Topics in Hyperplane Arrangements

Marcelo Aguiar
Swapneel Mahajan

American Mathematical Society
Topics in Hyperplane Arrangements
Topics in Hyperplane Arrangements

Marcelo Aguiar
Swapneel Mahajan
2010 Mathematics Subject Classification. Primary 05E10, 06A07, 06C10, 16G10, 17B01, 20F55, 20M10, 20M25, 52C35; Secondary 05A18, 05A30, 05C25, 05E05, 05E18, 05E45, 18D50, 18G35, 20B30.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-226

Library of Congress Cataloging-in-Publication Data
Names: Aguiar, Marcelo, 1968- | Mahajan, Swapneel Arvind, 1974-
Title: Topics in hyperplane arrangements / Marcelo Aguiar, Swapneel Mahajan.
Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Mathematical surveys and monographs ; volume 226 | Includes bibliographical references and index.
Identifiers: LCCN 2017019308 | ISBN 9781470437114 (alk. paper)
Classification: LCC QA251.3 .A356 2017 | DDC 516/.11–dc23
LC record available at https://lccn.loc.gov/2017019308

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink® service. For more information, please visit: http://www.ams.org/rightslink.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.

© 2017 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
Contents

Preface xi

Introduction xv

Part I.

Chapter 1. Hyperplane arrangements

1.1. Faces 4
1.2. Arrangements of small rank 8
1.3. Flats 9
1.4. Tits monoid and Birkhoff monoid 10
1.5. Bi-faces and Janus monoid 16
1.6. Order-theoretic properties of faces and flats 18
1.7. Arrangements under and over a flat 20
1.8. Cartesian product of arrangements 23
1.9. Generic hyperplanes and adjoints of arrangements 28
1.10. Separating hyperplanes, minimal galleries and gate property 29
1.11. Combinatorially isomorphic arrangements 35
1.12. Partial order on pairs of faces 36
1.13. Characteristic polynomial and Zaslavsky formula 39

Notes 44

Chapter 2. Cones

2.1. Cones and convexity 47
2.2. Case and base maps 52
2.3. Topology of a cone 54
2.4. Cutting and separating hyperplanes and gated sets 56
2.5. Gallery intervals 58
2.6. Charts and dicharts 61
2.7. Poset of top-cones 64
2.8. Partial-flats 68

Notes 74

Chapter 3. Lunes

3.1. Lunes 75
3.2. Nested faces and lunes 77
3.3. Decomposition of a cone into lunes 83
3.4. Restriction and extension of cones 88
3.5. Top-star-lunes 92
3.6. Conjugate top-cones 93
CONTENTS

Chapter 8. Distance functions and Varchenko matrix
- 8.1. Weights on half-spaces
- 8.2. Sampling weights from a matrix
- 8.3. Distance functions
- 8.4. Varchenko matrix
- 8.5. Symmetric Varchenko matrix
- 8.6. Braid arrangement
- 8.7. Type B arrangement

Part II.

Chapter 9. Birkhoff algebra and Tits algebra
- 9.1. Birkhoff algebra
- 9.2. Algebras of charts, dicharts and cones
- 9.3. Tits algebra
- 9.4. Left module of chambers
- 9.5. Modules over the Tits algebra
- 9.6. Filtration by flats of a right module
- 9.7. Primitive part and decomposable part
- 9.8. Over and under a flat. Cartesian product
- 9.9. Janus algebra and its one-parameter deformation
- 9.10. Coxeter-Tits algebra

Chapter 10. Lie and Zie elements
- 10.1. Lie elements
- 10.2. Lie in small ranks. Antisymmetry and Jacobi identity
- 10.3. Zie elements
- 10.4. Zie elements and primitive part of modules
- 10.5. Zie in small ranks
- 10.6. Substitution product of Lie

Chapter 11. Eulerian idempotents
- 11.1. Homogeneous sections of the support map
- 11.2. Eulerian idempotents
- 11.3. Eulerian families, complete systems and algebra sections
- 11.4. Q-bases of the Tits algebra
- 11.5. Families of Zie idempotents
- 11.6. Eulerian idempotents for good reflection arrangements
- 11.7. Extension problem and dimension of Lie
- 11.8. Rank-two arrangements
- 11.9. Rank-three arrangements

Chapter 12. Diagonalizability and characteristic elements
- 12.1. Stationary distribution
- 12.2. Diagonalizability and eigensections
- 12.3. Takeuchi element
Contents

12.4. Characteristic elements 349
12.5. Type A Eulerian idempotents and Adams elements 356
12.6. Type B Eulerian idempotents and Adams elements 360
Notes 363

Chapter 13. Loewy series and Peirce decompositions 367
13.1. Primitive series and decomposable series 368
13.2. Primitive series and socle series 370
13.3. Radical series and primitive series 372
13.4. Peirce decompositions, and primitive and decomposable series 373
13.5. Left Peirce decomposition of chambers. Lie over flats 375
13.6. Right Peirce decomposition of Zie. Lie under flats 378
13.7. Two-sided Peirce decomposition of faces. Lie over & under flats 382
13.8. Generation of Lie elements in rank one 387
13.9. Rigidity of the left module of chambers 388
13.10. Quiver of the Tits algebra 390
13.11. Applications of Peirce decompositions to Loewy series 391
Notes 394

Chapter 14. Dynkin idempotents 397
14.1. Dynkin elements 397
14.2. Dynkin basis for the space of Lie elements 400
14.3. Applications to affine hyperplane arrangements 403
14.4. Orientation space 406
14.5. Joyal-Klyachko-Stanley. Presentation of Lie 408
14.6. Björner and Lyndon bases 417
14.7. Coordinate arrangement 420
14.8. Rank-two arrangements 421
14.9. Classical (type A) Lie elements 424
14.10. Type B Lie elements 435
Notes 444

Chapter 15. Incidence algebras 447
15.1. Flat-incidence algebra 447
15.2. Lune-incidence algebra 449
15.3. Noncommutative zeta and Möbius functions 454
15.4. Noncommutative Möbius inversion. Group-likes and primitives 460
15.5. Characterizations of Eulerian families 462
15.6. Lie-incidence algebra 465
15.7. Additive and Weisner functions on lunes 470
15.8. Subalgebras of the lune-incidence algebra 475
15.9. Commutative, associative and Lie operads 476
Notes 478

Chapter 16. Invariant Birkhoff algebra and invariant Tits algebra 479
16.1. Invariant Birkhoff algebra 480
16.2. Invariant Tits algebra 480
16.3. Solomon descent algebra 481
16.4. Enumeration of face-types 483
16.5. Structure constants of the invariant Tits algebra 486
16.6. Invariant Lie and Zie elements 490
16.7. Invariant lune-incidence algebra 491
16.8. Invariant Eulerian idempotents 494
16.9. Peirce decompositions 498
16.10. Bilinear forms 501
16.11. Garsia-Reutenauer idempotents (Type A) 503
16.12. Bergeron idempotents (Type B) 507
Notes 508

Appendices 511

Appendix A. Regular cell complexes 513
A.1. Cell complexes 513
A.2. Minimal galleries and gate property 514
Notes 516

Appendix B. Posets 517
B.1. Poset terminology 517
B.2. Graded posets 518
B.3. Semimodularity and join-distributivity 518
B.4. Strongly connected posets 520
B.5. Adjunctions between posets 521
Notes 524

Appendix C. Incidence algebras of posets 525
C.1. Incidence algebras and M"obius functions 525
C.2. Radical of an incidence algebra 531
C.3. Reduced incidence algebras 532
C.4. Poset cocycles and deformations of incidence algebras 535
Notes 544

Appendix D. Algebras and modules 545
D.1. Modules 545
D.2. Idempotents and nilpotents 547
D.3. Split-semisimple commutative algebras 548
D.4. Diagonalizability and Jordan-Chevalley decomposition 550
D.5. Radical, socle and semisimplicity 553
D.6. Invertible elements and zero divisors 555
D.7. Lifting idempotents 556
D.8. Elementary algebras 558
D.9. Algebra of a finite lattice 563
Notes 570

Appendix E. Bands 571
E.1. Bands 571
E.2. Distance functions 573
Notes 576
Preface

Synopsis

The goal of this monograph is to study the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. The text contains many new ideas and results. It also gathers and organizes material from various sources in the literature, sometimes highlighting previously unnoticed connections. We briefly outline the contents below. They are explained in more detail in the main introduction.

We provide a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes, the support map, the case and base maps, and other geometric notions associated to real hyperplane arrangements. We show that any cone can be optimally decomposed into lunes. We introduce the category of lunes. This beautiful structure is intimately related to the substitution product of chambers a generalization of the classical associative operad). The classical case is obtained by specializing to the braid arrangement. We give several generalizations of the classical identity of Witt from Coxeter theory under the broad umbrella of descent and lune identities. The topological invariant involved here is the Euler characteristic of a relative pair of cell complexes. We generalize a well-known factorization theorem of Varchenko to cones, and also initiate an abstract approach to distance functions on chambers.

The main algebraic objects are the Birkhoff monoid and the Tits monoid, and their linearized algebras. The former is commutative and its elements are the flats of the arrangement, while the latter is not commutative and its elements are the faces. A module whose elements are chambers also plays a central role. Both monoids carry natural partial orders. The Birkhoff monoid is a lattice and its product is the join operation in the lattice. One may think of the Tits monoid as a noncommutative lattice. Its abelianization is the Birkhoff monoid, via the map that sends a face to the flat which supports it. We introduce the Janus monoid which is built out of the Tits and Birkhoff monoids.

We initiate a noncommutative Möbius theory of the Tits monoid and relate it to the representation theory of its linearization which is the Tits algebra. The central object is the lune-incidence algebra, which is a certain reduced incidence algebra of the poset of faces. It contains noncommutative zeta functions characterized by lune-additivity, and noncommutative Möbius functions characterized by the noncommutative Weisner formula. This theory lifts the usual Möbius theory for lattices, where the central object is the incidence algebra of the lattice of flats.

We introduce Lie and Zie elements. The latter belong to the Tits algebra, and the former to the module of chambers. The space of Zie elements is a right ideal of the Tits algebra. Any special Zie element defines an idempotent operator on...
chambers whose image is the space of Lie elements. To any generic half-space, we associate a special Zie element called the Dynkin element. Its action on chambers generalizes the left bracketing operator in classical Lie theory. We define a substitution product and establish a presentation of Lie. This generalizes the familiar presentation of the classical Lie operad. Antisymmetry is encoded in the notion of orientation of the rank-one arrangement and the Jacobi identity in the form of a linear relation among chambers obtained by “unbracketing” lines of the rank-two arrangements. This is same as saying that the space of Lie elements is isomorphic, up to orientation, to the top cohomology of the lattice of flats. This generalizes a celebrated theorem due to the combined work of Joyal, Klyachko and Stanley. We introduce the Lie-incidence algebra and show that it is isomorphic to the Tits algebra. This is intimately connected to the two-sided Peirce decomposition of the Tits algebra. The latter can be understood in terms of left and right Peirce decompositions of chambers and Zie elements respectively.

