheme X and $\mathcal{X} = X_{dR}$, with f being the canonical projection $X \to X_{dR}$. Then the adjoint pair
\[f_*^\text{IndCoh} : \text{IndCoh}(X) \rightleftarrows \text{IndCoh}(X_{dR}) : f^! \]
identifies with the pair
\[\text{ind}_{D\text{-mod}} : \text{IndCoh}(X) \rightleftarrows \text{D-mod}(X) : \text{ind}_{D\text{-mod}}, \]
corresponding to forgetting and inducing the (right) D-module structure (as we shall see shortly in Sect. 2.3, for a scheme X, the category $\text{IndCoh}(X)$ is only slightly different from the usual category of quasi-coherent sheaves $\text{QCoh}(X)$).

(II) Suppose we have a morphism of schemes $g : Y \to X$ and set $Y_{dR} \xrightarrow{f = g_{dR}} X_{dR}$.

The corresponding functors
\[f_*^\text{IndCoh} : \text{IndCoh}(Y_{dR}) \to \text{IndCoh}(X_{dR}) \text{ and } f^! : \text{IndCoh}(X_{dR}) \to \text{IndCoh}(Y_{dR}) \]
identify with the functors
\[g_* : \text{Dmod}(Y) \to \text{Dmod}(X) \text{ and } g^! : \text{Dmod}(X) \to \text{Dmod}(Y) \]
of D-module (a.k.a. de Rham) push-forward and pullback, respectively.

Note that while the operation of pullback of (right) D-modules corresponds to $!$-pullback on the underlying O-module, the operation of D-module push-forward is less straightforward as it involves taking fiber-wise de Rham cohomology. So, the operation of the IndCoh direct image does something quite non-trivial in this case.

(III) Suppose we have a Lie algebra \mathfrak{g} that acts (by vector fields) on a scheme X. In this case we can create a diagram
\[B(\exp(\mathfrak{g})) \xrightarrow{f_1} B_X(\exp(\mathfrak{g})) \xrightarrow{f_2} X_{dR}, \]
where $B_X(\exp(\mathfrak{g}))$ is an inf-scheme, which is the quotient of X by the action of \mathfrak{g}.

Then the composite functor
\[(f_2)_*^\text{IndCoh} \circ (f_1)^! : \text{IndCoh}(B(\exp(\mathfrak{g}))) \to \text{IndCoh}(X_{dR}) \]
identifies with the localization functor
\[\mathfrak{g}\text{-mod} \to \text{Dmod}(X). \]

4Properness means the following: to every inf-scheme there corresponds its underlying reduced scheme, and a map between inf-schemes is proper if and only if the map of the underlying reduced schemes is proper in the usual sense.
This third example should be a particularly convincing one: the localization functor, which is usually defined by an explicit formula
\[M \mapsto D_X \otimes_{U(\emptyset)} M, \]
is given here by the general formalism.

2. How do we do we construct the theory of IndCoh?

Whatever inf-schemes are, for an individual inf-scheme \(\mathcal{X} \), the category IndCoh(\(\mathcal{X} \)) is bootstrapped from the corresponding categories for schemes by the following procedure:
\[
\text{IndCoh}(\mathcal{X}) = \lim_{Z \to \mathcal{X}} \text{IndCoh}(Z).
\]

Some explanations are in order.

2.1. What do we mean by limit?

(a) In formula (2.1), the symbol ‘lim’ appears. This is the limit of categories, but not quite. If we were to literally take the limit in the category of categories, we would obtain utter nonsense. This is a familiar phenomenon: the (literally understood) limit of, say, triangulated categories is not well-behaved. A well-known example of this is that the derived category of sheaves on a space cannot be recovered from the corresponding categories on an open cover. However, this can be remedied if instead of the triangulated categories we consider their higher categorical enhancements, i.e., the corresponding \(\infty \)-categories.

So, what we actually mean by ‘limit’, is the limit taken in the \(\infty \)-category of \(\infty \)-categories. That is, in the preceding discussion, all our IndCoh(−) are actually \(\infty \)-categories. In our case, they have a bit more structure: they are \(k \)-linear over a fixed ground field \(k \); we call them DG categories, and denote the \(\infty \)-category of such by DGCat.

Thus, \(\infty \)-categories inevitably appear in this book.

(b) The indexing (\(\infty \))-category appearing in the expression (2.1) is the (\(\infty \))-category opposite to that of schemes \(Z \) equipped with a map \(Z \to \mathcal{X} \) to our inf-scheme \(\mathcal{X} \). The transition functors are given by
\[
(Z' \xrightarrow{f} Z) \in \text{Sch}_{/\mathcal{X}} \leadsto \text{IndCoh}(Z) \xrightarrow{f^!} \text{IndCoh}(Z').
\]

So, in order for the expression in (2.1) to make sense we need to make the assignment
\[
(2.2) \quad Z \leadsto \text{IndCoh}(Z), \quad (Z' \xrightarrow{f} Z) \leadsto (\text{IndCoh}(Z) \xrightarrow{f^!} \text{IndCoh}(Z'))
\]
into a functor of \(\infty \)-categories
\[
(2.3) \quad \text{IndCoh}_{\text{Sch}}^!: (\text{Sch})^{\text{op}} \to \text{DGCat}.
\]

To that end, before we proceed any further, we need to explain what the DG category IndCoh(\(Z \)) is for a scheme \(Z \).

For a scheme \(Z \), the category IndCoh(\(Z \)) will be almost the same as QCoh(\(Z \)). The former is obtained from the latter by a renormalization procedure, whose nature we shall now explain.
2.2. Why renormalize? Keeping in mind the examples of \text{Rep}(G) and \text{g}-\text{mod}, it is natural to expect that the assignment (2.2) (for schemes, and then also for inf-schemes) should have the following properties:

(i) For every scheme \(Z \), the DG category \text{IndCoh}(Z) should contain infinite direct sums;

(ii) For a map \(Z' \xrightarrow{f} Z \), the functor \text{IndCoh}(Z) \xrightarrow{f^!} \text{IndCoh}(Z') should preserve infinite direct sums.

This means that the functor (2.3) takes values in the subcategory of \text{DGCat}, where we allow as objects only DG categories satisfying (i)\(^5\) and as 1-morphisms only functors that satisfy (ii)\(^6\).

Let us first try to make this work with the usual \text{QCoh}. We refer the reader to Volume I, Chapter 3, where the DG category \text{QCoh}(X) is introduced for an arbitrary prestack, and in particular a scheme. However, for a scheme \(Z \), whatever the DG category \text{QCoh}(Z) is, its homotopy category (which is a triangulated category) is the usual (unbounded) derived category of quasi-coherent sheaves on \(Z \).

Suppose we have a map of schemes \(Z' \xrightarrow{f} Z \). The construction of the \(f^! \)-pullback functor

\[f^! : \text{QCoh}(Z) \to \text{QCoh}(Z') \]

is quite complicated, except when \(f \) is proper. In the latter case, \(f^! \), which from now on we will denote by \(f^!_{\text{QCoh}} \), is defined to be the \textit{right adjoint} of

\[f_* : \text{QCoh}(Z') \to \text{QCoh}(Z). \]

The only problem is that the above functor \(f^!_{\text{QCoh}} \) \textit{does not} preserve infinite direct sums. The simplest example of a morphism for which this happens is

\[f : \text{Spec}(k) \to \text{Spec}(k[t]/t^2) \]

(or the embedding of a \textit{singular} point into any scheme).

The reason for the failure to preserve infinite direct sums is this: the left adjoint of \(f^!_{\text{QCoh}} \), i.e., \(f_* \), \textit{does not} preserve compactness. Indeed, \(f_* \) does not necessarily send \textit{perfect complexes} on \(Z' \) to perfect complexes on \(Z \), unless \(f \) is of finite Tor-dimension\(^7\).

So, our attempt with \text{QCoh} fails (ii) above.

2.3. Ind-coherent sheaves on a scheme. The nature of the renormalization procedure that produces \text{IndCoh}(Z) out of \text{QCoh}(Z) is to force (ii) from Sect. 2.2 "by hand".

\(^5\)Such DG categories are called \textit{cocomplete}.
\(^6\)Such functors are called \textit{continuous}.
\(^7\)We remark that a similar phenomenon, where instead of the category \text{QCoh}(\text{Spec}(k[t]/t^2)) = k[t]/t^2-\text{mod} we have the category of representations of a finite group, leads to the notion of Tate cohomology: the trivial representation on \(Z \) is \textit{not} a compact object in the category of representations.
As we just saw, the problem with $f_*^!$, QCoh was that its left adjoint f_* did not send the corresponding subcategories of perfect complexes to one another. However, f_* sends the subcategory

$$\text{Coh}(Z') \subset \text{QCoh}(Z')$$

to

$$\text{Coh}(Z) \subset \text{QCoh}(Z),$$

where $\text{Coh}(-)$ denotes the subcategory of bounded complexes, whose cohomology sheaves are coherent (as opposed to quasi-coherent).

