Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Bounded Cohomology of Discrete Groups

About this Title

Roberto Frigerio, University of Pisa, Pisa, Italy

Publication: Mathematical Surveys and Monographs
Publication Year: 2017; Volume 227
ISBNs: 978-1-4704-4146-3 (print); 978-1-4704-4319-1 (online)
DOI: https://doi.org/10.1090/surv/227
MathSciNet review: MR3726870
MSC: Primary 57T10; Secondary 20J06, 37C85, 55N10, 57M07

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • S. Adams, G. A. Elliott, and T. Giordano, Amenable actions of groups, Trans. Amer. Math. Soc. 344 (1994), 803–822.
  • M. F. Atiyah and F. Hirzebruch, Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc. 57 (1961), 223–226.
  • C. Bavard, Longueur stable des commutateurs, Enseign. Math. 37 (1991), 109–150.
  • M. Bucher, M. Burger, R. Frigerio, A. Iozzi, C. Pagliantini, and M. B. Pozzetti, Isometric properties of relative bounded cohomology, J. Topol. Anal. 6 (2014), no. 1, 1–25.
  • M. Bestvina, K. Bromberg, and K. Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, Comment. Math. Helv. 91 (2016), 203–218.
  • G. Ben Simon, M. Burger, T. Hartnick, A. Iozzi, and A. Wienhard, On weakly maximal representations of surface groups, J. Differential Geom. 105 (2017), 375–404.
  • M. Bucher, M. Burger, and A. Iozzi, A dual interpretation of the Gromov–Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, Trends in harmonic analysis, Springer INdAM Ser., Springer, Milan, 2013, pp. 47–76.
  • G. Besson, G. Courtois, and S. Gallot, Minimal entropy and mostow’s rigidity theorems, Ergodic Theory Dynam. Systems 16 (1996), 623–649.
  • M. Bucher, C. Connell, and J. F. Lafont, Vanishing simplicial volume for certain affine manifolds, arXiv:1610.00832, to appear in Proc. Amer. Math. Soc.
  • R. Bieri and B. Eckmann, Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra 13 (1978), 277–319.
  • A. F. Beardon, The geometry of discrete groups. corrected reprint of the 1983 original, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995.
  • M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89.
  • M. Bucher, R. Frigerio, and T. Hartnick, A note on semi-conjugacy for circle actions, Enseign. Math. 62 (2016), 317-360.
  • M. Bucher, R. Frigerio, and C. Pagliantini, The simplicial volume of 3-manifolds with boundary, J. Topol. 8 (2015), 457–475.
  • M. Bucher, R. Frigerio, and C. Pagliantini, A quantitative version of a theorem by Jungreis, Geom. Dedicata 187 (2017), 199–218.
  • U. Bader, A. Furman, and R. Sauer, Integrable measure equivalence and rigidity of hyperbolic lattices, Invent. Math. 194 (2013), 313–379.
  • J. Barge and E. Ghys, Surfaces et cohomologie bornée, Invent. Math. 92 (1988), 509–526.
  • —, Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), 235–265.
  • M. Bucher and T. Gelander, The generalized Chern conjecture for manifolds that are locally a product of surfaces, Adv. Math. 228 (2011), 1503–1542.
  • —, Milnor-Wood inequalities for products, Algebr. Geom. Topol. 13 (2013), 1733–1742.
  • M. Burger and A. Iozzi, Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity, Geom. Dedicata 125 (2007), 1–23.
  • —, A useful formula from bounded cohomology, Géométries à courbure négative ou nulle, groupes discrets et rigidités, Sémin. Congr., vol. 18, Soc. Math. France, Paris, 2009, pp. 243–292.
  • M. Burger, A. Iozzi, N. Monod, and A. Wienhard, Bounds for cohomology classes, Enseign. Math. 54 (2008), 52–54.
  • M. Burger, A. Iozzi, and A. Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. (2) 172 (2010), 517–566.