The Birkhoff algebra is split-semisimple. For the Tits algebra, complete systems of primitive orthogonal idempotents are in correspondence with algebra sections of the support map. We obtain many interesting characterizations of such sections. This aspect of the theory generalizes the classical theory of Eulerian idempotents. Noncommutative zeta and Möbius functions, and special Zie families are among the various concepts in correspondence. For reflection arrangements, there is a similar theory for the subalgebra of the Tits algebra invariant under the action of the Coxeter group. (The opposite of this algebra is the Solomon descent algebra.)

Precedents

This work benefits from and builds on some important recent developments. For the representation theory of the Tits algebra, we mention work of Brown, Diaconis and Saliola propelled by a landmark paper of Bidigare, Hanlon and Rockmore. (Older work of Solomon on the descent algebra has also been influential.) Some of these results are given in the generality of left regular bands and even bands. Further generalizations of this kind appear in work of Steinberg. For Lie theory, we mention work of Barcelo, Bergeron, Björner, Garsia, Patras, Reutenauer and Wachs. Saliola’s work also implicitly contains elements of Lie theory. Explicit references to Lie are made only for the braid arrangement and the reflection arrangement of type B. The work of Joyal, Klyachko and Stanley relating Lie to order homology is for the braid arrangement. On the other hand, related results on order homology in the literature are usually given in the generality of arrangements or beyond. There have been several other contributors; most of them are mentioned in the main introduction. Two new entrants are the mathematicians Janus and Zie.

Organization

The text is organized in two parts. In Part I, the emphasis is on set-theoretic objects associated to hyperplane arrangements such as posets, monoids and the action of monoids on sets. In Part II, the emphasis is on linear objects such as algebras and their modules. There is a Notes section at the end of each chapter where detailed references to the literature, including discussions on alternative terminology and notation, are provided. Background information on topics such as Möbius functions, incidence algebras, representation theory of algebras and bands is provided in Appendices at the end of the main text. A notation index and a
subject index are provided at the end of the book. Pictures and diagrams form
an important component of our exposition which has a distinct geometric flavor.
Numerous exercises are interspersed throughout the book.

The text is not meant to be read linearly from start to finish. We encourage
readers to take up a particular chapter or section of their interest and backtrack as
necessary. As an aid, the diagram of interdependence of chapters and appendices
is displayed below.

A directed path from \(i \) to \(j \) indicates that some basic familiarity with Chapter \(i \) is
necessary before proceeding to Chapter \(j \). A dashed arrow from \(i \) to \(j \) means that
the dependence of Chapter \(j \) on Chapter \(i \) is minimal, that is, restricted to some
section or example.

Chapter 6 is not shown in the above diagram. It discusses the braid arrange-
ment, the reflection arrangement of type \(B \) and other examples. They are employed
frequently in later chapters for illustration.

Readership

We have strived to keep the text self-contained and with minimum prerequisites
with the objective of making it accessible to advanced undergraduate and begin-
ing graduate students. We hope it also serves as a useful reference on hyperplane
arrangements to experts. The book touches upon several fields of mathematics such
as representation theory of monoids and associative algebras, posets and their in-
cidence algebras, lattice theory, random walks, invariant theory, discrete geometry,
algebraic and geometric combinatorics, and algebraic Lie theory.

Scope

The theory of hyperplane arrangements has grown enormously in several differ-
ent directions in the past two decades. The text is not meant to be a comprehensive
survey of the entire theory. For instance, topics such as singularities, integral sys-
tems, hypergeometric functions and resonance varieties find no mention in the book.
For these, one may look at \([15, 121, 138, 157, 177, 329, 413]\) and references
therein.
Future directions

Our constructions are all based on the choice of a real hyperplane arrangement. It is apparent, moreover, that a central role is played by the Tits monoid of faces of the arrangement. It is tempting to try to extend the theory to more general classes of monoids, particularly bands and left regular bands. We have kept our focus on arrangements, although such generalizations offer a promising line of research. We also mention the Janus monoid, the category of lunes and noncommutative Möbius functions as important objects worthy of further study. Our choice of topics has mainly been guided by applications to the theory of species, operads and Hopf algebras which we plan to develop in future work.

Acknowledgements

We warmly thank our mentors Ken Brown and Steve Chase for their advice and encouragement over the years. Our gratitude goes also to Lou Billera and Persi Diaconis whose support we greatly value. We thank Frédéric Patras, Vic Reiner, Richard Stanley, and many others for sharing insights or providing useful comments and references. The second author thanks all students at IIT Mumbai who attended his lectures on the subject for their valuable feedback.

Thanks to the American Mathematical Society for publishing our work in this series, and to Ina Mette, Marcia Almeida and Isabel Stafford for their support during the production of this book. We also thank the reviewers for their helpful and critical comments on a preliminary draft of the text.

Aguiar was supported by NSF grants DMS-1001935 and DMS-140111.
Introduction

Part I

Arrangements. (Chapter 1) A hyperplane arrangement \mathcal{A} is a set of hyperplanes (codimension-one subspaces) in a fixed real vector space. We assume that the number of hyperplanes is finite and all of them pass through the origin. The intersection of all hyperplanes is the central face. The rank of an arrangement is the dimension of the ambient vector space minus the dimension of the central face. An arrangement has rank 0 if it has no hyperplanes, rank 1 if it has one hyperplane, and rank 2 if it has at least two hyperplanes and all of them pass through a codimension-two subspace.

Flats and faces. (Chapter 1) Subspaces obtained by intersecting hyperplanes are called the flats of the arrangement. We let $\Pi[\mathcal{A}]$ denote the set of flats. It is a graded lattice with partial order given by inclusion. The minimum element is the central face and the maximum element is the ambient space. The codimension-one flats are the hyperplanes. Each hyperplane divides the ambient space into two half-spaces. Their intersection is the given hyperplane. Subsets obtained by intersecting half-spaces, with at least one half-space chosen for each hyperplane, are called the faces of the arrangement. We let $\Sigma[\mathcal{A}]$ denote the set of faces. It is a graded poset under inclusion. The central face is the minimum element. However, there is no unique maximum face, so $\Sigma[\mathcal{A}]$ is not a lattice. A maximal face is called a chamber. We let $\Gamma[\mathcal{A}]$ denote the set of chambers. The linear span of any face is a flat. This defines a surjective map

$$s : \Sigma[\mathcal{A}] \rightarrow \Pi[\mathcal{A}].$$

We call this the support map. It is order-preserving.

Birkhoff monoid and Tits monoid. (Chapter 1) We view the lattice of flats $\Pi[\mathcal{A}]$ as a (commutative) monoid with product given by the join operation. We call this the Birkhoff monoid. For flats X and Y, their Birkhoff product is $X \lor Y$. The poset of faces $\Sigma[\mathcal{A}]$ is not a lattice. Nonetheless, it carries a (noncommutative) monoid structure. We call this the Tits monoid. It is an example of a left regular band (since it satisfies the axiom $xyx = xy$). For faces F and G, we denote their Tits product by FG. The set of chambers $\Gamma[\mathcal{A}]$ is a left $\Sigma[\mathcal{A}]$-set, that is, for F a face and C a chamber, FC is a chamber. The support map is a monoid homomorphism.

Janus monoid. (Chapter 1) A bi-face is a pair (F, F') of faces such that F and F' have the same support. Let $J[\mathcal{A}]$ denote the set of bi-faces. The operation

$$(F, F')(G, G') := (FG, G'F')$$
turns $J[A]$ into a monoid. We call it the Janus monoid. It is the fiber product of the Tits monoid $\Sigma[A]$ and its opposite $\Sigma[A]^{\text{op}}$ over the Birkhoff monoid $\Pi[A]$. This can be pictured as follows.

\[
\begin{array}{ccc}
\text{Janus monoid} & \xleftarrow{j} & \text{Tits monoid} \\
& \xleftarrow{} & opposite \text{ Tits monoid}
\end{array}
\xleftarrow{\pi} \begin{array}{ccc}
\text{Birkhoff monoid}
\end{array}
\]

The Janus monoid is a band (since every element is idempotent) which is neither left regular nor right regular in general.

Arrangements under and over a flat. (Chapter 1) From a flat X of an arrangement A, one may construct two new arrangements: A^X, the arrangement under X, and A_X, the arrangement over X. The former is the arrangement obtained by intersecting the hyperplanes in A with X, while the latter is the subarrangement consisting of those hyperplanes which contain X. For flats $X \leq Y$, the arrangement under Y in A_X is the same as the arrangement over X in A_Y. We denote this arrangement by A^X_Y.

Cones. (Chapter 2) Subsets obtained by intersecting half-spaces (with no restriction) are called the cones of the arrangement. In particular, faces and flats are cones. (A hyperplane is the intersection of the two half-spaces it bounds.) Let $\Omega[A]$ denote the set of all cones. It is a lattice under inclusion. The support map extends to an order-preserving map

\[
c : \Omega[A] \to \Pi[A].
\]

We call this the case map. It sends a cone to the smallest flat containing that cone. The case map is the left adjoint of the inclusion map $\Pi[A] \to \Omega[A]$. There is another order-preserving map

\[
b : \Omega[A] \to \Pi[A]
\]

which we call the base map. It sends a cone to the largest flat which is contained in that cone. The base map is the right adjoint of the inclusion map. Note that the base and case of a flat is the flat itself.

Cones whose case is the maximum flat are called top-cones. The poset of top-cones is a join-semilattice which is join-distributive, and in particular, graded and upper semimodular (Theorems 2.56, 2.58 and 2.60).

Lunes. (Chapters 3 and 4) A cone is a lune if it has the property that for any hyperplane containing its base, the entire cone lies on one side of that hyperplane. Faces and flats are lunes. In general, any cone can be optimally cut up into lunes by using hyperplanes containing the base of the cone (Theorem 3.27). Finer decompositions can be obtained by using hyperplanes containing a fixed flat lying inside the base (Proposition 3.22). For instance, it is possible to cut a lune itself into smaller lunes. The optimal decomposition of a flat X is X itself (since it is a lune). An instance of a finer decomposition is to write X as a union of faces having support X.

1 Janus Bifrons is a Roman god with two faces.
Lunes which are top-cones are called top-lunes. The poset of top-lunes under inclusion is graded (Theorem 4.9). We consider two partial orders on lunes. The first partial order is the inclusion of lune closures (and is the restriction of the partial order on cones), while the second is the inclusion of lune interiors. Both extend the partial order on top-lunes and are graded (Theorems 4.12 and 4.26).

Lunes can be composed when the case of the first lune equals the base of the second lune. This yields a category whose objects are flats and morphisms are lunes. We call it the category of lunes. It is internal to posets under the second partial order on lunes (Proposition 4.31). It also admits a nice presentation (Proposition 4.42).