The category $\text{IndCoh}(Z)$ is defined as the ind-completion of $\text{Coh}(Z)$ (see Volume I, Chapter 1, Sect. 7.2 for what this means). The functor f_* gives rise to a functor $\text{Coh}(Z') \to \text{Coh}(Z)$, and ind-extending we obtain a functor

$$f_*^{\text{IndCoh}} : \text{IndCoh}(Z') \to \text{IndCoh}(Z).$$

Its right adjoint, denoted $f^! : \text{IndCoh}(Z) \to \text{IndCoh}(Z')$ satisfies (ii) from Sect. 2.2.

Are we done? Far from it. First, we need to define the functor

$$f_*^{\text{IndCoh}} : \text{IndCoh}(Z') \to \text{IndCoh}(Z)$$

for a morphism f that is not necessarily proper. This will not be difficult, and will be done by appealing to t-structures, see Sect. 2.4 below.

What is much more serious is to define $f^!$ for any f. More than that, we need $f^!$ not just for an individual f, but we need the data of (2.2) to be a functor of ∞-categories as in (2.3). Roughly a third of the work in this book goes into the construction of the functor (2.3); we will comment on the nature of this work in Sect. 2.5 and then in Sect. 3 below.

2.4. In what sense is IndCoh a ‘renormalization’ of QCoh? The tautological embedding $\text{Coh}(Z) \to \text{QCoh}(Z)$ induces, by ind-extension, a functor

$$\Psi_Z : \text{IndCoh}(Z) \to \text{QCoh}(Z).$$

The usual t-structure on the DG category $\text{Coh}(Z)$ induces one on $\text{IndCoh}(Z)$. The key feature of the functor Ψ_Z is that it is t-exact. Moreover, for every fixed n, the resulting functor

$$\text{IndCoh}(Z)^{\geq -n} \to \text{QCoh}(Z)^{\geq -n}$$

is an equivalence. The reason for this is that any coherent complex can be approximated by a perfect one up to something in $\text{Coh}(Z)^{< -n}$ for any given n.

In other words, the difference between $\text{IndCoh}(Z)$ and $\text{QCoh}(Z)$ occurs ‘somewhere at $-\infty$’. So, this difference can only become tangible in the finer questions of homological algebra (such as convergence of spectral sequences).

However, we do need to address such questions adequately if we want to have a functioning theory, and for the kind of applications we have in mind (see Sect. 1.5 above) this necessitates working with IndCoh rather than QCoh.

As an illustration of how the theory of IndCoh takes something very familiar and unravels it to something non-trivial, consider the IndCoh direct image functor.

8But the functor Ψ_Z is an equivalence on all of $\text{IndCoh}(Z)$ if and only if Z is smooth.
In the case of schemes, for a morphism \(f : Z' \to Z \), the functor
\[
f_*^{\text{IndCoh}} : \text{IndCoh}(Z') \to \text{IndCoh}(Z)
\]
does 'little new' as compared to the usual
\[
f_* : \text{QCoh}(Z') \to \text{QCoh}(Z).
\]
Namely, \(f_*^{\text{IndCoh}} \) is the unique functor that preserves infinite direct sums and makes the diagram
\[
\begin{array}{ccc}
\text{IndCoh}(Z')^{\geq -n} & \xrightarrow{\Psi_{Z'}} & \text{QCoh}(Z')^{\geq -n} \\
\downarrow f_*^{\text{IndCoh}} & & \downarrow f_* \\
\text{IndCoh}(Z)^{\geq -n} & \xrightarrow{\Psi} & \text{QCoh}(Z)^{\geq -n}
\end{array}
\]
commute for every \(n \).

However, as was already mentioned, once we extend the formalism of IndCoh direct image to inf-schemes, we will in particular obtain the de Rham direct image functor. So, it is in the world of inf-schemes that IndCoh shows its full strength.

2.5. Construction of the \(!\)-pullback functor. As has been mentioned already, a major component of work in this book is the construction of the functor
\[
\text{IndCoh}^!_{\text{Sch}} : (\text{Sch})^{\text{op}} \to \text{DGCat}
\]
of (2.3).

We already know what IndCoh\((Z)\) is for an individual scheme. We now need to extend it to morphisms.

For a morphism \(f : Z' \to Z \), we can factor it as
\[
Z' \xrightarrow{f_1} Z' \xrightarrow{f_2} Z,
\]
where \(f_1 \) is an open embedding and \(f_2 \) is proper. We then define
\[
f^! : \text{IndCoh}(Z) \to \text{IndCoh}(Z')
\]
to be
\[
f^!_1 \circ f^!_2,
\]
where
(i) \(f^!_2 \) is the right adjoint of \((f_2)_*^{\text{IndCoh}}\);
(ii) \(f^!_1 \) is the left adjoint of \((f_1)_*^{\text{IndCoh}}\).

Of course, in order to have \(f^! \) as a well-defined functor, we need to show that its definition is independent of the factorization of \(f \) as in (2.4). Then we will have to show that the definition is compatible with compositions of morphisms. But this is only the tip of the iceberg.

Since we want to have a functor between \(\infty \)-categories, we need to supply the assignment
\[
f \sim f^!
\]
with a homotopy-coherent system of compatibilities for \(n \)-fold compositions of morphisms, a task which appears infeasible to do 'by hand'.
What we do instead is we prove an existence and uniqueness theorem... not for (2.3), but rather for a more ambitious piece of structure. We refer the reader to Volume I, Chapter 5, Proposition 2.1.4 for the precise formulation. Here we will only say that, in addition to (2.3), this structure contains the data of a functor

\[\text{IndCoh} : \text{Sch} \to \text{DGCat}, \]

\[Z \mapsto \text{IndCoh}(Z), \quad (Z' \xrightarrow{f} Z) \mapsto (\text{IndCoh}(Z') \xrightarrow{f^*} \text{IndCoh}(Z)), \]

as well as compatibility between (2.3) and (2.5).

The latter means that whenever we have a Cartesian square

\[\begin{array}{ccc}
Z'_1 & \xrightarrow{g'} & Z' \\
\downarrow f_1 & & \downarrow f \\
Z_1 & \xrightarrow{g} & Z
\end{array} \]

(2.6)

there is a canonical isomorphism of functors, called base change:

\[(f_1)^{\text{IndCoh}}_* \circ (g')^! \simeq g^! \circ f^{\text{IndCoh}}_*. \]

(2.7)

2.6. Enter DAG. The appearance of the Cartesian square (2.6) heralds another piece of ‘bad news’. Namely, \(Z'_1 \) must be the fiber product \(Z_1 \times_Z Z' \).

But what category should we take this fiber product in? If we look at the example

\[\begin{array}{ccc}
\text{pt} \times_{\mathbb{A}^1} \text{pt} & \to & \text{pt} \\
\downarrow & & \downarrow \\
\text{pt} & \to & \mathbb{A}^1,
\end{array} \]

(here \(\text{pt} = \text{Spec}(k), \mathbb{A}^1 = \text{Spec}(k[t]) \)), we will see that the fiber product \(\text{pt} \times_{\mathbb{A}^1} \text{pt} \)

cannot be taken to be the point-scheme, i.e., it cannot be the fiber product in the category of usual (=classical) schemes. Rather, we need to take

\[\text{pt} \times_{\mathbb{A}^1} \text{pt} = \text{Spec}(k \otimes_{k[t]} k), \]

where the tensor product is understood in the derived sense, i.e.,

\[k \otimes_{k[t]} k = k[\epsilon], \quad \deg(\epsilon) = -1. \]

This is to say that in building the theory of \(\text{IndCoh} \), we cannot stay with classical schemes, but rather need to enlarge our world to that of derived algebraic geometry.

So, unless the reader has already guessed this, in all the previous discussion, the word ‘scheme’ had to be understood as ‘derived scheme’ (although in the main body of the book we say just ‘scheme’, because everything is derived).

However, this is not really ‘bad news’. Since we are already forced to work with \(\infty \)-categories, passing from classical algebraic geometry to DAG does not add

9Technically, for whatever has to do with \(\text{IndCoh} \), we need to add the adjective ‘laft’='locally almost of finite type', see Volume I, Chapter 2, Sect. 3.5 for what this means.
a new level of complexity. But it does add a lot of new techniques, for example in anything that has to do with deformation theory (see Chapter 1).

Moreover, many objects that appear in geometric representation theory naturally belong to DAG (e.g., Springer fibers, moduli of local systems on a curve, moduli of vector bundles on a surface). That is, these objects are not classical, i.e., we cannot ignore their derived structure if we want to study their scheme-theoretic (as opposed to topological) properties. So, we would have wanted to do DAG in any case.