  • —, Higher Teichmüller spaces: from $SL(2,\mathbb {R})$ to other Lie groups, Handbook of Teichmüller theory. Vol. IV, IRMA Lect. Math. Theor. Phys., vol. 19, Eur. Math. Soc., Zürich, 2014, pp. 539–618.
  • M. Bucher-Karlsson, Simplicial volume of locally symmetric spaces covered by $SL_3\mathbb {R}/SO(3)$, Geom. Dedicata 125 (2007), 203–224.
  • M. Bucher-Karlsson, The proportionality constant for the simplicial volume of locally symmetric spaces, Colloq. Math. 111 (2008), 183–198.
  • —, The simplicial volume of closed manifolds covered by $\mathbb {H}^ 2\times \mathbb {H}^2$, J. Topol. 1 (2008), 584–602.
  • M. Bucher and I. Kim, Proportionality principle for the simplicial volume of families of $\mathbb {Q}$-rank 1 locally symmetric spaces, Math. Z. 276 (2014), 153–172.
  • M. Blank, Relative bounded cohomology for groupoids, Geom. Dedicata 184 (2016), 27–66.
  • M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999), 199–235.
  • —, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), 219–280.
  • M. Bucher and N. Monod, The norm of the Euler class, Math. Ann. 353 (2012), 523–544.
  • R. Bott, Some remarks on continuous cohomology, Manifolds - Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) (Univ. Tokyo Press, ed.), vol. 8, 1975, pp. 161–170.
  • N. Bourbaki, Intégration VII et VIII. Élements de mathématique, no. 1306, Hermann, Paris, 1963.
  • A. Bouarich, Suites exactes en cohomologie bornée réelle des groupes discrets, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1355–1359.
  • —, Théorèmes de Zilber-Eilenberg et de Brown en homologie $l_1$, Proyecciones 23 (2004), 151–186.
  • —, Expression de la différentielle d3 de la suite spectrale de Hochschild-Serre en cohomologie bornée réelle, Extracta Math. 27 (2012), 245–300.
  • R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992.
  • R. Brooks, Some remarks on bounded cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 53–63.
  • K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982.
  • R. Brooks and C. Series, Bounded cohomology for surface groups, Topology 23 (1984), 29–36.
  • R. Bott and L. W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, 1982.
  • M. Bucher, Characteristic classes and bounded cohomology, Ph.D. thesis, ETH Zürich, 2004.
  • M. Bucher, Simplicial volume of products and fiber bundles, Discrete groups and geometric structures, Contemp. Math., vol. 501, Amer. Math. Soc., Providence, RI, 2009, pp. 79–86.
  • —, On the algebraic foundations of bounded cohomology, Mem. Amer. Math. Soc. 214 (2011), xxii+97.
  • M. Burger, An extension criterion for lattice actions on the circle, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 3–31.
  • D. Calegari, Foliations and the geometry of 3-manifolds, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.
  • —, Faces of the scl norm ball, Geom. Topol. 13 (2009), 1313–1336.
  • D. Calegari, scl, MSJ series, Mathematical Society of Japan, 2009.
  • I. Chatterji, T. Fernós, and A. Iozzi, The median class and superrigidity of actions on CAT(0) cube complexes, J. Topol. 9 (2016), 349–400.
  • C. Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), 396–407.
  • J.-L. Clerc and R. Ørsted, The Gromov norm of the Kaehler class and the Maslov index, Asian J. Math. 7 (2003), 269–295.
  • D. Calegari and A. Walker, Ziggurats and rotation numbers, J. Mod. Dyn. 5 (2011), 711–746.
  • M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.
  • A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische produkte, Ann. of Math. 67 (1958), 239–281.
  • A. Domic and D. Toledo, The Gromov norm of the Kaehler class of symmetric domains, Math. Ann. 276 (1987), 425–432.
  • J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass, 1966.