A lune with base X and case Y is the same as a chamber in the arrangement A_X^Y.

Using this, composition of lunes can be recast as follows. For any flat X, there is a map

$$\Gamma[A^X] \otimes \Gamma[A_X] \rightarrow \Gamma[A].$$

We call this the substitution product of chambers, see (4.18).

Braid arrangement. (Chapters 5 and 6) The braid arrangement is the motivating example for many of our considerations. The key observation is that for this arrangement, geometric notions of faces, flats, top-cones, and so on can be encoded by combinatorial notions of set compositions, set partitions, partial orders and so on. This correspondence between geometry and combinatorics is summarized in Table 6.2. The braid arrangement is an example of a reflection arrangement whose associated Coxeter group is the group of permutations. In the Coxeter case, one can define face-types and flat-types. Face-types are orbits of the set of faces under the Coxeter group action. Similarly, flat-types are orbits of the set of flats. For the braid arrangement, face-types and flat-types correspond to integer compositions and integer partitions.

Descent equation and lune equation. (Chapter 7) Fix chambers C and D. The descent equation is $HC = D$. In other words, we need to solve for faces H such that the Tits product of H and C equals D. (This is related to descents of permutations in the case of the braid arrangement which motivates our terminology.) More generally, we can fix faces F and G, and consider the equation $HF = G$. In fact, one can do the following. For any left $\Sigma[A]$-set h, the descent equation is $H \cdot x = y$, where x and y are fixed elements of h, the variable is H, and \cdot denotes the action of $\Sigma[A]$ on h. Apart from finding the solutions, there is also interest in computing the sum $\sum (-1)^{rk(H)}$ as H ranges over the solution set, with $rk(H)$ denoting the rank of H. For this, we attach to the solution set a relative pair (X, A) of cell complexes whose Euler characteristic is the given sum, see (7.32). By construction X is either a ball or sphere, but the topology of A is complicated in general. In our starting examples h is either $\Gamma[A]$ or $\Sigma[A]$. In these cases, A also has the topology of a ball or sphere. This leads to explicit identities, see (7.10) and (7.11a).

Fix a face H and a chamber D. The lune equation is $HC = D$. The difference is that now we need to solve for C. For a solution to exist H must be smaller than D. Assuming this condition, the solution set is precisely the set of chambers contained in some top-lune (which explains our terminology). More generally, an arbitrary lune can be obtained as the solution set of the equation $HF = G$ for some fixed H and G. Since lunes have the topology of a ball or sphere, we can again compute $\sum (-1)^{rk(F)}$ explicitly, see (7.12a). An analysis with relative pairs, similar
to the one for the descent equation, can be carried out for right $\Sigma[A]$-sets h, see \((7.41) \). The lune equation in this case is $x \cdot F = y$, with $x, y \in h$.

Distance function and Varchenko matrix. (Chapter 8.) A hyperplane separates two chambers if they lie on its opposite sides. The distance between two chambers is defined to be the number of hyperplanes which separate them. Fix a scalar q, and define a bilinear form on the set of chambers $\Gamma[A]$ by

\[\langle C, D \rangle := q^{\text{dist}(C, D)}. \]

Here C and D are chambers and $\text{dist}(C, D)$ denotes the distance between them. The determinant of this matrix factorizes with factors of the form $1 - q^i$, see \((8.41) \). In particular, the bilinear form is nondegenerate if q is not a root of unity.

More generally, assign a weight to each half-space, and define $\langle C, D \rangle$ to be the product of the weights of all half-spaces which contain C but do not contain D. Setting each weight to be q recovers the previous case. A factorization of the determinant of this matrix was obtained by Varchenko (Theorem 8.11). (He worked in the special case when the two opposite half-spaces bound by each hyperplane carry the same weight.) Lunes play a key role in the proof. The Varchenko matrix can be formally inverted using non-stuttering paths, see \((8.30) \).

It is fruitful to consider a more general situation where we start with an arbitrary top-cone, and restrict the Varchenko matrix to chambers of this top-cone. The determinant of this matrix also factorizes. This more general result is given in Theorem 8.12. Specializing the top-cone to the ambient space recovers the previous situation. The special case of weights on hyperplanes is given in Theorem 8.22. This latter result has been obtained recently by Gente independent of our work.

Part II

Birkhoff algebra and Tits algebra. (Chapter 9.) The linearization of a monoid over a field k yields an algebra. Let $\Pi[A]$ denote the linearization of $\Pi[A]$, and $\Sigma[A]$ denote the linearization of $\Sigma[A]$ over k. We call these the Birkhoff algebra and the Tits algebra, respectively. These are finite-dimensional k-algebras (since the original monoids are finite). The linearization of $\Gamma[A]$, denoted $\Gamma[A]$, is a left module over $\Sigma[A]$. One can linearize the support map as well to obtain an algebra homomorphism $s : \Sigma[A] \rightarrow \Pi[A]$.

The Birkhoff algebra $\Pi[A]$ is isomorphic to k^n, where n is the number of flats. In other words, $\Pi[A]$ is a split-semisimple commutative algebra (Theorem 9.2). (By a result of Solomon, this holds for any algebra obtained by linearizing a lattice.) The coordinate vectors of k^n yield a unique complete system of primitive orthogonal idempotents of $\Pi[A]$. We denote them by Q_X, as X varies over flats. The simple modules over $\Pi[A]$ are all one-dimensional, and given by $Q_X \cdot \Pi[A]$. Further, any module h is a direct sum of simple modules. More precisely, we have the Peirce decomposition\(^2\)

\[h = \bigoplus_X Q_X \cdot h, \]

\(^2\)A decomposition of a module using an orthogonal family of idempotents is called a Peirce decomposition.
and the simple module $Q_X \cdot \Pi[A]$ occurs in the summand $Q_X \cdot h$ with multiplicity equal to its dimension (Theorems 9.7 and 9.8). As a consequence, the action of any element of $\Pi[A]$ on any module h is diagonalizable (Theorem 9.9).

The largest nilpotent ideal of an algebra A is called its radical, denoted $\text{rad}(A)$. The Birkhoff algebra has no nonzero nilpotent elements, so $\text{rad}(\Pi[A]) = 0$. In contrast, the Tits algebra has many nilpotent elements. In fact, $\text{rad}(\Sigma[A])$ is precisely the kernel of the (linearized) support map s, hence

$$\Sigma[A]/\text{rad}(\Sigma[A]) \cong \Pi[A].$$

This was proved by Bidigare. We say that $\Sigma[A]$ is an elementary algebra since the quotient by its radical is a split-semisimple commutative algebra. The simple modules over $\Sigma[A]$ coincide with those over $\Pi[A]$ (since $\text{rad}(\Sigma[A])$ is forced to act by zero on such modules). However, a module of $\Sigma[A]$ does not split as a direct sum of simple modules in general. (An example is provided by the module of chambers $\Gamma[A]$.) Similarly, the action of an element of $\Sigma[A]$ on a module h is not diagonalizable in general. Nonetheless, by taking a filtration of h, one can gain detailed information about the eigenvalues and multiplicities of the action (Theorem 9.44). This result for $h := \Gamma[A]$ was first obtained by Bidigare, Hanlon and Rockmore (Theorem 9.46); their motivation for considering this problem came from random walks. The above line of argument was given by Brown.

Any left module h over the Tits algebra has a primitive part which we denote by $P(h)$. It consists of those elements of h which are annihilated by all faces except the central face (which acts by the identity). Dually, any right module h has a decomposable part which we denote by $D(h)$. The duality is made precise in Proposition 9.61.

Janus algebra. (Chapter 9.) Let $J[A]$ denote the linearization of $J[A]$. We call this the Janus algebra. Just like the Tits algebra, the Janus algebra is elementary, and its split-semisimple quotient is the Birkhoff algebra. Interestingly, the Janus algebra admits a deformation by a scalar q. When q is not a root of unity, the q-Janus algebra is in fact split-semisimple, that is, isomorphic to a product of matrix algebras over k. There is one matrix algebra for each flat X, with the size of the matrix being the number of faces with support X (Theorem 9.75). As a consequence, the q-Janus algebra, for q not a root of unity, is Morita equivalent to the Birkhoff algebra (Theorem 9.76). This is completely different from what happens for $q = 1$.

Eulerian idempotents. (Chapter 11.) Let us go back to the Tits algebra $\Sigma[A]$. An Eulerian family E is a complete system of primitive orthogonal idempotents of $\Sigma[A]$. Eulerian families are in correspondence with algebra sections $\Pi[A] \hookrightarrow \Sigma[A]$ of the support map s. The construction of such sections is the idempotent lifting problem in ring theory. For elementary algebras, lifts always exist and any two lifts are conjugate by an invertible element in the algebra. For each X, we let E_X denote the image of Q_X under an algebra section, thus, $s(E_X) = Q_X$. The E_X are called Eulerian idempotents and constitute the Eulerian family E. Apart from being elementary, the Tits algebra is also the linearization of a left regular band. This allows for many interesting characterizations of Eulerian families (Theorems 11.20, 11.40 and 15.44). A highlight here is a construction of Saliola which produces an Eulerian family starting with a homogeneous section of the support map. (A homogeneous section is equivalent to an assignment of a scalar u^F to each face F such that for any flat X, the sum of u^F over all F with support X is 1.) This construction
INTRODUCTION

employs the Saliola lemma (Lemma 11.12), which is an important property of any Eulerian family. For a good reflection arrangement, we give cancelation-free formulas for the Eulerian idempotents arising from the uniform homogeneous section (Theorem 11.53).

Diagonalizability. (Chapter 12) An element of an algebra is diagonalizable if it can be expressed as a linear combination of orthogonal idempotents. All elements of the Birkhoff algebra are diagonalizable. However, that is not true for the Tits algebra. For instance, no nonzero element of the radical of $\Sigma[A]$ is diagonalizable. Following another method of Saliola, one can characterize diagonalizable elements using existence of eigensections (Corollary 12.15). Examples include nonnegative elements (Theorem 12.20) and separating elements (Theorem 12.17). The separating condition was introduced by Brown. For separating elements, there is a formula for the eigensection (arising from the Brown-Diaconis stationary distribution formula (12.6)), and a formula for the Eulerian idempotents due to Brown, see (12.12) and (12.13). Apart from these families, we also consider diagonalizability of specific elements such as the Takeuchi element (12.23) and the Fulman elements (12.38). For the braid arrangement, these include the Adams elements; their diagonalization is given in (12.49).