Here are two particular examples:

(I) Consider the category of D-modules (resp., perverse) sheaves on the double quotient

$$I\backslash G((t))/I,$$

where G is a connected reductive group, $G((t))$ is the corresponding loop group (considered as an ind-scheme) and $I \subset G((t))$ is the Iwahori subgroup. Then Bezrukavnikov’s theory (see [Bez]) identifies this category with the category of ad-equivariant ind-coherent (resp., coherent) sheaves on the Steinberg scheme (for the Langlands dual group). But what do we mean by the Steinberg scheme? By definition, this is the fiber product

$$\mathcal{N} \times \tilde{\mathcal{N}},$$

where \mathcal{N} is the Springer resolution of the nilpotent cone. However, in order for this equivalence to hold, the fiber product in (2.8) needs be understood in the derived sense.

(II) Let X be a smooth and complete curve. Let $\text{Pic}(X)$ be the Picard stack of X, i.e., the stack parameterizing line bundles on X. Let $\text{LocSys}(X)$ be the stack parameterizing 1-dimensional local systems on X. The Fourier-Mukai-Laumon transform defines an equivalence

$$\text{Dmod}(\text{Pic}(X)) \cong \text{QCoh}(\text{LocSys}(X)).$$

However, in order for this equivalence to hold, we need to understand $\text{LocSys}(X)$ as a derived stack.

2.7. Back to inf-schemes. The above was a somewhat lengthy detour into the constructions of the theory of IndCoh on schemes. Now, if \mathcal{X} is an inf-scheme, the category $\text{IndCoh}(\mathcal{X})$ is defined by the formula (2.1).

Thus, informally, an object $\mathcal{F} \in \text{IndCoh}(\mathcal{X})$ is a family of assignments

$$(Z \xrightarrow{\sim} \mathcal{X}) \rightsquigarrow \mathcal{F}_{Z,x} \in \text{IndCoh}(Z)$$

(here Z is a scheme) plus

$$(Z' \xrightarrow{f} Z) \in \text{Sch}_{/\mathcal{X}} \rightsquigarrow f^*(\mathcal{F}_{Z,x}) = \mathcal{F}_{Z',x'},$$

along with a homotopy-coherent compatibility data for compositions of morphisms.

For a map $g: \mathcal{X}' \to \mathcal{X}$, the functor

$$g^! : \text{IndCoh}(\mathcal{X}) \to \text{IndCoh}(\mathcal{X}')$$
3. WHAT IS ACTUALLY DONE IN THIS BOOK?

is essentially built into the construction. Recall, however, that our goal is to also have the functor

$$g^*_{\text{IndCoh}} : \text{IndCoh}(X') \to \text{IndCoh}(X).$$

The construction of the latter requires some work (which occupies most of Volume II, Chapter 3). What we show is that there exists a unique system of such functors such that for every commutative (but not necessarily Cartesian) diagram

$$\begin{array}{ccc}
Z' & \xrightarrow{i'} & X' \\
\downarrow f & & \downarrow g \\
Z & \xrightarrow{i} & X
\end{array}$$

with Z, Z' being schemes and the morphisms i, i' proper, we have an isomorphism

$$g^*_{\text{IndCoh}} \circ (i')^*_{\text{IndCoh}} \simeq i^*_{\text{IndCoh}} \circ f^*_{\text{IndCoh}},$$

where i^*_{IndCoh} (resp., $(i')^*_{\text{IndCoh}}$) is the left adjoint of i' (resp., $(i')^!$).

Amazingly, this procedure contains the de Rham push-forward functor as a particular case.

3. What is actually done in this book?

This book consists of two volumes. The first Volume consists of three Parts and an Appendix and the second Volume consists of two Parts. Each Part consists of several Chapters. The Chapters are designed so that they can be read independently from one another (in a sense, each Chapter is structured as a separate paper with its own introduction that explains what this particular chapter does).

Below we will describe the contents of the different Parts and Chapters from several different perspectives: (a) goals and role in the overall project; (b) practical implications; (c) nature of work; (d) logical dependence.

3.1. The contents of the different parts.

Volume I, Part I is called ‘preliminaries’, and it is really preliminaries.

Volume I, Part II builds the theory of IndCoh on schemes.

Volume I, Part III develops the formalism of categories of correspondences; it is used as a ‘black box’ in the key constructions in Volume I, Part II and Volume II, Part I: this is our tool of bootstrapping the theory of IndCoh out of a much smaller amount of data.

Volume I, Appendix provides a sketch of the theory of $(\infty, 2)$-categories, which, in turn, is crucially used in Volume I, Part III.

Volume II, Part I defines the notion of inf-scheme and extends the formalism of IndCoh from schemes to inf-schemes, and in that it achieves one of the two main goals of this book.

Volume II, Part II consists of applications of the theory of IndCoh: we consider formal moduli problems, Lie theory and infinitesimal differential geometry; i.e., exactly the things one needs for geometric representation theory. Making these constructions available is the second of our main goals.
3.2. Which chapters should a practically minded reader be interested in? Not all the Chapters in this book make an enticing read; some are downright technical and tedious. Here is, however, a description of the ‘cool’ things that some of the Chapters do:

None of the material in Volume I, Part I alters the pre-existing state of knowledge. Volume I, Chapters 4 and 5 should not be a difficult read. They construct the theory of IndCoh on schemes (the hard technical work is delegated to Volume I, Chapter 7). The reader cannot avoid reading these chapters if he/she is interested in the applications of IndCoh: one has to have an idea of what IndCoh is in order to use it.

Volume I, Chapter 6 is routine. The only really useful thing from it is the functor

$$
\Upsilon_Z : \text{QCoh}(Z) \to \text{IndCoh}(Z),
$$
given by tensoring an object of $\text{QCoh}(Z)$ with the dualizing complex $\omega_Z \in \text{IndCoh}(Z)$.

Extract this piece of information from Sects. 3.2-3.3 and move on.

Volume I, Chapter 7 introduces the formalism of correspondences. The idea of the category of correspondences is definitely something worth knowing. We recommend the reader to read Sect. 1 in its entirety, then understand the universal property stated in Sect. 3, and finally get an idea about the two extension theorems, proved in Sects. 4 and 5, respectively. These extension theorems are the mechanism by means of which we construct IndCoh as a functor out of the category of correspondences in Volume I, Chapter 5.

Volume I, Chapter 8 proves a rather technical extension theorem, stated in Sect. 1; we do not believe that the reader will gain much by studying its proof. This theorem is key to the extension of IndCoh from schemes to inf-schemes in Volume II, Chapter 3.

Volume I, Chapter 9 is routine, except for one observation, contained in Sects. 2.2-2.3: the natural involution on the category of correspondences encodes duality. In fact, this is how we construct Serre duality on IndCoh(Z) and Verdier duality on $\text{Dmod}(Z)$ where Z is a scheme (or inf-scheme), see Volume I, Chapter 5, Sect. 4.2, Chapter 3, Sect. 6.2, and Chapter 4, Sect. 2.2, respectively.

Volume I, Chapter 10 introduces the notion of $(\infty, 2)$-category and some basic constructions in the theory of $(\infty, 2)$-categories. This Chapter is not very technical (mainly because it omits most proofs) and might be of independent interest.

Volume I, Chapter 11 does a few more technical things in the theory of $(\infty, 2)$-categories. It introduces the $(\infty, 2)$-category of $(\infty, 2)$-categories, denoted 2-Cat. We then discuss the straightening/unstraightening procedure in the $(\infty, 2)$-categorical context and the $(\infty, 2)$-categorical Yoneda lemma. The statements of the results from this Chapter may be of independent interest.

Volume I, Chapter 12 discusses the notion of adjunction in the context of $(\infty, 2)$-categories. The main theorem in this Chapter explicitly constructs the universal adjointable functor (and its variants), and we do believe that this is of interest beyond the particular goals of this book.
Volume II, Chapter 1 is background on deformation theory. The reason it is included in the book is that the notion of inf-scheme is based on deformation theory. However, the reader may find the material in Sects. 1-7 of this Chapter useful without any connection to the contents of the rest of the book.

Volume II, Chapter 2 introduces inf-schemes. It is quite technical. So, the practically minded reader should just understand the definition (Sect. 3.1) and move on.

Volume II, Chapter 3 bootstraps the theory of IndCoh from schemes to inf-schemes. It is not too technical, and should be read (for the same reason as Volume I, Chapters 4 and 5). The hard technical work is delegated to Volume I, Chapter 8.

Volume II, Chapter 4 explains how the theory of crystals/D-modules follows from the theory of IndCoh on inf-schemes. Nothing in this Chapter is very exciting, but it should not be a difficult read either.

Volume II, Chapter 5 is about formal moduli problems. It proves a pretty strong result, namely, the equivalence of categories between formal groupoids acting on a given prestack \mathcal{X} (assumed to admit deformation theory) and formal moduli problems under \mathcal{X}.