  • J. L. Dupont, Bounds for characteristic numbers of flat bundles, Algebraic topology, Aarhus 1978, Lecture Notes in Math, vol. 763, Springer, Berlin, 1979, 1979, pp. 109–119.
  • D. Epstein and K. Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), 1275–1289.
  • S. Francaviglia, R. Frigerio, and B. Martelli, Stable complexity and simplicial volume of manifolds, J. Topology 5 (2012), 977–1010.
  • F. Franceschini, R. Frigerio, M.B. Pozzetti, and A. Sisto, The zero norm subspace of bounded cohomology of acylindrically hyperbolic groups, arXiv:1703.03752.
  • K. Fujiwara and M. Kapovich, On quasihomomorphisms with noncommutative targets, Geom. Funct. Anal. 26 (2016), 478–519.
  • R. Frigerio, C. Löh, C. Pagliantini, and R. Sauer, Integral foliated simplicial volume of aspherical manifolds, Israel J. Math. 216 (2016), 707–751.
  • R. Frigerio and M. Moraschini, Gromov’s theory of multicomplexes with applications to bounded cohomology and simplicial volume, in preparation.
  • B. Farb and H. Masur, Superrigidity and mapping class groups, Topology 37 (1998), 1169–1176.
  • K. Fujiwara and J. K. Manning, Simplicial volume and fillings of hyperbolic manifolds, Algebr. Geom. Topol. 11 (2011), 2237–2264.
  • R. Frigerio and C. Pagliantini, The simplicial volume of hyperbolic manifolds with geodesic boundary, Algebr. Geom. Topol. 10 (2010), 979–1001.
  • —, Relative measure homology and continuous bounded cohomology of topological pairs, Pacific J. Math. 257 (2012), 95–130.
  • F. Franceschini, A characterization of relatively hyperbolic groups via bounded cohomology, arXiv:1505.04465, to appear in Groups Geom. Dyn.
  • S. Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. 9 (2004), 425–459.
  • F. Franceschini, Proportionality principle for the Lipschitz simplicial volume, Geom. Dedicata 182 (2016), 287–306.
  • R. Frigerio, (Bounded) continuous cohomology and Gromov’s proportionality principle, Manuscripta Math. 134 (2011), 435–474.
  • K. Fujiwara and T. Soma, Bounded classes in the cohomology of manifolds, Geom. Dedicata 92 (2002), 73–85.
  • K. Fujiwara, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. 76 (1998), 70–94.
  • —, The second bounded cohomology of an amalgamated free product of groups, Trans. Amer. Math. Soc. 352 (2000), 1113–1129.
  • A. M. Gersten, Bounded cocycles and combings of groups, Internat. J. Algebra Comput. 2 (1992), 307–326.
  • E. Ghys, Groupes d’homéomorphismes du cercle et cohomologie bornée, The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1987, pp. 81–106.
  • —, Actions de réseaux sur le cercle, Invent. Math. 137 (1999), 199–231.
  • —, Groups acting on the circle, Enseign. Math. (2) 47 (2001), 329–407.
  • W. M. Goldman and J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495–520.
  • Y. Glasner and N. Monod, Amenable actions, free products and a fixed point property, Bull. Lond. Math. Soc. 39 (2007), 138–150.
  • W. Goldman, Discontinuous groups and the Euler class, Ph.D. thesis, University of California, Berkeley, 1980.
  • W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), 557–607.
  • —, Two papers which changed my life: Milnor’s seminal work on flat manifolds and bundles, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 679–703.
  • F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295–315.
  • R. I. Grigorchuk, Some results on bounded cohomology, Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser, vol. 204, Cambridge Univ. Press, Cambridge, 1995, pp. 111–163.
  • M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99.
  • M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, vol. 2, London Math. Soc. Lectures Notes Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993.
  • —, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser, 1999, with appendices by M. Katz, P. Pansu, and S. Semmes, translated by S.M. Bates.
  • M. Gromov, Singularities, expanders and topology of maps. part i: Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009), 743–841.