Lie elements and JKS. (Chapters 10 and 14) Recall that the Tits algebra $\Sigma[A]$ acts on the space of chambers $\Gamma[A]$. We put

$$\text{Lie}[A] := \mathcal{P}(\Gamma[A]),$$

the primitive part of $\Gamma[A]$. This is the space of Lie elements. We refer to this description of Lie$[A]$ as the Friedrichs criterion. There are other characterizations of Lie$[A]$ such as the top-lune criterion and the descent criterion. In the case of the braid arrangement, Lie$[A]$ is the space of classical Lie elements (the multilinear part of the free Lie algebra). The top-lune criterion extends a classical result of Ree for the free Lie algebra, while the descent criterion extends a result of Garsia. The top-lune criterion says the following: A Lie element is an assignment of a scalar x^C to each chamber C such that the sum of these scalars in any top-lune (containing more than one chamber) is zero. In fact, by cutting a top-lune into smaller top-lunes, it suffices to restrict to top-lunes whose base is of rank 1. The dimension of Lie$[A]$ equals the absolute value of the Möbius number of \mathcal{A}. There are many ways to deduce this, see for instance (10.24) or (11.63). There are also many interesting bases for Lie$[A]$. We discuss the Dynkin basis (which depends on a generic half-space) and the Lyndon basis (which depends on a choice function).

For any flat X, there is a map

$$\text{Lie}[A_X] \otimes \text{Lie}[A_X] \to \text{Lie}[A].$$

We call this the substitution product of Lie, see (10.28). It is obtained by restricting the substitution product of chambers. All Lie elements of \mathcal{A} can be generated by repeated substitutions starting with Lie elements of rank-one arrangements (which incorporate antisymmetry), subject to the Jacobi identities in rank-two arrangements (Theorem 14.41). Antisymmetry can be visualized as follows.

$$
\begin{pmatrix}
1 & \top
\end{pmatrix} +
\begin{pmatrix}
\top & 1
\end{pmatrix} = 0.
$$
(By convention, I denotes -1.) The two vertices are the two chambers of a rank-one arrangement. The Jacobi identity for the hexagon and octagon (which are the spherical models of rank-two arrangements of 3 and 4 lines, respectively) are shown below. The figures show the coefficients of each chamber in a Lie element.

\[
\begin{align*}
0 & 1 & T \\
T & 1 & 0 \\
1 & T & 0
\end{align*}
\]
\[
\begin{align*}
0 & 1 & T \\
T & 1 & 0 \\
1 & T & 0
\end{align*}
+ \begin{align*}
0 & 1 & T \\
T & 1 & 0 \\
1 & T & 0
\end{align*}
+ \begin{align*}
0 & 1 & T \\
T & 1 & 0 \\
1 & T & 0
\end{align*} = 0.
\]

The Ree criterion says that the sum of the scalars in any semicircle is 0.

A closely related object to $\text{Lie}[^A]$ is the order homology of the lattice of flats $\Pi[^A]$. The latter is a well-studied object. The order homology is nonzero only in top rank and has dimension equal to the absolute value of the Möbius number of A. Again, there are many bases for this space. We discuss the Björner-Wachs basis and the Björner basis. One of our main results, the Joyal-Klyachko-Stanley theorem, or JKS for short, states that up to the one-dimensional orientation space of A, there is a natural isomorphism between $\text{Lie}[^A]$ and the top-cohomology of $\Pi[^A]$ (Theorem 14.38). We write this as

\[\mathcal{H}_\text{top}(\Pi[^A]) \otimes E^0[^A] \cong \text{Lie}[^A].\]

The special case of the braid arrangement is a classical result due to separate work by Joyal, Klyachko and Stanley. Under the JKS isomorphism and the duality between homology and cohomology, the Dynkin basis corresponds to the Björner-Wachs basis (Corollary 14.39) while the Lyndon basis corresponds to the Björner basis (Propositions 14.51 and 14.52). The latter correspondence was used by Barcelo to give the first combinatorial proof of the classical JKS.

Zie elements. (Chapter 10, 11 and 14) Consider the left action of the Tits algebra $\Sigma[^A]$ on itself, and put

\[\text{Zie}[^A] := \mathcal{P}(\Sigma[^A]),\]

the primitive part of $\Sigma[^A]$. This is the space of Zie elements (defined using the Friedrichs criterion). In analogy with $\text{Lie}[^A]$, we also have other criteria such as the lune and descent criteria. A Zie element is a particular element of the Tits algebra. It is called special if its coefficient of the central face is 1. The space $\text{Zie}[^A]$ is a right ideal of $\Sigma[^A]$ generated by any special Zie element (Lemma 10.21). Any special Zie element is an idempotent. In fact, an element of the Tits algebra is a special Zie element iff it is an idempotent whose support is Q_{\perp} (Lemma 10.24). The first Eulerian idempotent E_{\perp} of any Eulerian family is a special Zie element, and conversely every special Zie element arises in this manner (Lemma 11.42). More generally, the higher Eulerian idempotent E_X (of any Eulerian family) yields a special Zie element of the arrangement A_X over X. This leads to a characterization of Eulerian families in terms of families of special Zie elements (Theorem 11.40).
For any left $\Sigma[A]$-module h, a special Zie element projects h onto its primitive part $P(h)$ (Proposition 10.35).

Given any generic half-space of A, the alternating sum of faces contained in that half-space yields a special Zie element. We call this the Dynkin element (Proposition 14.1). It projects the module of chambers $\Gamma[A]$ onto its primitive part which is $\text{Lie}[A]$. This generalizes the classical Dynkin operator (left nested bracketing) in the case of the braid arrangement. Under this projection, the images of chambers in the half-space opposite to the given generic half-space yields a basis of $\text{Lie}[A]$. This is precisely the Dynkin basis mentioned earlier (Proposition 14.16).

Loewy series and Peirce decompositions. (Chapter 13.) The *primitive series* of a left $\Sigma[A]$-module h is a specific filtration of h with the primitive part $P(h)$ as the first nontrivial term from the bottom. Dually, the *decomposable series* of a right $\Sigma[A]$-module h is a specific filtration of h with the decomposable part $D(h)$ as the first nontrivial term from the top. The primitive series and decomposable series are both examples of Loewy series (Propositions 13.4 and 13.6). By general theory, they are trapped between the radical and socle series; see Lemmas 13.8 and 13.18. The left module of chambers is rigid, that is, its radical, primitive and socle series coincide (Theorem 13.68). The right module of Zie elements is also rigid (Theorem 13.83).

For any left $\Sigma[A]$-module h, we have the left Peirce decomposition

$$h = \bigoplus_X E_X \cdot h.$$

This depends on the choice of the Eulerian family E. However, the summand indexed by the minimum flat \perp is independent of this choice. More precisely,

$$E_\perp \cdot h = P(h),$$

see Proposition 13.21. This is consistent with the earlier statement that a special Zie element projects h onto $P(h)$. In general, the components $E_X \cdot h$ are related to the primitive series of h (Proposition 13.22). Similarly, one can relate the components of the right Peirce decomposition of a right $\Sigma[A]$-module to its decomposable series (Proposition 13.24).

The components of the left Peirce decompositions of $\Gamma[A]$ and $\Sigma[A]$ relate to Lie and Zie elements as follows.

$$E_X \cdot \Gamma[A] \cong \text{Lie}[A_X] \quad \text{and} \quad E_X \cdot \Sigma[A] \cong \text{Zie}[A_X].$$

See Lemmas 13.26 and 13.30. The former yields an algebraic form of the Zaslavsky formula, see (13.8). Similarly, the components of the right Peirce decompositions of $\text{Zie}[A]$ and $\Sigma[A]$ relate to Lie and chamber elements as follows.

$$\text{Zie}[A] \cdot E_Y \cong \text{Lie}[A^Y] \quad \text{and} \quad \Sigma[A] \cdot E_Y \cong \Gamma[A^Y].$$

See Lemmas 13.33 and 13.40. The latter is present in work of Saliola. Combining these decompositions yields a vector space isomorphism

$$E_X \cdot \Sigma[A] \cdot E_Y \cong \text{Lie}[A^Y_X].$$

See Proposition 13.50 and Table 13.1. These are components of the two-sided Peirce decomposition of $\Sigma[A]$. By taking direct sum over all $X \leq Y$, we obtain an algebra.
isomorphism

\[\Sigma[A] \cong \bigoplus_{X \leq Y} \text{Lie}[A^X_Y]. \]

In the rhs, elements in the \((X, Y)\)-summand are multiplied with elements in the \((Y, Z)\)-summand by substitution; the remaining products are all zero. This isomorphism is given in Theorem [13.54]. As an application, we obtain the quiver of the Tits algebra (Theorem [13.73]). This is a result of Saliola, who proved it by linking the Tits algebra to the top-cohomology of the lattice of flats.

Lune-incidence algebra and noncommutative zeta and Möbius functions. (Chapter [15]) A nested flat is a pair of flats \((X, Y)\) with \(Y \geq X\). Let \(I_{\text{flat}}[A]\) denote the incidence algebra of the poset of flats \(\Pi[A]\). We call it the flat-incidence algebra. It consists of functions \(f\) on nested flats, with the product of \(f\) and \(g\) given by

\[(fg)(X, Z) = \sum_{Y: X \leq Y \leq Z} f(X, Y)g(Y, Z). \]

The zeta function \(\zeta \in I_{\text{flat}}[A]\) is defined to be identically 1. It is invertible and its inverse is the Möbius function \(\mu \in I_{\text{flat}}[A]\). The Möbius function satisfies the Weisner formula, and in fact is completely characterized by it. A standard way to prove this formula is to use the split-semisimplicity of the Birkhoff algebra.

We propose a noncommutative version of this theory with \(\Pi[A]\) replaced by \(\Sigma[A]\). A nested face is a pair of faces \((A, F)\) with \(F \geq A\). Let \(I_{\text{face}}[A]\) denote the incidence algebra of \(\Sigma[A]\). We call it the face-incidence algebra. It consists of functions \(f\) on nested faces, with the product of \(f\) and \(g\) given by

\[(fg)(F, H) = \sum_{G: F \leq G \leq H} f(F, G)g(G, H). \]

We say two nested faces \((A, F)\) and \((B, G)\) are equivalent if \(AB = A, BA = B, AG = F\) and \(BF = G\). Equivalence classes are indexed by lunes (Proposition [3.13]). Let \(I_{\text{lune}}[A]\) denote the subalgebra of \(I_{\text{face}}[A]\) consisting of those \(f\) which take the same value on equivalent nested faces. In particular, \(I_{\text{lune}}[A]\) has a basis indexed by lunes. It is an example of a reduced incidence algebra. We call it the lune-incidence algebra. It can also be interpreted as the incidence algebra of the category of lunes (Proposition [15.7]).

We define noncommutative zeta functions \(\zeta\) and noncommutative Möbius functions \(\mu\) as particular elements of the lune-incidence algebra. They are no longer unique; zeta functions are characterized by lune-additivity (15.23) and Möbius functions by the noncommutative Weisner formula (15.27). They correspond to each other under taking inverses in the lune-incidence algebra (Theorem [15.28]). We relate this result to the representation theory of the Tits algebra. This circle of ideas is summarized in the important Theorem [15.44], which states in particular that noncommutative zeta and Möbius functions are in bijection with Eulerian families. Also see Table [15.1].