Volume II, Chapter 6 is a digression on the general notion of Lie algebra and Koszul duality in a symmetric monoidal DG category. It gives a nice interpretation of the universal enveloping algebra of a Lie algebra of \mathfrak{g} as the homological Chevalley complex of the Lie algebra obtained by looping \mathfrak{g}. The reader may find this Chapter useful and independently interesting.

Volume II, Chapter 7 develops Lie theory in the context of inf-schemes. Namely, it establishes an equivalence of categories between group inf-schemes (over a given base \mathcal{X}) and Lie algebras in IndCoh(\mathcal{X}). One can regard this result as one of the main applications of the theory developed hereto.

Volume II, Chapters 8 and 9 use the theory developed in the preceding Chapters for ‘differential calculus’ in the context of DAG. We discuss Lie algebroids and their universal envelopes, the procedure of deformation to the normal cone, etc. For example, the notion of n-th infinitesimal neighborhood developed in Volume II, Chapter 9 gives rise to the Hodge filtration.

3.3. The nature of the technical work. The substance of mathematical thought in this book can be roughly split into three modes of cerebral activity: (a) making constructions; (b) overcoming difficulties of homotopy-theoretic nature; (c) dealing with issues of convergence.

Mode (a) is hard to categorize or describe in general terms. This is what one calls ‘the fun part’.

Mode (b) is something much better defined: there are certain constructions that are obvious or easy for ordinary categories (e.g., define categories or functors by an explicit procedure), but require some ingenuity in the setting of higher categories. For many readers that would be the least fun part: after all it is clear that the thing should work, the only question is how to make it work without spending another 100 pages.
Mode (c) can be characterized as follows. In low-tech terms it consists of showing that certain spectral sequences converge. In a language better adapted for our needs, it consists of proving that in some given situation we can swap a limit and a colimit (the very idea of IndCoh was born from this mode of thinking). One can say that mode (c) is a sort of analysis within algebra. Some people find it fun.

Here is where the different Chapters stand from the point of view of the above classification:

Volume I, Chapter 1 is (b) and a little of (c).
Volume I, Chapter 2 is (a) and a little of (c).
Volume I, Chapter 3 is (c).
Volume I, Chapter 4 is (a) and (c).
Volume I, Chapter 5 is (a).
Volume I, Chapter 6 is (b).
Volume I, Chapters 7-9 are (b).
Volume I, Chapters 10-12 are (b).
Volume II, Chapter 1 is (a) and a little of (c).
Volume II, Chapter 2 is (a) and a little of (c).
Volume II, Chapter 3 is (a).
Volume II, Chapter 4 is (a).
Volume II, Chapter 5 is (a).
Volume II, Chapter 6 is (c) and a little of (b).
Volume II, Chapter 7 is (c) and a little of (a).
Volume II, Chapters 8 and 9 are (a).

3.4. Logical dependence of chapters. This book is structured so that Volume I prepares the ground and Volume II reaps the fruit. However, below is a scheme of the logical dependence of chapters, where we allow a 5% skip margin (by which we mean that the reader skips certain things and comes back to them when needed).

3.4.1. Volume I, Chapter 1 reviews \(\infty\)-categories and higher algebra. Read it only if you have no prior knowledge of these subjects. In the latter case, here is what you will need in order to understand the constructions in the main body of the book:

Read Sects. 1-2 to get an idea of how to operate with \(\infty\)-categories (this is a basis for everything else in the book).

Read Sects. 5-7 for a summary of stable \(\infty\)-categories: this is what our QCoh(\(\cdot\)) and IndCoh(\(\cdot\)) are; forget on the first pass about the additional structure of \(k\)-linear DG category (the latter is discussed in Sect. 10).

\[\textit{These are things that can be taken on faith without compromising the overall understanding of the material.}\]
Read Sects. 3-4 for a summary of monoidal structures and duality in the context of higher category theory. You will need it for this discussion of Serre duality and for Volume I, Chapter 6.

Sects. 8-9 are about algebra in (symmetric) monoidal stable \(\infty\)-categories. You will need it for Volume II, Part II of the book.

Volume I, Chapter 2 introduces DAG proper. If you have not seen any of it before, read Sect. 1 for the (shockingly general, yet useful) notion of prestack. Every category of geometric objects we will encounter in this book (e.g., (derived) schemes, Artin stacks, inf-schemes, etc.) will be a full subcategory of the \(\infty\)-category of prestacks. Proceed to Sect. 3.1 for the definition of derived schemes. Skip all the rest.

Volume I, Chapter 3 introduces QCoh on prestacks. Even though the main focus of this book is the theory of ind-coherent sheaves, the latter theory takes a significant input and interacts with that of quasi-coherent sheaves. If you have not seen this before, read Sect. 1 and then Sects. 3.1-3.2.

3.4.2. In Volume I, Chapter 4 we develop the elementary aspects of the theory of IndCoh on schemes: we define the DG category \(\text{IndCoh}(Z)\) for an individual scheme \(Z\), construct the IndCoh direct image functor, and also the \(!\)-pullback functor for proper morphisms. This Chapter uses the material from Volume I, Part I mentioned above. You will need the material from this chapter in order to proceed with the reading of the book.

Volume I, Chapter 5 builds on Volume 1, Chapter 4, and accomplishes (modulo the material delegated to Volume I, Chapter 7) one of the main goals of this book. We construct IndCoh as a functor out of the category of correspondences. In particular, we construct the functor \(\Phi\). The material from this Chapter is also needed for the rest of the book.

In Volume I, Chapter 6 we study the interaction between IndCoh and QCoh. For an individual scheme \(Z\) we have an action of QCoh(\(Z\)) (viewed as a monoidal category) on IndCoh(\(Z\)). We study how this action interacts with the formalism of correspondences from Volume I, Chapter 5, and in particular with the operation of \(!\)-pullback. The material in this Chapter uses the formalism of monoidal categories and modules over them from Volume I, Chapter 1, as well as the material from Volume I, Chapter 5. Skipping Volume I, Chapter 6 will not impede your understanding of the rest of the book, so it might be a good idea to do so on the first pass.

3.4.3. Volume I, Part II develops the theory of categories of correspondences. It plays a service role for Volume I, Chapter 6 and Volume II, Chapter 3, and relies on the theory of \((\infty, 2)\)-categories, developed in Volume I, Appendix.

3.4.4. Volume I, Appendix develops the theory of \((\infty, 2)\)-categories. It plays a service role for Volume I, Part III.
Volume I, Chapters 11 and 12 rely on Volume I, Chapter 10, but can be read independently of one another.

3.4.5. Volume II, Chapter 1 introduces deformation theory. It is needed for the definition of inf-schemes and, therefore, for proofs of any results about inf-schemes (that is, for Volume II, Chapter 2). We will also need it for the discussion of formal moduli problems in Volume II, Chapter 5. The prerequisites for Volume II, Chapter 1 are Volume I, Chapters 2 and 3, so it is (almost) independent of the material from Volume I, Part II.

In Volume II, Chapter 2 we introduce inf-schemes and some related notions (ind-schemes, ind-inf-schemes). The material here relies in that of Volume II, Chapter 1, and will be needed in Volume II, Chapter 3.

In Volume II, Chapter 3 we construct the theory of IndCoh on inf-schemes. The material here relies on that from Volume I, Chapter 5 and Volume II, Chapter 2 (and also a tedious general result about correspondences from Volume I, Chapter 8). Thus, Volume II, Chapter 3 achieves one of our goals, the later being making the theory of IndCoh on inf-schemes available. The material from Volume II, Chapter 3 will (of course) be used when will apply the theory of IndCoh, in Volume II, Chapter 4 and 7–9.

In Volume II, Chapter 4 we apply the material from Volume II, Chapter 3 in order to develop a proper framework for crystals (=D-modules), together with the forgetful/induction functors that related D-modules to O-modules. The material from this Chapter will not be used later, except for the extremely useful notion of the de Rham prestack construction $X \rightsquigarrow X_{\text{dR}}$.

3.4.6. In Volume II, Chapter 5 we prove a key result that says that in the category of prestacks that admit deformation theory, the operation of taking the quotient with respect to a formal groupoid is well-defined. The material here relies on that from Volume II, Chapter 1 (at some point we appeal to a proposition from Volume II, Chapter 3, but that can be avoided). So, the main result from Volume II, Chapter 5 is independent of the discussion of IndCoh.

Volume II, Chapter 6 is about Lie algebras (or more general operad algebras) in symmetric monoidal DG categories. It only relies on the material from Volume I, Chapter 1, and is independent of the preceding Chapters of the book (no DAG, no IndCoh). The material from this Chapter will be used for the subsequent Chapters in Volume II, Part II.

3.4.7. A shortcut. As has been mentioned earlier, Volume II, Chapters 7–9 are devoted to applications of IndCoh to ‘differential calculus’. This ‘differential calculus’ occurs on prestacks that admit deformation theory.