  • L. Guijarro, T. Schick, and G. Walschap, Bundles with spherical Euler class, Pacific J. Math. 207 (2002), 377–391.
  • U. Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces, J. Eur. Math. Soc. 10 (2008), 315–349.
  • S.K. Hansen, Measure homology, Math. Scand. 83 (1998), 205–219.
  • A. Hatcher, Algebraic topology, Cambridge University Pres, Cambridge, 2002.
  • M. Hoster and D. Kotschick, On the simplicial volumes of fiber bundles, Proc. Amer. Math. Soc. 129 (2001), 1229–1232.
  • U. Haagerup and H. J. Munkholm, Simplices of maximal volume in hyperbolic $n$-space, Acta Math. 147 (1981), 1–11.
  • T. Hartnick and A. Ott, Surjectivity of the comparison map in bounded cohomology for Hermitian Lie groups, Int. Math. Res. Not. (2012), no. 9, 2068–2093.
  • M. Hull and D. Osin, Induced quasicocycles on groups with hyperbolically embedded subgroups, Algebr. Geom. Topol. 13 (2013), 2635–2665.
  • T. Hartnick and A. Ott, Bounded cohomology via partial differential equations, I, Geom. Topol 19 (2015), 3603–3643.
  • T. Hartnick and P. Schweitzer, On quasioutomorphism groups of free groups and their transitivity properties, J. Algebra 450 (2016), 242–281.
  • M. W. Hirsch and W. P. Thurston, Foliated bundles, invariant measures and flat manifolds, Ann. Math. 101 (1975), 369–390.
  • T. Huber, Rotation quasimorphisms for surfaces, Ph.D. thesis, ETH Zürich, 2012, available at http://e-collection.library.ethz.ch/eserv/eth:7059/eth-7059-02.pdf.
  • D. Husemoller, Fibre bundles. Third edition., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994.
  • A. Iozzi, Bounded cohomology, boundary maps, and representations into $\textrm {Homeo}_+({S}^1)$ and ${S}{U}(n,1)$, Rigidity in Dynamics and Geometry (Cambridge, 2000), Springer, Berlin, 2002.
  • N. V. Ivanov and V. G. Turaev, The canonical cocycle for the Euler class of a flat vector bundle, Dokl. Akad. Nauk SSSR 265 (1982), 521–524.
  • N. V. Ivanov, Notes on the bounded cohomology theory, arXiv:1708.05150.
  • N. V. Ivanov, Foundation of the theory of bounded cohomology, J. Soviet. Math. 37 (1987), 1090–1114.
  • —, The second bounded cohomology group, J. Soviet Math. 52 (1990), 2822–2824.
  • H. Inoue and K. Yano, The Gromov invariant of negatively curved manifolds, Topology 21 (1982), 83–89.
  • B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
  • D. Jungreis, Chains that realize the Gromov invariant of hyperbolic manifolds, Ergod. Th. Dynam. Sys. 17 (1997), 643–648.
  • V. A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal. 13 (2003), 852–861.
  • S. Kim and I. Kim, Simplicial volume of $\mathbb {Q}$-rank one locally symmetric spaces covered by the product of $\mathbb {R}$-rank one symmetric spaces, Algebr. Geom. Topol. 12 (2012), 1165–1181.
  • S. Kim and T. Kuessner, Simplicial volume of compact manifolds with amenable boundary, J. Topol. Anal. (2015), no. 7, 23–46.
  • B. Kleiner and B. Leeb, Groups quasi-isometric to symmetric spaces, Comm. Anal. Geom. 9 (2001), 239–260.
  • B. Klingler, Chern’s conjecture for special affine manifolds, Ann. of Math. (2) 186 (2017), 69-95.
  • V. A. Kaimanovich and H. Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), 221–264.
  • R. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742–749.
  • B. Kostant and D. Sullivan, The Euler characteristic of an affine space form is zero, Bull. Amer. Math. Soc. 8 (1975), 937–938.