The flat-incidence algebra and lune-incidence algebra are both elementary and their quivers are acyclic with vertices indexed by flats (Proposition [15.1] and Theorem [15.2] and Proposition [15.10] and Theorem [15.14]).
Lie-incidence algebra. (Chapter 15) We introduce the Lie-incidence algebra $I_{\text{Lie}}[\mathcal{A}]$. It is a subalgebra of the lune-incidence algebra (Proposition 15.51). It is isomorphic to the Tits algebra (Theorem 15.56). We also introduce additive and Weisner functions on lunes. These are linear subspaces of the lune-incidence algebra which respectively contain noncommutative zeta and Möbius functions as affine subspaces. Further, they are right and left modules respectively over $I_{\text{lune}}[\mathcal{A}]$ with action induced from the product of $I_{\text{lune}}[\mathcal{A}]$ (Propositions 15.62 and 15.66). Moreover, they are isomorphic to the right and left regular representations of $I_{\text{Lie}}[\mathcal{A}]$ (Propositions 15.63 and 15.67).

Invariant objects. (Chapter 16) In the discussion so far, the arrangement \mathcal{A} and the field k have been arbitrary. Suppose now that \mathcal{A} is a reflection arrangement with associated Coxeter group W, and the characteristic of k does not divide the order of W. Here W acts on both $\Sigma[\mathcal{A}]$ and $\Pi[\mathcal{A}]$ giving rise to the invariant subalgebras $\Sigma[\mathcal{A}]^W$ and $\Pi[\mathcal{A}]^W$. We call these the **invariant Tits algebra** and **invariant Birkhoff algebra**, respectively. The former is elementary, and the latter is its split-semisimple quotient. They have a basis indexed by face-types and flat-types. Complete systems of primitive orthogonal idempotents of $\Sigma[\mathcal{A}]^W$ (also called invariant Eulerian families) can be characterized in a manner similar to $\Sigma[\mathcal{A}]$ (Theorem 16.48). (The hypothesis on the characteristic of k is clarified by Lemma 16.42.) The Garsia-Reutenauer idempotents are the Eulerian idempotents which arise by specializing to the braid arrangement and taking the invariant homogeneous section to be uniform. By linking the invariant Tits algebra to invariant Lie elements, one can obtain information on the quiver of the invariant Tits algebra. The related result given in Proposition 16.55 is due to Saliola.

The Coxeter group acts on the lune-incidence algebra giving rise to the **invariant lune-incidence algebra**. This algebra can also be viewed as a reduced incidence algebra of the poset of face-types. It has a basis indexed by lune-types. For those noncommutative zeta and Möbius functions which belong to this algebra, lune-additivity and the noncommutative Weisner formula can be reformulated using face-types, see (16.41) and (16.42). The structure constants of the invariant Tits algebra intervene in this description.

There is an injective map from the Tits algebra to the space indexed by pairs of chambers. Taking invariants induces an injective map from $\Sigma[\mathcal{A}]^W$ to W (the group algebra of W). The image of this map is a subalgebra of W which is known as the **Solomon descent algebra**. This induces an isomorphism between the invariant Tits algebra and the opposite of the Solomon descent algebra (Theorem 16.8). This was proved by Bidigare. Invariant Eulerian families of the Solomon descent algebra appeared in work of Bergeron, Bergeron, Howlett and Taylor (Theorem 16.43).

Projective objects. Every arrangement carries a symmetry of order 2 given by the opposition map (which sends a point to its negative). The **projective Tits algebra** is the subalgebra of the Tits algebra which is invariant under the opposition map. It is elementary with the Birkhoff algebra as its split-semisimple quotient (Proposition 16.77). Its quiver is given in Theorem 16.76. A complete system of the projective Tits algebra is a projective Eulerian family. Its characterizations in terms of projective analogues of noncommutative zeta and Möbius functions, homogeneous sections and so on are summarized in Theorem 15.47. These results assume that the field characteristic is not 2.
References
Bibliography

77. _____, *Posets, regular CW complexes and Bruhat order*, European J. Combin. 5 (1984), no. 1, 7–16.

248. Y. Kashina, S. Montgomery, and S.-H. Ng, On the trace of the antipode and higher indicators, Israel J. Math. 188 (2012), 57–89.

252. Y. Kashina, S. Montgomery, and S.-H. Ng, On the trace of the antipode and higher indicators, Israel J. Math. 188 (2012), 57–89.

351. , *The Varchenko determinants of the classical Coxeter groups*, 2016. Available at arXiv:1411.1647. 238

BIBLIOGRAPHY 593

Notation Index

Abbreviations

iff if and only if
lhs left hand side
rhs right hand side
wrt with respect to

Number systems

\(\mathbb{N} \) set of nonnegative integers \(\{0, 1, 2, \ldots \} \)
\(\mathbb{Z} \) set of integer numbers
\(\mathbb{Q} \) set of rational numbers
\(\mathbb{R} \) set of real numbers
\(k \) field or commutative ring
\(\mathbb{A} \) abelian group

Posets

\(P, Q \) posets
\(x \leq y \) \(x \) is smaller than \(y \)
\(x < y \) \(x \) is strictly smaller than \(y \)
\(x \prec y \) \(x \) is covered by \(y \), or, \(y \) covers \(x \)
\([x, y] \) interval consisting of all elements which lie between \(x \) and \(y \)
\(\text{rk}(x) \) rank of the element \(x \) in a graded poset
\(\text{rk}(P) \) rank of the poset \(P \)
\(\bot, \top, \wedge, \vee \) minimum element, maximum element, meet, join
\((\lambda, \rho) \) Galois connection or adjunction between posets
\(\Sigma \) band
\(\Pi \) support lattice of a band

Homology.

\(\Delta(P) \) order complex of the poset \(P \)
\(\mathcal{H}_k(P), \mathcal{H}^k(P) \) order homology, cohomology groups of the poset \(P \)
\(\mathcal{W}\mathcal{H}_k(P), \mathcal{W}\mathcal{H}^k(P) \) Whitney homology, cohomology groups of the poset \(P \)

Incidence algebras.

\(I(P) \) incidence algebra of the poset \(P \)
\(M(P) \) incidence module of the poset \(P \)
\(I(\varphi, \psi) \) incidence bimodule
\(\zeta \) zeta function

597
Notation Index

- μ: Möbius function
- $I_\sim(P)$: reduced incidence algebra of the poset P for the order-compatible relation \sim
- $I(C)$: incidence algebra of the category C
- $\partial(\alpha)$: coboundary of a cochain α
- $I(P; \gamma)$: deformation of incidence algebra of P by cocycle γ
- $\Gamma_{x, z}(v)$: fiber of order-preserving map γ
- γ_*: transfer of cocycle γ

Algebras and Modules

- A: algebra over a field k
- M: (left or right) A-module
- $\End_k(M)$: algebra of endomorphisms of the module M
- Ψ_M: representation of A associated to the module M
- $\Psi_M(w)$: linear operator of the action of $w \in A$ on the module M
- wM, Mw: image of the linear operator $\Psi_M(w)$
- $\text{ann}(M)$: annihilator of M
- χ_M: character of the module M
- M^*: linear dual of the module M
- k^n: n-dimensional k-algebra with coordinatewise addition and multiplication
- $k[w]$: subalgebra of A generated by $w \in A$
- $k[x]$: algebra of polynomials in the variable x
- w_d, w_n: diagonalizable, nilpotent part of w in its Jordan-Chevalley decomposition
- I: ideal of A
- N: nilpotent ideal of A
- $\text{rad}(A)$: radical of A
- e, f: idempotents in A
- $e \cong f$: isomorphic idempotents in A
- e_1, \ldots, e_n: family of mutually orthogonal idempotents in A
- A^\times: group of invertible elements of A
- \bar{A}: split-semisimple quotient of an elementary algebra A
- χ_i: multiplicative characters of an elementary algebra
- $\eta_i(M)$: generic multiplicity of χ_i in M
- A^G: subalgebra of A invariant under action of a finite group G
- Q: quiver
- kQ: path algebra of the quiver Q
- $\text{rad}(M)$: radical of the module M
- $\text{soc}(M)$: socle of the module M
- kP: linearization of a lattice P over the field k
- H_x: element of the H-basis of kP
- Q_x: element of the Q-basis of kP
- $P(M)$: primitive part of the module M over kP
- $D(M)$: decomposable part of the module M over kP

Cell complexes

- X: cell complex
- $\chi(X)$: reduced Euler characteristic of X
- (X, A): relative pair of cell complexes
- F, G, H, K: faces
- C, D, E: chambers
NOTATION INDEX

dist(C, D) minimum length of a gallery connecting C and D

$C -- E -- D$ minimal gallery from C to D passing through E

$[C : D]$ gallery interval

Σ set of faces

Γ set of chambers

Σ_F star of the face F

Γ_F top-star of the face F

Arrangements

dim dimension

\mathcal{A} hyperplane arrangement

$\mathcal{A} \times \mathcal{A}'$ cartesian product of arrangements \mathcal{A} and \mathcal{A}'

\mathcal{A}^X arrangement under the flat X of \mathcal{A}

\mathcal{A}_X arrangement over the flat X of \mathcal{A}

\mathcal{A}^F arrangement under the support of F

\mathcal{A}_F arrangement over the support of F

$\mathcal{A}^X_F, \mathcal{A}_X^F, \mathcal{A}^G_F, \mathcal{A}_G^F$ arrangements between flats \mathcal{A}

\mathcal{A}^\ast adjoint of the arrangement \mathcal{A}

Faces, flats, cones and lunes.

O central face

P, Q vertices

F, G, H, K faces

C, D, E chambers

\mathcal{F} face opposite to F

FG Tits product of F and G, or Tits projection of G on F

$[F : G]$ gallery interval with F and G of the same support

X, Y, Z flats

\bot minimum flat

\top maximum flat

$\text{Cl}(X)$ closure of the flat X

V, W cones

∇ cone opposite to V

$\text{Cl}(V)$ closure of the cone V

V° interior of the cone V

V^b boundary of the cone V

W_F restriction of the top-cone W to the face F

f^V extension of the top-cone V from the face F

(H, G) nested face

(H, D) top-nested face

L, M, N lunes

$L \circ M$ composite of the lunes L and M

$\text{rk}(F)$ rank of the face F

$\text{rk}(X)$ rank of the flat X

$\text{sk}(L)$ slack of the lune L

Projective objects.

$\{F, F\}$ projective face

$\{C, C\}$ projective chamber

$\{V, V\}$ projective cone

$\{L, L\}$ projective lune
Hyperplanes and half-spaces.

- \(H \): hyperplane
- \(h \): half-space
- \(H^+, H^- \): the two half-spaces bounded by the hyperplane \(H \)
- \(\overline{h} \): half-space opposite to \(h \)
- \(g(C, D) \): set of hyperplanes which separate chambers \(C \) and \(D \)
- \(r(C, D) \): set of half-spaces which contain \(C \) but do not contain \(D \)
- \(\text{wt}(h) \): weight assigned to the half-space \(h \)
- \(h(D) \): largest face of \(D \) which is contained in the half-space \(h \)

Charts and dicharts.