If one really wants to use arbitrary such prestacks, one needs the entire machinery of IndCoh provided by Volume II, Chapter 3. However, if one is content with

11Whenever we want to talk about tangent (as opposed to cotangent) spaces, we have to use IndCoh rather than QCoh, and these parts in Volume II, Chapter 1 use the material from Volume I, Chapter 5.
working with inf-schemes (which would suffice for the majority of applications), much less machinery would suffice:

The cofinality result from Chapter 3, Sect. 4.3 implies that we can bypass the entire discussion of correspondences, and only use the material from Volume I, Chapter 4, i.e., IndCoh on schemes and !-pullbacks for proper (in fact, finite) morphisms.

3.4.8. Volume II, Chapters 7–9 form a logical succession. As input from the preceding chapters they use Volume II, Chapter 3 (resp., Volume I, Chapter 5 (see Sect. 3.4.7 above), Volume II, Chapter 1 and Volume II, Chapters 5–6.
Acknowledgements

In writing this book, we owe a particular debt of gratitude to Jacob Lurie for teaching us both the theory of higher categories and derived algebraic geometry. Not less importantly, some of the key constructions in this book originated from his ideas; among them is the concept of the category of correspondences.

We would like to thank V. Drinfeld, J. Francis and S. Raskin for numerous illuminating discussions and suggestions related to this book.

We are grateful to A. Khan and S. Lysenko for pointing out multiple errors as this book was evolving.
Introduction

1. What is done in Volume II?

In this volume, we will apply the theory of IndCoh developed in Volume I to do geometry (more precisely, to do what we understand by ‘doing geometry’).

Namely, we will introduce the class of geometric objects of interest, called inf-schemes (or relative versions thereof), and study the corresponding categories of ind-coherent sheaves. These are exactly the categories that one encounters in representation-theoretic situations.

We will perform various operations with inf-schemes (such as taking the quotient with respect to a groupoid), and we will study what such operations do to the corresponding categories of ind-coherent sheaves.

1.1. As was already mentioned, our basic class of geometric objects is that of inf-schemes, denoted infSch\textsubscript{laft}. Just as any other class of geometric objects in this book, infSch\textsubscript{laft} is a full subcategory in the ambient category of prestacks. I.e., an inf-scheme is a contravariant functor on Sch\textsubscript{aff} that satisfies some conditions (rather than having some additional structure).

As is often the case in algebraic geometry, along with a particular class of objects, there is the corresponding relative notion. I.e., we also introduce what it means for a map of prestacks to be inf-schematic.

What are inf-schemes? The definition is surprisingly simple. These are prestacks (technically, locally almost of finite type) whose underlying reduced prestack is a (reduced) scheme1 that admit deformation theory. The latter is a condition that guarantees reasonable infinitesimal behavior; we refer the reader to Chapter 1 of this volume for the precise definition of what it means to admit deformation theory.

Thus, one can informally say that the class of inf-schemes contains all prestacks that are schemes ‘up to something infinitesimal, but controllable’. For example, all (derived) schemes, the de Rham prestacks of schemes and formal schemes are all examples of inf-schemes.

1.2. As was explained in Volume I, Chapter 5, once we have the theory of IndCoh on schemes (almost of finite type), functorial with respect to the operation of \!\!-pullback, we can extend it to all prestacks (locally almost of finite type). In particular, we obtain the theory of IndCoh on inf-schemes, functorial with respect to \!\!-pullbacks.

1I.e., when we evaluate our prestack on reduced affine schemes, the result is representable by a (reduced) scheme.
We proceed to define the functor of IndCoh-direct image for maps between inf-schemes that satisfies base change with respect to $!$-pullback. Furthermore, this leads to the operation of IndCoh-direct image for \textit{inf-schematic} maps between prestacks (locally almost of finite type).

The IndCoh categories and the functors of $!$-pullback and IndCoh-direct image describe many of representation-theoretic categories and functors between them that arise in practice.

1.3. As an illustration of the utility of inf-schemes, we proceed to develop Lie theory in this context.

Let \mathcal{X} be a base prestack (locally almost of finite type). On the one hand, we consider the category of formal group-objects over \mathcal{Y}. I.e., these are group-objects in the category of prestacks \mathcal{Y} equipped with a map $f : \mathcal{Y} \to \mathcal{X}$, such that f is inf-schematic and induces an isomorphism at the reduced level. Denote this category by $\text{Grp}(\text{FormMod}/\mathcal{X})$.

On the other hand, we consider the category $\text{LieAlg}(\text{IndCoh}(\mathcal{X}))$ of Lie algebra objects in the (symmetric monoidal) category $\text{IndCoh}(\mathcal{X})$. We establish a canonical equivalence

\begin{equation}
\text{Grp}(\text{FormMod}/\mathcal{X}) \simeq \text{LieAlg}(\text{IndCoh}(\mathcal{X})).
\end{equation}

I.e., this is an equivalence between formal groups and Lie algebras in full generality. We can view the equivalence (1.1) as a justification for the notion of inf-scheme (or rather, inf-schematic map): we need those in order to define the category $\text{FormMod}/\mathcal{X}$.

We show that given a group-object $\mathcal{G} \in \text{FormMod}/\mathcal{X}$, one can form its \textit{classifying space},

$$B_{\mathcal{X}}(\mathcal{G}) \in \text{FormMod}/\mathcal{X},$$

which is equipped with a section $s : \mathcal{X} \to B_{\mathcal{X}}(\mathcal{G})$ (i.e., it is pointed), so that \mathcal{G} is recovered as the loop-object of $B_{\mathcal{X}}(\mathcal{G})$ in the category $\text{FormMod}/\mathcal{X}$. The above functor

$$B_{\mathcal{X}} : \text{Grp}(\text{FormMod}/\mathcal{X}) \to \text{Ptd}(\text{FormMod}/\mathcal{X})$$

is equivalence.

We show that there is a canonical equivalence

\begin{equation}
\text{IndCoh}(B_{\mathcal{X}}(\mathcal{G})) \simeq \mathfrak{g}\text{-mod}(\text{IndCoh}(\mathcal{X})),
\end{equation}

where the latter is the category of \mathfrak{g}-modules in the symmetric monoidal category $\text{IndCoh}(\mathcal{X})$, where \mathfrak{g} is the object of $\text{LieAlg}(\text{IndCoh}(\mathcal{X}))$ corresponding to \mathcal{G} via (1.1).

With respect to this equivalence, the functors $s^!$ and s^IndCoh correspond to the forgetful and free module functors for the category of \mathfrak{g}-modules. Moreover, for the natural map $p : B_{\mathcal{X}}(\mathcal{G}) \to \mathcal{X}$, the functors $p^!$ and p^IndCoh correspond to the trivial \mathfrak{g}-module and Lie algebra homology functors, respectively. In short, Lie theory works at the level of representations as it should.
1.4. Let \mathcal{X} be a prestack (locally almost of finite type that admits deformation theory). One of the basic objects involved in doing ‘differential geometry’ on \mathcal{X} is that of Lie algebroid. Here comes an unpleasant surprise, though:

We have not been able to define the notion of Lie algebroid purely algebraically. Namely, the classical definition of Lie algebroid involves some binary operations that satisfy some relations, and we were not able to make sense of those in our context of derived algebraic geometry.

Instead, we define the notion of Lie algebroid via geometry: we set the category $\text{LieAlgbroid}(\mathcal{X})$ to be, by definition, that of formal groupoids over \mathcal{X}. This definition is justified by the equivalence (1.1), which says that Lie algebras are the same as formal groups.

We show that Lie algebroids defined in this way indeed behave in the way we expect Lie algebroids to behave. For example, we have a pair of adjoint functors

$$\text{IndCoh}(\mathcal{X})/T(\mathcal{X}) \rightleftarrows \text{LieAlgbroid}(\mathcal{X}),$$

(here $T(\mathcal{X}) \in \text{IndCoh}(\mathcal{X})$ is the tangent complex of \mathcal{X}), where the right adjoint forgets the algebroid structure, and the left adjoint is the functor of free Lie algebroid.

We also show that the category $\text{LieAlgbroid}(\mathcal{X})$ is equivalent to the category $\text{FormMod}_{\mathcal{X}}$ of formal moduli problems under \mathcal{X}, i.e., to the category of prestacks \mathcal{Y} (locally almost of finite type that admit deformation theory) equipped with a map $f : \mathcal{X} \rightarrow \mathcal{Y}$ such that f is inf-schematic and induces an isomorphism at the reduced level.

For example, we show that under the equivalence

$$\text{LieAlgbroid}(\mathcal{X}) \simeq \text{FormMod}_{\mathcal{X}},$$

the functor of free Lie algebroid corresponds to the functor of square-zero extension.