  • F. Kamber and P. Tondeur, Flat manifolds, Lecture notes in mathematics 67 (1968), iv + 53 pp.
  • T. Kuessner, Multicomplexes, bounded cohomology and additivity of simplicial volume, Bull. Korean Math. Soc. (2015), no. 52, 1855–1899.
  • J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, no. 218, Springer-Verlag, New York, 2003.
  • C. Löh, Group cohomology and bounded cohomology, available at http://www.math.uni-muenster.de/u/clara.loeh/topologie3$\_$ws0910/prelim.pdf.
  • C. Löh, Measure homology and singular homology are isometrically isomorphic, Math. Z. 253 (2006), 197–218.
  • C. Löh, Homology and simplicial volume, Ph.D. thesis, WWU Münster, 2007, available online at http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216.
  • C. Löh, Isomorphisms in $l^1$-homology, Münster J. Math. 1 (2008), 237–266.
  • —, Finite functorial semi-norms and representability, Int. Math. Res. Notices 2016 (12) (2016), 3616–3638.
  • C. Löh, A note on bounded-cohomological dimension of discrete groups, J. Math. Soc. Japan 69 (2017), 715–734.
  • C. Löh and C. Pagliantini, Integral foliated simplicial volume of hyperbolic 3-manifolds, Groups Geom. Dyn. 10 (2016), 825–865.
  • J. F. Lafont and B. Schmidt, Simplicial volume of closed locally symmetric spaces of non-compact type, Acta Math. 197 (2006), 129–143.
  • C. Löh and R. Sauer, Degree theorems and Lipschitz simplicial volume for non-positively curved manifolds of finite volume, J. Topology 2 (2009), 193–225.
  • —, Simplicial volume of Hilbert modular varieties, Comment. Math. Helv. 84 (2009), 457–470.
  • F. Luo, Continuity of the volume of simplices in classical geometry, Commun. Cont. Math. 8 (2006), 211–231.
  • J.-F. Lafont and S. Wang, Barycentric straightening and bounded cohomology, arXiv:1503.06369, to appear in J. Eur. Math. Soc.
  • J. F. Manning, Geometry of pseudocharacters, Geom. Topol. 9 (2005), 1147–1185.
  • K. Mann, Spaces of surface group representations, Invent. Math. 201 (2015), 669–710.
  • S. Matsumoto, Numerical invariants for semiconjugacy of homeomorphisms of the circle, Proc. Amer. Math. Soc. 98 (1986), 163–168.
  • S. Matsumoto, Some remarks on foliated $S^1$-bundles, Invent. Math. 90 (1987), 343–358.
  • D. V. Mathews, The hyperbolic meaning of the Milnor-Wood inequality, Expo. Math. 30 (2012), 49–68.
  • S. Matsumoto, Basic partitions and combination of group actions on the circle: A new approach to a theorem of Kathryn Mann, Enseign. Math. 62 (2016), 15–47.
  • L. Mdzinarishvili, Continuous singular cohomology, Georgian Math. J. 16 (2009), 321–342.
  • J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 21 (1958), 215–223.
  • J. Milnor, Some consequences of a theorem of Bott, Ann. of Math. (2) 68 (1958), 444–449.
  • I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), 807–839.
  • —, Bounded cohomology characterizes hyperbolic groups, Q. J. Math. 53 (2002), 59–73.
  • Y. Mitsumatsu, Bounded cohomology and $l^{1}$-homology of surfaces, Topology 23 (1984), 465–471.
  • S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), 539–544.
  • N. Monod, Continuous bounded cohomology of locally compact groups, Lecture notes in Mathematics, no. 1758, Springer-Verlag, Berlin, 2001.
  • N. Monod, An invitation to bounded cohomology, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1183–1211.
  • M. A. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc. 7 (1976), 1–142.