- \(g, h \): charts
- \(\rho(g) \): center of \(g \)
- \(cG \): set of connected charts
- \((H_1, \ldots, H_r) \): ordered coordinate chart
- \(G \): set of charts
- \(\overrightarrow{G} \): set of dicharts

Sets.

- \(\Sigma \): set of faces, Tits monoid
- \(\Gamma \): set of chambers, two-sided ideal of \(\Sigma \)
- \(\Pi \): set of flats, Birkhoff monoid
- \(J \): set of bi-faces, Janus monoid
- \(\Omega \): set of cones
- \(\overline{\Omega} \): set of top-cones
- \(\overline{\Omega}_F \): set of top-cones contained in the top-star of \(F \)
- \(r(F) \): set of top-cones whose closure contains \(F \)
- \(Q \): set of nested faces
- \(\overline{Q} \): set of top-nested faces
- \(P \): set of nested flats
- \(\Lambda \): set of lunes
- \(\overline{\Lambda} \): set of top-lunes
- \(\Gamma \times \Gamma \): set of pairs of chambers
- \(\Sigma \times \Sigma \): set of pairs of faces
- \(\Pi \times \Pi \): set of pairs of flats

The above sets are all associated to an arrangement \(\mathcal{A} \). If we wish to show this dependence explicitly, we write \(\Sigma[\mathcal{A}] \), \(\Gamma[\mathcal{A}] \), \(\Pi[\mathcal{A}] \) and so on.

Action of monoids.

- \(h \Sigma \): set of \(h \)-faces
- \(h \Pi \): set of \(h \)-flats
- \(F \cdot x \), \(x \cdot F \): left, right action of the face \(F \) on the element \(x \)
- \(X \cdot x \): action of the flat \(X \) on the element \(x \)
- \(\Sigma_{x,y} \): set of all faces \(F \) such that \(F \cdot x = y \)
- \(\ell(F, y) \): set of all elements \(x \) such that \(F \cdot x = y \)
- \(x \cdot y \Sigma \): set of all faces \(F \) such that \(x \cdot F = y \)
- \(\Pi_{x,y} \): set of all flats \(X \) such that \(X \cdot x = y \)
- \(h_x \): star of \(x \) in the right \(\Sigma \)-set \(h \)
- \(h_F \): star of the face \(F \) in the left \(\Sigma \)-set \(h \)
Maps.

- s support map
- $s(F)$ support of the face F
- $s(H, D)$ support of the top-nested face (H, D)
- $s(H, G)$ support of the nested face (H, G)
- $c(V)$ support or case of the cone V
- $c(L)$ case of the lune L
- b base map
- $b(V)$ base of the cone V
- $b(L)$ base of the lune L
- bc base-case map
- Des descent map
- $\text{Des}(C, D)$ descent of D wrt C
- υ distance function
- $\upsilon_{C, D}$ distance from C to D for a distance function υ
- (υ_C, D) Varchenko matrix indexed by chambers
- (q_C, D) q-Varchenko matrix
- (υ_{t_1, t_2}) Varchenko matrix indexed by linear extensions of a poset

Enumeration.

- $\mu(A)$ Möbius number of A
- $c(A)$ number of chambers in A
- $f(A)$ number of faces in A
- $\chi(A, t)$ characteristic polynomial of A
- $\text{wy}(A, k)$ Whitney numbers of the first kind of A
- β_X Crapo invariant for the lattice of flats of A_X

Reflection arrangements

- $\alpha = (A, C)$ reflection arrangement A with reference chamber C
- W Coxeter group
- S generating set of the Coxeter group W
- (W, S) Coxeter system
- $W_{F, T}$ parabolic subgroup of W
- \hat{W}_X subgroup of W which leaves X invariant
- W_X subgroup of \hat{W}_X which fixes X pointwise
- W_L subgroup of W which leaves the top-lune L invariant

Group elements, face-types and flat-types.

- u, v, w, σ elements of W
- T, U, V face-types
- λ, μ flat-types
- $d(C, D)$ W-valued gallery distance between chambers C and D
- $l(w)$ length of the element $w \in W$
- $\text{Des}(\sigma)$ descent of the element $\sigma \in W$

Sets and maps.

- $W\Sigma$ Coxeter-Tits monoid
- $W\Pi$ Coxeter-Birkhoff monoid
- WJ Coxeter-Janus monoid
- Σ^W set of face-types
- Π^W set of flat-types
Sh\textsubscript{T} set of \(T \)-shuffles for a face-type \(T \)
\(t \) type map

Enumeration.

\[
\begin{align*}
 d_T & \quad \text{number of faces of type } T \\
 a\text{"TUT"} & \quad \text{structure constants of the invariant Tits algebra} \\
 d_T(q), a\text{"TUT"}(q) & \quad q\text{-analogues of } d_T \text{ and } a\text{"TUT"} \\
 d_S(q) & \quad \text{Poincaré polynomial of a Coxeter group } W
\end{align*}
\]

Braid arrangement and related examples

\[
\begin{align*}
 \mathbb{R}^I & \quad \text{vector space of functions from } I \text{ to } \mathbb{R} \\
 S_n & \quad \text{symmetric group on } n \text{ letters} \\
 F = (I_1, \ldots, I_k) & \quad \text{set composition} \\
 \alpha = (a_1, \ldots, a_k) & \quad \text{integer composition} \\
 \lambda = (l_1, \ldots, l_k) & \quad \text{integer partition} \\
 F \vdash I & \quad F \text{ is a composition of the set } I \\
 X \vdash I & \quad X \text{ is a partition of the set } I \\
 \alpha \vdash n & \quad \alpha \text{ is a composition of } n \\
 \lambda \vdash n & \quad \lambda \text{ is a partition of } n \\
 \text{Par}_n & \quad \text{set of integer partitions of } n \\
 \text{Inv}(C, D) & \quad \text{inversion set of } (C, D) \\
 \text{Inv}(F, G) & \quad \text{inversion set of } (F, G) \\
 \text{deg}(G) & \quad \text{number of blocks of a set composition } G \\
 \text{deg!!}(G) & \quad \text{factorial of the number of blocks of a set composition } G \\
 s(m, k) & \quad \text{Stirling numbers of the first kind} \\
 (n)_q! & \quad q\text{-factorial} \\
 \left(\begin{array}{c} n \end{array} \right)_q & \quad q\text{-binomial coefficient}
\end{align*}
\]

Arrangement of type \(B \).

\[
\begin{align*}
 S^\pm_n & \quad \text{signed symmetric group on } n \text{ letters} \\
 z(F) & \quad \text{zero block of the type } B \text{ set composition } F \\
 z(X) & \quad \text{zero block of the type } B \text{ set partition } X \\
 \alpha = (a_0, a_1, \ldots, a_k) & \quad \text{type } B \text{ composition} \\
 \lambda = (l_0, l_1, \ldots, l_k) & \quad \text{type } B \text{ partition} \\
 s^\pm(m, k) & \quad \text{type } B \text{ Stirling numbers} \\
 (2k)!! & \quad \text{double factorials}
\end{align*}
\]

Graphic arrangements.

\[
\begin{align*}
 g, h & \quad \text{graphs} \\
 \mathcal{A}(g) & \quad \text{graphic arrangement of } g \\
 c(g) & \quad \text{number of connected components of } g \\
 k_I & \quad \text{complete graph on a set } I \\
 d_I & \quad \text{discrete graph on a set } I \\
 g_X & \quad \text{restriction of a graph } g \text{ to a flat } X \\
 g^X & \quad \text{contraction of a flat } X \text{ from a graph } g \\
 \mathcal{O} & \quad \text{orientation of a graph} \\
 \chi(g, t) & \quad \text{chromatic polynomial of } g
\end{align*}
\]
Birkhoff algebra and Tits algebra

\[\Pi \] Birkhoff algebra
\[\Sigma \] Tits algebra
\[J \] Janus algebra
\[J_q \] \(q\)-Janus algebra for the scalar \(q\)
\[J_v \] \(v\)-Janus algebra for the distance function \(v\)
\[\Sigma_0 \] diagonal 0-Janus algebra
\[\text{rad}(\Sigma) \] radical of the Tits algebra
\[\Pi^W \] invariant Birkhoff algebra
\[\Sigma^W \] invariant Tits algebra
\[\text{rad}(\Sigma^W) \] radical of the invariant Tits algebra
\[Q \] linear space indexed by top-nested faces
\[W \] group algebra of the Coxeter group \(W\)
\[W\Sigma \] Coxeter-Tits algebra
\[W\Pi \] Coxeter-Birkhoff algebra
\[WJ \] Coxeter-Janus algebra
\[G \] algebra of charts
\[\overline{G} \] algebra of dicharts

The above vector spaces are all associated to an arrangement \(A\). If we wish to show this dependence explicitly, we write \(\Pi[A], \Sigma[A], J[A]\) and so on.

Modules.
\[\Gamma \] left module of chambers
\[h, k \] (left or right) modules over the Tits algebra
\[\mathcal{P}(h) \] primitive part of the left module \(h\) over the Tits algebra
\[\mathcal{D}(h) \] decomposable part of the right module \(h\) over the Tits algebra
\[\mathcal{P}_k(h) \] \(k\)-th term of the primitive series of the left module \(h\)
\[\mathcal{D}_k(h) \] \(k\)-th term of the decomposable series of the right module \(h\)

Elements and maps.
\[H_X \] element of the \(H\)-basis of the Birkhoff algebra
\[Q_X \] element of the \(Q\)-basis of the Birkhoff algebra
\[H_F \] element of the \(H\)-basis of the Tits algebra
\[Q_F \] element of the \(Q\)-basis of the Tits algebra
\[H_{(F,F')}^H \] element of the \(H\)-basis of the projective Tits algebra
\[Q_{(F,F')}^H \] element of the \(Q\)-basis of the projective Tits algebra
\[u \] homogeneous section
\[E \] Eulerian family
\[E_X \] Eulerian idempotents
\[E_L \] first Eulerian idempotent
\[E_k \] idempotent obtained by summing certain \(E_X\)
\[P \] special Zie family
\[u_H, E_H, P_H \] induced \(u, E\) and \(P\) on \(A_H\)
\[\Delta_X, \mu_X \] maps relating the Birkhoff algebras of \(A_X\) and \(A\)
\[\beta_{G,F} \] isomorphism between the Tits algebras of \(A_F\) and \(A_G\)
\[\Delta_F, \mu_F \] maps relating the Tits algebras of \(A_F\) and \(A\)
\[\text{Tak} \] Takeuchi element of the Tits algebra
\[\text{Tak} \] two-sided Takeuchi element of the Janus algebra
Fulₜ Fulman element of parameter t
Adsₙ Adams element of parameter n
Adsₙ₊₋ Type B Adams element of parameter n