Generalizing (1.2), we show that if $\mathcal{L} \in \text{LieAlgbroid}(\mathcal{X})$ corresponds to $\mathcal{Y} \in \text{FormMod}_{\mathcal{X}}$, we have a canonical equivalence

$$\text{IndCoh}(\mathcal{Y}) \simeq \mathcal{L}\text{-mod}(\text{IndCoh}(\mathcal{X})),$$

where the left-hand side is the appropriately defined category of objects of $\text{IndCoh}(\mathcal{X})$, equipped with an action of \mathcal{L}.

A basic example of a Lie algebroid on \mathcal{X} is the tangent algebroid $T(\mathcal{X})$, whose underlying ind-coherent sheaf is the tangent complex. The corresponding formal moduli problem under \mathcal{X} is \mathcal{X}_{dR}. By definition, $\text{IndCoh}(\mathcal{X}_{\text{dR}})$ is the category of D-modules on \mathcal{X}. As a consequence of the equivalence (1.4), we obtain that the category of D-modules on \mathcal{X} is given by modules in $\text{IndCoh}(\mathcal{X})$ over the derived version of the ring of differential operators (built as the enveloping algebra of the algebroid $T(\mathcal{X})$).

Another advantage of the theory of ind-coherent sheaves is that a prestack \mathcal{X} (locally almost of finite type that admits deformation theory) admit a tangent complex, which is an object of $\text{IndCoh}(\mathcal{X})$, while the more traditional cotangent complex is an object of the pro-category, and thus is more difficult to work with.
Here is a typical construction from representation theory that uses the theory of Lie algebroids. Let \mathcal{X} be as above, and let \mathfrak{g} be a Lie algebra (i.e., a Lie algebra object in the category Vect of chain complexes of vector spaces over our ground field) that acts on \mathcal{X}. In this case, we can form a Lie algebroid $\mathfrak{g}_\mathcal{X}$ on \mathcal{X}, and a functor
\[\mathfrak{g}\text{-mod}(\text{Vect}) \to \mathfrak{g}_\mathcal{X}\text{-mod}(\text{IndCoh}(\mathcal{X})). \]

Composing with the induction functor for the map $\mathfrak{g}_\mathcal{X} \to \mathcal{F}(\mathcal{X})$ and using the equivalence (1.4), we construct the localization functor
\[\mathfrak{g}\text{-mod}(\text{Vect}) \to \text{IndCoh}(\mathcal{X}_{\text{dR}}) \cong \text{Dmod}(\mathcal{X}). \]

1.5. At the end of this volume, we develop some elements of ‘infinitesimal differential geometry’. Namely, we address the following question:

Many objects of differential-geometric nature come equipped with natural filtrations. For example, we have the filtration on the ring of differential operators (according to the order), or the filtration on a formal completion of a scheme along a subscheme (the n-th infinitesimal neighborhoods). We wish to have similar structures in the general context of prestacks (locally almost of finite type that admit deformation theory). However, as is always the case in higher category theory and derived algebraic geometry, we cannot define these filtrations ‘by hand’.

Instead, we use the following idea: a filtered object (of linear nature) is the same as a family of such objects over \mathbb{A}^1 that is equivariant with respect to the action of \mathbb{G}_m by dilations.

We implement this idea in geometry. Namely, we show that given a $\mathcal{Y} \in \text{FormMod}_{\mathcal{X}/}$, we can canonically construct its deformation to the normal cone, which is a family
\[(1.5) \quad \mathcal{Y}_t \in \text{FormMod}_{\mathcal{X}/}, \quad t \in \mathbb{A}^1, \]
that deforms the original \mathcal{Y} to a vector bundle situation.

We show (which by itself might not be so well-known even in the context of usual algebraic geometry) that this deformation gives rise to all the various filtrations that we are interested in.

In its turn, the deformation (1.5) also needs to be constructed by a functorial procedure (rather than an explicit formula). We construct it using a certain geometric device, explained in Chapter 9, Sect. 2.

2. What do we use from Volume I?

2.1. One thing is unavoidable: we use the language of higher category theory. So, the reader is encouraged to become familiar with the contents of Chapter 1, Sects. 1 and 2 of Volume I.

Here are some of the most essential pieces of notation. For the remainder of this section, all references are to Volume I.

We denote by 1-Cat the $(\infty,1)$-category of $(\infty,1)$-categories, and by Spc its full subcategory that consists of spaces (a.k.a. ∞-groupoids).

For a pair of $(\infty,1)$-categories \mathcal{C} and \mathcal{D}, we let $\text{Funct}(\mathcal{C},\mathcal{D})$ denote the $(\infty,1)$-category of functors between them.
For an \((\infty, 1)\)-category \(C\), and a pair objects \(c_0, c_1 \in C\), we denote by \(\text{Maps}_C(c_0, c_1)\) the space of maps from \(c_0\) to \(c_1\).

2.2. Much of the time, we will work in a linear context, by which we mean the world of DG categories. Note that we only consider ‘large,’ i.e. cocomplete (and in fact, presentable) DG categories. We refer the reader to Chapter 1, Sect. 10 for the definition.

We let \(\text{Vect}\) denote the DG category of chain complexes of vector spaces (over a fixed ground field \(k\), assumed to be of characteristic zero).

Given a pair of DG categories \(C\) and \(D\), we will write \(\text{Funct}(C, D)\) for the DG category of \(k\)-linear functors between them; this clashes with the notation introduced earlier that denoted all functors, but we believe that this is unlikely to lead to confusion.

We write \(\text{Funct}_{\text{cont}}(C, D)\) for the full subcategory of \(\text{Funct}(C, D)\) that consists of continuous (i.e., colimit preserving) functors. We denote by \(\text{DGCat}_{\text{cont}}\) the \((\infty, 1)\)-category formed by DG categories and continuous linear functors between them.

For a given DG category \(C\) and a pair of objects \(c_0, c_1 \in C\), we will write \(\text{Maps}_C(c_0, c_1) \in \text{Vect}\) for the chain complex of maps between them. The objects \(\text{Maps}_C(c_0, c_1) \in \text{Vect}\) and \(\text{Maps}_C(c_0, c_1) \in \text{Spc}\) are related by the Dold-Kan functor, see loc. cit.

For a pair of DG categories \(C\) and \(D\), we denote by \(C \otimes D\) their tensor product.

2.3. The basic notions pertaining to derived algebraic geometry are set up in Chapter 2.

We denote by \(\text{PreStk}\) the \((\infty, 1)\)-category of all prestacks, i.e., accessible functors

\[
(Sch^{\text{aff}})^{\text{op}} \to \text{Spc}.
\]

For this volume, it is of crucial importance to know the definition of the full subcategory

\[
\text{PreStk}_{\text{laft}} \subset \text{PreStk}
\]

that consists of prestacks that are locally almost of finite type, see Chapter 2, Sect. 1.7 for the definition.

Derived schemes are introduced in Chapter 2, Sect. 3; the corresponding category is denoted by \(\text{Sch}\). Henceforth, we will omit the word ‘derived’ and refer to derived schemes as schemes.

For a prestack \(\mathcal{X}\), we denote by \(\text{QCoh}(\mathcal{X})\) the DG category of quasi-coherent sheaves on it; see Chapter 3, Sect. 1 for the definition.
2.4. One cannot read this volume without knowing what ind-coherent sheaves are. For an individual scheme \(X \) (almost of finite type), the category \(\text{IndCoh}(X) \) is defined in Chapter 4, Sect. 1. The basic functoriality is given by the functor of \(\text{IndCoh} \)-direct image

\[
 f^\text{IndCoh}_*: \text{IndCoh}(X) \to \text{IndCoh}(Y),
\]

for a map \(f: X \to Y \), see Chapter 4, Sect. 2.

The machinery of the \(\text{IndCoh} \) functor is fully developed in Chapter 5, where we construct the \(!\)-pullback functor

\[
 f^!: \text{IndCoh}(Y) \to \text{IndCoh}(X),
\]

for \(f \) as above.

We denote by \(\omega_X \in \text{IndCoh}(X) \) the dualizing object, i.e., the pullback of the generator

\[
 k \in \text{Vect} \cong \text{IndCoh}(\text{pt})
\]

under the tautological projection \(X \to \text{pt} \).

The assignment \(X \mapsto \text{IndCoh}(X) \) (with \(!\)-pullbacks) is extended from schemes (almost of finite type) to all of \(\text{PreStk}_{\text{laft}} \) by the procedure of left Kan extension. Moreover, we make \(\text{IndCoh} \) a functor out of the 2-category of correspondences,

\[
 \text{Corr}(\text{PreStk}_{\text{laft}})_{\text{sch} \& \text{proper}}^{\text{sch-qc;all}} \to \text{DGCat}_{\text{cont}}^{2\text{-Cat}}.
\]

In the above formula, \(\text{DGCat}_{\text{cont}}^{2\text{-Cat}} \) is the 2-categorical enhancement of \(\text{DGCat}_{\text{cont}} \), see Chapter 1, Sect. 10.3.9.