  • N. Monod and B. Rémy, Boundedly generated groups with pseudocharacters, J. London Math. Soc. (2) 73 (2006), 84–108, Appendix to: J. F. Manning, Quasi-actions on trees and property (QFA).
  • J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies, no. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.
  • N. Monod and Y. Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differential Geom. 67 (2004), 395–455.
  • —, Orbit equivalence rigidity and bounded cohomology, Ann. of Math. (2) 164 (2006), 825–878.
  • I. Mineyev and A. Yaman, Relative hyperbolicity and bounded cohomology, available online at http://www.math.uiuc.edu/ mineyev/math/art/rel-hyp.pdf, 2007.
  • G. A. Noskov, Bounded cohomology of discrete groups with coefficients, Leningrad Math. J. (1991), no. 5, 1067–1084.
  • A. Y. Ol’shanskii, On the question of the existence of an invariant mean on a group, Uspekhi Mat. Nauk 35 (1980), no. 4(214), 199–200.
  • A. Y. Ol’shanskii and M. V. Sapir, Non-amenable finitely presented torsion by-cyclic groups, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 43–169.
  • D. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), 851–888.
  • H. S. Park, Relative bounded cohomology, Topology Appl. 131 (2003), 203–234.
  • H. Park, Foundations of the theory of $l^1$ homology, J. Korean Math. Soc. 41 (2004), 591–615.
  • A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, no. 29, American Mathematical Society, Providence, RI, 1988.
  • N. Peyerimhoff, Simplices of maximal volume or minimal total edge length in hyperbolic space, J. London Math. Soc. 66 (2002), 753–768.
  • J.-P. Pier, Amenable locally compact groups, Pure and Applied Mathematics, Wiley, 1984.
  • H. Poincaré, Mémoire sur les courbes définies par une équation différentielle, Journal de Mathématiques 7 et 8 (1881), 375–422 et 251–296, Oeuvres des Henri Poicharé. Tome I. Gauthier Villars.
  • John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, no. 149, Springer-Verlag, New York, 1994.
  • P. Rolli, Quasi-morphisms on free groups, arXiv:0911.4234.
  • —, Split quasicocycles, arXiv:1305.0095.
  • W. Rudin, Functional analysis. second edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
  • A. Sambusetti, Minimal entropy and simplicial volume, Manuscripta Math. 99 (1999), 541–560.
  • R. Sauer, $l^2$-invariants of groups and discrete measured groupoids, Ph.D. thesis, 2002, http://www.math.uni-muenster.de/u/lueck/homepages/roman_sauer/publ/sauer.pdf.
  • M. Schmidt, $l^2$-Betti numbers of $\mathcal {R}$-spaces and the integral foliated simplicial volume, Ph.D. thesis, Westfälische Wilhelms-Universität Münster, 2005.
  • P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), 555–565.
  • J. Smillie, The Euler characteristic of flat bundles, unpublished preprint.
  • J. Smillie, Flat manifolds with non-zero Euler characteristics, Comment. Math. Helv. 52 (1977), 453–455.
  • T. Soma, The Gromov invariant of links, Invent. Math. 64 (1981), 445–454.
  • —, Existence of non-Banach bounded cohomology, Topology 37 (1998), 179–193.
  • N. Steenrod, The topology of fiber bundles, Princeton University Press, 1951.
  • D. Sullivan, A generalization of Milnor’s inequality concerning affine foliations and affine manifolds, Comment. Math. Helv. 51 (1976), 183–189.
  • M. Takamura, Semi-conjugacy and a theorem of Ghys, unpublished.
  • W. P. Thurston, The geometry and topology of $3$-manifolds, Princeton, 1979, mimeographed notes.
  • J. von Neumann, Zur allgemeinen theorie des masses, Fund. Math. 13 (1929), 73–116.
  • J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257–273.
  • A. Zastrow, On the (non)-coincidence of Milnor-Thurston homology theory with singular homology theory, Pacific J. Math. (1998), 369–396.
  • R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350–372.
  • —, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984.