<table>
<thead>
<tr>
<th>Lie and Zie elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie[ᴬ]</td>
</tr>
<tr>
<td>Zie[ᴬ]</td>
</tr>
<tr>
<td>Lie[ᴬ]⁰⁰</td>
</tr>
<tr>
<td>Zie[ᴬ]⁰⁰</td>
</tr>
<tr>
<td>Lie[I], Lie[n]</td>
</tr>
<tr>
<td>Lie[I], Lie[n]</td>
</tr>
<tr>
<td>θₖ₁</td>
</tr>
<tr>
<td>dₛ</td>
</tr>
<tr>
<td>B⁻</td>
</tr>
<tr>
<td>Bₖ</td>
</tr>
<tr>
<td>Lₙ</td>
</tr>
<tr>
<td>d_I,ₙ</td>
</tr>
<tr>
<td>E°[ᴬ]</td>
</tr>
<tr>
<td>E⁻[ᴬ]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incidence algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_face</td>
</tr>
<tr>
<td>I_flat</td>
</tr>
<tr>
<td>I_lune</td>
</tr>
<tr>
<td>M_lune</td>
</tr>
<tr>
<td>I_lunetype</td>
</tr>
<tr>
<td>M_lunetype</td>
</tr>
<tr>
<td>I_Lie</td>
</tr>
<tr>
<td>M_Lie</td>
</tr>
<tr>
<td>ζ</td>
</tr>
<tr>
<td>μ</td>
</tr>
<tr>
<td>bc</td>
</tr>
<tr>
<td>Zet</td>
</tr>
<tr>
<td>Zet₁</td>
</tr>
<tr>
<td>Mob</td>
</tr>
<tr>
<td>Mob₁</td>
</tr>
</tbody>
</table>
Subject Index

Symbols
1-chain, 524
W-valued gallery distance, 125
Π-set, 206
R-trivial monoid, 44
h-face, 191
h-flat, 192
Q-bases, 311, 318
ν-Janus algebra, 272
q-Dynkin element, 433
q-Janus algebra, 267
q-Varchenko matrix, 229
q-binomial coefficient, 484, 539
q-commutator, 433
q-factorial, 484
acyclic orientation, 172
Adams element, 358, 504
additive function on lunes, 470
adjacent chambers, 514
adjacent linear orders, 140
adjoint of an arrangement, 20
adjunction, 521
between charts and dicharts, 62
between cones and dicharts, 93
between cones and flats, 53
between faces and top-cones, 50
between flats and charts, 32
affine hyperplane, 404
affine hyperplane arrangement, 404
algebra
of a lattice, 508
of charts, 246
of cones, 246
of dicharts, 246
of endomorphisms, 545
of polynomials, 550
of upper triangular matrices, 520, 560
algebra section, 358
all-subset arrangement, 147, 444
almost-linear extension, 232
ambient space, 4
antiexchange axiom, 524
antimatroid, 524
antisymmetry relation, 280
arrangement
of type \(A_{n-1} \), 140
of type \(B_n \), 161
of type \(D_n \), 169
arrangement over a flat, 20
of the arrangement of type \(B \), 167
of the braid arrangement, 147
arrangement under a flat, 20
of the arrangement of type \(B \), 166
of the braid arrangement, 147
Artin-Wedderburn theorem, 570
associated graded module, 570
associative operad, 117
atom connected poset, 520
atomic lattice, 519
balanced bipartite graph, 52
Balinski's theorem, 520
band, 571
base
of a cone, 53
of a lune, 75
of a preorder, 119
base map, 53, 101
base-case map, 104
Bayer-Diaconis-Garsia-Loday formula, 505
Bergeron formula, 505
Bergeron idempotents, 507
bi-face, 116
biconnected component of a graph, 176
Bidigare-Hanlon-Rockmore theorem, 250
Billera-Brown-Diaconis formula, 337
bimonoid axiom, 245, 265
binary tree, 424
bipartite graph, 32
Birkhoff algebra, 412
Birkhoff monoid, 13
Björner basis, 418
Björner-Wachs basis, 418
bond of a graph, 171
Boolean arrangement, 173
boundary
 of a cone, 55
 of a lune, 80
bounded poset, 517
braid arrangement, 140
Brown formulas, 338
Brown-Diaconis formula, 336

C
 canonical homogeneous section, 430
 Cartan invariants, 384, 386, 394, 501, 510
 cartesian product, 23, 86
 Cartier-Milnor-Moore theorem, 478
 case
 of a cone, 52
 of a lune, 75
 of a preorder, 155
 case map, 52
 Catalan paths, 235
 category of lunes, 108
 cell complex, 513
 center
 of a chart, 51
 of an arrangement, 4
 central arrangement, 4
 central face, 51
 central hyperplane arrangement, 104
 chamber, 513, 571
 chamber element, 255
 chamber graph, 52
 character, 546
 characteristic element, 519
 characteristic polynomial, 42
 chart, 51
 chromatic polynomial, 173
 cismorphism, 6
 classical associative operad, 477
 classical Jacobi identity, 228, 226
 classical Lie elements, 242
 classical Lie operad, 428
 classical Möbius function, 533
 classical Poisson operad, 174
 closed subgraph, 171
 closure
 of a combinatorial cone, 49
 of a combinatorial flat, 10
 of a combinatorial lune, 80
 closure operator, 522
 coatom connected poset, 520
 coboundary, 535
 coclosure operator, 522
 cocycle deformation, 536
 cocycle transfer, 537
 cographic arrangement, 174
 coloring of a graph, 174
 combinatorial cone, 48
 combinatorial flat, 10
 combinatorial lune, 76
 combinatorial top-cone, 48
 commutative operad, 177
 commutative Takeuchi element, 345
 complement of a lattice element, 519
 complementary factors, 25
 complemented lattice, 519
 complete graph, 174
 complete lattice, 517
 complete system, 517
 composite of lunes, 108
 composition
 integer, 146
 set, 130
 composition factors, 550
 composition series, 267, 550, 560
 cone, 47
 coning, 404
 conjugate posets, 155
 conjugate top-cones, 48
 conjugate-meet property, 65
 connected chart, 61
 connected poset, 517
 contraction of a graph, 174
 convex closure, 511
 convex geometry, 477, 524
 convex polytope, 513, 520
 convex set, 49
 convex subposet, 517
 convexity dimension, 60
 coordinate arrangement, 135
 coordinate chart, 61
 covering map of posets, 541
 Coxeter complex, 119
 Coxeter diagram, 132
 Coxeter group, 119
 Coxeter symmetry, 119
 Coxeter system, 121
 Coxeter-Birkhoff algebra, 242
 Coxeter-Birkhoff monoid, 130
 Coxeter-Janus algebra, 272
 Coxeter-Janus monoid, 131
 Coxeter-Tits algebra, 272
 Coxeter-Tits monoid, 129
 Crapo identity, 43
 Crapo invariant, 238
 creation of relations, 533
 CW complex, 513
 cycle, 172
 cycle-type function, 128, 161
 cycle-type of a permutation, 161
 cyclic descents, 510

D
 decomposable part of a module, 566
 decomposable part of a right module, 264
 deletion-restriction recursion, 364
 descent, 178
descent equation
for chambers, 177
for faces, 177
for left Σ-sets, 194
for partial-flats, 189
descent identity, 196
descent-lune equation
for Π-sets, 206
for flats, 189
descent-lune identity, 206
diagonal 0-Janus algebra, 271
diagonalizable element, 550
diagonalizable operator, 545
dichart, 61
dihedral arrangement, 8
dimonomial, 191
Dirichlet series, 533
discrete graph, 171
disjoint union of posets, 152
disjoint-star property, 371
distance function
on chambers, 573
on faces, 574
double factorials, 167
dual poset, 517
Dynkin basis, 403
Dynkin element, 398
Dynkin-Specht-Wever theorem, 282

eigenvalue-multiplicity theorem, 258, 369
elementary algebra, 558
elementary symmetric function, 504
empty cell complex, 573
essential arrangement, 4
essentialization of an arrangement, 6
essentially bounded chambers, 405
Eulerian family, 304
Eulerian idempotents, 304
Eulerian poset, 517
exponential, 213, 460, 493, 528, 563
exponents of a Coxeter group, 528
extension of a top-cone, 58
extension problem, 522
external product, 148
extreme point, 524

face, 5, 513, 571
face-incidence algebra, 449
face-meet property, 140
face-type, 124
factor of an arrangement, 25
faithful module, 516
falling factorial, 158
fiber product, 140, 214, 314
finite field method, 45
first Eulerian idempotent, 304
flag f and flag h vectors, 209
flat, 9
flat-incidence algebra, 118
flat-incidence module, 118
flat-type, 124
formal power series, 159
Friedrichs criterion, 277, 283
Frobenius algebra, 517
Frobenius functional, 545
Fulman algebra, 355
Fulman element, 353

G
gallery, 513
gallery connected cell complex, 513
gallery distance, 514
gallery interval, 58, 515
Galois connection, 521
Garsia criterion, 280, 286
Garsia-Reutenauer idempotents, 504
gate pair, 516
gate property, 32, 516
gated set, 516
generic distance function, 272
generic half-space, 289
generic hyperplane, 289
geometric lattice, 18, 409, 519
geometric partial-support relation, 70
Gilbert-Shannon-Reeds model, 365
gomorphism, 6
good reflection arrangement, 132
graded poset, 518
graphic arrangement, 170
graphic monoid, 576
Green’s relations, 45