One piece of notation from Chapter 6 that the reader might need is the functor

\[
 \Upsilon_\mathcal{X}: \text{QCoh}(\mathcal{X}) \to \text{IndCoh}(\mathcal{X}),
\]

defined for any \(\mathcal{X} \in \text{PreStk}_{\text{laft}} \), and given by tensoring a given object of \(\text{QCoh}(\mathcal{X}) \) by the dualizing object \(\omega_\mathcal{X} \in \text{IndCoh}(\mathcal{X}) \).

2.5. Chapter 7 introduces the category of correspondences. The idea is that given an \((\infty,1)\)-category \(\mathbf{C} \) and three classes of morphisms \(\text{vert}, \text{horiz} \) and \(\text{adm} \), we introduce an \((\infty,2)\)-category \(\text{Corr}(\mathbf{C})_{\text{adm}}^{\text{vert,horiz}} \), whose objects are the same as those of \(\mathbf{C} \), but where 1-morphisms from \(c_0 \) to \(c_1 \) are correspondences

\[
 c_{0,1} \xrightarrow{\alpha} c_0 \quad \xrightarrow{\beta} \quad c_1
\]

where \(\alpha \in \text{horiz} \) and \(\beta \in \text{vert} \). For a pair of correspondences \((c_{0,1},\alpha,\beta)\) and \((c'_{0,1},\alpha',\beta')\), the space of 2-morphisms between them is that of commutative diagrams
For a pair of correspondences \((c_{0,1}, \alpha, \beta)\) and \((c'_{0,1}, \alpha', \beta')\), we want the space of maps between them to be that of commutative diagrams

\[
\begin{array}{c}
\text{c}_{0,1} \\
\downarrow \gamma \\
\text{c}'_{0,1} \\
\downarrow \beta \\
\text{c}_1 \\
\end{array} \xrightarrow{\alpha'} \begin{array}{c}
\text{c}_{0,1} \\
\downarrow \beta \\
\text{c}_0 \\
\end{array} \xrightarrow{\alpha} \begin{array}{c}
\text{c}'_{0,1} \\
\downarrow \gamma \\
\text{c}_1 \\
\end{array}
\]

(2.1)

with \(\gamma \in adm\).

2.6. The use of other notions and notations from Volume I is sporadic and the reader can look it up, using the index of notation of Volume I when needed.
Bibliography