H
half-flat, 53
half-space, 4
homogeneous section, 300
homotopy colimit of posets, 331
hyperoctahedron, 162
hyperplane, 4
hyperplane arrangement, 4
idempotent element, 547
idempotent monoid, 574
incidence algebra
of a locally finite category, 351
of a poset, 926
incidence bimodule, 929
incidence function, 928
incidence module, 928
induced graph, 171
insertion sorting, 575
interior
 of a cone, 59
 of a lune, 80
internal category, 109
intersection lattice, 44
invariant
distance function, 219
 Eulerian family, 105
 Lie element, 100
 noncommutative Möbius function, 102
 noncommutative zeta function, 102
 section, 105
 Zie element, 101
 Zie family, 107
invariant Birkhoff algebra, 180
invariant face-incidence algebra, 102
invariant lune-incidence algebra, 102
invariant lune-incidence module, 103
invariant support map, 181
invariant Tits algebra, 180
inversion set, 156
inversions of a permutation, 234
invertible element in an algebra, 555
irreducible arrangement, 277
irreducible reflection arrangement, 132
isomorphic idempotents, 556
iterated substitution product of Lie, 294
J
Jacobi identity, 281, 123
Janus algebra, 160
Janus monoid, 16
join-distributive, 519
join-preserving map, 522
join-semilattice, 517
joinable faces, 15
Jordan-Chevalley decomposition, 518, 519
Jordan-Hölder theorem, 560
Joyal-Klyachko-Stanley theorem, 113
K
Krob-Leclerc-Thibon idempotents, 505
L
labeled simplicial complex, 120, 209
lattice, 517
left Σ-set, 191
left q-bracketing operator, 433
left bracketing operator, 431
left distance function
 on chambers, 574
 on faces, 574
left module of chambers, 252
left module of projective chambers, 255
left Peirce decomposition, 574
left regular band, 574
length of a gallery, 514
length of a group element, 124
Lie element, 275
Lie operad, 147
Lie-incidence algebra, 147
Lie-incidence module, 148
linear composition, 110
linear order, 140
linear partition, 152
linear preorder, 149
locally finite category, 531
locally finite poset, 518
locally graded poset, 518
Loewy series, 555
log-antisymmetric distance function, 212
logarithm, 243, 460, 493, 528, 564
lower semimodular lattice, 148, 519
lower set, 149, 517
LRB, 574
lune, 75
lune decomposition of a cone over a flat, 85
lune equation, 183
 for left Σ-sets, 199
 for partial-flats, 189
 for right Σ-sets, 201
lune identity, 205
lune-additivity, 455, 492
lune-incidence algebra, 449, 491
lune-incidence module, 451
lune-type, 123
Lyndon basis, 119
M
Möbius algebra of a lattice, 563
Möbius function, 526
Möbius inversion, 528
Möbius number, 41
mapping cylinder, 530
matroid, 41
meet-semilattice, 517
minimal gallery, 514
minimal gallery of linear orders, 140
minimum polynomial, 550
modular complements, 10
module over an algebra, 534
Morita equivalent algebras, 268
multiplicative character, 516
N
Nakayama Lemma, 570
negative one color theorem, 173, 175
nested face, 80, 149
nested face-type, 123
nested flat, 108, 115
nilpotency index, 553
nilpotent element, 548
nilpotent ideal, 553
non-stuttering path, 224
noncommutative Hall formula, 459
noncommutative lattice, 15
noncommutative Möbius function, 455
noncommutative Möbius inversion, 460
noncommutative Weisner formula, 456, 493
noncommutative zeta function, 454
odd-even invariant, 217
operad, 477
opposite
chamber, 6
cone, 51
face, 6
half-space, 5
nested face, 484
poset, 517
opposite set composition, 172
opposite type B set composition, 189
opposition map
on cones, 51
on faces, 6
on lunes, 51
on set compositions, 122
on type B set compositions, 163
optimal decomposition of a cone, 87
order (co)homology, 108
order complex, 108, 116
order dimension, 151
order-preserving group action, 541
ordered category, 118
ordered coordinate chart, 417
orientation, 406
orientation of a graph, 172
orientation space, 406
orthodox semigroup, 131
orthogonal idempotents, 547
parabolic subgroup, 125
parallel alternative, 92
parallel composition of partial orders, 112
partial order, 148
partial-bi-flat, 70
partial-flat, 70
partial-support, 70
partial-support relation on chambers, 68
partial-support relation on faces, 70
partition
integer, 146
set, 141
path algebra of a quiver, 502
peak algebras, 510
peakless linear order, 431
peakless permutation, 506
Peirce decompositions, 501
permutation, 140
Philip Hall formula, 526
Poincaré polynomial, 185
pointed arrangement, 121
poset, 148
of cones, 17
of divisors, 533
of face-types, 121
of faces, 5
of finite height, 517
of flat-types, 125
of flats, 9
of partial orders, 149
of preorders, 150
of top-cones, 143
of top-lunes, 101
of triangular type, 540
ost cocyle, 535
ost cohaion, 836
positive sum system, 429
prelinear extension, 232, 237
preorder, 148
preposet, 148
prime arrangement, 27
prime decomposition of an arrangement, 27
prime factor of an arrangement, 26
primitive, 461, 494
primitive idempotent, 547
primitive part of a left module, 263
primitive part of a module, 566
primitive series of a left module, 598
projective
chamber, 255
Eulerian family, 307
Lie element, 278
noncommutative Möbius function, 456
noncommutative zeta function, 454
section, 301
Zie element, 286
Zie family, 318
projective chamber, 6
projective cone, 52
projective face, 6
projective Janus algebra, 266
projective Lie-incidence algebra, 469
projective lune, 52
projective lune-incidence algebra, 459
projective lune-incidence module, 455
projective Tits algebra, 252
proper coloring of a graph, 173
pure cell complex, 513
quasi-shuffle, 154
quiver
of an elementary algebra, 562
of an incidence algebra, 532
of the algebra of upper triangular matrices, 592
of the flat-incidence algebra, 449
of the free left regular band, 395
of the invariant Tits algebra, 500
of the lune-incidence algebra, 452
of the projective Tits algebra, 391
of the Solomon descent algebra, 508
of the Tits algebra, 391

R
radical
of a module, 554
of an algebra, 553
of an incidence algebra, 532
of the flat-incidence algebra, 449
of the left module of chambers, 253
of the lune-incidence algebra, 452
of the Tits algebra, 219
radical series
of a module, 554
of the left module of chambers, 269
rank
of a cell complex, 513
of a poset, 515
of an arrangement, 1
rank function, 513
rank-one arrangement, 8
rank-three arrangement, 8
rank-two arrangement, 8
rank-zero arrangement, 8
reduced Euler characteristic, 513
reduced incidence algebra, 532, 536
Ree criterion, 277, 285
reference chamber, 121
reflection arrangement, 119
regular cell complex, 515
regular group action on a poset, 512
regular semigroup, 131
relative pair of cell complexes, 195, 204
relatively complemented lattice, 519
representation of an algebra, 518
restricted Lie algebra, 509
restriction of a graph, 171
restriction of a top-cone, 88
Riemann zeta function, 533
shuffle, 153
right Σ-set, 201
right distance function
 on chambers, 576
 on faces, 574
right Peirce decomposition, 574
rigid module, 588, 559
Rota formula, 830, 658

S
salient cone, 172, 151
Saliola construction, 506
Saliola lemma, 506
Salvetti complex, 99
Schubert symbol, 538
Schützenberger representation, 395
selection sorting, 576
self-dual module, 546
semisimple algebra, 553
semisimple module, 554
separating element, 311
series alternative, 92
series composition of partial orders, 189
series-parallel partial order, 154
set-theoretic
 noncommutative zeta function, 453
 section, 301
shuffle, 153
sign representation, 427, 439
signature space, 408
signed poset, 168
signed symmetric group, 131
simple directed graph, 151
simple graph, 131, 170
simple module, 546
simplicial arrangement, 7
simply signed graph, 166
sink, 173
slack of a lune or a cone, 77
smallest nonsimplicial arrangement, 1
socle
 of a module, 554
 of the left module of chambers, 372
socle series
 of a module, 555
 of the left module of chambers, 372
Solomon descent algebra, 582
special Zie element, 282, 317
special Zie family, 315
split-semisimple algebra, 553
star, 241, 191, 204, 516
stationary distribution, 334
Stirling numbers of the first kind, 158
strongly connected poset, 10, 520
subarrangement, 110, 531
subcomplex, 513
subgraph, 171
subposet, 517
substitution product, 116, 291, 295, 448
supertight join-preserving map, 523
support
 of a h-face, 172
 of a chain of faces, 109
 of a composition, 146
 of a cone, 142
 of a face, 142
 of a face-type, 122
 of a nested face, 80
 of a set composition, 142
 of a top-nested face, 77
SUBJECT INDEX 611

of a type \(B \) composition, 165
of a type \(B \) set composition, 163
of an element of a right \(\Sigma \)-set, 204
support map, 10 131 142 163 192 204
249 572
support semilattice, 572
support-type, 122
symmetric distance function, 212
symmetric group, 110
symmetric Varchenko matrix, 228
symmetrized Dynkin element, 400

T
Takeuchi element, 344
tight join-preserving map, 528
Tits algebra, 249
Tits monoid, 12
Tits product, 11 135 163
Tits projection, 11
top-cone, 15
top-eigenvector, 334
top-lune, 75
top-nested face, 77
top-separating element, 436
Tov-star, 171
top-star, 21, 516
top-star-lune, 92
tree, 171
trivial factors, 26
two-sided Peirce decomposition, 382
two-sided Takeuchi element, 348
type
of a composition, 147
of a face, 121
of a flat, 122
of a nested face, 123
of a partition, 147
of a type \(B \) composition, 165
of a type \(B \) partition, 165
type \(B \) Adams element, 361 507
type \(B \) binary tree, 137
type \(B \) composition, 165
type \(B \) Jacobi identity, 136 138
type \(B \) Lie elements, 136
type \(B \) linear order, 162
type \(B \) partial order, 166
type \(B \) partition, 165
type \(B \) raffle shuffles, 366
type \(B \) set composition, 162
type \(B \) set partition, 162
type \(B \) simple graph, 165
type \(B \) Stirling numbers, 169
type \(D \) raffle shuffle, 366
type map, 121

U
unbracketing, 112
uniform
noncommutative zeta function, 154

section, 301
uniserial module, 355
unital augmentation, 572
upper semimodular lattice, 519
upper set, 149 517

V
Vandermonde matrix, 365 370 551
Varchenko matrix, 220
vertex, 5 143
vertex-based lune, 76

W
wall, 51
weak composition, 136
weak order on a Coxeter group, 125
weak order on chambers, 45
Wedderburn principal theorem, 570
Wedderburn structure theorem, 568 570
Wedderburn-Malcev theorem, 570
weight function, 211
Weisner formula, 111 527
Weisner function on lunes, 470
Whitney (co)homology, 409
Whitney numbers of the first kind, 43
Whitney polynomial, 351
Winder formula, 42
Witt identity, 136

Z
Zagier formula, 234 238
Zaslavsky formula, 111 526 576 109
zero divisor, 350
zeta function, 326
Zie element, 382
Zie family, 315
zonotope, 44
Selected Published Titles in This Series

226 Marcelo Aguiar and Swapneel Mahajan, *Topics in Hyperplane Arrangements*, 2017
221 Dennis Gaitsgory and Nick Rozenblyum, *A Study in Derived Algebraic Geometry*, 2017
218 Tushar Das, David Simmons, and Mariusz Urbański, *Geometry and Dynamics in Gromov Hyperbolic Metric Spaces*, 2017
216 Frederick W. Gehring, Gaven J. Martin, and Bruce P. Palka, *An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings*, 2017
213 Harold G. Diamond and Wen-Bin Zhang (Cheung Man Ping), *Beurling Generalized Numbers*, 2016
204 Victor M. Buchstaber and Taras E. Panov, *Toric Topology*, 2015
203 Donald Yau and Mark W. Johnson, *A Foundation for PROPs, Algebras, and Modules*, 2015
197 Richard Evan Schwartz, *The Octagonal PETs*, 2014
195 Ching-Li Chai, Brian Conrad, and Frans Oort, *Complex Multiplication and Lifting Problems*, 2014
This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material.

Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples.

Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra.

The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.