[TV2] B. Toen and G. Vezzosi, *Homotopical Algebraic Geometry-II.*

Index of Notations

A \otimes -, 229

AddFil, 232

\alpha \gamma, 336

anch, 335

Annul(F, \gamma), 357

ass-gr, 241

Assoc^{aug}, 227

AssocAlg^{aug}(O), 227

At(\mathcal{E}), 342

Aut_{\text{inf}}(Y/X), 323

B \Fil, 232

B_{\text{Lie}} X, 307

B \scaled, 235

B_{\text{scaled}}, A_1 \text{left-lax}, 393

B X, 212

B X(R), 218

Bar, 251

Bar(A, -), 268

Bar^{*}, 268

Bar^{*}(A, -), 268

Bar^{\text{enh}}(A, -), 268

Bar^{+}, 252

Bar^{+}_1, 252

Bar^{+}_1/1, 252

Bar^{\text{scaled}}, 252

Bar^{\text{scaled}}, A_1 \text{left-lax}, 395

Bifurc_{\text{scaled}}, 252

Bifurc_{\text{scaled}}, A_1 \text{right-lax}, 395

C(X) G, 389

C(X) G \text{left-lax}, 389

C(X) G \text{right-lax}, 389

C_{\Fil}, 230

C_{Fil}, 230

C_{Fil}^{\geq 0}, 230

C_{Fil}^{< 0}, 230

C_{gr}^{\geq 0}, 230

C_{gr}^{< 0}, 230

can, 335

canfree, 335

Chev, 254

Chev^{+}, 254

Chev^{1/}, 254

Chev_{1/}, 254

Chev_{1/1}, 254

Chev^{\text{enh}}, 335

Coassoc^{aug}, 239

cobar, 252

cobar, 252

coBar^{+}, 252

cobar^{+}/1, 252

cobar^{+}/1/1, 252

cobar^{*}, 252

Coh(X), 125

coinv(h, -), 271

coinv^{\text{enh}}(h, -), 272

Com^{aug}, 227

ComAlg^{aug}(O), 227

ComAlg^{aug, ind-nilp}(O), 227

ComHopf(O), 257

Cofree_{\Fil}, 257

Cofree^{fake}, 250

Cofree^{\text{ind-nil}}, 240

Coh(X), 125

coinv(h, -), 271

coinv^{\text{enh}}(h, -), 272

Com^{aug}, 227

ComAlg^{aug}(O), 227

coprim^{\text{enh, ind-nilp}}, 241

Corr(\text{ind-nilSch}_{\text{left}}), 147

Corr(\text{ind-nilSch}_{\text{left}}), \text{nil-closed}, 146

Corr(\text{ind-nilSch}_{\text{left}}), \text{ind-proper}, 172

Corr(\text{ind-nilSch}_{\text{left}}), \text{ind-proper, open}, 152

Corr(\text{PreStk}_{\text{left}}), \text{ind-nilSch, all}, 153

Corr(\text{PreStk}_{\text{left}}), \text{ind-nilSch, all}, 153

cotan, 333

coTan, 333

cotan_{\text{rel}}, 333

431
INDEX OF NOTATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crys</td>
<td>179</td>
</tr>
<tr>
<td>Dmod</td>
<td>182</td>
</tr>
<tr>
<td>Distr</td>
<td>177</td>
</tr>
<tr>
<td>Diff</td>
<td>150</td>
</tr>
<tr>
<td>Diff*</td>
<td>177</td>
</tr>
<tr>
<td>Dmod*</td>
<td>179</td>
</tr>
<tr>
<td>Dmod*</td>
<td>150</td>
</tr>
<tr>
<td>exp</td>
<td>177</td>
</tr>
<tr>
<td>exp*</td>
<td>184</td>
</tr>
<tr>
<td>exp*</td>
<td>150</td>
</tr>
<tr>
<td>exp</td>
<td>177</td>
</tr>
<tr>
<td>exp*</td>
<td>184</td>
</tr>
<tr>
<td>exp*</td>
<td>150</td>
</tr>
<tr>
<td>f</td>
<td>179</td>
</tr>
<tr>
<td>f</td>
<td>182</td>
</tr>
<tr>
<td>f^1</td>
<td>150</td>
</tr>
<tr>
<td>f^1</td>
<td>185</td>
</tr>
<tr>
<td>f^1</td>
<td>150</td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>res Assoc \to Lie</td>
<td>260</td>
</tr>
<tr>
<td>res Cocom \to Coassoc</td>
<td>244</td>
</tr>
<tr>
<td>res Com \to Assoc</td>
<td>254</td>
</tr>
<tr>
<td>$\star \to \ast$</td>
<td>245</td>
</tr>
<tr>
<td>$S_{\mathcal{X}}$</td>
<td>24</td>
</tr>
<tr>
<td>Scale</td>
<td>393</td>
</tr>
<tr>
<td>Scale $\mathcal{X}_{left-lax}$</td>
<td>393</td>
</tr>
<tr>
<td>$(\mathcal{X}{aff}){nil}$</td>
<td>46</td>
</tr>
<tr>
<td>Sch closed in \mathcal{X}</td>
<td>86</td>
</tr>
<tr>
<td>$(\mathcal{X}{aff}){nil}$ from \mathcal{X}</td>
<td>209</td>
</tr>
<tr>
<td>Sch nil-closed in \mathcal{X}</td>
<td>106</td>
</tr>
<tr>
<td>Sch nil-isom to \mathcal{X}</td>
<td>114</td>
</tr>
<tr>
<td>red \mathcal{X}_{aff}</td>
<td>60</td>
</tr>
<tr>
<td>Sch $\mathcal{X}/$, inf-closed</td>
<td>43</td>
</tr>
<tr>
<td>Seg(\mathcal{X})</td>
<td>215</td>
</tr>
<tr>
<td>Seg$_{aff}(\mathcal{X})$</td>
<td>215</td>
</tr>
<tr>
<td>ShvCat(\mathcal{Z})</td>
<td>416</td>
</tr>
<tr>
<td>Spec$_{inf}$</td>
<td>294</td>
</tr>
<tr>
<td>Spec${inf}(\mathcal{A}){nil}$</td>
<td>293</td>
</tr>
<tr>
<td>Spec$_{inf,ind-nilp}$</td>
<td>296</td>
</tr>
<tr>
<td>SplitSqZ(\mathcal{S})</td>
<td>24</td>
</tr>
<tr>
<td>SqZ(\mathcal{P}_{PreStk})</td>
<td>71</td>
</tr>
<tr>
<td>SqZ(\mathcal{S}_{Sch})</td>
<td>17</td>
</tr>
<tr>
<td>$(\mathcal{S}{Sch}){affine}$</td>
<td>16</td>
</tr>
<tr>
<td>SqZ(\mathcal{X}, \mathcal{I})</td>
<td>71</td>
</tr>
<tr>
<td>Sym</td>
<td>255</td>
</tr>
<tr>
<td>Sym$_{inf}$</td>
<td>256</td>
</tr>
<tr>
<td>T(\mathcal{X})</td>
<td>40</td>
</tr>
<tr>
<td>T(\mathcal{X}/\mathcal{Y})</td>
<td>388</td>
</tr>
<tr>
<td>T$_{\star}^\prime(\mathcal{X})$</td>
<td>25</td>
</tr>
<tr>
<td>T$_{\star}^\prime(\mathcal{X}/\mathcal{Y})$</td>
<td>25</td>
</tr>
<tr>
<td>T$_{\star}^\prime(\mathcal{X}/\mathcal{X}_0)$</td>
<td>28</td>
</tr>
<tr>
<td>Tnaive(\mathcal{X})</td>
<td>370</td>
</tr>
<tr>
<td>T$_{\star}(\mathcal{X})$</td>
<td>36</td>
</tr>
<tr>
<td>triv$_{h}$</td>
<td>244</td>
</tr>
<tr>
<td>triv$_{r}$</td>
<td>244</td>
</tr>
<tr>
<td>triv$_{Q}$</td>
<td>234</td>
</tr>
<tr>
<td>triv$_{Q}^{ind-nilp}$</td>
<td>234</td>
</tr>
<tr>
<td>U(\mathcal{S})</td>
<td>348</td>
</tr>
<tr>
<td>U(\mathcal{S})$_L$</td>
<td>348</td>
</tr>
<tr>
<td>U(\mathcal{S})$_{Fil}$</td>
<td>348</td>
</tr>
<tr>
<td>U$_{Fil}$</td>
<td>261</td>
</tr>
<tr>
<td>Ugr</td>
<td>262</td>
</tr>
<tr>
<td>UHopf</td>
<td>261</td>
</tr>
<tr>
<td>($U^{Hopf})_{Fil}$</td>
<td>261</td>
</tr>
<tr>
<td>$\Upsilon_{Dmod,\mathcal{X}}$</td>
<td>285</td>
</tr>
<tr>
<td>$\Upsilon_{\mathcal{X}_{dir}}$</td>
<td>153</td>
</tr>
<tr>
<td>V$^{deg=n}$</td>
<td>260</td>
</tr>
<tr>
<td>Vect$_{\Sigma}$</td>
<td>260</td>
</tr>
<tr>
<td>Vect$_{f,d}$</td>
<td>250</td>
</tr>
<tr>
<td>Vect$_{X}^{\mathcal{F}}$</td>
<td>257</td>
</tr>
<tr>
<td>VF(\mathcal{X})</td>
<td>360</td>
</tr>
<tr>
<td>Weil$^{\mathcal{Z}{1}}(\mathcal{X}{1})$</td>
<td>424</td>
</tr>
<tr>
<td>$\mathcal{X}_{\mathcal{A}}(n)$</td>
<td>348</td>
</tr>
<tr>
<td>$\mathcal{X}{\mathcal{A}}(n){scaled}$</td>
<td>408</td>
</tr>
<tr>
<td>$\mathcal{X}{\mathcal{A}}{scaled,\mathcal{A}_{1}left-lax}$</td>
<td>408</td>
</tr>
<tr>
<td>$\mathcal{X}{\mathcal{A}}{Y}$</td>
<td>114</td>
</tr>
<tr>
<td>$\mathcal{X}{\mathcal{A}}{exp(free_{Lie}(\mathcal{V}))}$</td>
<td>360</td>
</tr>
<tr>
<td>$\mathcal{Y}{0,\mathcal{A}{1}left-lax}$</td>
<td>400</td>
</tr>
<tr>
<td>red \mathcal{Y}_{0}</td>
<td>60</td>
</tr>
<tr>
<td>$\mathcal{Y}{\mathcal{A}}{scaled}$</td>
<td>398</td>
</tr>
<tr>
<td>$\mathcal{Y}{\mathcal{A}}{scaled,\mathcal{A}_{1}left-lax}$</td>
<td>399</td>
</tr>
<tr>
<td>\mathcal{Z}_{dR}</td>
<td>104</td>
</tr>
</tbody>
</table>
(-n)-connective corepresentable deformation theory, 54
(-n)-connective cotangent complex, 58
(-n)-connective pro-cotangent space, 31
(-n)-connective deformation theory, 54
(-n)-connective pro-cotangent complex, 38
(-n)-connective pro-cotangent space, 31

admits cotangent spaces, 27
admits pro-cotangent spaces, 27
almost of finite type (pro-)quasi-coherent sheaf, 36
anchor map, 535
Atiyah algebroid, 370
augmented associative algebra, 227
augmented commutative algebra, 227
Chevalley functor, 254
classical ind-scheme, 31
classical Lie algebroid, 370
closed embedding, 40
coa-algebra over a co-operad, 243
co-differential map, 41
co-operad, 239
cocommutative bialgebra, 257
cocommutative Hopf algebra, 259
codifferential of x, 41
composition monoidal structure, 227
connective cotangent spaces, 32
connective pro-cotangent spaces, 32
 Benton complex, 57
cotangent space, 27
crystal, 164
de Rham prestack, 110
de Rham resolution, 110
defformation to the normal bundle, 398
differential of x, 11
effective epimorphism, 396
(strict) equivariance, 587
eventually connective cotangent space, 51
eventually connective pro-cotangent space, 51
exponential map, 308
filtered object, 230
formal completion, 110
formal moduli problem over X, 206
formal moduli problem under X, 208
formal vector prestack, 296
formally smooth, 57
given by a surjective system, 54
graded object, 51
Hodge filtration, 51
ind-affine ind-scheme, 87
ind-affine morphism, 87
ind-closed embedding, 87
ind-finite morphism, 88
ind-inf-scheme, 513
ind-nilpotent co-algebra, 259
ind-proper morphism, 88
ind-schematic morphism, 87
ind-scheme, 51
inertia group, 532
inertia monad, 504
inf-affine, 300
inf-scheme, 103
inf-spectrum, 294
infinitesimal inertial group, 532
infinitesimally cohesive, 51
infinitesimally linearizable, 25
Koszul duality, 380
left D-modules, 179
left-lax equivariance, 587
Lie algebroid, 435
Lie operad, 228
locally eventually connective cotangent space, 51
locally eventually connective deformation theory, 54
locally eventually connective pro-cotangent complex, 58
locally eventually connective pro-cotangent space, 51
map of square-zero extensions, 43

\(n \)-coconnective ind-scheme, 81

\(n \)-th infinitesimal neighborhood of \(X \) in \(Y \), 408

nil base change, 133

nil-closed, 60

nil-closed-embedding, 166

nil-isomorphism, 60

(ind)-nil-schematic, 106

nil-schematic ind-scheme, 90

nil-separated, 150

nilpotent embedding, 60

non-negatively filtered object, 230

non-positively filtered object, 230

(unital) operad, 227

\(\mathcal{P} \)-algebras in \(\mathcal{O} \), 227

pro-cotangent complex, 37

pro-cotangent space, 25

pseudo-nilpotent embedding, 60

reduced indscheme, 81

regular embedding of relative codimension \(n \), 119

relative pro-cotangent space, 28

right D-modules, 181

right-lax equivariance, 387

shifted anchor map, 337

smooth of relative dimension \(n \), 121

special monad, 367

split square-zero extension, 24

splitting of a Lie algebroid, 338

square-zero extension, 43

square-zero extension of \(\mathcal{X} \), 71

symmetric sequence, 226

tangent Lie algebroid, 338

tangent space, 30

uniformly eventually connective corepresentable deformation theory, 54

uniformly eventually connective deformation theory, 54

uniformly eventually connective deformation theory, 54

universal envelope of a Lie algebra, 200

Verdier duality, 173

Weil restriction, 1230
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in other parts of mathematics, most prominently in representation theory. This volume develops deformation theory, Lie theory and the theory of algebroids in the context of derived algebraic geometry. To that end, it introduces the notion of inf-scheme, which is an infinitesimal deformation of a scheme and studies ind-coherent sheaves on such. As an application of the general theory, the six-functor formalism for D-modules in derived geometry is obtained.

This volume consists of two parts. The first part introduces the notion of ind-scheme and extends the theory of ind-coherent sheaves to inf-schemes, obtaining the theory of D-modules as an application. The second part establishes the equivalence between formal Lie group(oids) and Lie algebr(oids) in the category of ind-coherent sheaves. This equivalence gives a vast generalization of the equivalence between Lie algebras and formal moduli problems. This theory is applied to study natural filtrations in formal derived geometry generalizing the Hodge filtration.